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Abstract

We consider the problem of multivariate density estimation when the unknown

density is assumed to follow a particular form of dimensionality reduction, a noisy

independent factor analysis (IFA) model. In this model the data are generated by

a number of latent independent components having unknown distributions and are

observed in Gaussian noise. We do not assume that either the number of components

or the matrix mixing the components are known. We show that the densities of this

form can be estimated with a fast rate. Using the mirror averaging aggregation

algorithm, we construct a density estimator which achieves a nearly parametric

rate (log1/4 n)/
√

n, independent of the dimensionality of the data, as the sample
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size n tends to infinity. This estimator is adaptive to the number of components,

their distributions and the mixing matrix. We then apply this density estimator

to construct nonparametric plug-in classifiers and show that they achieve the best

obtainable rate of the excess Bayes risk, to within a logarithmic factor independent

of the dimension of the data. Applications of this classifier to simulated data sets

and to real data from a remote sensing experiment show promising results.

Key words: Nonparametric Density Estimation; Independent Factor Analysis;

Aggregation; Plug-in classifier; Remote sensing.

1 Introduction

Complex data sets lying in multidimensional spaces are a commonplace occurrence in

many areas of science and engineering. There are various sources of this kind of data,

including biology (genetic networks, gene expression microarrays, molecular imaging

data), communications (internet data, cell phone networks), risk management, and many

others. One of the important challenges of the analysis of such data is to reduce its

dimensionality in order to identify and visualize its structure.

It is well known that common nonparametric density estimators are quite unreliable

even for moderately high-dimensional data. This motivates the use of dimensionality

reduction models. The literature on dimensionality reduction is very extensive, and we

mention here only some recent publications that are connected to our context and contain

further references (Roweis and Saul 2000; Tenebaum, de Silva and Langford 2000; Cook

and Li 2002, Blanchard et al. 2006; Samarov and Tsybakov 2007).

In this paper we consider the independent factor analysis (IFA) model, which

generalizes the ordinary factor analysis (FA), principal component analysis (PCA), and

independent component analysis (ICA). The IFA model was introduced by Attias (1999)

as a method for recovering independent hidden sources from their observed mixtures. In

the ordinary FA and PCA, the hidden sources are assumed to be uncorrelated and the

analysis is based on the covariance matrices, while IFA assumes that the hidden sources

(factors) are independent and have unknown, non-Gaussian distributions. The ICA, in

its standard form, assumes that the number of sources is equal to the number of observed

variables and that the mixtures are observed without noise. Mixing of sources in realistic

situations, however, generally involves noise and different numbers of sources (factors)
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and observed variables, and the IFA model allows for both of these extensions of ICA.

Most of the existing ICA algorithms concentrate on recovering the mixing matrix and

either assume the known distribution of sources or allow for their limited, parametric

flexibility, see Hyvarinen, Karhunen and Oja (2001). Attias (1999) and more recent

IFA papers (An, Xu and Xu 2006; Montanari, Calò and Viroli 2008) either use mixture

of Gaussian distributions as source models or assume that the number of independent

sources is known, or both. In the present paper the IFA serves as a dimensionality

reduction model for multivariate nonparametric density estimation; we suppose that the

distribution of the sources (factors) and their number are unknown.

Samarov and Tsybakov (2004) have shown that densities which have the

standard, noiseless ICA representation can be estimated at an optimal one-dimensional

nonparametric rate, without knowing the mixing matrix of the independent sources. Here

our goal is to estimate a multivariate density in the noisy IFA model with unknown

number of latent independent components observed in Gaussian noise. It turns out that

the density generated by this model can be estimated with a very fast rate. In Section 2 we

show that, using recently developed methods of aggregation (Juditsky et al. 2005, 2008),

we can estimate the density of this form at a parametric root-n rate, up to a logarithmic

factor independent of the dimension d.

One of the main applications of multivariate density estimators is in the supervised

learning. They can be used to construct plug-in classifiers by estimating the densities

of each labeled class. Recently, Audibert and Tsybakov (2007) have shown that plug-in

classifiers can achieve fast rates of the excess Bayes risk and under certain conditions

perform better than classifiers based on the (penalized) empirical risk minimization. A

difficulty with such density-based plug-in classifiers is that, even when the dimension d

is moderately large, most density estimators have poor accuracy in the tails, i.e., in the

region which is important for classification purposes. Amato, Antoniadis and Grégoire

(2003) have suggested to overcome this problem using the ICA model for multivariate data.

The resulting method appears to outperform linear, quadratic and flexible discriminant

analysis (Hastie, Tibshirani and Buja 1994) in the training set, but its performance

is rather poor in the testing set. Earlier, Polzehl (1995) suggested a discrimination-

oriented version of projection pursuit density estimation, which appears to produce quite

good results but at a high computational cost. His procedure depends on some tuning

steps, such as bandwidth selection, which are left open and appear to be crucial for the
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implementation. More recently, Montanari et al. (2008) constructed plug-in classifiers

based on the IFA model, with the sources assumed to be distributed according to a

mixture of Gaussian distributions, and reported promising numerical results.

In Section 3 we give a bound to the excess risk of nonparametric plug-in classifiers

in terms of the MISE of the density estimators of each class. Combining this bound

with the results of Section 2, we show that if the data in each class are generated by a

noisy IFA model, the corresponding plug-in classifiers achieve, within a logarithmic factor

independent of the dimensionality d, the best obtainable rate of the excess Bayes risk. In

Section 4 we describe the algorithm implementing our classifier. Section 5 reports results

of the application of the algorithm to simulated and real data.

2 Independent factor analysis model for density

estimation

We consider the noisy IFA model:

X = AS + ε, (1)

where A is a d × m unknown deterministic matrix of factor loadings with unknown

m < d, S is an unobserved m-dimensional random vector with independent zero-mean

components (called factors) having unknown distributions each admitting a density and a

finite variance, and ε is a random vector of noise, independent of S, which we will assume

to have d-dimensional normal distribution with zero mean and covariance matrix σ2Id,

σ2 > 0. Here Id denotes the d× d identity matrix.

Assume that we have independent observations X1, . . . ,Xn, where each Xi has the

same distribution as X. As mentioned in the Introduction, this model is an extension of

the ICA model, which is widely used in signal processing for blind source separation. In

the signal processing literature the components of S are called sources rather than factors.

The basic ICA model assumes ε = 0 and m = d (cf., e.g., Hyvarinen et al. 2001). Unlike

in the signal processing literature, our goal here is to estimate the target density pX(·)
of X, and model (1) serves as a particular form of dimensionality reduction for density

estimation.

Somewhat different versions of this model where the signal S has not necessarily

independent components and needs to be non-Gaussian were considered recently by
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Blanchard et al. (2006), Samarov and Tsybakov (2007). Blanchard et al. (2006) and

the follow-up paper by Kawanabe et al. (2007) use projection pursuit type techniques to

identify the non-Gaussian subspace spanned by the columns of A with known number of

columns m, while Samarov and Tsybakov (2007) propose aggregation methods to estimate

the density of X when neither the non-Gaussian subspace, nor its dimension are known.

It is well known that the standard, covariance-based factor analysis model is not fully

identifiable without extra assumptions (see, e.g., Anderson and Rubin 1956). Indeed, the

factors are defined only up to an arbitrary rotation. The independence of factors assumed

in (1) excludes this indeterminacy provided that at most one factor is allowed to have a

Gaussian distribution. This last assumption is standard in the ICA literature and we will

also make it throughout the paper. We will also assume throughout that the columns of

A are orthonormal.

By independence between the noise and the vector of factors S, the target density pX

can be written as a convolution:

pX(x) =

∫

Rm

pS(s)φd,σ2(x− As)ds, (2)

where φd,σ2 denotes the density of a d-dimensional Gaussian distribution Nd(0, σ
2Id).

Since in (2) we have a convolution with a Gaussian distribution, the density pX has

very strong smoothness properties, no matter how irregular the density pS of the factors

is, whether or not the factors are independent, and whether or not the mixing matrix A

is known. In the Appendix, we construct a kernel estimator p̂∗n of pX such that

E||p̂∗n − pX||22 ≤ C
(log n)d/2

n
, (3)

where C is a constant and || · ||2 is the L2(Rd) norm. As in Artiles (2001), Belitser and

Levit (2001), it is not hard to show that the rate given in (3) is optimal for the class of

densities pX defined by (2) with arbitrary pS.

Though this rate appears to be very fast asymptotically, it does not guarantee good

accuracy for most practical values of n, even if d is moderately large. For example,

if d = 10, we have (log n)d/2 > n for all n ≤ 105. As we show below, the assumed

independence of the sources and orthogonality of A allows us to eliminate the dependence

of the rate on the dimension d.

In order to construct our estimator, we first consider the estimation of pX when the

dimension m, the mixing matrix A, and the level of noise σ2 are specified; the fact that

none of these quantities is known is addressed later in this section.
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Since the columns of A are orthonormal, we have ATX = S + AT ε and

φd,σ2(x− As) =

(
1

2πσ2

)d/2

exp

{
− 1

2σ2
(x− As)T (x− As)

}

=

(
1

2πσ2

)d/2

exp

{
− 1

2σ2
(s− ATx)T (s− ATx)

}
· exp

{
− 1

2σ2
xT (Id − AAT )x

}
.

Substitution of the above expression in (2) gives:

pX(x) =

(
1

2πσ2

)(d−m)/2

exp

{
− 1

2σ2
xT (Id − AAT )x

}∫

Rm

pS(s)φm,σ2(s− ATx)ds.

Now, by independence of the factors, we get:

pX(x) ≡ pm,A(x) =

(
1

2πσ2

)(d−m)/2

exp

{
− 1

2σ2
xT (Id − AAT )x

} m∏

k=1

gk(a
T
k x) (4)

where ak denotes the kth column of A and

gk(u) = (pSk
∗ φ1,σ2)(u) =

∫

R
pSk

(s)φ1,σ2(u− s)ds. (5)

We see that to estimate the target density pX it suffices to estimate nonparametrically

each one-dimensional density gk using the projections of an observed sample X1, . . . ,Xn

generated by the model (1) onto the kth direction ak.

Note that, similarly to (2), the density gk is obtained from convolution with a one-

dimensional Gaussian density, and therefore has very strong smoothness properties. To

estimate gk we will use the kernel estimators

ĝk(x) =
1

nhn

n∑
i=1

K

(
x− aT

k Xi

hn

)
, k = 1, ..., m, (6)

with a bandwidth hn ³ (log n)−1/2 and the sinc function kernel K(u) = sin u/πu. We

could also use here any other kernel K whose Fourier transform is bounded and compactly

supported, for example, the de la Vallée-Poussin kernel K(u) = (cos(u)− cos(2u))/(πu2),

which is absolutely integrable and therefore well suited for studying the L1-error.

A potential problem of negative values of ĝk in the regions where the data are

sparse can be corrected using several methods (see, for example, Hall and Murison 1993;

Glad, Hjort and Ushakov 2003). For our practical implementation we will follow the

method suggested in Hall and Murison (1993), and our estimators will be obtained by
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truncating the estimator ĝk(x) outside the “central” range where it is nonnegative, and

then renormalizing.

Once each “projection” density gk is estimated by the corresponding kernel estimator

(6), the full target density pX is then estimated using (4):

p̂n,m,A(x) =

(
1

2πσ2

)(d−m)/2

exp

{
− 1

2σ2
xT (Id − AAT )x

} m∏

k=1

ĝk(a
T
k x). (7)

The following proposition proved in the Appendix summarizes the discussion for the

case when A and σ2 are known.

Proposition 1 Consider a random sample of size n from the density pX given by (4) with

known A and σ2. Then the estimator (7) with ĝk given in (6) has the mean integrated

square error of the order (log n)1/2/n:

E‖p̂n,m,A − pX‖2
2 = O

(
(log n)1/2

n

)
. (8)

Note that neither m nor d affect the rate. Note also that Proposition 1 is valid with

no assumption on the distribution of the factors. The identifiability assumption (that at

most one factor is allowed to have a Gaussian distribution) is not used in the proof, since

we do not estimate the matrix A.

So far in this section we have assumed that A and σ2 are known. When σ2 is an

unknown parameter, it is still possible to obtain the same rates based on the approach

outlined above, provided that the dimensionality reduction holds in the strict sense, i.e.,

m < d. Indeed, assume that we know an upper bound M for the number of factors m

and that M < d. For example, if the dimensionality reduction in the strict sense holds,

we can take M = d− 1. The assumption M < d is only needed to estimate the variance

of the noise; if σ2 is known we allow M = d.

The assumed independence and finite variance of the factors imply that their

covariance matrix, which we will denote by W , is diagonal. The covariance matrix ΣX of

X is given by:

ΣX = AWAT + σ2Id.

If λ1(ΣX) ≥ · · · ≥ λd(ΣX) denote the eigenvalues of ΣX sorted in decreasing order, then

λi(ΣX) = wi + σ2, for i = 1, . . . , m, and λi(ΣX) = σ2 for i > m, where wi denote the

7



diagonal elements of W . We estimate σ2 with

σ̂2 =
1

d−M

d∑
i=M+1

λ̂i,

where λ̂i, i = 1, . . . , d, are the eigenvalues of the sample covariance matrix Σ̂X arranged

in decreasing order. Note that σ̂2 is a root-n consistent estimator. Indeed, the root-n

consistency of each λ̂i is a consequence of elementwise root-n consistency of Σ̂X and of

the inequality

|λi(C + D)− λi(C)| ≤ ‖D‖2, i = 1, 2, ..., d,

where C and D are any symmetric matrices and ‖D‖2 is the spectral norm of D. The

last inequality easily follows from a classical inequality of Fan (1951).

Using the root-n consistency of σ̂2, it is not hard to show that the estimation of σ2

does not affect a slower density estimator rate, and so in what follows we will assume that

σ2 is known.

Consider now the case where the index matrix A, and hence its rank m, are unknown.

We will use a model selection type aggregation procedure similar to the one developed

recently by Samarov and Tsybakov (2007) and, more specifically, the mirror averaging

algorithm of Juditsky, Rigollet and Tsybakov (2008). We aggregate estimators of the

type (7) corresponding to candidate pairs (k, B̂k), k = 1, . . . , M . Here B̂k is a d × k

matrix whose columns are the first k (in the decreasing order of eigenvalues) orthonormal

eigenvectors of the spectral decomposition of Σ̂X − σ̂2Id (and thus of Σ̂X). For the true

rank m, it follows from Lemma A.1 of Kneip and Utikal (2001) that, provided that m

largest eigenvalues of ΣX − σ2Id are distinct and positive and the 4th moments of the

components of X are finite, B̂m is a
√

n-consistent estimator of A.

We can now define the aggregate estimator, applying the results of Juditsky, Rigollet

and Tsybakov (2008) in our framework. We split the sample X1, . . . , Xn in two parts,

D1 and D2 with n1 = Card(D1), n2 = Card(D2), n = n1 + n2. From the first subsample

D1 we construct the estimators

p̂k(x) ≡ p̂n1,k,B̂k
(x) =

(
1

2πσ2

)(d−k)/2

exp

{
− 1

2σ2
xT (Id − B̂kB̂

T
k )x

} k∏
j=1

ĝj(b
T
k,jx) (9)

for k = 1, . . . , M , where bk,j denotes the jth column of B̂k, the estimators ĝj(·) are defined

in (6), and both B̂k and ĝj(·) are based only on the first subsample D1.
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The collection C of density estimators
{

p̂n1,k,B̂k
, k = 1, . . . ,M

}
of the form (9)

constructed from the subsample D1 can be considered as a collection of fixed functions

when referring to the second subsample D2. The cardinality of this collection is M .

To proceed further, we need some more notation. Let Θ be the simplex

Θ =

{
θ ∈ RM :

M∑

k=1

θk = 1, θk ≥ 0, k = 1, . . . , M

}
,

and

u(X) = (u1(X), . . . , uM(X))T ,

where

uk(x) =

∫
p̂2

k(x)dx− 2p̂k(x). (10)

Introduce the vector function

H(x) = (p̂1(x), . . . , p̂M(x))T .

As in Juditsky, Rigollet and Tsybakov (2008), the goal of aggregation is to construct a

new density estimator p̃n(x) of the form

p̃n(x) = θ̃
T
H(x) (11)

which is nearly as good in terms of the L2-risk as the best one in the collection C. Using the

mirror averaging algorithm, the aggregate weights θ̃ are computed by a simple procedure

which is recursive over the data. Starting with an arbitrary value θ̃
(0) ∈ Θ, these weights

are defined in the form:

θ̃ =
1

n2

n2∑

`=1

θ̃
(`−1)

, (12)

where the components of θ̃
(`)

are given by

θ̃
(`)
k =

exp
(
−β−1

∑`
r=1 uk(Xr)

)

∑M
t=1 exp

(
−β−1

∑`
r=1 ut(Xr)

) , k = 1, . . . , M, (13)

with Xr, r = 1, . . . , n2, denoting the elements of the second subsample D2. Here β > 0 is

a random variable measurable w.r.t. the first subsample D1.

Our main result about the convergence of the aggregated density estimator is given

in Theorem 1 below. We will consider the norms restricted to a Euclidean ball B ⊂ Rd:
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‖f‖2
2,B =

∫
B

f 2(x)dx, ‖f‖∞,B = supt∈B |f(t)| for f : Rd → R. Accordingly, in Theorem

1 we will restrict our estimators to B and define p̃n by the above aggregation procedure

where p̂k(x) are replaced by p̂k(x)I{x ∈ B}. Here I{·} denotes the indicator function.

Clearly, all densities pX of the form (4) are bounded: ‖pX‖∞,B ≤ L0 := (2πσ2)−d/2 for

all m and A. We set L̂1 = maxk=1,...,M ‖p̂k‖∞,B and L̂ = max(L0, L̂1). In the Appendix

we prove that

E‖p̂k‖∞,B ≤ L′, ∀k = 1, ..., M, (14)

where L′ is a constant.

Theorem 1 Let pX be the density of X in model (1). Assume that covariance matrix

ΣX has distinct eigenvalues and the 4th moments of the components of X are finite. Let

n2 = [cn/
√

log n] for some constant c > 0 such that 1 ≤ n2 < n. Then for β = 12L̂, the

aggregate estimator p̃n with θ̃ obtained by the mirror averaging algorithm restricted to a

Euclidean ball B satisfies

E‖p̃n − pX‖2
2,B = O

(
(log n)1/2

n

)
, (15)

as n → +∞.

The theorem implies that the estimator p̃n adapts to the unknown m and A, i.e., has

the same rate, independent of m and d, as in the case when the dimension m and the

matrix A are known. The proof is given in the Appendix.

Remarks.

1. Inspection of the proof shows that Theorem 1 holds with no assumption on

distributions of the factors (except that at most one of them can be Gaussian). In

particular, we do not need them to have densities with respect to the Lebesgue measure.

2. We state Theorem 1 with a restricted L2-norm ‖ · ‖2,B. Under mild assumptions

on the densities of the factors we can extend it to the L2-norm on Rd. Indeed, inspection

of the proof shows that Theorem 1 remains valid for balls B of radius rn which tends

to infinity slowly enough as n → ∞. If pX behaves itself far from the origin roughly as

a Gaussian density (which is true under mild assumptions on factor densities), then the

integral of p2
X outside of the ball reduces to a value smaller than the right hand side of

(15).

10



3 Application to nonparametric classification

One of the main applications of multivariate density estimators is in the supervised

learning, where they can be used to construct plug-in classifiers by estimating the

densities of each labeled class. The difficulty with such density-based plug-in classifiers

is that, even for moderately large dimensions d, standard density estimators have poor

accuracy in the tails, i.e., in the region which is important for classification purposes. In

this section we consider the nonparametric classification problem and bound the excess

misclassification error of a plug-in classifier in terms of the MISE of class-conditional

density estimators. This bound implies that, for the class-conditional densities obeying

the noisy IFA model (2), the resulting plug-in classifier has nearly optimal excess error.

Assume that we have J independent training samples {Xj1, . . . , XjNj
} of sizes Nj,

j = 1, . . . , J , from J populations with densities f1, . . . , fJ on Rd. We will denote by D the

union of training samples. Assume that we also have an observation X ∈ Rd independent

of these samples and distributed according to one of the fj. The classification problem

consists in predicting the corresponding value of the class label j ∈ {1, . . . , J}. We define a

classifier or prediction rule as a measurable function T (·) which assigns a class membership

based on the explanatory variable, i.e., T : Rd → {1, . . . , J}. The misclassification error

associated with a classifier T is usually defined as

R(T ) =
J∑

j=1

πjPj(T (X) 6= j) =
J∑

j=1

πj

∫

Rd

I(T (x) 6= j)fj(x)dx

where Pj denotes the class-conditional population probability distribution with density

fj, and πj is the prior probability of class j. We will consider a slightly more general

definition:

RB(T ) =
J∑

j=1

πj

∫

B

I(T (x) 6= j)fj(x)dx

where B is a Borel subset of Rd. The Bayes classifier T ∗ is the one with the smallest

misclassification error:

RB(T ∗) = min
T

RB(T ).

In general, the Bayes classifier is not unique. It is easy to see that there exists a Bayes

classifier T ∗ which does not depend on B and which is defined by

πT ∗(x)fT ∗(x)(x) = min
1≤j≤J

πjfj(x), ∀ x ∈ Rd.
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A classifier trained on the sample D will be denoted by TD(x). A key characteristic of

such a classifier is the misclassification error RB(TD). One of the main goals in statistical

learning is to construct a classifier with the smallest possible excess risk

E(TD) = ERB(TD)−RB(T ∗).

We consider plug-in classifiers T̂ (x) = T̂D(x) defined by:

πT̂ (x)f̂T̂ (x)(x) = min
1≤j≤J

πj f̂j(x), ∀ x ∈ Rd

where f̂j is an estimator of density fj based on the training sample {Xj1, . . . , XjNj
}.

The following proposition relates the excess risk E(T̂ ) of plug-in classifiers to the rate

of convergence of the estimators f̂j.

Proposition 2

E(T̂ ) ≤
J∑

j=1

πj E
∫

B

|f̂j(x)− fj(x)|dx

Proof of the proposition is given in the Appendix.

Assume now that the class-conditional densities follow the noisy IFA model (2) with

different unknown mixing matrices and that Nj ³ n for all j. Let B be a Euclidean ball

in Rd and define each of the estimators f̂j using the mirror averaging procedure as in the

previous section. Then, using Theorem 1, we have

E
∫

B

|f̂j(x)− fj(x)|dx ≤
√
|B| E‖f̂j − fj‖2,B = O

(
(log n)1/4

√
n

)

as n → ∞, where |B| denotes the volume of the ball B. Thus, the excess risk E(T̂ )

converges to 0 at the rate (log n)1/4/
√

n independently of the dimension d. Following the

argument in Devroye, Györfi and Lugosi (1996) or Yang (1999), it is easy to show that

this is the best obtainable rate for the excess risk, up to the log1/4 n factor.

4 The algorithm

In this section we discuss numerical aspects of the proposed density estimator.

Clearly, one-dimensional kernel density estimators ĝk with given bandwidth, say

hn ∝ (log n)−1/2, can be computed in a fast way. Similarly, estimating the variance
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of the noise component in the noisy IFA model amounts to implementing a single singular

value decomposition (SVD) of the d× n data matrix D = (X1, . . . ,Xn). Let D = V ΛUT

be the SVD of D, where Λ is the diagonal matrix and U , V are matrices with orthonormal

columns. We assume w.l.o.g. that Xi are centered. Then an estimate of the variance σ̂2
k

with rank k approximation, k ≤ M , is given by

σ̂2
k =

1

d− k

d∑

i=k+1

s2
i , k = 1, . . . , M (16)

where si are the diagonal elements of Λ/
√

n sorted in the decreasing order. When the index

matrix A is unknown, the rank k approximation B̂k of A used in the density estimator

p̂k, cf. (9), can be easily obtained from the SVD of D. Indeed, we can take B̂k = Vk,

where Vk is formed by the first k columns of V . So, accurate computation of the density

estimators (9) is feasible, reasonably fast and does not require a huge amount of memory

even for very large n and d.

Therefore, the complexity of the procedure is controlled by the numerical

implementation of the mirror averaging algorithm which, in particular, requires the

computation of the score functions uk(x), involving integration of p̂2
k, see (10). The

numerical implementation of the integral of the square of density estimates p̂k in Rd can

be realized by means of cubature formulas. Recall that for the calculation of
∫

p̂k(x)2dx,

say, a cubature has the form
∑N

i=1 wip̂
2
k(xi) where xi are the nodes and wi are the

associated weights. In our setting, M integrals involving the B̂k-projections need to be

calculated for each θk, so formulas with fixed nodes will be actually more economical. On

multidimensional domains, product quadratures quickly become prohibitive (they grow

exponentially in d for the same accuracy), and therefore this approach is not realistic.

An alternative is to use Monte-Carlo integration methods which require much more

evaluations but do not depend on the dimension d, or a more clever implementation

through Gibbs sampling by generating samples from some suitable distribution for the

Monte-Carlo estimates. Several Gibbs sampling strategies were considered in the present

work. The fastest one was to generate samples directly from p̂k, so that

∫
p̂2

k(x)dx ' 1

Q

Q∑
i=1

p̂k(xi),

where Q is the number of generated i.i.d. random realizations xi from the density p̂k.

The overall algorithm implementing our approach is the following:

13



Algorithm 1 - Compute the singular value decomposition of the data array D:

D = V ΛUT ,

with matrices U , V , and Λ having dimensions n× d, d× d and d× d, respectively;

- for k=1,. . .,M

Take B̂k as the matrix built from the first k columns of V ;

Compute σ̂2
k from (16);

Compute the density estimator p̂k(x) from (9) based on the subsample D1 ;

Compute uk(x) from (10).

- end for

- Estimate the weights through (12)–(13) and output the final density estimator (11).

To speed up computations, one-dimensional kernel density estimators ĝj, j = 1, . . . , M ,

in (9) are obtained through a Fast Fourier Transform algorithm, cf. Silverman (1982).

The algorithm for estimating
∫

p̂2
k(x)dx in (10) goes through the following steps.

Algorithm 2 - Generate Q independent random numbers, y
(i)
k , i = 1, . . . , Q, from each

ĝk, k = 1, . . . , M , and compute the corresponding density ĝk(y
(i)
k ) by kernel density

estimation;

- Generate the corresponding d-dimensional x(i) as x(i) = B̂ky
(i) + (Id − B̂kB̂

T
k )ε(i),

y(i) ≡ (y
(i)
1 , . . . , y

(i)
k ), with ε(i) being random numbers extracted from a d-variate

Gaussian density function having 0 mean and diagonal covariance σ̂2
kId;

- Compute p̂k(x
(i)) through (9);

- Output the estimate 1
Q

∑Q
i=1 p̂k(x

(i)) of the integral
∫

p̂2
k(x)dx.

Here Q is chosen so that generating more random numbers does not change the estimated

value of the integral within a predefined tolerance. Random numbers generated from

the density estimator ĝk are based on the corresponding cumulative functions and pre-

computed on a high resolution grid with linear interpolation.
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5 Simulations and examples

5.1 Density estimation

To study the performance of density estimates based on our noisy IFA model we have

conducted an extensive set of simulations. We used data generated from a variety of

source distributions, including subgaussian and supergaussian distributions, as well as

distributions that are nearly Gaussian. We studied unimodal, multimodal, symmetric,

and nonsymmetric distributions. Table 1 lists the basic (one-dimensional) test densities

from which multidimensional density functions are built.

Experiments were run up to dimension d = 6 with a number of independent factors

equal to 1 and 2. Random i.i.d. noise was generated and added to the simulated signals

so that the Signal to Noise Ratio (SNR) was equal to 3, 5 or 7. The kernels K for

density estimators ĝj in (9) were the Gaussian, the sinc and de la Vallée-Poussin kernels;

the bandwidth h was chosen as h = σ/ log1/2 n. To obtain legitimate (i.e., nonnegative)

density functions they were post-processed by the procedure of Hall and Murison (1993).

The size of the sample was chosen as n=200, 300, 500, 700, 1000, 2000 and 4000. The

following criterion was used for evaluating the performance of density estimators:

I1 := 100

(
1−

∫
(pestimated(x)− pX(x))2 dx∫

p2
X(x)dx

)
. (17)

The performance of IFA density estimation was compared with kernel smoothing (KS)

(see, e.g., Wand and Jones, 1995) as implemented in the KS package available in R. IFA

density estimation has been implemented in the MATLAB environment and the scripts

are available upon request. We note that KS can be effectively computed only up to

d = 6 if the FFT algorithm is used. In contrast with this, our method has no practical

restrictions on the dimension. This is due to the use of a proper Gibbs sampling for

estimating integrals (10); in addition the density estimate can be computed on any set in

Rd, not necessarily on a lattice imposed by the FFT.

We conducted numerical experiments by generating random samples of size n from the

independent components of Table 1, random mixing matrices, and different realizations

of Gaussian noise. In particular, the elements of the mixing matrix A were generated

as i.i.d. standard Gaussian random variables and then the matrix was orthonormalized

by a Gram-Schmidt procedure. We perform 50 Monte-Carlo replications for each case
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and output the corresponding values I1. Results over all experiments show a very good

performance of Noisy IFA. For brevity we only show some representative figures in the

form of boxplots. We display different test functions to demonstrate good performances

over all of them. Moreover, we present only the case of SNR=3 because it seems to be more

interesting for applications and because improvement of performance for both methods

flattens the differences. Figure 1 shows the case of d = 2, SNR=3 and test function 2 (chi-

square function), where the superiority of the aggregated Noisy IFA with respect to KS is

clear. Figure 2 shows analogous boxplots in the case d = 3 and test function 3 (mixture of

Gaussians), again when SNR=3. This case is interesting because the dimension d is larger,

whereas the number of independent factors is kept constant with respect to the previous

experiment. Figure 2 clearly shows that difference of performance between Noisy IFA and

KS increases in favor of the former. Finally, Figure 3 shows boxplots in the case d = 5 and

test functions 5 and 6 (chi-square and Student, respectively), again for SNR=3. Better

performance of Noisy IFA with respect to KS is confirmed, especially when d increases.

Finally, Table 2 shows typical computational times of aggregated IFA and KS density

estimators. Executions were run on a single core 64-bit Opteron 248 processor with

MATLAB version R2008a, R 2.9.0 and Linux Operating System. We see that the aggregated

IFA is more than one order of magnitude faster than KS.

5.2 Classification: a real data example

In this subsection we apply the nonparametric classification method suggested in Section 3

to real data. We consider only a two-class problem and we assume that the class-

conditional distributions follow the noisy IFA model. To evaluate the performance of

our approach in comparison with other classification methods that are often used in this

context, we have also applied to these data three other classification procedures, one

parametric and two nonparametric, namely:

LDA (Linear Discriminant Analysis). Class-conditional density functions are supposed

to be Gaussian with a common covariance matrix among classes, and the two classes

are separated by a hyperplane in d-dimensional space.

NPDA (Nonparametric Discriminant Analysis, Amato et al. 2003). In this procedure

class-conditional density functions are estimated nonparametrically by the kernel

method, assuming that the density obeys an ICA model. The kernel functions
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mentioned above in this section were considered in the experiments. The smoothing

procedure uses an asymptotic estimate of the bandwidth and a correction for getting

non-negative density estimators.

FDA (Flexible Discriminant Analysis; Hastie, Tibshirani and Buja 1994). This method is

also nonparametric, but classification is performed through an equivalent regression

problem where the regression function is estimated by the spline method.

We have compared the performance of the classification methods on a data set

from a remote sensing experiment. MSG (METEOSAT Second Generation) is a series

of geostationary satellites launched by EUMETSAT (EUropean organization for the

exploitation of METeorological SATellites) mainly aimed at providing data useful for the

weather forecast. A primary instrument onboard MSG is SEVIRI, a radiometer measuring

radiance emitted by Earth at d = 11 spectral channels having a resolution of 3 Km2 at sub-

satellite point. Essentially, SEVIRI produces 11 images of the whole Earth hemisphere

centered at 0o degrees latitude every 15 minutes. Recognizing whether each pixel of the

images is clear or affected by clouds (cloud detection) is a mandatory preliminary task for

any processing of satellite data. In this respect multispectral radiance data are prone to

improve the detectability of clouds, thanks to the peculiar behavior of clouds in selected

spectral bands. Figure 4 shows an RGB image of the Earth taken by SEVIRI on June

30th 2006 UTC time 11:12 composed by 3 selected spectral channels. The problem of

cloud detection is to infer the possible presence of clouds for each pixel of the images. In

order to accomplish this task by discriminant analysis a training set has to be defined.

Here we take the training set from a cloud mask produced by sensor MODIS onboard

NOAA EOS series satellites. MODIS sensor is endowed with a product (MOD35) aimed

to produce a reliable cloud mask in many pixels (confident classification in the terminology

of MOD35). The algorithm underlying MOD35 is based on physical arguments, with a

series of simple threshold tests mostly based on couples of spectral bands (see Platnick et

al. (2003) for details of the algorithm). Troubles in dealing with the increasing number

of spectral bands of current and next generation instrumentation from the physical point

of view is fostering investigation of statistical methods for detecting clouds. Due to the

very different spectral characteristics of water and land pixels, two separate independent

classifications are performed for the two cases. Over land the MOD35 data set is composed

of 11289 cloudy pixels and 19022 clear ones; for water pixels we have 14585 cloudy pixels
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and 16619 clear ones. We assume that labels assigned by MOD35 are the truth.

In order to evaluate the methods, for each case (land and water) we divide the data

set randomly into two parts; a training set of about 2/3 of the pixels used for estimation

and learning (training set) and a test set of about 1/3 of the pixels used for evaluation of

the prediction capability of the estimated discrimination. The split was done 50 times in

such a way that the proportion of clear and cloudy pixels of the whole original data set

was respected. The results are summarized as boxplots in the following figure.

Figure 5 shows the boxplots of misclassification errors for the various classification

methods over 50 random splits for land (left) and sea (right). For the land pixels, apart

the NPDA method which has a poor behavior, none of the other three methods clearly

stands out and they all perform essentially well. For the sea panels (cf. the right panel of

Figure 5) we get different conclusions. Here the boxplots clearly indicate that our noisy

IFA classification method has the smallest error. Finally, Figure 6 shows the cloud mask

overimposed to the analyzed area.

6 Conclusions

We have considered multivariate density estimation with dimensionality reduction

expressed in terms of noisy independent factor analysis (IFA) model. In this model

the data are generated by a (small) number of latent independent components having

unknown non-Gaussian distributions and observed in Gaussian noise.

Without assuming that either the number of components or the mixing matrix are

known, we have shown that the densities of this form can be estimated with a fast rate.

Using the mirror averaging aggregation algorithm, we constructed a density estimator

which achieves a nearly parametric rate log1/4 n/
√

n, independent of the dimension of the

data.

We then applied these density estimates to construct nonparametric plug-in classifiers

and have shown that they achieve, within a logarithmic factor independent of d, the best

obtainable rate of the excess Bayes risk.

These theoretical results were supported by numerical simulations and by an

application to a complex data set from a remote sensing experiment in which our IFA

classifier outperformed several commonly used classification methods. Implementation of

the IFA-based density estimator and of the related classifier is computationally intensive;
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therefore an efficient computational algorithm has been developed that makes mirror

averaging aggregation feasible from computational point of view.

APPENDIX: PROOFS

Proof of (3). Note that (2) implies that the Fourier transform ϕX(u) =
∫
Rd pX(x)eixT udx

of the density pX satisfies the inequality

|ϕX(u)| ≤ e−σ2‖u‖2/2 (A.1)

for all u ∈ Rd, where ‖ · ‖ denotes the Euclidean norm in Rd. Define the kernel estimator

p̂∗n(x) =
1

nhd

n∑
i=1

K

(
Xi − x

h

)

with the kernel K : Rd → R, such that K(x) =
∏d

k=1 K0(xk), xT = (x1, x2, ..., xd), where

K0 is the sinc kernel: K0(x) = sin x
πx

, for x 6= 0, and K(0) = 1/π, with the Fourier transform

ΦK0(t) = I(|t| ≤ 1).

Using Plancherel theorem and Theorem 1.4 on p. 21 of Tsybakov (2009), we have

E‖p̂∗n − pX‖2
2 =

1

(2π)d
E‖ϕnΦK − ϕX‖2

2

≤ 1

(2π)d

[∫
|1− ΦK(hu)|2|ϕX(u)|2du +

1

n

∫
|ΦK(hu)|2du

]
,

where ϕn(u) = n−1
∑n

j=1 eiXT
j u is the empirical characteristic function and ΦK(v) is the

Fourier transform of K. Note that ΦK(v) =
∏d

j=1 I{|vj| ≤ 1} where vj are the components

of v ∈ Rd. Now, for the bias term we have, using (A.1),

∫
|1− ΦK(hu)|2|ϕX(u)|2du =

∫
I

{
∃j : |uj| > 1

h

}
|ϕX(u)|2du

≤
∫

I

{
∃j : |uj| > 1

h

}
e−σ2u2/4e−σ2u2/4du

≤ e−σ2/4h2

∫
e−σ2u2/4du = e−σ2/4h2

(
4π

σ2

)d/2

.

Next, the variance term

1

n

∫
|ΦK(hu)|2du =

1

n

d∏
j=1

∫
I

{
|uj| ≤ 1

h

}
duj =

2d

nhd
.

19



Combining the last two expressions, we get

E‖p̂∗n − pX‖2
2 ≤ C

(
e−σ2/4h2

+
1

nhd

)

with some constant C > 0. Taking here h = σ(4 log n)−1/2, we get (3). ¤
Proof of Proposition 1. W.l.o.g. we will suppose here that ak are the canonical basis

vectors in Rd. Note first that the proof of (3) with d = 1 implies that the estimators (6)

achieve the convergence rate of (log n)1/2/n for the quadratic risk:

E‖ĝk − gk‖2
2 = O((log n)1/2/n) ∀k = 1, . . . , m. (A.2)

Denoting C > 0 a constant, not always the same, we have for the estimator (7)

E‖p̂n,m,A − pX‖2
2 ≤ CE

∥∥∥∥∥
m∏

j=1

ĝj −
m∏

j=1

gj

∥∥∥∥∥

2

2

= CE




∥∥∥∥∥
m∑

k=1

k−1∏
j=1

gj(ĝk − gk)
m∏

j=k+1

ĝj

∥∥∥∥∥

2

2




≤ C

m∑

k=1

E




∥∥∥∥∥
k−1∏
j=1

gj

∥∥∥∥∥

2

2

‖ĝk − gk‖2
2

∥∥∥∥∥
m∏

j=k+1

ĝj

∥∥∥∥∥

2

2




≤ C

m∑

k=1

k−1∏
j=1

‖gj‖2
2E

[
‖ĝk − gk‖2

2

m∏

j=k+1

‖ĝj‖2
2

]

≤ C
m

max
k=1

E
[‖ĝk − gk‖2

2

m∏

j=k+1

‖ĝj‖2
2

]
,

where
∏u

i=l ai = 1 when l > u and we have used that the L2-norms of gj are bounded for

all j = 1, . . . ,m. The latter is due to the fact that, by Young’s inequality (see, e.g., Besov

et al., 1979), ‖gj‖2 ≤ ‖φ1,σ2‖2

∫
pSj

= ‖φ1,σ2‖2.

We now evaluate the L2-norms of ĝj. By separating the diagonal and off-diagonal

terms,

‖ĝj‖2
2 =

1

nh

∫
K2

0 +
1

n2

∑

i6=m

1

h
K∗

(
Yi − Ym

h

)
, (A.3)

with the convolution kernel K∗ = K0 ∗ K0 and we write for brevity Yi = aT
j Xi. The

second term in (A.3) is a U -statistic that we will further denote by Un. Since all the

summands 1
h
K∗ (

Yi−Ym

h

)
in Un are uniformly ≤ C/h, by Hoeffding inequality for U -

statistics (Hoeffding 1963) we get

P (|Un − E(Un)| > t) ≤ 2 exp(−cnh2t2) (A.4)
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for some constant c > 0 independent of n. On the other hand, it is straightforward to see

that there exists a constant C0 such that |E(Un)| ≤ C0. This and (A.4) imply:

P (|Un| > 2C0) ≤ 2 exp(−c′nh2) (A.5)

for some constant c′ > 0 independent of n. From (A.3) and (A.5) we get

P (A) ≤ 2d exp(−c′nh2), (A.6)

for the random event A = {∃j : ‖ĝj‖2
2 ≥ C1}, where C1 = 2C0 +

∫
K2

0/(nh).

Using (A.6), (A.2) and the fact that ‖gj‖2
2 and ‖ĝj‖2

2 are uniformly ≤ C/h we find

E

[
‖ĝk − gk‖2

2

m∏

j=k+1

‖ĝj‖2
2

]
≤ E

[
‖ĝk − gk‖2

2

m∏

j=k+1

‖ĝj‖2
2I{A}

]

+ (C1)
m−kE

[‖ĝk − gk‖2
2I{Ac}]

≤ (C/h)m−k+1P{A}+ C(log n)1/2/n

≤ Ch−(m−k+1) exp(−c′nh2) + C(log n)1/2/n

≤ C(log n)1/2/n.

Thus, the proposition follows. ¤
Proof of (14). We will show first that for some constant C > 0 and for all j = 1, ..., M

P(‖ĝj‖∞,[−1,1] > C) ≤ 1

n1/2h3/2
, (A.7)

where ‖f‖∞,[−1,1] = supt∈[−1,1] |f(t)| for f : R→ R. Note that the sinc kernel K0 satisfies

the inequality |K0(u)| ≤ 1/π for all u ∈ R. Now because

‖ĝj‖∞,[−1,1] ≤ E‖ĝj‖∞,[−1,1] + ‖ĝj − Eĝj‖∞,[−1,1]

and

|Eĝj(t)| =
∣∣∣∣
∫

K0(u)gj(t− uh)du

∣∣∣∣ ≤
1

π
, ∀t ∈ R,

we have

P(‖ĝj‖∞,[−1,1] > C) ≤ P
(
‖ĝj − Eĝj‖∞,[−1,1] > C − 1

π

)
. (A.8)

Now for η(t) := ĝj(t)− Eĝj(t) we have

E(η(t + ∆)− η(t))2 =
1

nh2
Var

(
K0

(
t + ∆− Z

h

)
−K0

(
t− Z

h

))

≤ 1

nh2

∫ (
K0

(
t + ∆− z

h

)
−K0

(
t− z

h

))2

gk(z)dz

≤ C2
0

nh3
∆2

(A.9)

21



for t, ∆ ∈ [−1, 1], where we used that |K ′
0(u)| ≤ C0 with some constant C0 for all u ∈ R.

Also, the standard bound for the variance of kernel estimator ĝj gives

Eη2(t) ≤ C2

nh
, ∀t ∈ [−1, 1] (A.10)

with C2 =
∫

K2
0(u)du. Now (A.9) and (A.10) verify conditions of the following lemma.

Lemma 1 (Ibragimov and Has’minskii 1982, Appendix 1) Let η(t) be a continuous real-

valued random function defined on Rd such that, for some 0 < H < ∞ and d < a < ∞
we have

E|η(t + ∆)− η(t)|a ≤ H‖∆‖a, ∀ t, ∆ ∈ Rd,

E|η(t)|a ≤ H, ∀ t ∈ Rd.

Then for every δ > 0 and t0 ∈ Rd such that ‖t0‖ ≤ D,

E

[
sup

t:‖t−t0‖≤δ

|η(t)− η(t0)|
]
≤ B0(D + δ)dH1/aδ1−d/a

where B0 is a finite constant depending only on a and d.

Applying this lemma with d = 1, a = 2, H =
C2

0

nh3 , t0 = 0, and δ = 1, we get

E sup
t∈[−1,1]

|η(t)| ≤ E sup
t∈[−1,1]

|η(t)− η(0)|+ E|η(0)| ≤ C3

n1/2h3/2
+

C
1/2
2

(nh)1/2
≤ C4

n1/2h3/2
.

Applying now in (A.8) Markov inequality and choosing C = C4 + 1/π, we obtain (A.7).

Next, assume w.l.o.g. that B is the unit ball in Rd. We note that (A.7) implies

P




∥∥∥∥∥
k∏

j=1

ĝj

∥∥∥∥∥
∞,B

> Ck


 ≤ P

(
k∏

j=1

‖ĝj‖∞,[−1,1] > Ck

)

≤ P(∪k
j=1{‖ĝj‖∞,[−1,1] > C}) ≤ k

n1/2h3/2
.

Using this and definition (9) of p̂k we have that

E‖p̂k‖∞,B ≤ (2πσ2)(d−k)/2E

∥∥∥∥∥
k∏

j=1

ĝj

∥∥∥∥∥
∞,B

≤ (2πσ2)(d−k)/2


Ck + E

∥∥∥∥∥
k∏

j=1

ĝj

∥∥∥∥∥
∞,B

I





∥∥∥∥∥
k∏

j=1

ĝj

∥∥∥∥∥
∞,B

> Ck








≤ (2πσ2)(d−k)/2

[
Ck +

1

(πh)k

k

n1/2h3/2

]
,
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where we also used the fact that ‖ĝj‖∞,[−1,1] ≤ (πh)−1 for all j = 1, ..., k. Since

h ³ (log n)−1/2, we get that, for some constant Lk,

E‖p̂k‖∞,B ≤ Lk, ∀k = 1, ..., M,

and (14) follows with L′ = max(L1, L2, ..., LM). ¤
Proof of Theorem 1. To prove the theorem we use Corollary 5.7 in Juditsky, Rigollet

and Tsybakov (2008), which implies that for β = 12L̂ the corresponding aggregate

estimator p̃n satisfies:

ED2‖p̃n − pX‖2
2 ≤ min

k=1,...,M
‖p̂n1,k,B̂k

− pX‖2
2 +

β log M

n2

, (A.11)

where ED2 denotes the expectation over the second, aggregating subsample. Here p̂n1,k,B̂k

are the estimators constructed from the first, training subsample D1, which is supposed

to be frozen when applying the result of Juditsky, Rigollet and Tsybakov (2008) and the

inequality holds for any fixed training subsample. Taking expectation in inequality (A.11)

with respect to the training subsample, using that, by construction, p̃n and p̂n1,k,B̂k
vanish

outside B, and interchanging the expectation and the minimum on the right hand side

we get

E‖p̃n − pX‖2
2,B ≤ min

k=1,...,M
E‖p̂n1,k,B̂k

− pX‖2
2,B +

log M

n2

Eβ,

where now E is the expectation over the entire sample.

Recalling now that M < d, n2 = [cn/
√

log n], and that Eβ ≤ C by (14), we obtain

E‖p̃n − pX‖2
2,B ≤ min

k=1,...,M
E‖p̂n1,k,B̂k

− pX‖2
2,B +

C(log n)1/2

n
. (A.12)

Now,

min
k=1,...,M

E‖p̂n1,k,B̂k
− pX‖2

2,B ≤ E‖p̂m,Â − pX‖2
2,B, (A.13)

where Â = B̂m is the estimate of A with the true rank m and we set for brevity

p̂m,A ≡ p̂n1,m,A. Since pX = pm,A, we have

‖p̂m,Â − pX‖2
2,B ≤ 2(‖p̂m,Â − p̂m,A‖2

2,B + ‖p̂m,A − pm,A‖2
2,B). (A.14)

Since n1 = n(1 + o(1)), by Proposition 1 we get

E‖p̂m,A − pm,A‖2
2,B = O((log n)1/2/n). (A.15)
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It remains to prove that

E‖p̂m,Â − p̂m,A‖2
2,B = O((log n)1/2/n). (A.16)

Denoting Gx(A) =
(

1
2πσ2

)(d−m)/2
exp

{− 1
2σ2x

T (Id − AAT )x
}

and by âj and aj the columns

of Â and A, respectively, we can write (see (7) and (9)),

‖p̂m,Â − p̂m,A‖2,B = ‖Gx(Â)
m∏

j=1

ĝj(â
T
j x)−Gx(A)

m∏
j=1

ĝj(a
T
j x)‖2,B

≤ C‖
m∏

j=1

ĝj(â
T
j x)−

m∏
j=1

gj(â
T
j x)‖2,B + C‖

m∏
j=1

ĝj(a
T
j x)−

m∏
j=1

gj(a
T
j x)‖2,B +

‖Gx(Â)
m∏

j=1

gj(â
T
j x)−Gx(A)

m∏
j=1

gj(a
T
j x)‖2,B =: I1 + I2 + I3.

As in the proof of Proposition 1 we get EI2
i = O((log n)1/2/n), i = 1, 2. Next, we show

that EI2
3 = O(1/n). We write I3 ≤ I3,1 + I3,2 where

I3,1 = ‖Gx(Â)−Gx(A)‖2,B‖
m∏

j=1

gj(a
T
j x)‖2,B,

I3,2 = C‖
m∏

j=1

gj(â
T
j x)−

m∏
j=1

gj(a
T
j x)‖2,B.

To bound these terms we will systematically use the fact that ‖∏l
j=k gj(a

T
j x)‖2,B ≤ C for

all 1 ≤ k ≤ l ≤ m (and the same with âj instead of aj). This fact, the definition of Gx(·)
and the boundedness of the Frobenius norms of A and Â imply that I3,1 ≤ C‖A − Â‖F ,

where ‖M‖F denotes the Frobenius norm of matrix M . Now, E‖Â − A‖2
F = O(1/n),

which follows from Lemma A.1 of Kneip and Utikal (2001) and the assumed moment

condition on X. Thus, EI2
3,1 = O(1/n). We also get EI2

3,2 = O(1/n). This follows from

the Lipschitz continuity of gj(·) and from the fact that (cf. proof of Proposition 1):

EI2
3,2 ≤ C

m∑

k=1

E

[∥∥∥
k−1∏
j=1

gj(a
T
j x)

∥∥∥
2

2,B
‖gk(a

T
k x)− gk(â

T
k x)‖2

2,B

∥∥∥
m∏

j=k+1

gj(â
T
j x)

∥∥∥
2

2,B

]

So, we have EI2
3 = O(1/n). This finishes the proof of (A.16).

Inequalities (A.14), (A.15), and (A.16) give

E‖p̂m,Â − pX‖2
2,B ≤ O((log n)1/2/n),
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which together with (A.12) and (A.13) completes the proof. ¤
Proof of Proposition 2. For any classifier T we have

RB(T )−RB(T ∗) =
J∑

j=1

πj

∫

B

(I(T (x) 6= j)− I(T ∗(x) 6= j))fj(x)dx

=
J∑

j=1

πj

∫

B

(I(T ∗(x) = j)− I(T (x) = j))fj(x)dx

=

∫

B

(πT ∗(x)fT ∗(x)(x)− πT (x)fT (x)(x))dx

Therefore, the excess risk of the plug-in classifier T̂ can be written in the form

E(T̂ ) ≡ E(RB(T̂ ))−RB(T ∗)

= E
∫

B

(πT ∗fT ∗(x)− πT̂ f̂T̂ (x) + πT̂ f̂T̂ (x)− πT̂ fT̂ (x))dx (A.17)

where we omit for brevity the argument x of T ∗ and T̂ . Note that, by the definition of

T̂ , for all x ∈ Rd we have:

πT ∗fT ∗(x)− πT̂ f̂T̂ (x) + πT̂ f̂T̂ (x)− πT̂ fT̂ (x) ≤ πT ∗fT ∗(x)− πT ∗ f̂T ∗(x) + πT̂ |f̂T̂ (x)− fT̂ (x)|

≤
J∑

j=1

πj|f̂j(x)− fj(x)|.

Combining the last display with (A.17) proves the proposition. ¤
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Index Test function

1 G(0, 1)
2 χ2(1)
3 0.5G(−3, 1) + 0.5G(2, 1)
4 0.4γ(5) + 0.6γ(13)
5 χ2(8)
6 t(5)
7 Double exponential : exp(−|x|)

Table 1: List of basic functions considered for the numerical experiments. G(q, r) stands

for Gaussian distribution with mean q and standard deviation r; χ2(r) indicates chi-square

density function with r degrees of freedom; γ(r) is Gamma distribution of parameter r;

t(r) is Student distribution with r degrees of freedom.

Experiment Aggregated IFA KS

d = 2, n = 500 0.3 3
d = 3, n = 500 0.9 15
d = 5, n = 500 4 120

Table 2: Computational time (sec) of aggregated IFA and KS for some test configurations.
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Figure 1: Boxplot of the error criterion I1 (Eq. (17)) in the case d = 2, Signal to Noise

Ratio 3 and test function 2 for several sample sizes.

Figure 2: Boxplot of the error criterion I1 (Eq. (17)) in the case d = 3, Signal to Noise

Ratio 3 and test function 3 for several sample sizes.

Figure 3: Boxplot of the error criterion I1 (Eq. (17)) in the case d = 5, Signal to Noise

Ratio 3 and test functions 5 and 6 for several sample sizes.

Figure 4: RGB image obtained from the SEVIRI sensor onboard MSG on June 30th 2006

UTC Time 11:12.

Figure 5: Boxplot of the misclassifications for the considered classifiers. Results refer to

land (left) and water (right) pixels of the remote sensing data.

Figure 6: Cloud mask estimated over a part of the region in Fig. 4 by Noisy IFA. Black:

area not subject to classification; dark gray: pixels over water classified as clear; light

gray: pixels over land classified as clear; white: pixels over land or sea classified as cloudy.
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