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Abstract—We present a novel technique, automatic input rec-
tification, and a prototype implementation called SOAP. SOAP
learns a set of constraints characterizing typical inputs that an
application is highly likely to process correctly. When given
an atypical input that does not satisfy these constraints, SOAP
automatically rectifies the input (i.e., changes the input so that
is satisfies the learned constraints). The goal is to automatically
convert potentially dangerous inputs into typical inputs that the
program is highly likely to process correctly.

Our experimental results show that, for a set of bench-
mark applications (namely, Google Picasa, ImageMagick, VLC,
Swfdec, and Dillo), this approach effectively converts malicious
inputs (which successfully exploit vulnerabilities in the applica-
tion) into benign inputs that the application processes correctly.
Moreover, a manual code analysis shows that, if an input does
satisfy the learned constraints, it is incapable of exploiting these
vulnerabilities.

We also present the results of a user study designed to evalu-
ate the subjective perceptual quality of outputs from benign but
atypical inputs that have been automatically rectified by SOAP
to conform to the learned constraints. Specifically, we obtained
benign inputs that violate learned constraints, used our input
rectifier to obtain rectified inputs, then paid Amazon Mechanical
Turk users to provide their subjective qualitative perception
of the difference between the outputs from the original and
rectified inputs. The results indicate that rectification can often
preserve much, and in many cases all, of the desirable data in
the original input.

I. INTRODUCTION

Errors and security vulnerabilities in software often occur
in infrequently executed program paths triggered by atypical
inputs. A standard way to ameliorate this problem is to use an
anomaly detector that filters out such atypical inputs. The goal is
to ensure that the program is only presented with standard inputs
that it is highly likely to process without errors. A drawback
of this technique is that it can filter out desirable, benign, but
atypical inputs along with the atypical malicious inputs, thereby
denying the user access to useful inputs.

A. Input Rectification

We propose a new technique, automatic input rectification.
Instead of rejecting atypical inputs, the input rectifier modifies
the input so that it is typical, then presents the input to the
application, which then processes the input. We have three
goals: a) present typical inputs (which the application is highly
likely to process correctly) to the application unchanged,
b) render any malicious inputs harmless by eliminating any
atypical input features that may trigger errors or security
vulnerabilities, while c) preserving most, if not all, of the

desirable behavior for benign atypical inputs. A key empirical
observation that motivates our technique is the following:

Production software is usually tested on a large number
of inputs. Standard testing processes ensure that the software
performs acceptably on such inputs. We refer to such inputs
as typical inputs and the space of such typical inputs as the
comfort zone [32] of the application. On the other hand, inputs
designed to exploit security vulnerabilities (i.e., malicious
inputs) often lie outside the comfort zone. If the rectifier is
able to automatically detect inputs that lie outside the comfort
zone and map these inputs to corresponding meaningfully close
inputs within the comfort zone, then it is possible to a) prevent
attackers from exploiting the vulnerability in the software while
b) preserving the ability of the user to access desirable data in
atypical inputs (either benign or malicious).

We present SOAP (Sanitization Of Anomalous inPuts),
an automatic input rectification system designed to prevent
overflow vulnerabilities and other memory addressing errors.
SOAP first learns a set of constraints over typical inputs
that characterize a comfort zone for the application that
processes those inputs. It can then take the constraints and
automatically generate a rectifier that, when provided with an
input, automatically produces another input that satisfies the
constraints. Inputs that already satisfy the constraints are passed
through unchanged; inputs that do not satisfy the constraints are
modified so that they do.

B. Potential Advantages of Automatic Input Rectification

Input rectification has several potential advantages over
simply rejecting malicious or atypical inputs that lie outside
the comfort zone:
• Desirable Data in Atypical yet Benign Inputs:

Anomaly detectors filter out atypical inputs even if they
are benign. The result is that the user is completely denied
access to data in atypical inputs. Rectification, on the
other hand, passes the rectified input to the application
for presentation to the user. Rectification may therefore
deliver much or even all of the desirable data present in the
original atypical input to the user.

• Desirable Data in Malicious Inputs: Even a malicious
input may contain data that is desirable to the user.
Common examples include videos and web pages with
embedded malicious content. Rectification may eliminate
the exploits while preserving much of the desirable input
from the original input. In this case the rectifier enables
the user to safely access the desirable data in the malicious
input.



• Error Nullification: We note that rectification can offer
similar advantages for atypical inputs that may not contain
security exploits but nevertheless expose an error in the
application that prevents the application from successfully
processing the input.

C. The Input Rectification Technique

SOAP operates on the parse tree of an input, which divides
the input into a collection of fields. Each field may contain
an integer value, a string, or unparsed raw data bytes. SOAP
infers and enforces 1) upper bound constraints on the values
of integer fields, 2) constraints that capture whether or not an
integer field must be non-negative, 3) upper bound constraints
on the lengths of string or raw data byte fields, and 4) field
length indicator constraints that capture relationships between
the values of integer fields and the lengths of string or raw data
fields.

The two main challenges in designing an automatic input
rectifier such as SOAP are how to infer and enforce constraints
for a given application. SOAP uses dynamic taint analysis [10],
[28], [17] to identify those input fields that are related to
critical operations during the execution of the application
such as memory allocations and memory writes. The learning
engine of SOAP then automatically infers constraints on these
fields based on a set of training inputs. When presented with
an atypical input that violates these constraints, the rectifier
automatically modifies input fields iteratively until all of the
constraints are satisfied.

D. Key Questions

We identify several key questions that are critical to the
success of the input rectification technique:
• Learning: Is it possible to automatically learn an effective

set of constraints from a set of typical non-malicious or
benign inputs?

• Rectification Percentage: Given a set of learned con-
straints, what percentage of previously unseen benign
inputs fail to satisfy the constraints and will therefore be
modified by the rectifier?

• Rectification Quality: What is the overall quality of the
outputs that the application produces when given benign
inputs that the rectifier has modified to conform to the
constraints?

• Security: Does the rectifier effectively protect the ap-
plication against inputs that exploit errors and security
vulnerabilities?

We investigate these questions by applying SOAP to rectify
inputs for five large software applications. The input formats
of these applications include three image types (PNG, TIFF,
JPG), wave sound (WAV) and Shockwave flash video (SWF).
We evaluate the effectiveness of our rectifier by performing the
following experiments:
• Input Acquisition: For each application, we acquire a set

of inputs from the Internet.
• Benign Input Acquisition: We run each application on

each input in its set and filter out any inputs that cause

the application to crash. The resulting set of inputs is the
benign inputs. Because all of our applications are able to
process all of the inputs without errors, the set of benign
inputs is the same as the original set.

• Training and Test Inputs: We next randomly divide the
inputs into two sets: the training set and the test set.

• Potentially Malicious Inputs: We search the CVE secu-
rity database [2] and previous security papers to obtain
malicious inputs designed to trigger errors in the applica-
tions.

• Learning: We use the training set to automatically learn
the set of constraints that characterize the comfort zone of
the application.

• Atypical Benign Inputs: For each application, we next
compute the percentage of the benign inputs that violate
at least one of the learned constraints. We call such inputs
atypical benign inputs. For our set of applications, the
percentage of atypical benign inputs ranges from 0% to
1.57%.

• Quality of Rectified Atypical Inputs: We evaluate the
quality of the rectified atypical inputs by paying people on
Amazon Mechanical Turk [1] to evaluate their perception
of the difference between 1) the output that the application
produces when given the original input and 2) the output
that the application produces when given the rectified
version of the original input. Specifically, we paid people
to rank the difference on a scale from 0 to 3, with 0
indicating completely different outputs and 3 indicating
no perceived difference. The average scores for over 75%
of the atypical inputs are greater than 2.5, indicating that
Mechanical Turk workers perceive the outputs for the
original and rectified inputs to be very close.

• Security Evaluation: We verified that the rectified ver-
sions of malicious inputs for each of these applications
were processed correctly by the application.

• Manual Code Analysis: For each of the malicious inputs,
we manually identify the root cause of the vulnerability
that the malicious input exploited. We then examined the
set of learned constraints and verified that if an input
satisfies the constraints, then it will not be able to exploit
the vulnerabilities.

E. Understanding Rectification Effects

We examined the original and rectified images or videos for
all test input files that the rectifier modified. All of these files
are available at:

https://sites.google.com/site/inputrectification/home
For the majority of rectified inputs (83 out of 110 inputs),

the original and rectified images or videos appear identical. The
average Mechanical Turk rating for such images or videos was
between 2.5 and 3.0. We attribute this phenomenon to the fact
that the rectifier often modifies fields (such as the name of the
author of the file) that are not relevant to the core functionality of
the application and therefore do not visibly change the image or
video presented to the user. The application must nevertheless
parse and process these fields to obtain the desirable data in the



input file. Furthermore, since these fields are often viewed as
tangential to the primary purpose of the application, the code
that parses them may be less extensively tested and therefore
more likely to contain errors.

For some of the rectified image inputs (8 of 53 image inputs),
the rectifier truncates part of the image, leaving a strip along
the bottom of the picture. For the remaining inputs (16 of 110),
the rectifier changes fields that control various aspects of core
application functionality (for example, the color of the image,
the alignment between pixels and the image size, or interactive
aspects of videos). The average Mechanical Turk rating for such
images or videos varied depending on the severity of the effect.
For some of these 16 inputs the delivered data/functionality
remained essentially intact; in all cases the application was
able to successfully process the rectified inputs without error
to present the remaining data to the user.

F. Contributions

We make the following contributions:
• Basic Concept: We propose a novel technique for dealing

with anomalous and potentially malicious inputs, namely,
automatic input rectification, and an prototype implemen-
tation, SOAP, which demonstrates the effectiveness of the
technique.

• Constraint Inference: We show how to use dynamic
taint analysis and a constraint inference algorithm to
automatically infer safety constraints.

• Rectification Algorithm: We present an input rectifica-
tion algorithm that systematically enforces safety con-
straints on inputs while preserving as much of the benign
part of the input as possible.

• Experimental Results: We use Amazon Mechanical
Turk [1] to evaluate the subjective perceptual quality of
the outputs for rectified inputs. Our results indicate that
Mechanical Turk workers perceive rectified images and
videos to be, in most cases, close or even identical to the
original images and videos.
These results are consistent with our own qualitative and
quantitative evaluation of the differences between the
original and rectified images and videos.

• Explanation: We explain (Sections I-E and V) why
rectification often preserves much or even all of the
desirable data in rectified files.

For our set of benchmark applications, rectification can
preserve much, and in many cases all, of the desirable data in
the original input file. We note that our own qualitative analysis
of the differences between original and rectified images and
videos correlates closely with the evaluation of Mechanical
Turk workers (see Section V), and with the quantitative data loss
analysis we present in the experimental section (see Section IV).

We organize the rest of the paper as follows. Section II
gives an overview of SOAP with a motivating example. We
describe the technical design of SOAP in Section III. We present
quantitative evaluation of SOAP in Section IV and subjective
human evaluation of SOAP in Section V. Section VI discusses
related work. We finally conclude in Section VII.

1 //Dillo’s libpng callback
2 static void
3 Png datainfo callback(png structp png ptr, ...)
4 {
5 DilloPng *png;
6 ...
7 png = png get progressive ptr(png ptr);
8 ...
9 /* check max image size */

10 if (abs(png→width*png→height) >
11 IMAGE MAX W * IMAGE MAX H) {
12 ...
13 Png error handling(png ptr, ”Aborting...”);
14 ...
15 }
16 ...
17 png→rowbytes = png get rowbytes(png ptr, info ptr);
18 ...
19 png→image data = (uchar t *) dMalloc(
20 png→rowbytes * png→height);
21 ...
22 }
Figure 1. The code snippet of Dillo libpng callback (png.c). Highlighted code
is the root cause of the overflow bug.

II. EXAMPLE AND OVERVIEW

Figure 1 presents the source code from Dillo 2.1, a
lightweight open source web browser. Dillo uses libpng
to process PNG files. The libpng callback function
Png datainfo callback() shown in Figure 1 is called when
Dillo starts to load a PNG file. The function contains an integer
overflow bug at line 20, where the multiplication calculates the
size of the image buffer allocated for future callbacks. Because
png→rowbytes is proportional to the image width, arithmetic
integer overflow will occur when opening a PNG image with
maliciously large width and height values. This error causes
Dillo to allocate a significantly smaller buffer than required.

Dillo developers are well aware of the potential for overflow
errors. In fact, the code contains a check of the image size at
lines 10-11 to block large images. Unfortunately, their bound
check has a similar integer overflow problem. Specific large
width and height values can also cause an overflow at line 10,
and thus bypass the check. To nullify the above Dillo error,
SOAP performs following steps:
• Understand Input Format: SOAP first parses a PNG

image file into a collection of input fields shown as
Figure 3, so that SOAP knows which input bytes in the
PNG image file correspond to the image width and height
in the above example.

• Identify Critical Fields: SOAP monitors the execution
of Dillo to determine that values in the image width
and height fields flow into the variables png→width and
png→height. These two variables influence a memory
allocation statement at lines 19-20. Thus SOAP marks
width and height in PNG images as critical fields, which
can potentially cause dangerous overflow.

• Infer Constraints: SOAP next infers constraints over the
critical fields. Specifically, SOAP processes the benign
training PNG images to use the maximum image width
and height values that appear in these inputs as their
upper bounds. SOAP also infers correlated relations where
an integer field indicates the length of other data fields.
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Figure 2. The architecture of automatic input rectification system.

Figure 4 presents examples of constraints for PNG images.
• Rectify Atypical Inputs: When it encounters an atypical

input whose width or length fields are larger than the
inferred bound, SOAP enforces the bound by changing
the field to the inferred bound. Note that such changes
may, in turn, cause other constraints (such as the length
of another field involved in a correlated relation with the
modified field) to be violated. SOAP therefore rectifies
violated constraints until all constraints are satisfied.

Both critical field identification and constraint inference are
done offline. Once SOAP generates safety constraints for the
PNG format, it can automatically rectify new incoming PNG
images.

III. DESIGN

SOAP has four components: the input parser, the execution
monitor, the learning engine, and the input rectifier. The
components work together cooperatively to enable automatic
input rectification (see Figure 2). The execution monitor and
the learning engine together generate safety constraints offline,
before the input rectifier is deployed:
• Input parser: The input parser understands input for-

mats. It transforms raw input files into syntactic parse trees
for processing by the remaining components.

• Execution Monitor: The execution monitor uses taint
tracing to analyze the execution traces of an application.
It identifies critical input fields that influence sensitive
operations including memory allocations and memory
writes.

• Learning Engine: The learning engine starts with a set of
benign training inputs. It infers safety constraints based
on the values of the fields in these training inputs. Safety
constraints define the comfort zone of the application.

• Input Rectifier: The input rectifier rectifies atypical
inputs to enforce safety constraints. The rectification
algorithm modifies the input iteratively until it satisfies
all constraints.

A. Input Parser

As shown in Figure 2, the input parser transforms an arbitrary
input into a general syntactic parse tree that can be easily
consumed by the remaining components. In the syntactic parse
tree, only leaf fields are directly associated with input data. Each
leaf field has a type, which can be integer, string or raw bytes.
The specification contains low-level rules that SOAP uses to
parse values in the input file. These rules describe, for example,
how the input file encodes these values.

0000000110010000	  …	   …	  

Original	  input	  file	  

…	  

…	  

Value:	  400	  
Name:	  	  /header/width	  
Endianness:	  Big-‐endian	  
…	  

Parse	  tree	  

Figure 3. An example of syntax parse tree.

Figure 3 presents an example of a leaf field inside a parse
tree for a PNG image file. The leaf field identifies the location
of the data in the input file. It also contains a descriptor that
specifies various aspects of the field, such as the value stored
in the field, the name of the field, and the encoding information
such as whether the value is stored in big endian or little endian
form. The input rectifier uses this information in the descriptor
when modifying the field.

B. Execution Monitor

The execution monitor is responsible for identifying the
critical input fields that are involved in the learned constraints.
Because large data fields may trigger memory buffer overflows,
the execution monitor treats all variable-length data fields as
critical. Integer fields present a more complicated scenario.
Integer fields that influence the addresses of memory writes
or the values used at memory allocation sites (e.g., calls to
malloc() and calloc()) are relevant for our target set of errors.
Other integer fields (for example, control bits or checksums)
may not affect relevant program actions.

The SOAP execution monitor uses dynamic taint analy-
sis [10], [28] to compute the set of critical integer fields.
Specifically, SOAP considers an integer field to be critical if
the dynamic taint analysis indicates that the value of the field
may influence the address of memory writes or values used
at memory allocation sites. The execution monitor uses an
automated greedy algorithm to select a subset of the training
inputs for the runs that determine the critical integer fields.
The goal is to select a small set of inputs that 1) minimize the
execution time required to find the integer fields and 2) together
cover all of the integer fields that may appear in the input files.



1 /header/width <= 1920
2 /header/width >= 0
3 sizebits(/text/text) <= 21112
4 /text/size * 8 == sizebits(/text/keyword)
5 + sizebits(/text/text)

Figure 4. A subset of constraints generated by SOAP for PNG image files.

C. Learning Engine

The learning engine works with the parse trees of the training
inputs and the specification of critical fields as identified by
the execution monitor. It uses this information to infer safety
constraints over critical fields (see offline training box in
Figure 2).

Safety Constraints: Overflow bugs are typically exploited
by large data fields, extreme values, negative entries or incon-
sistencies of multiple fields. SOAP infers two types of safety
constraints, bound constraints and length indicator constraints.
Bound constraints are associated with individual fields, which
bound integer values and sizes of data fields in incoming inputs.
Length indicator constraints (i.e., an integer field that indicates
the actual length of a data field) are correlated constraints
associated with multiple fields.

Figure 4 presents several examples of constraints that SOAP
infers for PNG image files. Specifically, SOAP infers upper
bounds of integer fields (line 1), non-negativity of integer fields
(line 2), upper bounds of lengths of data fields (line 3), and
length indicator constraints between values and lengths of parse
tree fields (lines 4-5 in Figure 4).

These constraints enable the rectification system to eliminate
extreme values in integer fields, overly long data fields, and
inconsistencies between the specified and actual lengths of
data fields in the input. When properly inferred and enforced,
these constraints enable the rectifier to nullify our target
vulnerabilities in the protected programs.

Note that once SOAP infers a set of safety constraints for one
input format, it can use these constraints to rectify inputs for
any application that reads inputs in that format. This is useful
when multiple different applications are vulnerable to the same
exploit. For example, both Picasa [6] and ImageMagick [5]
are are vulnerable to the same integer overflow exploit (see
Section IV). A single set of inferred constraints enables SOAP
to nullify the vulnerability for both applications.

Inferring Bound Constraints: SOAP infers three kinds of
bound constraints: upper bounds of lengths of data fields, upper
bounds of integer fields, and whether integer fields are non-
negative. SOAP sets the maximum length of a data field that
appeared in training inputs as the upper bound of its length.
SOAP sets the maximum value of an integer field in training
inputs as the upper bound of its value. SOAP also sets an integer
field to be non-negative if it is never negative in all training
inputs. SOAP infers all these constraints with a single traversal
of the parse tree of each training input.

Inferring Length Indicators: Inferring length indicator
constraints is challenging, because these constraints can have
various forms. For example, an integer field may either indicate
the length of the next data field or the total length of a data

1 // Initialization
2 FOR f IN all integer fields:
3 R[f]← ∅
4 p← f.parent
5 FOR S IN subsets of consecutive children of p:
6 FOR scale IN {1, 8}:
7 relation.fields← S
8 relation.scale← scale
9 R[f].add(relation)

10 END FOR
11 END FOR
12 END FOR
13

14 // Checking relations against each parse tree
15 FOR parse tree IN training input set:
16 FOR f IN parse tree.integer fields:
17 FOR relation IN R[f]:
18 sum← 0
19 FOR data field IN relation.fields:
20 sum← sum + sizeinbit(data field)
21 END FOR
22 IF f.value * relation.scale 6= sum:
23 R[f].erase(relation)
24 END IF
25 END FOR
26 END FOR
27 END FOR

Figure 5. Inference algorithm for correlated constraints.

chunk composed of multiple fields, depending on the input
specification.

Figure 5 shows the pseudo-code of the inference algorithm
for length indicator constraints in SOAP. This algorithm first
assumes that all possible length indicator constraints are true.
When processing each training input, the algorithm eliminates
constraints that do not hold in this input. It can be extended to
infer other kinds of correlated constraints.

SOAP infers a length indicator field f which is associated
with the total length of consecutive children of the parent
field of f . For instance, lines 4-5 in Figure 4 present a length
indicator constraint. A text data chunk in PNG image file
contains five different fields: “size”, “tag”, “keyword”, “text”,
and “crc32” in this order. The constraint states that the value
of “/text/size” is the total length of “/text/keyword”
and “/text/text”, which are two consecutive children of
“/text”.

The pseudo-code in Figure 5 uses a map R to track valid
length indicator constraints associated with each integer field.
At lines 1-12, the pseudo-code initializes R with all possible
length indicator constraints. fields in the code represents data
fields whose lengths are controlled by the integer field. scale
identifies whether the length field counts the size in bits or
in bytes1. At lines 14-27, the algorithm tests each candidate
constraint on the parse tree of each training input. After the
algorithm processes all training inputs, the inference algorithm
outputs the length indicator constraints that still remain in R.

D. Input Rectifier

Given safety constraints generated by the learning engine
and a new input, the input rectifier rectifies the input if it
violates safety constraints (see Figure 2). The main challenge

1For convenience, the pseudo-code here assumes that the length values
count lengths either in bits or bytes. Our algorithm extends to handle arbitrary
measures.



1 REPEAT
2 violated← false;
3 FOR f IN input.integer fields:
4 // Checking against upper bounds
5 IF f.value > upbound[f]:
6 f.value← upbound[f]
7 violated← true
8 END IF
9 // Checking against non-negativeness

10 IF f.value < 0 and f /∈ may neg:
11 f.value← 0
12 violated← true
13 END IF
14 END FOR
15

16 FOR f IN input.data fields:
17 // Checking against length upper bounds
18 IF f.size > upbound[data field.name]:
19 truncate f to size upbound[data field.name];
20 violated← true
21 END IF
22 END FOR
23

24 FOR f IN input.integer fields:
25 FOR rel IN R[f]:
26 // Checking against length indicator constraints
27 IF f.value * rel.scale > sizeinbit(rel.fields):
28 f.value← sizeinbit(rel.fields) / rel.scale
29 violated← true
30 ELSE IF f.value * rel.scale < sizeinbit(rel.fields):
31 truncate rel.fields to size f.value * rel.scale
32 violated← true
33 END IF
34 END FOR
35 END FOR
36 UNTIL violated = false

Figure 6. The rectification algorithm in SOAP.

in designing the input rectifier is enforcing safety constraints
while preserving as much useful data as possible.

Our algorithm is designed around two principles: 1) It en-
forces constraints only by modifying integer fields or truncating
data fields—it does not change the parse tree structure of the
input. 2) At each step, it finds a single violated constraint and
applies a minimum modification or truncation to satisfy the
violated constraint. It repeats this process until there are no
more violated constraints.

Figure 6 presents the pseudo-code of the SOAP rectification
algorithm. upbound maps an integer field or a data field to the
corresponding upper bound of its value or its length. If a field f
has no upper bound, upbound[f]=∞. may neg stores the set
of integer fields that have been observed to have negative values.
R stores length indicator constraints (see Section III-C).

The main loop iteratively checks the input against learned
constraints. At each iteration, it selects and rectifies the violated
constraints. The main loop exits when the input no longer
violates any safety constraints.
• Upper bounds of integer fields: At lines 4-8, the al-

gorithm rectifies a violated upper bound constraint of an
integer field by changing the value of the field back to its
learned upper bound.

• Non-negativities of integer fields: At lines 9-13, the
algorithm changes the value of an integer field to 0, if the
input violates the non-negative constraint of the integer
field.

• Length upper bounds of data fields: At lines 16-22, the
algorithm truncates a data field to its length upper bound,

if the input violates the length upper bound constraint of
the data field.

• Length indicator constraints: At lines 27-29, the algo-
rithm changes the value of the length indicator field to the
actual length of the data field, if the value is greater than
the actual length. At lines 30-32, the algorithm truncates
the data fields to the length indicated by the corresponding
integer field, if the data is longer than the indicated length.
Note that the length indicator constraints may be violated
due to previous fixes for other constraints. Our algorithm
cannot increase the value of the length indicator field or
increase the length of the data field here, which will roll
back previous fixes.

Note that, because the absolute value of at least one integer
field or data field length always decreases at each iteration, this
algorithm will always terminate. Note also that, because the
algorithm truncates a minimum amount of data, the algorithm
attempts to minimize the total amount of discarded data.

Checksum: SOAP appropriately updates checksums after
the rectification. SOAP currently relies on the input parser to
identify the fields that store checksums and the method used
to compute checksums. After the rectification algorithm termi-
nates, SOAP calculates the new checksums and appropriately
updates checksum fields. It is also possible to use an more
automatic checksum repair technique [38].

E. Implementation

The SOAP learning engine and input rectifier are imple-
mented in Python. The execution monitor is implemented in
C based on Valgrind [27], a dynamic binary instrumentation
framework. The input parser is implemented with Hachoir [4], a
manually maintained Python library for parsing binary streams
in various formats. SOAP is able to process any file format that
Hachoir supports. Because SOAP implements an extensible
framework, it can work with additional parser components that
allow to support other input formats.

IV. QUANTITATIVE EVALUATION

We next present a quantitative evaluation of SOAP using
five popular media applications. Specifically, the following
questions drive our evaluation:

1) Is SOAP effective in nullifying errors?
2) How much desirable data does rectification preserve?
3) How does the amount of training inputs affect SOAP’s

ability to preserve desirable data?
Applications and Errors: We use SOAP to rectify inputs for

five applications: Swfdec 0.5.5 (a shockwave player) [7], Dillo
2.1 (a lightweight browser) [3], ImageMagick 6.5.2-8 (an image
processing toolbox) [5], Google Picasa 3.5 (a photo managing
application) [6], and VLC 0.8.6h (a media player) [8].

Figure 7 presents a description of each error in each appli-
cation. In sum, all of these applications consume inputs that (if
specifically crafted) may cause the applications to incorrectly
allocate memory or perform an invalid memory access. The
input file formats for these errors are the SWF Shockwave Flash



Application Sources Fault Format Position Related constraints
Swfdec Buzzfuzz X11 crash SWF XCreatePixMap /rect/xmax≤ 57600

/rect/ymax≤ 51000
Swfdec Buzzfuzz overflow/crash SWF jpeg.c:192 /sub jpeg/.../width≤ 6020

/sub jpeg/.../height≤ 2351
Dillo CVE-2009-2294 overflow/crash PNG png.c:142 /header/width≤ 1920

png.c:203 /header/height≤ 1080
ImageMagick CVE-2009-1882 overflow/crash JPEG,TIFF xwindow.c:5619 /ifd[..]/img width/value≤ 14764

/ifd[..]/img height/value≤ 24576
Picasa TaintScope overflow/crash JPEG,TIFF N/A /start frame/content/width≤ 15941

/start frame/content/height≤ 29803
VLC CVE-2008-2430 overflow/crash WAV wav.c:147 /format/size≤ 150

Figure 7. Six errors used in our experiment. SOAP successfully nullifies all of these errors (see Section IV-A). “Source” is the source where we collect this bug.
“Fault” and “Format” present the fault type and the format of malicious inputs that can trigger this error. “Position” indicates the source code file and/or line positions
that are related to the root cause. “Related constraints” presents constraints generated by SOAP that can help to avoid this bug.

Rectification Statistics Running Time
Inp. App. Train Test Field (Distinct) Rectified Avg. Ploss Mean Parse Rect. Per field

SWF Swfdec 3620 3620 5550.2 (98.17) 57 (1.57%) N/A 531ms 443ms 88ms 0.096ms
PNG Dillo 1496 1497 306.8 (32.3) 0 (0%) 0% 23ms 19ms 4ms 0.075ms

JPEG IMK, Picasa 3025 3024 298.2 (75.5) 42 (1.39%) 0.08% 24ms 21ms 3ms 0.080ms
TIFF IMK, Picasa 870 872 333.5 (84.5) 11 (1.26%) 0.50% 31ms 26ms 5ms 0.093ms
WAV VLC 5488 5488 17.1 (16.8) 11 (0.20%) 0% 1.5ms 1.3ms 0.2ms 0.088ms

Figure 8. The benchmarks and numerical results of our experiments. “Inp.” and “App.” columns show input file formats and applications. “Train” and “Test”
indicate the number of inputs used for training and testing respectively in our experiment. “Field (Distinct)” column is in the form of X(Y), where X indicates the
average number of fields in one test input of each format and Y indicates the average number of semantically distinct fields (i.e. fields that have different names in
their descriptors) in one test input. The ”Rectified” column contains entries of the form X(Y), where X is the number of test inputs that the rectifier modified and
Y is the corresponding percentage of modified test inputs. The “Avg. Ploss” column presents the average data loss percentage of all test inputs of each format (see
Section IV-B). “Mean” is the average running time for one test input including both parsing and rectification. “Parse” indicates the average parsing time for one
input. “Rect.” indicates the average rectification time for one input. “Per field” indicates the average running time amortized to a single field for each format. “IMK”
is an abbreviation of ImageMagick.

format; the PNG, JPG, and TIF image formats; and the WAV
sound format.

Malicious inputs: We obtained six input files, each of which
targets a distinct error (see Figure 7) in at least one of these
applications [17], [38], [2]. We obtained three of these inputs
from the CVE database [2], two from the example inputs of the
Buzzfuzz project [17], and one from the example inputs of the
TaintScope project [38].

Benign inputs: We implemented a web crawler to collect
input files for each format (see Figure 8 for the number of
collected inputs for each input format). Our web crawler uses
Google’s search interface to acquire a list of pages that contain
at least one link to a file of a specified format (e.g., SWF, JPEG,
or WAV). The crawler then downloads each file linked within
each page. We verified that all of these inputs are benign, i.e.,
the corresponding applications successfully processed these
inputs. For each format, we randomly partitioned these inputs
into two sets, the training set and the test set (see Figure 8).

A. Nullifying Vulnerabilities

We next evaluate the effectiveness of SOAP in nullifying six
vulnerabilities in the benchmark applications (see Figure 7). We
first applied the trained SOAP rectifier to the obtained malicious
inputs. The rectifier detected that all of these inputs violated at

least one safety constraint. It rectified all violated constraints
to produce six corresponding rectified inputs. We verified that
the applications processed the rectified inputs without error and
none of the rectified inputs exploited the vulnerabilities. We
next discuss the interactions between the inputs and the root
cause of each vulnerability.

Flash video: The root cause of the X11 crash error in
Swfdec is a failure to check for large Swfdec window sizes
as specified in the input file. If this window size is very large,
the X11 library will allocate an extremely large buffer for the
window and Swfdec will eventually crash. SOAP nullifies this
error by enforcing the constraints that /rect/xmax≤ 57600 and
/rect/ymax ≤ 51000, which limit the window to a size that
Swfdec can handle. In this way, SOAP ensures that no rectified
input will be able to exploit this error in Swfdec.

The integer overflow bug in Swfdec occurs when Swfdec
calculates the required size of the memory buffer for JPEG
images embedded within the SWF file. If the SWF input file
contains a JPEG image with sufficiently large specified width
and height values, this calculation will overflow and Swfdec
will allocate a buffer significantly smaller than the required
size. When it enforces the learned safety constraints, SOAP
nullifies the error by limiting the size of the embedded image.
No rectified input will be able to exploit this error.



Image: Errors in Dillo, ImageMagick and Picasa have
similar root causes. A large PNG image with crafted width
and height can exploit the integer overflow vulnerability in
Dillo (see Section II). The same malicious JPEG and TIFF
images can exploit vulnerabilities in both ImageMagick and
Picasa Photo Viewer. ImageMagick does not check the size of
images when allocating an image buffer for display at mag-
ick/xwindow.c:5619 in function XMakeImage(). Picasa Photo
Viewer also mishandles large image files [38]. By enforcing the
safety constraints, SOAP limits the size of input images and
nullifies these vulnerabilities.

Sound: VLC has an overflow vulnerability when processing
the format chunk of a WAV file. The integer field /format/size
specifies the size of the format chunk (which is less than 150 in
typical WAV files). VLC allocates a memory buffer to hold the
format chunk with the size of the buffer equal to the value of
the field /format/size plus two. A malicious input with a large
value (such as 0xfffffffe) in this field can exploit the overflow
vulnerability. By enforcing the constraint /format/size ≤ 150,
SOAP limits the size of the format chunk in WAV file and
nullifies this vulnerability.

These results indicate that SOAP effectively nullifies all six
vulnerabilities. Our inspection of the source code indicates that
the inferred safety constraints nullify the root causes of all of the
vulnerabilities so that no input, after rectification, can exploit
the vulnerabilities.

B. Data Loss

We next compute a quantitative measure of the effect of
rectification on data loss. For each input format, we first apply
the SOAP rectifier to the test inputs. We report the average data
loss percentage of all test inputs for each format. We use the
following formula to compute the data loss percentage of each
rectified input:

Ploss =
Dlossi

Dtoti

Dtoti
measures the amount of desirable data before rectification

and Dlossi measures the amount of desirable data lost in the
rectification process. For JPG, TIFF and PNG files, Dtoti is
the number of pixels in the image and Dlossi

is the number of
pixels that change after rectification. For WAV files, Dtoti

is
the number of frames in the sound file and Dlossi

is the number
of frames that change after rectification. Because SWF files
typically contain interactive content such as animations and
dynamic objects that respond to user inputs, we did not attempt
to develop a corresponding metric for these files.

Result Interpretation: Figure 8 presents rectification re-
sults of the test inputs of each input format. First, note that
the vast majority of the test inputs satisfy all of the learned
constraints and are therefore left unchanged by the rectifier.
Note also that both PNG and WAV have zero desirable data loss
— PNG because the rectifier did not modify any test inputs,
WAV because the modifications did not affect the desirable
data. For JPEG and TIFF, the average desirable data loss is less
than 0.5%.
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Figure 9. The average data loss percentage curves under different sizes of
training input sets for JPEG, TIFF, WAV and PNG (see Section IV-C). X-axis
indicates the size of training input sets. Y-axis shows the corresponding average
data loss percentage.

One of the reasons that the desirable data loss numbers
are so small is that rectifications often change fields (such
as the name of the author of the data file or the software
package that created the data file) that do not affect the output
presented to the user. The application must nevertheless parse
and process these fields to obtain the desirable data in the input
file. Because these fields are often viewed as tangential to the
primary purpose of the application, the code that processes them
may be less extensively tested and therefore more vulnerable to
exploitation.

C. Size of Training Input Set

We next investigate how the size of the training input
set affects the effectiveness of the rectification. Intuitively,
we expect that using less training inputs will produce more
restrictive constraints which, in turn, cause more data loss in
the rectification. For each format, we incrementally increase the
size of the training input set and record the data loss percentage
on the test inputs. At each step, we increase the size of training
input by 200. Figure 9 presents the curves of the average data
loss percentage of the test inputs of the different formats as the
sizes of the training input sets change.

As expected, the curves initially drop rapidly, then approach
a limit as the training set sizes become large. Note that the PNG
and WAV curves converge more rapidly than the TIFF and JPG
curves. We attribute this phenomenon to the fact that the PNG
and WAV formats are simpler than the TIFF and JPG formats
(see Figure 8 for the number of semantically distinct fields of
each format).

D. Overhead

We next evaluate the overhead introduced by SOAP. Figure 8
presents the average running time of the SOAP rectifier for
processing the test inputs of each file format. All times are
measured on an Intel 3.33GHz 6-core machine with SOAP
running on only one core.

The results show that the majority of the execution time
is incurred in the Hachoir parsing library, with the execution



time per field roughly constant across the input file formats (so
SWF files take longer to parse because they have significantly
more fields than other kinds of files). We believe that users will
find these rectification overheads negligible if not imperceptible
during interactive use.

V. MECHANICAL TURK-BASED EVALUATION

Amazon Mechanical Turk [1] is a Web-base labor market.
Requesters post Human Intelligence Tasks (HITs); workers
solve those HITs in return for a small payment. We organized
the experiment as follows:
• Input Files: We collected all of the TIFF, JPG, and SWF

test input files that the rectifier modified.1

• HIT Organization: Together, the TIFF and JPG files
comprise the image files. The SWF files comprise a
separate pool of video files. We partition the image files
into groups, with four files per group. There is one HIT
for each group; the HIT presents the original and rectified
versions of the files in the group to the worker for rating.
The HIT also contains a control pair. With probability
0.5 the control pair consists of identical images; with
probability 0.5 the control pair consists of two completely
different images. We similarly construct HITs for the video
files.

• HIT Copies: We publish 100 copies of each HIT on
Mechanical Turk. Each copy has a different random order
of the pairs. We waited until all of the copies of the
HITs were completed by Mechanical Turk workers. Each
Mechanical Turk worker rates each pair in the HIT on
a scale from 0 to 3. A rating of 3 indicates no visible
difference between the images (or videos) in a given HIT,
2 indicates only minor visible differences, 1 indicates a
substantial visible difference, and 0 indicates that the two
images (or videos) appear completely different.

Some Mechanical Turk workers attempt to game the system,
for example by using bots to perform the HITs or simply by pro-
viding arbitrary answers to HITs without attempting to actually
perform the evaluation [21]. We used several mechanisms to
recognize and discard results from such workers:
• Previous Acceptance: Amazon rates each Mechanical

Turk worker, and provides this information to the requestor
of HITs. This rating indicates what percentage of that
worker’s previously performed HITs were accepted by
other requestors as valid. We required prospective Me-
chanical Turk workers have an acceptance rate of at least
95%.

• Control Pairs: Each HIT contains five pairs, one of which
was a control pair. Half of the control pairs contained
identical images or videos, while the other half contained
completely different images or videos (one of the images
or videos was simply null). If a worker did not correctly
evaluate the control pair, we discarded the results from that
worker.

1We exclude PNG and WAV files because the original and rectified files have
no user-visible differences.

Format Undetectable Minor Substantial Complete
SWF 43 (1.19%) 7 (0.19%) 7 (0.19%) 0
JPG 37 (1.22%) 3 (0.10%) 1 (0.03%) 1 (0.03%)
TIF 3 (0.34%) 5 (0.57%) 2 (0.23%) 1 (0.11%)

(a) Numeric results
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Figure 10. Results of Mechanical Turk experiment. “Unrectified” means
those files that are not changed by the rectifier. “Undetectable”, “Minor” ,
“Substantial” and “Complete” correspond respectively to rectified files whose
average scores are in [2.5, 3], [1.5, 2.5), [0.5, 1.5) and [0, 0.5).

• Descriptions: For each HIT, we asked the worker to
provide a short English description of the differences, if
any, between the images in each pair. The rationale is
that legitimate workers are likely to provide reasonable
descriptions, while workers who are attempting to game
the system or bots are likely to provide non-sensical
descriptions. We manually evaluated these descriptions
to discard results from workers with non-sensical descrip-
tions.

Whenever we discarded a result, we republished a copy of
the HIT to ensure that we obtained results for all 100 copies of
each HIT.
Results: For each HIT h, we computed the average score over
all the scores given by the workers assigned to h. We then
classified the rectified file inh into the following categories, cor-
responding to their average scores, [2.5, 3], [1.5, 2.5), [0.5, 1.5),
and [0, 0.5). We counted the first category as the set of rectified
files with undetectable changes, and the remaining three
categories contain rectified files that have minor differences,
substantial differences and compete differences, in that order.

Figure 10(a) presents, for each combination of input file
format and Mechanical Turk classification, an entry of the form
X(Y), where X is the number of files in that classification and
Y is the corresponding percentage out of all test inputs. Note
that, out of all of the test inputs, only two exhibit a complete
difference after rectification, and only 12 exhibit more than a
minor difference.

We compare the Mechanical Turk results with the quanti-
tative data loss percentage results on image files as given in
Section IV-B by computing the correlation coefficient between
these two sets of data. The correlation coefficient is -0.84, which
indicates that they are significantly correlated (p < 0.01).
Causes of Rectification Effects: When we compared the
original and rectified JPEG files, we observed essentially three
outcomes: (1) The rectification changes fields that do not affect
the image presented to the user — the original and rectified



images appear identical (37 out of 42 inputs). The average
Mechanical Turk rating for such images is between 2.5-3.0.
(2) The rectification truncates part of the picture, removing a
strip along the bottom of the picture (3 out of 42 inputs, see
Figure 11). (3) The rectification changes the metadata fields
of the picture, the pixels wrap around, and the rectified image
appears to have similar colors as the original but with the detail
destroyed by the pixel wrap (2 out of 42 inputs, see Figure 12).
The average Mechanical Turk rating for such images is less than
1.

For TIFF files, we observed essentially four outcomes: (1)
The rectification changes fields that do not affect the image
presented to the user — the original and rectified images appear
identical (3 out of 11 inputs). The average Mechanical Turk
rating for such images is between 2.5-3.0. (2) The rectification
truncates part of the picture, removing a strip along the bottom
of the picture (5 out of 11 inputs). The average Mechanical
Turk rating for such images is between 1.0-2.5, depending on
how much of the image was truncated. (3) The rectification
changes the color palette fields so that only the color of the
image changes (2 out of 11 inputs, see Figure 13). The average
Mechanical Turk rating for such images is between 1.5-2.0. (4)
The rectification changes metadata fields and all image data is
lost (1 out of 11 inputs). The average Mechanical Turk rating
for this image is 0.2.

For SWF files, we observed essentially three possible out-
comes: (1) The rectification changes fields that do not affect
the video (43 out of 57 inputs). For such videos the average
Mechanical Turk score is between 2.5-3. (2) The rectification
changes fields that only affect a single visual object in the flash
video such as an embedded image or the background sound,
leaving the SWF functionality largely or partially intact (3 out
of 57 inputs). For such videos the average Mechanical Turk
score is between 1.5-2.5. (3) The rectification changes fields that
affect the program logic of the flash video so that the rectified
flash fails to respond to interactive events from users (11 out of
57 inputs). For such videos the average Mechanical Turk score
is between 0.5-2.6, depending on how important the affected
events are to the users.

VI. RELATED WORK

Input Sanitization: Applying input sanitization to improve
software reliability and availability was first introduced by
Rinard [32]. That work describes the implementation of a
manually crafted input rectifier for the Pine email client. SOAP
improves upon the basic concept by automating the fundamen-
tal components of the approach: learning and rectification.

Anomaly Detection: SOAP infers safety constraints from
training inputs to detect malicious inputs. Detecting malicious
inputs has a rich body work in the field of anomaly detection
[33], [22], [36], [26], [18], [30], [37].

Web-based anomaly detection [33], [22] uses input features
(e.g. request length and character distributions) from attack-
free HTTP traffic to model normal behavior. HTTP requests that
contain features that violate the model, are flagged as anoma-
lous and dropped. In the same vein, Valeur et al [36] propose

a learning-based approach for detecting SQL-injection attacks.
Wang et al [37] propose a technique that detects network-based
intrusions by examining the character distribution in payloads,
bypassing the need to select specific input features. Perdisci et
al [30] propose a clustering-based anomaly detection technique
that learns features from malicious traces (as opposed to attack-
free).

The anomaly detection techniques described above focus on
server-side network inputs. SOAP focuses on human-facing
client applications that use complex structured inputs such as
images or videos. These inputs typically contain correlated
(and sometimes lazily parsed) fields that are not handled by
the techniques described above. Additionally, SOAP provides
the ability to automatically rectify anomalous inputs. Input
rectification helps deal with the problem of false positives which
typically plagues anomaly detection systems.

Signature Generation: More closely related to input san-
itization are systems that deal with vulnerability signature
generation. Systems such as Vigilante [12], Bouncer [11],
PacketVaccine [39] and ShieldGen [14]. ShieldGen [14] are
closely related to SOAP due to their use of input-format
specifications. SOAP improves upon such systems with the
ability to detect unknown vulnerabilities and the ability to fix
the flagged input.

Critical Field Inference: SOAP uses taint analysis to track
those input fields that can possibly trigger overflow. Another
tool that uses taint tracing to track disparate input bytes that
simultaneously reach security sensitive operations is Buzz-
Fuzz [17]. BuzzFuzz uses this information to perform directed
fuzzing on inputs that have complex structures. By contrast,
SOAP not only learns the important bytes that reach security
sensitive operations but also learns arithmetic constraints over
them.

Input Syntax: SOAP requires a parser component to in-
terpret input syntax structure according to its specification.
To facilitate parser construction, Binpac [29] describes a
declarative language for writing application protocol parsers.
Input syntax inference [13], [23], [9], [40] is also an active
research topic that is actively studied by security and software
engineering community.

Rectification Algorithm: SOAP introduces a rectification
algorithm to enforce safety constraints on incoming inputs. A
similar approach has been proposed in the context automated
data structure repair [15], [20], [16]. The rectification algorithm
used in SOAP is inspired by the data structure repair algorithm
proposed by Demsky et al [15], which iteratively modifies
a data structure to enforce data consistency defined in an
abstract model. SOAP improves upon data structure repair by
combining input rectification and constraint inference (with a
focus on correlated constraints) and a end-to-end automation of
the system.

Evaluation with Mechanical Turk: Mechanical Turk is
used to evaluate the quality of service of our input rectifi-
cation technique. By enabling a large-scale, low-cost human
computation workforce, Mechanical Turk has become a viable
option for many experimental tasks such as training data



(a) The original image (b) The rectified image

Figure 11. An example image truncated by the rectification.

(a) The original image

(b) The rectified image

Figure 12. An example image twisted by the rectification

(a) The original image (b) The rectified image

Figure 13. An example image whose color is changed by the rectification.



annotation [35], [24], computation result evaluation [19], [34],
[21], and behavior research [25], [31].

VII. CONCLUSION

Our results indicate that input rectification can effectively
nullify errors in applications while preserving much, and in
many cases, all, of the desirable data in complex input files.
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