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Abstract

How does the brain recognize three-dimensional objects? An initial step towards the understanding of the

neural substrate of visual object recognition can be taken by studying �rst the nature of object representa-

tion, as manifested in behavioral studies with humans or non-human primates. One fundamental question

is whether these representations are object or viewer centered. We trained monkeys to recognize computer

rendered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to

generalize recognition for views generated by mathematically rotating the objects around any arbitrary axis.

In agreement with human psychophysical work (Rock and DiVita, 1987, B�ultho� and Edelman, 1992), our

results show that recognition at the subordinate level becomes increasingly di�cult for the monkey as the

stimulus is rotated away from a familiar attitude, and thus provide additional evidence in favor of memorial

representations that are viewer-centered. When the animals were trained with as few as three views of the

object, 120o apart, they could often interpolate recognition for all views resulting from rotations around the

same axis. The possibility thus exists that even in the case of a viewer-centered recognition system, a small

number of stored views may su�ce to achieve the view-invariant performance that humans and non-human

primates typically achieve when recognizing familiar objects. These results are also in agreement with a

recognition model that accomplishes view-invariant performance by storing a limited number of object views

or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990).

In such a model, the units involved in representing a learned view are expected to exhibit a bellshaped

tuning curve centered around the learned view, while interpolation is instantiated in the summed activity

of the units.
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1 Introduction

Most theories of object recognition assume that the vi-

sual system stores a representation of an object and

that recognition occurs when this stored representation

is matched to its corresponding sensory representation

generated from the viewed object [28]. What is, how-

ever, the nature of these representations, what is stored

in memory, and how is matching achieved? A space of

possible representations could be characterized by ad-

dressing the issues of (1) the recognition task, (2) the

attributes to be represented, (3) the nature of primitives

that would describe these attributes, and (4) the spatial

reference frame in respect to which the object is de�ned.

Representations may vary for di�erent recognition

tasks. A fundamental task for any recognition system

is to cut up the environment into categories the mem-

bers of which, although nonidentical, are conceived of

as equivalent. Such categories often relate to each other

by means of class inclusion, forming taxonomies. Ob-

jects are usually recognized �rst at a particular level of

abstraction, called the basic level [25]. For example, a

Golden-retriever is more likely to be �rst perceived as

a dog, rather than as a retriever or a mammal. Classi-

�cations at the basic level carry the highest amount of

information about a category and are usually character-

ized by distinct shapes [25]. Classi�cations above the

basic level, superordinate categories, are more general,

while those below the basic level, subordinate categories,

are more speci�c, sharing a great number of attributes

with other subordinate categories, and having to a large

extent similar shape (for a thorough discussion of cate-

gories see [8,24,25]). Representations of objects at di�er-

ent taxonomic levels may di�er in their attributes, the

nature of primitives describing various attributes, and

the reference frame used for the description of the ob-

ject.

In primate vision, shape seems to be the critical at-

tribute for object recognition. Material properties, such

as color or texture may be important primarily at the

most subordinate levels. Recognition of objects is typi-

cally una�ected in gray-scale photographs, line drawings,

or in cartoons with wrong color and texture information.

An elephant, for instance, would be recognized as an ele-

phant, even if it were painted yellow and textured with

blue spots. Evidence as to the importance of shape for

object perception comes also from clinical studies show-

ing that the breakdown of recognition, resulting from

circumscribed damage to the human cerebral cortex, is

mostmarked at the subordinate level, at which the great-

est shape similarities occur [5].

Models of recognition di�er in the spatial frame

used for shape representation. Current theories using

object-centered representations assume either a com-

plete three-dimensional description of an object [28], or

a structural description of the image specifying the re-

lationships among viewpoint-invariant volumetric primi-

tives [1,12]. In contrast, viewer-centered representations

model three-dimensional objects as a set of 2D views,

or aspects, and recognition consists of matching image

features against the views in this set.

When tested against human behavior, object-centered

representations predict well the view-independent recog-

nition of familiar objects [1]. However, psychophys-

ical studies using familiar objects to investigate the

processes underlying object constancy, i.e. viewpoint-

invariant recognition of objects, can be misleading be-

cause a recognition system based on 3D descriptions can

not easily be discerned from a viewer centered system

exposed to a su�cient number of object views. Further-

more, object-centered representations fail to account for

performance in recognition tasks with various kinds of

novel objects at the subordinate level [4,6,18,19,27].

Viewer-centered representations, on the other hand,

can account for recognition performance at any taxo-

nomic level, but they have been often considered im-

plausible due to the vast amount of memory required

to store all discriminable object views needed to achieve

viewpoint invariance. Yet, recent theoretical work shows

that a simple network can achieve viewpoint invariance

by interpolating between a small number of stored views

[16]. Computationally, this network uses a small set of

sparse data corresponding to an object's training views

to synthesize an approximation to a multivariate func-

tion representing the object. The approximation tech-

nique is known by the name of Generalized Radial Basis

Functions (GRBFs), and it has been shown to be math-

ematically equivalent to a multilayer network [17]. A

special case of such a network is that of the Radial Basis

Functions (RBFs) that can be conceived of as \hidden-

layer" units, the activity of which is a radial function of

the disparity between a novel view and a template stored

in the unit's memory. Such an interpolation-based net-

work makes both psychophysical and physiological pre-

dictions [15] that can be directly tested against behav-

ioral performance and single cell activity.

In the experiments described below, we trained mon-

keys to recognize novel objects presented from one view,

and subsequently tested their ability to generalize recog-

nition for views generated by mathematically rotating

the objects around arbitrary axes. The stimuli, exam-

ples of which are shown in Figure 1, were similar to

those used by Edelman and B�ultho� (1992) [6] in hu-

man psychophysical experiments. Our aim was to ex-

amine whether non-human primates show viewpoint in-

variance at the subordinate level of recognition. Brief

reports of these experiments have been published previ-

ously [10,11].

2 Materials and Methods

2.1 Subjects and Surgical Procedures

Three juvenile rhesus monkeys (Macaca mulatta) weigh-

ing 7-9 kg were tested. The animals were cared for in
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accordance with the National Institutes of Health Guide,

and the guidelines of the Animal Protocol Review Com-

mittee of the Baylor College of Medicine.

The animals underwent a surgery for the placement

of a head restraint post, and a scleral-search eye coil

[9] for measuring eye movements. The monkeys were

given antibiotics (Tribrissen 30 mg/kg) and analgesics

(Tylenol 10 mg/kg) orally one day before the operation.

The surgical procedure was carried out under strictly

aseptic conditions while the animals were anesthetized

with isourane (induction 3.5% and maintenance 1.2%

- 1.5%, at 0.8 L/min Oxygen). Throughout the surgi-

cal procedure the animals received 5% dextrose in lac-

tated Ringer's solution at a rate of 15 ml/kg/hr. Heart

rate, blood pressure and respiration were monitored con-

stantly and recorded every 15 minutes. Body tempera-

ture was kept at 37.4 degrees Celsius using a heating

pad. Postoperatively, an opioid anelgesic was admin-

istered (Buprenorphine hydrochloride 0.02 mg/kg, IM)

every 6 hours for one day. Tylenol (10 mg/kg) and an-

tibiotics (Tribrissen 30 mg/kg) were given to the animal

for 3-5 days after the operation.

2.2 Animal Training

Standard operant conditioning techniques with positive

reinforcement were used to train the monkey to perform

the task. Initially, the animals were trained to recognize

the target's zero view among a large set of distractors,

and subsequently were trained to recognize additional

target views resulting from progressively larger rotations

around one axis. After the monkey learned to recog-

nize a given object from any viewpoint in the range of

�90o, the procedure was repeated with a new object. In

the early stages of training several days were required

to train the animals to perform the same task for a new

object. Four months of training was required on average

for the monkey to learn generalizing the task across dif-

ferent types of objects of one class, and about six months

were required for the animal to generalize for di�erent

types of object classes.

Within an object class the similarity of the targets

to the distractors was gradually increased, and in the �-

nal stage of the experiments distractor wire-objects were

generated by adding di�erent degrees of positional or ori-

entation noise to the target objects. A criterion of 95%

correct for several objects was required to proceed with

the psychophysical data collection.

In the early phase of the animal's training a reward

followed each correct response. In the later stages of the

training the animals were reinforced on a variable-ratio

schedule which administered a reward after a speci�ed

average number of correct responses had been given. Fi-

nally, in the last stage of the behavioral training the

monkey was rewarded only after ten consecutive correct

responses. The end of the observation period was sig-

nalled with a full-screen, green light and a juice reward

for the monkey.

During the behavioral training, independent of the re-

inforcement schedule, the monkey always received feed-

back as to the correctness of its response. One incorrect

report aborted the entire observation period. During the

psychophysical data collection, on the other hand, the

monkey was presented with novel objects and no feed-

back was given during the testing period. The behav-

ior of the animals was continuously monitored during

the data collection by computing on-line hit rate and

false alarms. To discourage arbitrary performance or

the development of hand-preferences, e.g. giving only

right hand responses, sessions of data collection were

randomly interleaved with sessions with novel objects,

in which incorrect responses aborted the trial.

2.3 Visual Stimuli

Wire-like and spheroidal objects were generated mathe-

matically and presented on a color monitor (Figure 1).

The selection of the vertices of the wire objects within

a three-dimensional space was constrained to exclude

intersection of the wire-segments and extremely sharp

angles between successive segments, and to ensure that

the di�erence in the moment of inertia between di�erent

wires remained within a limit of 10%. Once the vertices

were selected the wire objects were generated by deter-

mining a set of rectangular facets covering a hypothetical

surface of a tube of a given radius that joined successive

vertices.

The spheroidal objects were created through the gen-

eration of a recursively-subdivided triangle mesh ap-

proximating a sphere. Protrusions were generated by

randomly selecting a point on the sphere surface and

stretching it outward. Smoothness was accomplished by

increasing the number of triangles forming the polyhe-

dron that represents one protrusion. Spheroidal stimuli

were characterized by the number, sign (negative sign

corresponded to dimples), size, density and sigma of

the gaussian type protrusions. Similarity was varied by

changing these parameters as well as the overall size of

the sphere.

3 Results

3.1 Viewpoint-Dependent Recognition

Performance

Three monkeys and two human subjects participated in

this experiment yielding similar results. Only the mon-

key data are presented in this paper. The animals were

trained to recognize any given object viewed on one oc-

casion in one orientation, when presented on a second

occasion in a di�erent orientation. Technically, this is

a typical recognition, \old-new" task, whereby the sub-

ject's ability to retain stimuli to which it has been ex-

posed is tested by presenting those stimuli intermixed

with other objects never before encountered. The sub-

ject is required to state for each stimulus whether it is
2



\old", i.e. familiar, or \new", i.e. never seen before. This

type of task is similar to the yes-no task of detection in

psychophysics and can be studied under the assumptions

of the signal detectability theory [7,13].

Figure 2a describes the sequence of events in a single

observation period. Successful �xation of a central light

spot was followed by the learning phase, during which

the monkeys were allowed to inspect an object, the tar-

get, from a given viewpoint, arbitrarily called the zero

view. To provide the subject with 3D structure infor-

mation, the target was presented as a motion sequence

of 10 adjacent, Gouraud-shaded views, 2o apart, cen-

tered around the zero view. The animation was accom-

plished at a 2 frames-per-view temporal rate, i.e. each

view lasted 33.3 msec, yielding the impression of an ob-

ject oscillating slowly �10o around a �xed axis.

The learning phase was followed by a short �xation

period after which the testing phase started. Each test-

ing phase consisted of up to 10 trials. The beginning

of a trial was indicated by a low-pitched tone, immedi-

ately followed by the presentation of the test stimulus,

a shaded, static view of either the target or a distrac-

tor. Target views were generated by rotating the object

around one of four axes, the vertical, the horizontal, the

right oblique, or the left oblique (Fig. 2b). Distractors

were other objects of the same or di�erent class (Fig. 1).

Two levers were attached to the front panel of the

monkey chair, and reinforcement was contingent upon

pressing the right lever each time the target was pre-

sented. Pressing the left lever was required upon pre-

sentation of a distractor. Note (see methods below) that

no feedback was given to the animals during the psy-

chophysical data collection. A typical experimental ses-

sion consisted of a sequence of 60 observation periods,

each of which lasted about 25 seconds.

Figure 3a shows the performance of one of the mon-

keys for rotations around the vertical axis. Thirty target

views and 60 distractor objects were used in this experi-

ment. On the abscissa of the graph we plot the rotation

angle and on the ordinate the experimental hit rate. The

small squares show performance for each tested view for

240 presentations. The solid line was obtained by a dis-

tance weighted least squares smoothing of the data using

the McLain algorithm [14]. The small insets show ex-

amples of the tested views. The monkey could identify

correctly the views of the target around the zero view,

while its performance dropped below chance levels for

disparities larger than 30 degrees for leftward rotations,

and larger than 60 degrees for rightward rotations. Per-

formance below chance level is probably the result of the

large number of distractors used within a session, which

limited learning of the distractors per se. Therefore an

object that was not perceived as a target view was read-

ily classi�ed as distractor.

Figure 3b shows the false alarm rate, that is, the per-

centage of time that a distractor object was reported as

a view of the target. The abscissa shows the distractor

number, and the squares the false alarm rate for 20 pre-

sentations of each distractor. Recognition performance

for rotations around the vertical, horizontal, and the two

oblique axes (�45o) can be seen in Figure 3c. The X and

Y axis on the bottom face of the plot show the rotations

in depth, and the Z axis the experimental hit rate.

To exclude the possibility that the observed view de-

pendency was speci�c to non-opaque structures lacking

extended surface, we have also tested recognition perfor-

mance using spheroidal, amoeba-like objects with char-

acteristic protrusions and concavities. Thirty-six views

of a target amoeba and 120 distractors were used in any

given session. As illustrated in Figure 4 the monkey

was able to generalize only for a limited number of novel

views clustered around the views presented in the train-

ing phase. In contrast, performance was found to be

viewpoint-invariant when the animals were tested for ba-

sic level classi�cations, or when they were trained with

multiple views of wire-like or amoeba-like objects. Fig-

ure 5 shows the mean performance of three monkeys for

each of the object classes tested. Each curve was gener-

ated by averaging individual hit rate measurements ob-

tained from di�erent animals for di�erent objects within

a class. The data in Figure 5b were collected from three

monkeys using two shperoidal objects. The asymmetric

tuning curve denoting better recognition performance for

rightwards rotations is probably due to asymmetric dis-

tribution of characteristic protrusions in the two amoe-

boid objects. Figure 5c shows the ability of monkeys

to recognize common objects, e.g. a teepot, presented

from various viewpoints. Distractors were other common

objects or simple geometrical shapes. Since all animals

were already trained to perform the task indepent of the

object type used as a target, no familiarization with the

object's zero-view preceded the data collection in these

experiments. Yet, the animals can generalize recognition

for all tested novel views.

For some objects the subjects were better in their abil-

ity to recognize the target from views resulting from

180 degree rotations. This type of behavior is evident

in Figure 6a for one of the monkeys. As can be seen

in the �gure, performance drops for views farther than

30o but it resumes as the unfamiliar views of the tar-

get approach the 180o view of the target. This behavior

was speci�c to those wire-like objects, for which the zero

and 180o views appeared as mirror-symmetrical images

of each other, due to accidental minimal self-occlusion.

In this respect, the improvement in performance paral-

lels the reectional invariance observed in human psy-

chophysical experiments [2]. Such reectional invariance

may also partly explain the observation that informa-

tion about bilateral symmetry simpli�es the task of 3D

recognition by reducing the number of views required to

achieve object constancy [30]. Not surprisingly, perfor-

mance around the 180 degree view of an object did not
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improve for any of the opaque, spheroidal objects used

in these experiments.

3.2 Generalization Field: Simulations

Poggio and Edelman (1990) described a regularization

network capable of performing view-independent recog-

nition of three-dimensional wire-like objects, after initial

training with a limited set of views of the objects [16].

The set size in their experiments, 80-100 views of an ob-

ject for the entire viewing sphere, predicts a generaliza-

tion �eld of about 30 degrees for any given rotation axis,

which is in agreement with human psychophysical work

[4,6,18,19], and with the data presented in this paper.

Figure 7 illustrates an example of such a network and

its output activity. A 2D view (Fig. 7a) can be rep-

resented as a vector of some visible feature points on

the object. In the case of wire objects, these features

could be the x; y coordinates of the vertices, the ori-

entation, corners, size, length, texture and color of the

segments, or any other characteristic feature. In the ex-

ample of Figure 7b the input vector consists of seven

segment orientations. For simplicity we assume as many

basis functions as the views in the training set. Each

basis unit, Ui, in the \hidden-layer" calculates the dis-

tance kV�Tik of the input vector V from its center Ti,

i.e. its learned or \preferred" view, and it subsequently

computes the function exp(�kV�Tik) of this distance.
The value of this function is regarded as the activity of

the unit and it peaks when the input is the trained view

itself. The activity of the network is conceived of as

the weighted, linear sum of each unit's output. In the

present simulations we assume that each unit's output

is superimposed on Gaussian noise, N(V,�2
u
), the sigma

�2
u
of which was estimated from single-unit data in the

inferotemporal cortex of the macaque monkey [11].

The four plots in Figure 7c show the output of each

RBF unit when presented with views generated by ro-

tations around the vertical axis. Units U1 through U4

are centered on the 0, 60, 120, and 180 degree views of

the object respectively. The abscissa of the plots shows

the rotation angle and the ordinate the unit's output

normalized at its response to its center. Note the bell-

shaped response of each unit as the target object is ro-

tated away from its familiar attitude. The output of each

unit can be highly asymmetric around the center since

the independent variable in the plots (rotation angle) is

di�erent from the argument of the exponential function.

Figure 7d shows the total activity of the network under

\zero" noise conditions. The thick, gray line on the left

plot illustrates the network's output when the input is

any of the 36 tested target views. The right plot shows

its mean activity for any of the 36 views of each of the 60

distractors. The thick, black lines in Figures 7b, c, and d

show the representation and the activity of the same net-

work when trained with only the zero view, simulating

the actual psychophysical experiments described above.

To directly compare the network performance with the

psychophysical data described above we used the same

wire objects used in our �rst experiment (Generalization

Fields), and applied a decision theoretic analysis on the

network's output [7]. In Figure 8a the curve fT (X), to

the right, represents the distribution of network activ-

ities that occur on those occasions, in which the input

is a view of the target. Accordingly, the curve fD(X),

to the left, represents the distribution of activities when

the input is a given distractor. The abscissa of the graph

represents stimulus strength, which increases for increas-

ing familiarity of the object, that is for views nearer to

the trained view. Taken as an ideal observer's opera-

tion, the network's decision to respond \old" (target) or

\new" (distractor) depends on an adopted decision crite-

rionXC . The gray area on the right ofXC represents the

a posteriori probability of the network correctly identi-

fying a target, and it is denoted with P (TjT ), while the
dark cross-hatched area on the right of XC represents

the probability P (TjD) of a false alarm. On the left

of XC , the area marked with horizontal lines gives the

probability of a correct rejection, and the area with verti-

cal lines represents the probability of failing to recognize

the target. As the cuto� point XC runs through its pos-

sible values, it generates a curvilinear relation between

P (TjT ) and P (TjD) (Fig. 8b) known as the Receiver

Operating Characteristic (ROC) curve. The area un-

derneath this curve has been shown to amount to the

percentage correct performance of an ideal observer in

a two-alternative forced-choice (2AFC) task [7] (page

45-47). In this model, performance depends solely on

the distance d0 between the means of the fT (X) and

fD(X) distributions, revealing the actual sensitivity of

the recognition system. The distance d0 is determined

in standard deviation units. A basic assumption in this

type of analysis is that the events leading to an \old" or

\new" response are normally distributed. Therefore, the

selection of the vertices of the wire-like objects was con-

strained to ensure that the activity of the network across

the set of di�erent distractors was distributed normally

(Fig. 8c).

The white bars in Figure 9a show the distribution of

the network activity when the input was any of the 60

distractor wire objects. Black bars represent the activ-

ity distribution for a given target view (-50, -30, 0, 30,

and 50 degrees). Complete ROC curves for views gener-

ated by leftward and rightward rotations are illustrated

in Figures 9b and c respectively. Figure 9d shows the

performance of the network as an observer in a 2AFC

task. Open squares represent the area under the cor-

responding ROC curve, and the gray, thick line shows

modeling of the data with a gaussian function computed

using the Quasi-Newton minimization technique.
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3.3 Generalization Field: Psychophysics

The purpose of these experiments was to generate psy-

chometric curves that could be used for comparing the

psychophysical, physiological, and computational data

in the context of the above task. One way to generate

ROC curves in psychophysical experiments is to vary

the a priori probability of signal occurance, and instruct

the observer to maximize the percentage of correct re-

sponses. Since the training of the monkeys was designed

to maximize the animal's correct responses, changing

the a priori probability of target occurance did induce

a change in the animal's decision criterion as is evident

in the variation of hits and false alarms in each curve of

the Figures 10a and b.

The data were obtained by setting the a priori prob-

ability of target occurance in a block of observation pe-

riods to 0.2, 0.4, 0.6, or 0.8. Figures 10a and b show

ROC curves for leftward and rightward rotations respec-

tively. Each curve is created from the four pairs of hit

and false alarm rates obtained for one given target view.

All target views were tested using the same set of distrac-

tors. The percentage-correct performance of the monkey

is plotted in Figure 10c. Each �lled circle represents the

area under the corresponding ROC curve in Figures 10a

and b. The thick, gray line shows modeling of the data

with a gaussian function. Note the similarity between

the monkey's performance and the simulated data (thin

gray line).

3.4 Interpolation between two trained views

A network, such as that in Figure 7, represents an object

by a set of 2D views, the templates, and when the ob-

ject's attitude changes, the network generalizes through

nonlinear interpolation. In the simple case, in which

the number of basis functions is taken to be equal to the

number of views in the training set, intepolation depends

on the ci and � of the basis functions, and on the dis-

parity between the training views. Furthermore, unlike

schemes based on linear combination of 2D views [29],

the non-linear interpolation model predicts recognition

of novel views beyond the above measured generalization

�eld to occur for only those views situated between the

templates.

To test this prediction experimentally, the ability of

the monkeys to generalize recognition to novel views

was examined after training the animals with two suc-

cessively presented views of the target 120o and 160o

apart.

The results of such an experiment are illustrated in

Figures 11a and b. The monkey was initially trained to

identify the 0o and 120o views of a wire-like object among

120 distractor objects of the same class. During this pe-

riod the animal was given feedback as to the correctness

of the response. Training was considered complete when

the monkey's hit rate was consistently above 95%, false

alarm rate remained below 10%, and the dispersion co-

e�cient of reaction times was minimized. A total of 600

presentations were required to achieve the above condi-

tions, after which testing and data collection began.

During a single observation period, the monkey was

�rst shown the familiar 0o and 120o views of the ob-

ject, and then presented sequentially with 10 stimuli that

could be either target or distractor views. Within one

experimental session each of the 36 tested target views

was presented 30 times. The spikes on the YZ plane of

the plot show the hit rate for each view generated by

rotations around the Y axis. The solid line represents a

distance-weighted, least-squares smoothing of the data

using the McLain algorithm [14]. The results show that

interpolation between familiar views may be the only

generalization achieved by the monkey's recognition sys-

tem. No extrapolation is evident with the exception of

the slightly increased hit rate for views around the �120o

view of the object, that approximately corresponds to a

180 degree rotation of some of the interpolated views.

The contour plot summarizes the performance of the

monkey for views generated by rotating the object

around the horizontal, vertical, and the two oblique axes.

Thirty six views were tested for each axis, each presented

30 times. The results show that the ability of the monkey

to recognize novel views is limited to the space spanned

between the two trained views as predicted by the model

of nonlinear approximation.

The experiment was repeated after briey training the

monkey to recognize the 60o view of the object. Dur-

ing the second \training period" the animal was simply

given feedback as to the correctness of the response for

the 60o view of the object. The results can be seen in

Figure 11(b). The animal was able to recognize all views

between the 0o and 120o views. Moreover, performance

improved signi�cantly around the �120o.

4 Discussion

The main �ndings of this study are (a) that recogni-

tion of a novel, three-dimensional object depends on the

viewpoint from which the object is encountered, and (b)

that perceptual object-constancy can be achieved by fa-

miliarization with a limited number of views.

The �rst demonstration of strong viewpoint depen-

dence in the recognition of novel objects was that of Rock

and his collaborators [18,19]. These investigators exam-

ined the ability of human subjects to recognize three-

dimensional, smoothly curved wire-like objects seen from

one viewpoint, when encountered from a di�erent atti-

tude and thus having a di�erent 2D projection on the

retina. Although their stimuli were real objects (made

from 2.5mm wire), and provided the subject with full

3D information, there was a sharp drop in recognition

for view disparities larger that approximately 30 degrees.

In fact, as subsequent investigations showed, subjects

could not even imagine how wire objects look when ro-

tated, despite instructions for visualizing the object from
5



another viewpoint [31]. Similar results were obtained in

later experiments by Edelman and B�ultho� (1992) with

computer-rendered, wire-like objects presented stereo-

scopically or as at images [4,6].

In this paper we provide evidence of similar view-

dependency of recognition for the nonhuman primate.

Monkeys were indeed unable to recognize objects ro-

tated more than approximately 40 degrees of visual angle

from a familiar view. These results are hard to recon-

cile with theories postulating object-centered representa-

tions. Such theories predict uniform performance across

di�erent object views, provided 3D information is avail-

able to the subject at the time of the �rst encounter.

Therefore, one question calling for discussion is whether

or not informationabout the object's structure was avail-

able to the monkeys during the learning phase of these

experiments.

First of all, wires are visible in their entirety since,

unlike most opaque natural objects in the environment,

regions in front do not substantially occlude regions in

back. Second, the objects were computer-rendered with

appropriate shading and were presented in slow oscilla-

tory motion. The motion parallax e�ects produced by

such motion yield vivid and accurate perception of the

3D structure of an object or surface [3,20]. In fact, psy-

chometric functions showing depth modulation thresh-

olds as a function of spatial frequency of 3D corruga-

tions are very similar for surfaces speci�ed through ei-

ther disparity or motion parallax cues [21-23]. Further-

more, experiments on monkeys have shown that nonhu-

man primates, too, possess the ability to see structure

from motion [26] in random-dot kinematograms. Thus,

during the learning phase of each observation period, in-

formation about the three-dimensional structure of the

target was available to the monkey by virtue of shading,

the kinetic depth e�ect, and minimal self-occlusion.

Could the view-dependent behavior of the animals be

a result of the monkeys' failing to understand the task?

The monkey could indeed recognize a two-dimensional

pattern as such, without necessarily perceiving it as a

view of an object. Correct performance around the fa-

miliar view could then be simply explained as the inabil-

ity of the animal to discriminate adjacent views. Several

lines of arguments refute such an interpretation of the

obtained results. For one, the animals easily generalized

recognition to all novel views of common objects. More-

over, when the wire-like objects had prominent charac-

teristics, such as one or more sharp angles, or a closure,

the monkeys were able to perform in a view-invariant

fashion. Second, when two views of the target were pre-

sented in the training phase the animals interpolated,

often with 100% performance, for any view between the

two trained views.

Third, for many wire-like objects the animal's recogni-

tion was found to exceed criterion performance for views

that resembled \mirror-symmetrical", two-dimensional

images of each other, due to accidental lack of self-

occlusion. Invariance for reections has been reported

earlier in the literature [2], and it clearly represents a

form of generalization. Finally, human subjects that

were tested for comparison using the same apparatus

exhibited recognition performance very similar to that

of the tested monkeys.

Thus, it appears that monkeys, just like human sub-

jects, show rotational invariance for familiar, basic-level

objects, but they fail to generalize recognition at the sub-

ordinate level, when �ne, shape-based discriminations

are required to recognize an object. Interestingly, train-

ing with a limited number of views (about 10 views for

the entire viewing sphere) was su�cient for all the mon-

keys tested to achieve view-independent performance.

Recognition based entirely on �ne, shape discrimina-

tions is not uncommon in daily life. We are certainly able

to recognize modern sculptures, mountains or cloud for-

mations. The largely view independent basic level recog-

nition exhibited by adults may be the result of learning

of certain irreducible shapes early in life. Even those the-

ories suggesting that recognition involves the indexing of

a limited number of volumetric components [1] and the

detection of their relationships have to face the problem

of learning components that cannot be further decom-

posed. In other words, we still have to achieve represen-

tations of some elementary object forms that transcend

the special viewpoint of the observer. Such representa-

tions usually rely on shape coding that is very similar to

that required for the subordinate level of recognition.

5 Conclusions

Our results provide evidence supporting viewer-centered

object representation in the primate, at least for sub-

ordinate level classi�cations. While monkeys, just like

human subjects, show rotational-invariance for familiar,

basic-level objects, they fail to generalize recognition for

rotations more than 30 to 40 degrees when �ne, shaped-

based discriminations are required to recognize an ob-

ject. The psychophysical performance of the animals is

consistent with the idea that view-based approximation

modules synthesized during training may indeed be one

of several algorithms the primate visual system uses for

object recognition.

The visual stimuli used in these experiments were

designed to provide accurate descriptions of the three-

dimensional structure of the objects. Therefore our �nd-

ings are unlikely to be the result of insu�cent depth

information in the two-dimensional images for building

a three-dimensional representation. Rather, it suggests

that construction of viewpoint-invariant representations

may not be possible for a novel object. Thus the view-

point invariant performance typically observed when rec-

ognizing familiar objects may eventually be the result of

a su�cient number of two-dimensional representations,

created for each experienced viewpoint. The number of
6



viewpoints is likely to depend on the class of an object

and may reach a minimum for novel objects that belong

to a familiar class, thereby sharing su�ciently similar

transformation properties with the other class members.

Recognition of an individual new face seen from one sin-

gle view may be such an example.
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Fig.1 - cbstm - Visual stimuli
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Figure 1: Example of three stimulus objects used in the experiments on object recognition. (a) Wire-like, (b)
spheroidal, and (c) common objects were rendered by a computer and displayed on a color monitor. The middle column of
the 'Targets' shows the view of each object as it appeared in the learning phase of an observation period. This view was
arbitrarily called the zero view of the object. Columns 1, 2, 4, and 5 show the views of each object when rotated -48, -24,
24, and 48 degrees about a vertical axis respectively. The rightmost column shows an example of a distractor object for each
object class. Sixty to 120 distractor objects were used in each experiment.
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Fig.2 - cbtask - Task Description
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T = Target
D = Distractor

Figure 2: Experimental paradigm (a) Description of the task. An observation period consisted of a learning phase, within
which the target object was presented oscillating �10o around a �xed axis, and a testing phase during which the subjects were
presented with up to 10 single, static views of either the target or the distractors. The small inset in this and the following
�gures show examples of the tested views. The subject had to respond by pressing one of two levers, right for the target, and
left for the distractors. (b) Description of the stimulus space. The viewpoint coordinates of the observer with respect to the
object were de�ned as the longitude and the latitude of the eye on a virtual sphere centered on the object. Viewing the object
from an attitude a, e.g. �60o with respect to the zero view, corresponded to a 60o rightwards rotation of the object around
the vertical axis, while viewing from an attitude b amounted to a rightwards rotation around the -45o axis. Recognition was
tested for views generated by rotations around the vertical (Y), horizontal (X), and the two oblique (�45o) axes lying on the
XY plane.
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Fig.3 - bw101hit - Recognition of wires (monkeys)
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Figure 3: Recognition performance as a function of rotation in depth for wire-like objects. Data from the monkey
B63A. (a) The abscissa of the graph shows the rotation angle and the ordinate the hit rate. The small squares show
performance for each tested view for 240 presentations. The solid lines were obtained by a distance weighted least squares
smoothing of the data using the McLain algorithm. When the object is rotated more than about 30 to 40 degrees away
performance falls below 40%. (b) False alarms for the 120 di�erent distractor objects. The abscissa shows the distractor
number, and the squares false alarm rate for 20 distractor presentations. (c) Recognition performance for rotations around
the vertical, horizontal, and the two oblique axes (�45o).
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Fig.4 - ba01hit - Recognition amoebas (Monkeys)
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Figure 4: Recognition performance as a function of rotation in depth for spheroidal objects. Data from the monkey
B63A. Conventions as in �gure 3.
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Fig.5 - Generalization for diff. classes
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Figure 5: Mean recognition performance as a function of rotation in depth for di�erent types of objects. (a) and
(b) show data averaged from three monkeys for the wire and spheroidal objects. Performance of the monkey S5396 for
common-type objects. Conventions as in �gure 3a.
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Fig.6 - bw33mir - Virtual views
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Figure 6: Improvement of recognition performance for views generated by 180o rotations of wire-like objects. Data
from monkey S5396 Conventions as in �gure 3(a). This type of performance was speci�c to only those wire-like objects, the
zero and 180o views of which resembled mirror symmetrical two-dimensional images due to accidental lack of self-occlusion.
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Fig.7 - netout - RBF network representation
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Figure 7: A network for object recognition (a) A view is represented as a vector of some visible feature points on the
object. On the wire objects these features could be the x; y coordinates of the vertices, the orientation, size, length and color
of the segments, etc. (b) An example of an RBF network in which the input vector consists of the segment orientations. For
simplicity we assume as many basis functions as the views in the training set, in this example four views (0; 60; 120, and 180
degrees). Each basis unit, Ui, in the \hidden-layer" calculates the distance kV�Tik of the input vector V from its center Ti,
i.e. its learned or \preferred" view, and it subsequently computes the function exp(�kV�Tik) of this distance. The value of
this function is regarded as the activity of the unit, and it peaks when the input is the trained view itself. The activity of the
network is conceived as the weighted, linear sum of each unit's output superimpose to Gaussian noise (� 2, N(V,�2

u
)). Thick

lines show an instance of the network that was trained only with the zero view of the target. (c) Plots 1-4 show the output
of each RBF unit, under \zero-noise" conditions, when the unit is presented with views generated by rotations around the
vertical axis. (d) Network output for target and distractor views. The thick gray line on the left plot depicts the activity of
the network trained with 4 and the black line with one view (the zero view). The right plot shows the the network's output
for 36 views of 60 distractors.
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Fig.8 - sdtana - ROC analysis network's output
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Figure 8: Decision theoretic analysis of the network output. (a) The curve fT (X), to the right, represents the distribution
of network activities that occur on those occasions when the input is a view of the target. The curve fD(X), to the left,
represents the distribution of activities when the input is a given distractor. The network's decision whether an input is a
target or a distractor depends on the decision criterion XC . The gray area on the right of XC represents the probability
P (TjT ) of the network correctly identifying a target and the dark dotted area on the right of XC represents the probability
P (TjD) of a false alarm. On the left of XC , the area marked with horizontal lines gives the probability of correct rejections,
and the area with vertical lines represents the probability of failing to recognize a target. (b) As XC runs through its possible
values it generates a curvilinear relation between P (TjT ) and P (TjD) (thick black line), the area underneath which has been
shown to amount to the criterion independent percentage-correct responses of an ideal observer in a 2AFC task. The later
discriminability measure depends only on the distance d0 between the distractor and target distributions. (c) Multiple normal
probability density functions can be approximated by a single gaussian distribution, indicated by the thick gray line, when
the means of the distributions are separated by a fraction of the standard deviation.
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Fig.9 - rocper -performance of the network
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Figure 9: Reciever operating characteristic (ROC) curves and performance of the RBF network. (a) White bars show
the distribution of the network activity when the input was any of the 60 distractor wire objects. Black bars represent the
actvity distribution for a given target view (-50, -30, 0, 30, and 50 degrees). (b) Reciever operating characteristic curves for
views generated by leftward rotations. (c) Reciever operating characteristic curves for views generated by rightward rotations.
(d) Network performance as an observer in a 2AFC task. Filled squares represent the activity of the network. The solid line
is the distance weighted least squares smoothing of the data for all tested views. The dashed line shows chance performance.
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Fig.10 - bb373 - ROC curves for monkeys
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Figure 10: ROC curves from one monkey in the old-new task used to study recognition. The data were obtained by
varying the a priori probability of target occurance in block of observation periods. The values used in this experiment were
0.2, 0.4, 0.6, and 0.8. (a) Each curve corresponds to a set of hit and false alarm rate values measured for a rightward rotation.
Rotations were done in 15o steps. (b) Same as in (a), but for leftward rotations. (c) Recognition performance for di�erent
object views. Each �lled circle represents the area under the corresponding ROC curve. The solid line models the data with
a single gaussian function.
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Fig.11 - bw28mix - Interpolation between  views
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Figure 11: Interpolation between two trained views. (a) In the learning phase the monkey was presented sequentially with
the 0o and 120o views of a wire-like object, and subsequently tested with 36 views around any of the four axes (horizontal,
vertical and the two obliques). The spikes normal to the contour-plot show the hit rate for rotations around the Y axis. Note
the somewhat increased hit rate for views around the �120o view. The contour plot shows the performance of the for views
generated by rotating the object around either of the horizontal, vertical, and the two oblique axes. (b) Repetition of the
same experiment after briey training the monkey with the 60o view of the wire object. The animal can now recognize any
view in the range of �30o to 140o as well as around the �120o view. As predicted by the RBF model, generalization is limited
to views between the two trained views.

19


