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ABSTRACT
An important question in behavioral epidemiology and pub-
lic health is to understand how individual behavior is af-
fected by illness and stress. Although changes in individual
behavior are intertwined with contagion, epidemiologists to-
day do not have sensing or modeling tools to quantitatively
measure its effects in real-world conditions.

In this paper, we propose a novel application of ubiquitous
computing. We use mobile phone based co-location and
communication sensing to measure characteristic behavior
changes in symptomatic individuals, reflected in their total
communication, interactions with respect to time of day (e.g.
late night, early morning), diversity and entropy of face-to-
face interactions and movement. Using these extracted mo-
bile features, it is possible to predict the health status of an
individual, without having actual health measurements from
the subject. Finally, we estimate the temporal information
flux and implied causality between symptoms, behavior and
mental health.

Author Keywords
Socially aware mobile phones, epidemiology, reality mining.

General Terms
Algorithms, Design, Documentation, Experimentation, Mea-
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INTRODUCTION
Face-to-face interactions are the primary medium for prop-
agation of airborne contagious disease [5]. An important
question in behavioral epidemiology and public health is to
understand how individual behavior patterns are affected by
physical and mental health symptoms. Epidemiologists cur-
rently do not have access to sensing and modeling capa-
bilities to quantitatively measure behavioral changes expe-
rienced by symptomatic individuals in real-world scenarios
[10]. Such research requires simultaneously capturing symp-
tom reports, mobility patterns and social interactions amongst
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individuals continuously over long-term duration. In this pa-
per, we propose a novel application of ubiquitous comput-
ing, to better understand the link between physical respira-
tory symptoms, influenza, stress, mild depression and auto-
matically captured behavioral features. This is an important
problem in several different ways.

Quantitatively understanding how people behave when they
are infected would be a fundamental contribution to epi-
demiology and public health, and can inform treatment and
intervention strategies, as well as influence public policy de-
cisions. On one hand, clinical epidemiology has accurate
information on the evolution of the health of individuals over
time but lacks realistic social interaction as well as spatiotem-
poral data [6]. On the other hand, current trends in theoreti-
cal epidemiology model the rate of infection in a population
whose behavior is stationary over time and do not account
for individual changes [9]. For instance, if a person infected
with influenza continues his habitual lifestyle instead of iso-
lating himself, he could pose a bigger risk to others in prox-
imity. Based on our analysis and results, policymakers can
recommend social interventions that minimize such risk.

On the modeling front, epidemiological models like SIS or
SIR commonly assume that movement and interaction pat-
terns for individuals are unchanged when they are infected,
primarily due to absence of empirical evidence. However,
our results show that this is not a correct assumption, as there
are evident variations in behavior of symptomatic individu-
als that can be measured using mobile sensing. Account-
ing for these dynamics of behavior can be used to create
realistic models of disease propagation in spatial epidemiol-
ogy. From the individuals perspective, predicting likelihood
of symptoms from behavior could lead to a possible early-
warning system and intervention by medical experts.

In this paper, we describe experimental work that illustrates
the use of co-location and communication sensors in mo-
bile phones to characterize the change in face-to-face in-
teractions and individual trajectories in the contagion pro-
cess. The experimental context consists of residents of an
undergraduate dormitory for two months, from February to
April 2009. Individuals were surveyed on a day-to-day basis
for symptoms of contagious diseases like common colds, in-
fluenza and gastroenteritis. We find that there are character-
istic changes in behavior when individuals are sick, reflected
in automatically captured features like their total communi-
cation, communication patterns with respect to time of day
(e.g. late night, early morning), diversity of their network



and entropy of movement within and outside the university.
Due the pervasiveness of the mobile phones, this approach
can be scaled to large-scale models of epidemiological con-
tagion in the future.

Finally, we use a recently developed signal processing ap-
proach [11] to shed light on the information flux between
physical symptoms, behavior changes and stress based on
temporal information flux gathered by our mobile sensors.
This is, to our knowledge, the first comprehensive empirical
study in this direction.

RELATED WORK

Mobile Phones as Social Sensors
The four billion mobile phones worldwide are ubiquitous so-
cial sensors of location, proximity and communication. Ea-
gle and Pentland [4] coined the term Reality Mining, and
used mobile phone Bluetooth proximity, call data records
and cellular-tower identifiers to detect the social network
structure and recognize regular patterns in daily user activity.
For human location traces, Gonzalez et. al [7] showed that
call detail records could be used to characterize human mo-
bility patterns and test the proposed models better than ran-
dom walk or Levy flight models. Similarly, electronic sensor
badges like the Sociometric badge [12] have been used to
identify human activity patterns and analyze conversational
prosody features.

Link Between Physical Symptoms, Behavior Changes and
Stress
In medical literature, substantial evidence has been found for
an association between stress and increased illness behavior,
and less convincing but provocative evidence was found for
a similar association between stress and infectious pathol-
ogy: Introverts, isolates, and persons lacking social skills
may also be at increased risk for both illness behaviors and
pathology [1]. Various medical conditions that involve ac-
tivation of the immune system are associated with psycho-
logical and neuroendocrine changes that resemble the char-
acteristics of depression. Recent studies have presented em-
pirical evidence on the relationship between the behavioral
effects of immune activation and depressive symptomatol-
ogy, characterized by reduced locomotor, exploratory, and
social behavior [15].

The association between psychosocial stress and susceptibil-
ity to upper respiratory tract infection has also been inves-
tigated in people with a history of recurrent common colds
and flu. Several dimensions of psychosocial stress, including
exposure to stressful experiences, stress-prone personality
traits, and signs of emotional disturbance have been inves-
tigated in people with a history of recurrent common colds
and flu. Experts conjecture that stress depletes local im-
mune protection, increasing susceptibility to colds and flu.
Alternatively, psychological disturbances could develop in
response to frequent illness [3]

METHODOLOGY

Several projects have used existing call data records and mo-
bile operator location information to model movement pat-
terns, social ties and spatial epidemiology. Our approach is
to build a mobile phone software platform for long-term per-
sonal use by participants.

The dataset described below was collected as part of a lon-
gitudinal study with seventy residents of an undergraduate
dormitory. These residents represent eighty-percent of the
total population, and most of the remaining twenty-percent
are spatially isolated. The dormitory is known within the
university for its pro-technology orientation and the decision
of students to reside within the dorm is determined by self-
selection by both students and the existing residents. The
students were distributed roughly equally across all four aca-
demic years (freshmen, sophomores, juniors, seniors) and
60 percent of the students were male. The study participants
also included four graduate resident tutors that supervised
each floor.

This overarching experiment was designed to study the adop-
tion of political opinions, diet, exercise, obesity, eating habits,
epidemiological contagion, depression and stress, dorm po-
litical issues, interpersonal relationships and privacy. A to-
tal of 320,000 hours of human behavior data was collected
in this experiment. In this paper however, we only discuss
the mobile platform, dataset and analysis related to measur-
ing the spread of influenza, common colds and stress in this
community over a period of two months.

MOBILE SENSING PLATFORM
The mobile phone based platform for data-collection was de-
signed with the following features and long-term sensing ca-
pabilities.

Device Selection
The platform is based on Windows Mobile 6.x devices, as
they can be deployed with all four major American opera-
tors. Software was written using a combination of native-C
and managed-C#. The software-sensing package was sup-
ported for six different handset models in the Windows Mo-
bile product range. All supported devices featured WLAN,
EDGE and SD Card storage, and most featured touch screens,
flip-out keyboards. The HTC Tilt, a popular GSM phone in
our experiment is shown in Figure 1.

Proximity Detection (Bluetooth)
The software scanned for Bluetooth wireless devices in prox-
imity every 6 minutes. The Windows Mobile phones used in
our experiment were equipped with class 2 Bluetooth radio
transceivers, which have a real-world indoor sensing range
of approximately 125 feet. Scan results for two devices in
proximity have a high likelihood of being asymmetric, which
is accounted for in our analysis. Due to API limitations with
Windows Mobile 6.x, signal strength was not available to
the sensing application. Bluetooth logs were captured in the
following format:

UTC timestamp 1-way hash of remote device MAC



(a) Platform Architecture and Data Sources

(b) HTC Tilt: the
most popular WiMo
device in our de-
ployment

(c) On-
device
survey
launcher
screenshot

Figure 1. Data Collection Platform

Approximate Location (802.11 WLAN)
The software scanned for wireless WLAN 802.11 Access
Point identifiers (hereafter referred to as WLAN APs) every
6 minutes. WLAN APs have an indoor range of xxx and the
university campus has almost complete wireless coverage.
Across various locations within the undergraduate residence,
over 55 different WLAN APs with varying signal strengths
can be detected. WLAN logs were captured in the following
format:

UTC timestamp 1-way hash of AP MAC AP ESSID Sig-
nal Strength 0-100

Communication (Call and SMS Records)
The software logged Call and SMS details on the device
every 20 minutes, based on recent events. These logs in-
cluded information about missed calls and calls not com-
pleted. Calls were logged in the following format:

UTC start timestamp UTC end timestamp 1-way hash
of remote phone number incoming vs. outgoing flag 0-1
missed call flag 0-1 user roaming flag 0-1

And for SMS messages:

UTC timestamp 1-way hash of remote phone number in-
coming/outgoing flag 0-1

Daily Survey Launcher
For collection of self-report data, the sensing platform in-
cludes a daily survey launcher. The application launches a
foreground survey dialog at 6am everyday that asks the user
to respond to six survey questions. After three reminders,
the device was unusable until the user completed the survey.
In the experiment deployment, users were paid $1 USD for
every completed daily survey as participation incentive. The
survey launcher invoked the following daily questions:

• Do you have a sore throat or cough?

• Do you have a runny nose, congestion or sneezing?

• Do you have a fever?

• Have you had any vomiting, nausea or diarrhea?

• Have you been feeling sad, lonely or depressed lately?

• Have you been feeling stressed out lately?
The design of the survey questionnaire and subsequent la-
beling of self-report responses was supervised by a trained
epidemiologist.

Battery Impact
In past studies, mobile phones have been used as long-
term behavior sensors with less than 20% impact on bat-
tery life [4]. In this study, periodic scanning of Blue-
tooth and WLAN APs reduced operational battery life
by approximately 10-15 percent. Depending on the de-
vice model and individual usage patterns, the average us-
able battery life was between 14-24 hours. Windows Mo-
bile 6.x phones have relatively poorer battery performance
than their competitors in the smart-phone market.

WLAN usage for browsing by the user and network com-
munication between the mobile application and remote
server had significantly more impact on battery life than
the background sensing scripts. Using wireless Internet
on Windows Mobile devices for 4-5 hours continuously
on some handset models can drain batteries completely.
When available, users were provided with extended bat-
teries for specifc handset models. While the platform sup-
ports over-the-air data uploads, this was disabled for most
of the study duration due to WLAN battery considera-
tions.

User Privacy Considerations
A key concern with long-term user data collection is se-
curing privacy. This experiment was approved by the In-
stitutional Review Board (IRB) and participants were fi-
nancially compensated. The sensing scripts for our plat-
form capture only hashed identifiers, and data is secured
and anonymized before aggregate analysis.

Backend Post-Processing and SQL Database
Daily captured mobile sensing data was stored on-device
on read/write SD Card memory. On the server side, these
logs files were merged, parsed and synced by an extensive
Python post-processing infrastructure, and finally stored
in various MySQL tables for analysis.



Open Source Availability
This sensing software platform for Windows Mobile 6.x
has been released under the LGPLv3 open source license
for public use, and is available for download here[14].

DATASET CHARACTERISTICS
Date Range
The dataset described here corresponds to the date range
from 1st February to 15th April 2009, the peak influenza
months in the New England region.

Mobile Phone Sensor Data
The phone sensor data during this period consists of 1,424,000
bluetooth samples, 201,000 WLAN AP samples, 15,700
call data records, 11,269 SMS records. The hourly Blue-
tooth, SMS and call counts from Jan-March are plotted in
Figure 2.

Pre-Experiment Surveys (Baseline Labels)
In order to perform meaningful analysis, it is important to
separate the effects due to immunization prior to the ex-
periment. In a pre-study baseline survey completed few
days before start of the study, 20 participants reported re-
ceived influenza immunization via a flu-shot or flu-mist
spray. These participants are not considered in the analy-
sis in the next section.

Mobile Phone Daily Surveys
A total of 3231 responses were generated using the on-
device survey launcher described in the previous section
within the relevant date range. In the following analysis, it
is important to distinguish between symptoms that repre-
sent common colds and allergies versus CDC-defined in-
fluenza [8] which has a characteristic signature reflected
in runny nose, sore throat and fever symptoms. Due to
our limited expertise in this area, selected combinations
of self-reported symptoms were labeled as CDC-defined
influenza by a medically trained epidemiologist. In our
dataset, twelve such cases of influenza, on average last-
ing 5-7 days and each affecting a distinct individual were
observed.

The respiratory symptoms not identified as influenza cases
by our expert, are considered common colds or seasonal
allergies.

ANALYSIS
Mobile Behavioral Features
The following features were extracted from mobile phone
sensor data over 2-day window sizes, with 50 percent over-
lapping windows. The 2-day window size was chosen
for epidemiological reasons, as individuals take up to 24
hours to realize and self-report a symptom.

Total Communication
This is the total number of phone calls and SMS exchanged,
both with other participants as well as third parties. This
measure includes both incoming and outgoing communi-
cation.

Late night and Early Morning Communication
This is the Call and SMS communication between 10pm
and 9am on weekdays, with both other participants as well
as non-participants.

Communication Diversity
This is the number of unique individuals reflected in phone
and SMS communication within the particular window.

Physical Proximity Entropy with Other Participants
This is the entropy of distribution of Bluetooth proximity
with other participants

Hp = −
n∑

i=1

p(xi)log2p(xi)

where p(xi) is the probability of Bluetooth proximity with
the remote device xi belonging to another participant, within
the particular time-window.

Physical Proximity Entropy with Other Participants Late

Night and Early Morning
Similar to above, this is the entropy of the distribution of
Bluetooth proximity with other participants in the study,
but only during late-night and early morning periods.

Physical Proximity Entropy for Bluetooth Devices Exclud-

ing Experimental Participants
Similar to above, this is the entropy of distribution of Blue-
tooth proximity. However, all Bluetooth devices in dis-
coverable mode scanned on the phone are considered in
this case.

WLAN Entropy based on University WLAN APs
This is entropy for the distribution of WLAN access points
scanned within the given period. Only WLAN APs be-
longing to the university are considered.

Hw = −
n∑

i=1

p(xi)log2p(xi)

where p(xi) is the probability of scanning a WLAN AP
xi within the particular time-window.

WLAN Entropy based on external WLAN APs
Similar to above, this is entropy for the distribution of
WLAN access points scanned within the given period.
Only WLAN APs external to the university are consid-
ered.

Behavioral Effects of Low Intensity Symptoms (Runny
Nose, Sore Throat and Cough)
A sore throat or runny nose report may either be a symp-
tom of CDC-defined influenza or simply an independent
respiratory condition due to common colds or allergies.

For the runny nose condition (n=587/2283), participants
show increased total communication as well as increased



(a) Total com-
munication
increases ***

(b) Late-
night early
morning
commu-
nication
increases **

(c) Overall
bluetooth
entropy
decreases *

(d) Total
WLAN APs
detected
increase **

Figure 2. Behavior effects of runny nose, congestion, sneezing symp-
tom, n=587/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

late night early-morning communication. Additionally,
total counts of Bluetooth proximity and measures of WLAN
entropy increases, which is perhaps counter-intuitive. P-
values are generated using unbalanced t-tests assuming
unequal variance.

For sore-throat reports, Bluetooth-based entropy with re-
spect to other residents in the study dormitory increases.
This again, is slightly counter-intuitive, but may be ex-
plained if participants are spending more time indoors and
hence have a higher likelihood of interacting with other
participants, than they would if they were spending time
in classes and activities. It is also found that WLAN based
entropy measures, both with respect to university WLAN
APs and external WLAN APs decrease with sore-throat
reports, indicating more predictable movement patterns
for the individual.

Behavior Effects of Higher-Intensity Symptoms (Fever
and Influenza)
For more intense conditions like a fever or CDC-defined
influenza, participants have lower activity and entropy lev-
els, and this is captured using mobile sensors. Due to the
severity of these symptoms, the number of reported cases
in our dataset is lower than that of low intensity symp-
toms (runny nose, sore throat/cough). The number of rate
of infection amongst participants and study cohort sizes,
however, are comparable to Phase I clinical trials [13].

For fever, variations are observed in the late night early
morning behavior. Phone communication, Bluetooth prox-

(a) Blue-
tooth entropy
with re-
spect to
other dorm
residents
increases
***

(b) WLAN
entropy with
respect to
university
WLAN APs
reduces *

(c) WLAN
entropy with
respect to
external
WLAN APs
reduces **

Figure 3. Behavior effects of sore throat and cough symptom,
n=393/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

imity counts, and Bluetooth entropy all show a decrease
for the late night early morning window. WLAN-based
entropy measures with respect to the university WLAN
APs as well as external WLAN APs both reduce dramati-
cally.

Similar effects are seen for days labeled as CDC-defined
Influenza, as overall bluetooth entropy, bluetooth entropy
with regard to other dorm residents and WLAN based en-
tropy features decrease. This is also expected because
fever is a known influenza symptom.

Behavioral Effects of Stress and Mental Health Symp-
toms
In addition to the physical symptoms described in the above
section, the on-device mobile questionnaire also includes
two daily questions related to stress levels and sadness,
loneliness or depression. As discussed in the previous
section, the link between behavior change, physical symp-
toms and stress is not very well understood. Measuring
these self-report variables alongside symptom data allows
modeling the covariance and potentially causation across
the three sets of variables. With both often-stressed and
sad-depressed-lonely responses in our dataset, participants
show a consistent tendency to isolate themselves, reflected
in various sensor modalities.

For the often-stressed response, participants communica-
tion diversity decreases, both overall Bluetooth based en-



(a) Late
night early
morn-
ing calls
and SMS
decrease **

(b) Late
night
morning
Bluetooth
counts and
entropy
decrease*

(c) WLAN
based en-
tropy with
respect to
university
WLAN APs
decreases
***

(d) WLAN
Entropy
with respect
to external
WLAN APs
decreases
***

Figure 4. Behavior effects of fever, n=36/2283, *: p < 0.05 **: p < 0.01
***: p < 0.001

tropy and Bluetooth entropy with respect to other resi-
dents during late-night early morning hours decreases,
and WLAN based entropy decreases both with respect to
university WLAN APs and external WLAN APs.

For the sad-lonely-depressed responses, a similar tendency
to isolate themselves is observed. Total communication
decreases and communication during late-night early
morning decrease, overall Bluetooth entropy and Blue-
tooth entropy with respect to other residents decreases.

Symptom Classification using Behavioral Features
It is evident that there are characteristic behavioral changes
associated with respiratory symptoms, fever, influenza,
stress and depression. With this is in mind, is it useful to
train a classification scheme that identifies when individu-
als are likely to be symptomatic from behavioral features
alone. There are two key considerations with regard to
designing such a classification scheme.

First, consider how such a classification system would be
used in a scenario where the user has the mobile sensing
application installed on their personal phone. When this
application detects uncharacteristic variations in behavior,
it could predict the likelihood that the user is infected with
a known symptom and potentially inform a health-care
professional. In this sense, the classification represents
a behavior-based early warning system. With this goal

(a) Total
Bluetooth
interactions
and entropy
decrease **

(b) Late
night early
morning
Bluetooth
entropy
with respect
to other
participants
decreases **

(c) WLAN
based en-
tropy with
respect to
university
WLAN APs
decreases
***

(d) WLAN
Entropy
with respect
to external
WLAN APs
decreases
***

Figure 5. Behavior effects of CDC-defined influenza, n=54/2283, *: p <
0.05 **: p < 0.01 ***: p < 0.001

in mind, the classification model should have asymmetric
misclassification penalties.

A second consideration is due to correlations amongst de-
pendent symptoms. While behavior variations with re-
spect to symptoms are reported individually in the pre-
vious section, in reality, self-reported symptoms are cor-
related. Fig 8(a) shows the correlations between these
variables, reordered using K-nearest-neighbor clustering
based on effect size. Four main clusters that emerge are:
stress + depression; runny nose + sore throat; fever + in-
fluenza; and runny nose + sore throat + fever + influenza.

Given these considerations and unbalanced class sizes,
classification is done using a Bayesian-network classifier
with MetaCost, a mechanism for making classifiers cost-
senstive[2]. Structure learning for the network is performed
using K2 hill climbing and the results are based on 4-fold
cross-validation.

Recall, Precision and F-measure for the symptoms class
as a function of increasing misclassification penalty for
the symptoms class are plotted in Fig 8(b) - 8(f), for dif-
ferent symptom clusters. Recall from the trained classifier
is also compared with random assignment of priors aver-
aged over 1000 simulated runs, to illustrate improvement
over chance. Overall prediction accuracy is not a useful



(a) Total com-
munication de-
creases *

(b) Late-
night early
morning
commu-
nication
decreases *

(c) Overall
Bluetooth
entropy
decreases *

(d) Late
night early
morning
Bluetooth
entropy
with respect
to other
experiment
participants
reduces **

(e) WLAN
based en-
tropy with
respect to
university
WLAN APs
decreases
***

(f) WLAN
Entropy
with respect
to external
WLAN APs
decreases
***

Figure 6. Behavior Changes with self-reported sad-lonely-depressed
responses n=282/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

quality metric due to unbalanced classes, and ranges be-
tween 60-80 percent depending on the model and misclas-
sification weights.

Temporal Flux Between Behavior, Stress and Physical
Symptoms
As discussed in the related work section, there is extensive
medical and social health policy interest in understanding
the causal implications between behavior change, stress
and physical symptoms.

The Phase Slope Index (PSI) Method
PSI [11] is a recently proposed spectral estimation method
designed to measure temporal information flux between
time-series signals. The method is based on the knowl-
edge that the phase slope of the cross-spectrum of two
signals can be used to estimate information flux between
these signals in the time domain. Independent noise mix-
ing does not affect the complex part of the coherency be-
tween multivariate spectra, and hence PSI is considered
more noise immune than Granger analysis. PSI has been
used to make causal inferences for brain cell activation

(a) Com-
munication
diversity
decreases **

(b) Overall
Bluetooth
entropy
decreases **

(c) Late
night early
morning
Bluetooth
entropy
with other
experiment
participants
reduces **

(d) WLAN
based en-
tropy with
university
WLAN APs
decreases
***

(e) WLAN
Entropy
with external
WLAN APs
decreases
***

Figure 7. Behavior Changes with self-reported often-stressed responses
n=559/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

and other domains, and is calculated as,

Ψij = Υ

∑
f∈F

C∗ij(f)Cij(f + δf)


where Cij is the complex coherency. When the input sig-
nals are distributed across multiple epochs, then this es-
timate is normalized by its standard deviation, calculated
using the Jackknife method.

Results
Our approach to using PSI for measuring information flux
is based on validating causal links consistently across mul-
tiple participants in our dataset. To first ensure that this
method can accurately recover at a per-user dataset scale
simulated causal structure, we run PSI on two time se-
ries of varying length n, representing number of continu-
ous samples available per user. The leader time series has
x symptom days. The follower time series has y lagged
symptom days and z days of additive uniform noise, where
the lag can be 1 or multiple days. The scatter-plot in Fig-
ure 9 shows the ability of PSI to recover causal structure
(normalized PSI coefficient > 0). The X and Y-axes rep-
resent n and x, and each point is averaged over 1000 runs
with y=x/3 and z=x/3, values that would be intuitively ex-
pected for symptoms in our dataset. It is important to note
that the method recovers the correct direction of informa-



(a) KNN reordered corre-
lations between dependent
symptom variables

(b) Sad-Depressed-
Stressed Symptoms

(c) Sore-Throat, Cough,
Runny Nose, Congestion,
Sneezing Symptoms

(d) Fever, Nausea, Stress
Symptoms

(e) Flu and Fever Symp-
toms

(f) Flu only (as per CDC
definition)

Figure 8. Classification results, recall for different symptoms ranges
from 0.6 to 0.9 for the symptom class.

tion flux for 97.6% of the samples over the surface of the
simulated signals.

In order to apply PSI to our dataset, the subset of partic-
ipants that show both physical symptoms and stress and
depression related responses are considered. There is how-
ever, a tradeoff to be made between using data from fewer
participants with longer sequences and hence more reli-
able estimates, versus using data from more participants
with shorter sequences, and better validation across par-
ticipants. Hence, PSI was estimated using two scales:

Each approach generates slightly different directed links
and normalized coefficients. The twelve largest PSI coef-
ficients across both methods on the basis of a combined
ranking score are listed below in descending order.

Source −→ Follower
Runny nose −→ WLAN entropy with external APs
Sad-depressed-lonely −→ Sore throat-cough
Often stressed −→ Total Bluetooth proximity counts

Figure 9. PSI evaluation on simulated data

Communication diversity −→ Late-night early morning
Bluetooth proximity counts
Often stressed −→ Communication diversity
Often stressed −→ Late-night early morning Bluetooth
proximity counts
Bluetooth entropy with other residents−→ External WLAN
entropy
Runny nose −→ Total WLAN counts
Often stressed −→ WLAN entropy with university APs
Bluetooth proximity counts with other residents −→ Ex-
ternal WLAN entropy
Late-night early morning communication −→ Overall
Bluetooth entropy
Sad depressed lonely −→ Bluetooth entropy

CONCLUSION
In this paper, we describe a novel application of ubiqui-
tous computing. We use mobile phones as an active sens-
ing and prediction platform to identify behavior changes
reflected in mobile phone sensors, when individuals suffer
from common colds, influenza, fever, stress and mild de-
pression. We show that it possible to determine the health
status of individuals using information gathered by mobile
phones alone, without having actual health measurements
about the subject. Given the pervasiveness of the mobile
phone, this opens the door for the modeling of epidemio-
logical contagion in social networks without the need for



(a) Min Length 40 (b) Min Length 60

Figure 10. PSI co-efficients for two sets of sequences based on partic-
ipant data. List of features: 1=sad-depressed-lonely 2=often-stressed
3=sore-throat 4=runny-nose 5=fever 6=nausea 7= influenza 8=total
communication 9=latenight/early morn comm. 10= communication
diversity 11=total Bluetooth proximity 12=overall Bluetooth entropy
13=Bluetooth proximity with other residents 14=Bluetooth entropy
with other residents 15=late-night/early morn Bluetooth proximity
with other residents 16=late-night/early morn Bluetooth entropy with
other residents 17=WLAN counts 18=external WLAN counts 19=over-
all WLAN entropy 20=WLAN entropy with university APs 21=WLAN
entropy with external APs

Figure 11. Highest-ranked PSI relationships across both data subsets.
Directed ties represent temporal flux.

medical intervention.

There are several extensions of the analysis that we in-
tend to pursue in the future. The analysis in this paper
does account for confounding behavior changes due to
various external events, e.g. exams. The current predic-
tion model does not include stochastic information about
symptoms or behaviors from previous days. For the dis-
tributions of behavior change, we need to further explore
inter-individual differences.

We believe this work opens an interesting new area for the
ubiquitous computing community. Aside from the mobile
sensing and modeling aspect discussed in this paper, we
hope our findings can impact spatial and behavioral epi-
demiology as well.
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