ABSTRACT
An understanding of people, program, and place establishes a foundation from which to make architectural decisions. The focus of this thesis is to understand the needs of those involved in an outdoor education school in Baja, Mexico and assemble a comprehensive architectural solution to these needs.

The outdoor education school has the mission to be the best source and teacher of wilderness skills to protect the user and the environment. The people of this school share a common interest to live harmoniously with their surroundings and work to achieve a lifestyle that has a minimum impact on the natural environment.

The site is on the east coast of the Baja Peninsula in a desert coastal ecosystem. The school is acquiring additional property and has the need for a master plan that looks to their long-term needs. The master plan interweaves the issues of being in a small community and the organization of the program with the natural environment.

At all scales the focus of the facility is education. Building designs are direct solutions to the needs of the people in this environment. The site embodies the workings of the school and a relationship to the surrounding area.

The natural environment does not act as the setting for the architecture of the school, but is seen as the focus letting the architecture become the framework through which one observes the natural environment.

Thesis Supervisor: Andrew Scott
Title: Associate Professor of Architecture
This thesis is dedicated to
Jane Elizabeth Elliott Galyean
for her example of continual learning and support of education for all

I would like to acknowledge the following people for their help and support

Marilyn Feldmeier
Tag Galyean
Annabelle Galyean
Tinsley Galyean
Sheri Galyean
James Carr
Darrell Aldrich
Dan Gorini
Heather Hootman
Andrew Scott
Kristina Hill
Leon Glicksman
Len Morse-Fortier
David Kallgren
Les VanBarselaar
Table of Contents

Introduction ... 6

People Program Place 7
- People ... 7
- Program .. 7
- Place .. 8

Observations of the Site 9
- Location .. 9
- Surrounding Environment 9
- Existing Site ... 10
- Climate ... 10
- Flora .. 10

Method of Construction 41
- Precedents ... 41
- Typical Methods (Student Issue Building) 41
- Vocabulary of Materials 42

Specific Buildings 52
- Instructor Housing 52
- Main House ... 52
- Bath House .. 53

Masterplan ... 68
- Precedents ... 68
- Program ... 68
- Proposed Master Plan 68
- Analysis of Master Plan 69

Architecture for Environmental Learning 4
Introduction

This thesis is presented as a collection of images to walk the reader through the design. Supplemental text at the beginning of each chapter sets the ground work for the illustrations that follow.

The organization for which the design exploration has been done is the National Outdoor Leadership School (NOLS). NOLS is a non-profit organization whose mission is to be the best source and teacher of wilderness skills that protect the user and the environment. There are NOLS branch schools in many locations around the world. The particular branch of interest for this design is the facility in Baja, Mexico. The Baja Branch has acquired additional property making the total area approximately two acres. The design of this thesis looks to the future for the potential master plan of the facility.

The thesis is presented in chapters. The chapters structure the information by initially introducing the reader to the site. The design is presented by looking at the details of the method of construction. Specific buildings are developed in detail to show the implementation of the construction method. The master plan is presented followed by details, the main square, and Solar Aquatics System. The last chapter is the discussion of landscape and the first stage in implementing the master plan.
People Program Place

People

The people inhabiting the facility are a collection of individuals with a common concern and appreciation for the natural environment. The inhabitants fall into three categories: students, field instructors, and support staff. It is important to understand the people inhabiting the facility to offer appropriate environments.

Students are at the facility for the shortest amount of time. Arriving in the morning, they stay for a twenty-four hour period as they prepare for their course. For students, the branch facility is a place of transition between the developed world and the wilderness: a place and time for a change in mind set from the lifestyle of living in an urban environment to the preparation of living in the wilderness. After thirty days the students return to the facility where they adapt themselves for the return to their previous world. Upon returning to the facility they de-issue gear, clean up, say their good byes and head home.

Field instructors teach the courses in the wilderness. The instructors arrive a few days before a course to begin preparations for the expedition, making their stay the total length of a week between the beginning and end of a course. The lifestyle of an instructor is often transient and the opportunity to have a place to stay for a few days that is their own is much valued.

The support staff run the workings of the facility. Their jobs include directors, logistics coordinator, rations, equipment issue and maintenance, cooking, general maintenance, and course support. The support staff live at the facility for up to nine months. Living at the facility means that there is a need for places of privacy that allow the support staff their own space.

Program

The program consists of storage, gathering, housing and service spaces. The function of the facility is primarily that of support for the courses that are in the field. Much of the program involves the storing and issue of gear. While the structures that provide this are basically storage buildings, the quality of these spaces
must reflect the activity that occurs within them on a daily basis as staff students and instructors prepare for a course. The facility also demands places of gathering and community as an integral part of daily work, rest and recreation. These include the main house which provides dining, courtyards, patio, and a library, as well as the main courtyard surrounded by service and storage and many other smaller scale areas throughout the site. These areas should be flexible in addressing the need for various degrees of privacy that each inhabitant requires.

The campus offers appropriate and different accommodation for instructors, students and the support staff.

Lastly, the program includes the service areas. These include the bathhouse, wash house, workshop, and kitchen.

For a complete program see Appendix A.

Place
The Baja peninsula is the fourth-longest peninsula in the world, spanning between 23 degrees and 32 degrees latitude. The peninsula was created by the shift of the North Pacific Plate and the North American Plate along the San Andreas Fault that runs down the Gulf of California. This shift moved Baja from mainland Mexico.

The most striking feature of Baja is the spine of mountains running along the length of the peninsula. Due to the uplift of the mountain, they tend to be more gradual to the west and dramatic to the east. There are four major mountain ranges along this spine with the highest peak being Picacho del Diablo (10,154 feet).

Since the peninsula spans many degrees of latitude the climate varies considerably. The one characteristic that tends to refer to the entire peninsula is its dry desert qualities. The variation in climate supports a great diversity of flora and fauna.

A more complete description of the site is discussed in the chapter Observations of the Site.
Observations of the Site

In desert country everything from the color of a mouse or the shape of a leaf up to the largest features of the mountains themselves is more likely than not to have the same explanation: dryness.

So far as living things go, all this adds up to what even an ecologist may so far forget himself as to call an “unfavorable environment.” But like all such pronouncements this one doesn’t mean much unless we ask “unfavorable for what and for whom?” For many plants, for many animals, and for some men it is very favorable indeed. Many of the first two would languish and die, transferred to some region where conditions were “more favorable.” It is here, and here only, that they flourish. Many men feel healthier and happier in the bright dry air than they do anywhere else. And since I happen to be one of them, I not unnaturally have a special interest in the plants and animals who share my liking for just these conditions.

Joseph Wood Krutch

Location

The Site is part of the coastal desert of Baja California. Located on the eastern coast of Baja, the site is in Coyote Bay and is set within the Bay of Concepción. The Bay of Concepción is prominent in the Bay of California. The siting, a nesting of bays, offers protection from the torrents of the open sea.

Highway Mex 1 is the major road in Baja that runs north to south. The site is directly off of Mex 1. To the south the nearest urban area and airport is Loreto approximately 60 miles from the site. Approximately 20 miles to the north, Mulegé is the closest town.

Surrounding Environment

The site is one of several properties that have been developed in Coyote Bay. Most of the houses are occupied from fall to spring by people from the United States. The method of building varies considerably. Houses range from the predominant simple box house made of brick with a concrete finish and a pitched roof, to the traditional use of palm fronds and wood, to the importation of hi-tech metals and fiberglass.

Coyote Bay appears to be moderately developed compared to neighboring bays. There is an increase in demand for the properties in Baja and one can only assume that future development is a strong possibility for Coyote Bay. To understand the impact that further
development may have, two bays north of the site show different degrees of development and are used for illustration. The less developed bay is a community of recreational vehicles parked on the beach from fall through spring before being driven north for the summer.

The more densely developed bay shows an incredible variety of building types, the most common being a roof structure that provides shade for the recreational vehicles that are parked underneath. Other more complete structures made from a tremendously varied array of materials define the small streets for the resort village.

Because development seems inevitable, it is the responsibility of NOLS to offer an example of building in the coastal desert that is sensitive and respectful to the surrounding environment.

Existing Site Structures
The site includes three inhabitable structures and a water tower that serves several properties. The buildings include a main house, a storage building, and a sleeping shelter. These structures are made of masonry construction with a wood framed roof. The main house is the oldest structure on the site and is showing decay by the percolation of the salt water through the ground into the walls. The other two buildings, built in the last ten years, are in good condition.

Climate
The climate data is gathered from the weather station in La Paz which is found 200 miles to the south of Coyote Bay. This information is compiled with observations from inhabitants of the area.

Daily means in degrees Fahrenheit are: January 65, March 69, May 77, July 85, September 84, November 74, Annual 76.

Temperature ranges are: winter, maximum 87 and minimum 35; summer, maximum 105 and minimum 63.5.

Average rainfall is 7.7 inches annually.

Summer winds come from the southwest and winter winds from the northwest. The site is significantly
sheltered from wind.

Flora

The vegetation on the site includes a variety of plants that can survive the high salt content of the water. The noted vegetation includes: Mesquite, Cholla, Cardón, Frutilla, Mangrove, Bougainvillea, Palm, Huitatave, and Pickleweed. These plants are illustrated in the following pages.
Map of the Baja Peninsula
in the age of sal. The old ore processor, min
good condition; a brick smokestack towers o%
manganese workings closed In
1956 but a
Santa Rosita's most famous building is the st
Alexandre Gustave Eiffel. of Eiffel Tower fame,
I
galvanized iron panels for the
1898 Paris Work
to
California; it
Is
still
used for parish se.
breakwaters made from blocks
of slag,
I
tuesdays. Thursdays and Sundays, depart
following day.
It
International border at Tijuana
San Lucas, Highway 1
directly has opened up a
ended at El Rosario in
20 km stretch of desert
dough, story trail which
1970, then-president
rio along the old road,
len of a paved open to
west bulldozed through
struction crews working
San Ignacio (FS) 1
30th state only ten
of gringos comfortab
plays a vital r
of one of the world's
SOLINE adequate and the stations marked on the map were
would be aware, however; that delivery problems or
on without fuel for a short period. PEMEX stations
is usually built nearby (e.g. at Catavina). Some of
of gasoline, but such sources cannot be relied
 Opportunity to
ed from blue pumps: 'Extra' (87 octane, premium
1 l as widely available in Baja.
1 Imperial gallon = 4.546 litres
1 litre = 0.22 Imperial gallons
LORETO (H12)
On 25 October
Mission of Nuestra
restored in the
next to the church
San Ignacio, and 1
reets around C
scuba diving;
36 km inland a
preserved sou
Picolco, who I
n the Co
Californias. Th
ning to take
agency—Is cu
isher are international so
one
in the age of sail. The old ore processor, min
good condition; a brick smokestack towers in
manganese workings closed in 1956 but a
Santa Rosita's most famous building is the st
Alexandre Gustave Eiffel. of Eiffel Tower fame,
I
galvanized iron panels for the 1898 Paris Work
to Baja California; it is still used for parish
breakwaters made from blocks of slag,
I
tuesdays. Thursdays and Sundays, departing
following day.
It
International border at Tijuana
San Lucas, Highway 1
directly has opened up a
ended at El Rosario in
20 km stretch of desert
dough, story trail which
1970, then-president
rio along the old road,
len of a paved open to
west bulldozed through
struction crews working
San Ignacio (FS) 1
30th state only ten
of gringos comfortab
plays a vital r
of one of the world's
SOLINE adequate and the stations marked on the map were
would be aware, however; that delivery problems or
on without fuel for a short period. PEMEX stations
is usually built nearby (e.g. at Catavina). Some of
of gasoline, but such sources cannot be relied
 Opportunity to
ed from blue pumps: 'Extra' (87 octane, premium
1 l as widely available in Baja.
1 Imperial gallon = 4.546 litres
1 litre = 0.22 Imperial gallons
LORETO (H12)
On 25 October
Mission of Nuestra
restored in the
next to the church
San Ignacio, and 1
reets around C
scuba diving;
36 km inland a
preserved sou
Picolco, who I
n the Co
Californias. Th
ning to take
agency—Is cu
isher are international so
one
in the age of sail. The old ore processor, min
good condition; a brick smokestack towers in
manganese workings closed in 1956 but a
Santa Rosita's most famous building is the st
Alexandre Gustave Eiffel. of Eiffel Tower fame,
I
galvanized iron panels for the 1898 Paris Work
to Baja California; it is still used for parish
breakwaters made from blocks of slag,
I
tuesdays. Thursdays and Sundays, departing
following day.
Map of Coyote Bay
Sketch of Coyote Bay from the East
Approaching Coyote Bay from the East

1 mile from site
The site is being approached by boat from the east. The sequence of photographs are being taken on the return from re-rationing courses in the Bay of Concepción.

Approaching Coyote Bay from the East

.25 miles from site
Approaching Coyote Bay from the East

.1 miles from site
The neighboring houses to the site can be identified.
House in Coyote Bay

The house is built in the same manner as the main house on the site.
House in Coyote Bay
This house shows the use of palm frons in the roof structure and the recreation vehicles are parked underneath.

House in Coyote Bay
This house is built by a successful businessman who has gone to great efforts to import high-tech materials.
Abandoned Building

The building is found in the northwest corner of the site. The initial purpose of this building was to be a stopping point for travelers along highway Mex 1.

Gateway to Trailer Park

The trailer park is the property sharing the north boundary of the site. The park is only partially occupied. Most of the properties have a roof structures providing shade for recreational vehicles.
Detail of More Developed Bay

Detail of More Developed Bay
Morning View of Main House Looking Out to Coyote Bay

View 1

Morning View of Main House

View 2
Morning View of Site Interior

Water Tower Against Mountains

View 3

View 4
Beach Front and Sea Wall

View 5

View Between Houses Towards Coyote Bay

View 6
Access Road

Road of Site Interior
View 9

North Side of Workshop

View 10

Workshop and Instructor Housing
Plan and Section of Existing Main House
Cardón

Mexican Fan Palm
Plan Diagram of Views to Landmarks

Section Diagram of Views to Landmarks
View to Coyote Island
ARCHITECTURE FOR ENVIRONMENTAL LEARNING

Interpretive Sketch of Existing Site
Proposed Master plan

ARCHITECTURE FOR ENVIRONMENTAL LEARNING
Method of Construction

I presently found that the white luminous canvas overhead and canvas used instead of windows afforded such agreeable diffusion of light within, was so enjoyable and sympathetic to the desert, that I now felt more oppressed by the thought of the opaque solid overhead of the much to heavy Midwestern house.

The desert devils would come whirling like a dancing dervish and go in drifting spirals of dust high in the air. Occasionally a devil would come cross the camp and it would shudder in its grasp like a ship - but hold fast. No damage.

I believe we pay too slight attention to making slight buildings beautiful or beautiful buildings slight. Lightness and strength may now be synonymous.

Usually we spend so much too much to make buildings last, as we say. Unqualified to build, we are still busy making caves for survival.

So, Ocotilla - our little desert camp - you are an ephemera.

Frank Lloyd Wright

Precedents

The precedents presented include those of aboriginal cultures and a few modern examples that show a sensitivity to the natural environment. The building method of many aboriginal cultures has been the use of easily found resources used to provide direct solutions to the needs of the inhabitants.

The Anasazi Indians molded the material of the region -the local clay- to build the walls that define shelters in the cliffs. The intensification of local materials to make a livable environment for the inhabitants demonstrates a sensitivity to both method of construction and nature.

In the desert environment of Arizona, Frank Lloyd Wright built a temporary camp, Ocotilla. This camp was constructed of basic wood framing with canvas roofing.

Ocotilla uses a simple palette of materials to build a variety of structures for many uses which directly respond to the needs of living in a desert environment.

Typical Methods (Student Issue Building)

The method of building in this facility is demonstrated in the Student Issue Building. A concrete foundation pad is built to spread the load of the building evenly
over the ground. This type of foundation is needed since the supporting earth is a thin crust over wet sand. A masonry construction of walls builds a minimal enclosure, and a concrete frame poured around the masonry infill structurally reinforces the walls. The roof builds off of the masonry wall structure and is supported by wood columns which extend it past the enclosure. The roof and structure lean out generously providing shade for the walkway underneath. The extension of the wood structure, up and beyond the roof surface, allows for temporary fabrics to extend the shelter of the building. The extended roof also provides a transition zone between the enclosure and the outside.

Vocabulary of Materials

This method of construction allows for different materials to be interchanged to accommodate the needs of the building.

In the concrete wall frame system the infill can be concrete block, stone, open concrete block (allowing ventilation), glazing and/or shutters.

The roofing materials are to be either a ceramic tile or palm frons. The tile is heavy but very durable, while the palm frons are the most sensitive solution to the surrounding environment. However harbor insects and are a fire hazard. The choice of the material is determined by use.
Anasazi Dwelling of Mesa Verde
Pueblo, page 32.

Aboriginal Structure of Australia Made from Tree Bark
Leaves of Iron, page 65
Ocotilla under Construction

Frank Lloyd Wright Selected Houses 3, Taliesin West, page 26

Ocotilla Interior

Frank Lloyd Wright Selected Houses 3, Taliesin West, page 29
Leaves of Iron, page 94

Glen Murcutt House

Leaves of Iron, page 95

Glen Murcutt House
African Roof Structure in Burundi

Photograph by Mark Daley

Georg Grotenfelt House

An Architectural Present - 7 Approaches, page 159
Proposed Student Issue Building
Main Structure
A. Concrete Frame
B. Wood Column

Wall Infill
C. Concrete Block
E. Stone
F. Open Concrete Block
G. Frame Only; No Infill
H. Steel Frame with Glazing
I. Shutter

Roofing Material
J. Ceramic Tile
K. Palm Frons

Vocabulary of Materials
Specific Buildings

Instructor Housing
The instructors are often transient and spend a great deal of their time “in the field,” living in community with many other people. Therefore, privacy for the instructors while “in town” is important. The instructor housing is made up of individual rooms furnished with a bed and a desk. The individual rooms are grouped in twos allowing the accommodation of couples. The bed in each room can be opened to become a double sized bed.

Each pair of rooms has an outside area to which it relates. The outside areas have different qualities, and the instructors would chose a room depending on its location.

Many instructors drive to the Baja facility and have all their worldly possessions in their vehicles. For them, the relationship of room to vehicle must be close. Vehicles can be driven up to the instructor housing units and particular rooms have a more direct relationship to the vehicles.

There is a large outside gathering space reserved for instructors which looks to the mountains to the west and is centered around a large mangrove tree for shade.

Another shared space is above the center units. This elevated area has a long view to the water and out over the main square and can provide sleeping under the stars.

Storage for instructor gear is found to the north of the instructor housing.

Main House
The main house is set up to define and embrace the view out towards the bay.

The main house is the place where all inhabitants will gather for eating and socializing.

The library has two parts: a book storage area and a reading room. The book storage area is a solid walled room protecting the books from the salty air and harsh sunlight. The reading room has a table and opens onto the large tiled porch area which in turn opens to the sea.
The administrative offices extend along the north side of the main house and are separated into two types. The larger offices at the west end are for the logistics coordinator and the directors. There is a raised second floor area above the logistic coordinators office which gives a view framed by the architecture to the ocean. The other offices are for research projects.

The kitchen has access to food storage on either side of road. A herb garden is located on the north side of the kitchen and a temporary fabric roof material can be erected to shade the garden during hot months. The kitchen also has a covered outside work area.

The cleaning area is positioned between the kitchen and eating area.

The eating area is an enclosed area off of and opening on to the large open porch. Above the eating area is a large room that can be used for gathering and sleeping by students. Cubby holes define the south side of the loft and give the students a place to store their gear.

Bath House

The bath house is the concentration of all the water on the site. The water tower is the focal point and is made of five platforms rising above the ground to the height of sixty feet. The platforms are accessed by an internal ladder and the water tanks are found at forty eight feet on the fourth platform. The second and third platforms are areas for people to occupy.

The toilets are located on the ground level and the second level of the water tower. The second level toilets have a view to the mountains, reminiscent of defecating in the wilderness while looking out to open expanse.

The showers are designed as a series of large rooms that act as both a changing room and shower.

The water tower is structurally reinforced by a series of plywood panels and creating a climbing wall. The bath house also serves as the central water distribution system, feeding washing machines (with drying lines to the south of the building) as well as the boat washing spine that runs along the western edge of the main courtyard. All water is considered precious in this environment and its uses and path have been carefully planned to minimize waste of this
resource. All gray water and sewage is filtered to tertiary quality (potable) water through a Solar Aquatics Sewage System, providing ample resources for drinking water and irrigation.
Plan for Proposed Instructor Housing
Section of Proposed Instructor Housing, AA Above and BB Below
Plan of Proposed Main House

ARCHITECTURE FOR ENVIRONMENTAL LEARNING
Sections of Proposed Main House, CC Above and DD Below
Plan of Proposed Main House With Photograph Views
Main House; View from the East

View 1

Main House; View from the Southeast Corner of Porch

View 2

ARCHITECTURE FOR ENVIRONMENTAL LEARNING
Main House; View from Road

View 3

Main House; View from Above the Offices

View 4
Main House; View down Inner Access

View 5

Main House; Bird's-eye View of Outside Kitchen Area and Stairs

View 6
Main House; View of Loft

Main House; View along South Side
Plan of Proposed Bathhouse

Clothlines

Shower

Toilet
Elevation and Section of Proposed Bathhouse, Section EE Inset
Master Plan
The long term master plan is designed with the understanding of the changing needs of the facility.

Precedents
The precedents referred to show organizational methods for a complex of buildings.

Ocotilla, designed by Frank Lloyd Wright, is a temporary camp in Arizona. Many of these buildings are of similar construction and show only minor alteration in the building method. The placement of the structures creates a large gathering space in the center and smaller more private spaces nestled in the buildings. There is a clear understanding of the larger public space and the smaller private spaces.

Taliesin West replaced the temporary Ocotilla. Taliesin West is organized with a spine of access from which different size spaces are connected.

The plan of the Malm Funeral Chapels of Alvaro Aalto, demonstrates a branching access.

Program
The program of built spaces is approximately one third of the site area. Diagrams show the exploration of where the building area would be placed on the site for the desired organization.

Proposed Master Plan
The proposed master plan has a north to south access spine that serves as a register for the buildings of the campus. The access is covered and provides the main artery for the transport of resources within the site.

The main views of the site are reinforced by the master plan. The view to the mountains is reinforced by the entrance road. The view to Coyote Island is reinforced by the main house.

A courtyard serves the support staff housing, the workshop, and the main working square. The courtyards all have specific characteristics for their intended use.

The support staff courtyard is found at the north end of the site; the location providing privacy from the workings of the rest of the site and creating a central...
focus apart from the more public areas.
The workshop courtyard serves as a place of construction as well as maintenance of vehicles and machines. Vehicles come to the workshop from the access road. The view from the workshop is to the mountains in the west. The workshop area is out of the middle of activity but still has a visual relationship with the main courtyard.

The main courtyard is a large space surrounded by outfitting activities including a large washing area to the west that drains into the Solar Aquatic System. The system is located in the southern area of the courtyard and provides an educational and practical display of resource conservation. The central space of the courtyard is for gathering, the issuing of gear, and the teaching of classes. The large area of palms to the east shades a great deal of the main courtyard and creates an area underneath that can be used for sitting, gathering, and laying in hammocks.

Analysis of Master Plan
The diagrams show particular aspects of the master plan. The concerns illustrated are public and private areas, shade, views, and water distribution.
Plan of Ocotilla
Frank Lloyd Wright Selected Houses 3, Taliesin West, page 24

Plan of Taliesin West
Frank Lloyd Wright Selected Houses 3, Taliesin West, page 53
Plan of Malm Church of Alvaro Aalto

Alvaro Aalto, page 157
Diagram of Area Density of Program to Site
Proposed Master plan
Northern Half of Proposed Master Plan
Key for Master Plan

A. Offices
B. Library
C. Kitchen
D. Cleaning / Dish Washing
E. Dining
F. Food Storage
G. Boat Washing
H. Central Gathering Space
I. Solar Aquatic System
J. Instructor Housing
K. Instructor and Student Storage
L. Equipment
M. Rations
N. Student Issue Bays
O. Boat Storage
P. Bath House
Q. Showers
R. Toilets
S. Workshop
T. Boat Workshop
U. Garage for Vehicles
V. Parking
W. Utility Storage
X. Support Staff Housing
Y. Support Staff Storage
Z. Composts and Incinerator
Diagram of Public and Private

ARCHITECTURE FOR ENVIRONMENTAL LEARNING
Diagram of Views
Diagram of Shade with Late Spring/Early Fall Afternoon Sun
Diagram of Water Distribution
Main Square

Precedents
The plaza in Cordoba shows the confluence of two access. The plaza defines a larger area at the meeting of these access.

The Luis Barragan park has a large water pool that defines a path. The trees on either side set up a rhythm and a space under which to gather.

Plants and Water
The forest of palms becomes an oasis for the site. This landscaping brings life to the courtyard, defining an area that supports human life in the desert climate of Baja. The trees extend the use of the buildings into the square providing a sheltered area under which to gather and work.

The mesquite trees are shorter in height and more human in scale. These trees act as barriers, giving privacy to the central gathering space.

The water for boat washing runs along the spine of the site underneath the arbored walkway covered with bougainvillea. The water is used for cleaning and is collected at the bottom of the washing area before running into the Solar Aquatics System for treatment.

The Solar Aquatics System is on the south side of the square reinforcing the south edge of the central gathering area. The prominent location makes the system visible as an example of responsible resource conservation.

Paving
The mission provides examples of stones and paving found in the region.

The suggested paving in the courtyard defines the difference between the areas intended for washing, gathering, vehicle access, and pedestrian movement.

The wash area and floors of most service buildings are concrete for good drainage and easy maintenance.

The center gathering area is paved with small stones to give it a human scale and is placed in patterns which define areas for the issuing of group gear.

The vehicle access surface is flag stone to provide a
hard surface when it rains and discourage fast driving. The flag stone clearly defines the area where vehicles are suggested to drive.

Tile is used in the community spaces of the main house and for the surfaces in the instructor housing.
Plaza de las Flores, Cordoba

Fragments

Luis Barragan
Mulegé Palm Trees

Mulegé Palm Trees
Plan of Proposed Main Working Square
Section FF of Proposed Main Working Square
Section GG of Proposed Main Working Square
Proposed Paving for Square
Solar Aquatics System

The Solar Aquatics System is an artificial reconstruction of a wetlands environment for the decomposing of sewage. A Solar Aquatics System requires several steps to take the sewage through the necessary stages for purification.

Degritting removes larger objects from the system. These elements are usually tin cans, etc. that are foreign to the system.

The sewage is then run through solar tanks that are aerated and take the water to the primary level of treatment.

The clarifier is next, taking the sewage through a secondary level of treatment. Here the sludge is settled out of the sewage. The sludge is dried and recycled as fertilizer.

The marsh process takes the water and removes the high concentrations of nitrogen.

Near the end of the process is the solar tanks or a solar pond which has lush vegetation to support the microorganisms which enrich the water with oxygen.

The last stage disinfects the water using ultraviolet waves that kill the unwanted contaminants.

The volume of influent needed to support this system is that of a small community. It is in the interest of the inhabitants of Coyote Bay to invest in the facility together.

Information on this system was found through the Ecological Engineering Associates in Marion, Massachusetts.

The following photographs are from the facility in Providence, RI.
Diagram of Solar Aquatics System in Harwich Connecticut
Solar Tanks of Primary Stage

Plants in Solar Tanks of Primary Stage
Marsh

Pumping Water from Marsh to Solar Tanks
Solar Tanks of Final Stage of System Vegetation in Solar Tanks of Final Stage of System
Influent and Effluent from Solar Aquatics System

View Inside of Greenhouse in Providence, RI
Plan of Solar Aquatic System for NOLS

Section of Solar Aquatic System for NOLS
Landscape

Landscaping is used to transform the site into an oasis, making this particular area of Baja more inhabitable. The landscaping is relatively inexpensive and is merely the addition of plants that are already part of this environment. The extent of planting proposed is possible through the use of gray water for irrigation.

Proposed Landscaping

The proposed landscaping is designed to initiate the relationships set up in the organization of the mature master plan.

Stage One for Master Plan

Planting as completed in the first stage, sets up the wanted organization and will be mature as the full project reaches completion.

The bathhouse, the most urgently needed new building, is shown with the existing structures and the proposed landscaping.
Plan of Landscape Proposal and Stage One of Master Plan
Perspective in Palm Trees
Conclusion

Approaching the design of the National Outdoor Leadership School in Baja with a holistic attitude has been important. This approach gives a sense of unity to the facility. The many variables collectively contribute to a comprehensive design.

Having considered the broad range of issues, one should not lose scope of this facility as an educational environment. The main educational objectives were to reinforce a harmonious relationship between the facility and the surrounding environment and to be an example to future developments.

The relationship between the facility and the surrounding environment is experienced by the buildings of the facility framing views to landmarks. The landscaping with local vegetation integrates the outside spaces of the facility with the surrounding environment. The conscious use of local, non-toxic materials and the efforts towards resource conservation are part of the attitude of a respect for the natural world that the facility wishes to foster.

The simple direct approach to design problems using materials available locally, is an example to future developments. This approach towards building accompanied with the solutions for resource conservation reinforces the attitude of living harmonious in one’s environment.

This is one step in proposing solutions to the efforts to build sensitively and responsibly. Continual exploration of these ideas will enrich the solutions.
Appendix A: Program

<table>
<thead>
<tr>
<th>Square Feet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6468 sq. ft.</td>
<td>MAIN BUILDING</td>
</tr>
<tr>
<td>732 sq. ft.</td>
<td>Offices</td>
</tr>
<tr>
<td>144 sq. ft.</td>
<td>Roof Deck</td>
</tr>
<tr>
<td>260 sq. ft.</td>
<td>Library</td>
</tr>
<tr>
<td>2560 sq. ft.</td>
<td>Book Storage 100 sq. ft.</td>
</tr>
<tr>
<td>336 sq. ft.</td>
<td>Outside Porch Area</td>
</tr>
<tr>
<td>432 sq. ft.</td>
<td>Kitchen</td>
</tr>
<tr>
<td>324 sq. ft.</td>
<td>Cleaning/Dish Washing</td>
</tr>
<tr>
<td>432 sq. ft.</td>
<td>Dining</td>
</tr>
<tr>
<td>1248 sq. ft.</td>
<td>Food Storage</td>
</tr>
<tr>
<td>5792 sq. ft.</td>
<td>MAIN SQUARE</td>
</tr>
<tr>
<td>3072 sq. ft.</td>
<td>Boat Washing</td>
</tr>
<tr>
<td>1280 sq. ft.</td>
<td>Gathering</td>
</tr>
<tr>
<td>1440 sq. ft.</td>
<td>Solar Aquatics System</td>
</tr>
<tr>
<td>1248 sq. ft.</td>
<td>INSTRUCTOR HOUSING</td>
</tr>
<tr>
<td>864 sq. ft.</td>
<td>9 Units @ 96 sq. ft.</td>
</tr>
<tr>
<td>384 sq. ft.</td>
<td>Roof Deck</td>
</tr>
<tr>
<td>7024 sq. ft.</td>
<td>SUPPORT STAFF HOUSING</td>
</tr>
<tr>
<td>4400 sq. ft.</td>
<td>10 Houses @ 440 sq. ft.</td>
</tr>
<tr>
<td>2304 sq. ft.</td>
<td>Shared Outside Space</td>
</tr>
<tr>
<td>320 sq. ft.</td>
<td>5 Storage Units @ 64 sq. ft.</td>
</tr>
<tr>
<td>1152 sq. ft.</td>
<td>STUDENT ISSUE</td>
</tr>
<tr>
<td>1008 sq. ft.</td>
<td>7 Bays @ 144</td>
</tr>
<tr>
<td>144 sq. ft.</td>
<td>Student Luggage Storage</td>
</tr>
<tr>
<td>1152 sq. ft.</td>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>1008 sq. ft.</td>
<td>Issue and Gear Storage</td>
</tr>
<tr>
<td>384 sq. ft.</td>
<td>Offices</td>
</tr>
<tr>
<td>192 sq. ft.</td>
<td>Sewing/Repairs</td>
</tr>
<tr>
<td>3392 sq. ft.</td>
<td>BATH HOUSE</td>
</tr>
<tr>
<td>192 sq. ft.</td>
<td>4 Toilets @ 48 sq. ft.</td>
</tr>
<tr>
<td>384 sq. ft.</td>
<td>4 Showers @ 96 sq. ft.</td>
</tr>
<tr>
<td>768 sq. ft.</td>
<td>3 Platforms in Wat. Tower @ 256 sq. ft.</td>
</tr>
<tr>
<td>2048 sq. ft.</td>
<td>Clotheslines</td>
</tr>
<tr>
<td>3264 sq. ft.</td>
<td>WORK SHOP</td>
</tr>
<tr>
<td>768 sq. ft.</td>
<td>General Workshop</td>
</tr>
<tr>
<td>384 sq. ft.</td>
<td>Boat Repair Workshop</td>
</tr>
<tr>
<td>1536 sq. ft.</td>
<td>Outside Workspace</td>
</tr>
<tr>
<td>576 sq. ft.</td>
<td>6 Storage Units @ 96 sq. ft.</td>
</tr>
<tr>
<td>2392 sq. ft.</td>
<td>BOAT STORAGE</td>
</tr>
<tr>
<td>2392 sq. ft.</td>
<td>Kayaks</td>
</tr>
<tr>
<td>320 sq. ft.</td>
<td>Dinghies</td>
</tr>
<tr>
<td>320 sq. ft.</td>
<td>Wind Surfers</td>
</tr>
</tbody>
</table>
Appendix A: Program

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9690 sq. ft.</td>
<td>VEHICLE STORAGE</td>
</tr>
<tr>
<td>2016 sq. ft.</td>
<td>Garage for 6 Vehicles</td>
</tr>
<tr>
<td>7680 sq. ft.</td>
<td>Outside Parking for 24 Vehicles</td>
</tr>
<tr>
<td>2304 sq. ft.</td>
<td>COMPOST AND INCINERATOR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>45,030</td>
<td>TOTAL SQUARE FEET</td>
</tr>
<tr>
<td>16,716</td>
<td>TOTAL BUILT (COVERED) SQ. FEET</td>
</tr>
</tbody>
</table>
Appendix B: NOLS Catalog Course Descriptions

National Outdoor Leadership School
Appendix B: Catalog Course Descriptions

WATER COURSES

MEXICO SEA KAYAKING COURSE

AGE: 16 Minimum
DURATION: 21-22 Days
LOCATION: Baja California

This course introduces the student to the world of sea kayaking. You will learn to handle a sea kayak safely and effectively while enjoying the coastal wildlife. You will also receive an in-depth look at the unique animal community of the Baja desert coast.

MEXICO SAILING COURSE

AGE: 16 Minimum
DURATION: 22 Days
LOCATION: Baja California

This course is oriented to the Baja sea sailing expedition. You will learn the basics of sailing, setting, and steering. You will also receive an in-depth look at the unique animal community of the Baja desert coast.

MEXICO WOMEN'S SEA KAYAKING COURSE

AGE: 16 Minimum
DURATION: 22 Days
LOCATION: Baja California

This course is oriented to the Baja sea sailing expedition. It is designed specifically for women and focuses on developing self-confidence. The course covers individual initiation, responsibility, and expedition behavior in a supportive environment.

ARCHITECTURE FOR ENVIRONMENTAL LEARNING

105
Appendix B: Catalog Course Descriptions

SEMESTER IN MEXICO

AGE: 17-20

DURATION: 78 Days

LOCATION: Baja California, Mexico

Bob California scenic desert, mesas, and oceans are the location for this course, emphasizing fundamental skills and judgement essential to well-maintained outdoor excursions. This narrow peninsula between the Gulf of California and the Pacific is the wintering grounds for hundreds of bird species and a host of wildlife. The course will emphasize water safety and navigation, handling and planning, and utilizing basic sea-kayaking techniques. You will learn coastal navigation, anchoring, seamanship, and skills needed to keep your vessel out of the water. Some sections utilize a dinghy base camp for quicky mastery of basic sea-kayaking, while others utilize a larger sailing expedition insights to wind and weather.

SEMESTER IN MEXICO

AGE: 17-20

DURATION: 78 Days

LOCATION: Baja California, Mexico

During these three or four weeks, you will begin the fundamentals of backpacking. You will learn essential navigation and map reading techniques, as well as the art of planning and preparing for backpacking trips. This section in continuous and challenging. You will practice map reading in both desert and forest regions that is rugged and sometimes confusing. As you learn to make a map reading from your position, you will gain a new appreciation for the white sand beaches and green forests that you will encounter along the way.

SEA KAYAKING

This section is open to the Baja California Sea Kayaking course in the spring. A winter expedition features learning about weather, which varies with climate and geography. You will practice paddling techniques and sea safety skills as you move down the coast. This land and sea habitat is teeming with life, from whales and dolphins to lush islands and open water. You will learn to read the local tides, weather, and currents while learning how to make a map reading from your position. You will practice map reading in both desert and forest regions that is rugged and sometimes confusing. As you learn to make a map reading from your position, you will gain a new appreciation for the white sand beaches and green forests that you will encounter along the way.
Appendix B: Catalog Course Descriptions

25 AND OVER
MEXICO SEA KAYAKING COURSE
AGE: 25 Minimum, 30 Average
DURATION: 14 Days
LOCATION: Baja California
Mexico

Like the Mexico Sea Kayaking Course page 62, this shore course explores the sea and land ecosystems along the Baja California coast. This course combines adventures with fish, birds, sea lions and occasional whales. The magnificent landscape, with its huge cacti and stark geology, offers superb desert hiking. Travel is by kayak. Instruction covers the basics of paddling, wave theory, and route selection.

Colin Clancy

NOLS CORE CURRICULUM
The mission of the National Outdoor Leadership School is to be the best source and teacher of wilderness skills and leadership that protect the user and the environment.

SAFETY AND JUDGMENT
Basic first aid, safety and accident prevention, hazard evaluation, wilderness medicine-related injury prevention and treatment, rescue techniques, emergency procedures.

LEADERSHIP AND TEAMWORK
Responsibility, initiative, “leader of the day” opportunities, small group expeditions, group dynamics, expedition planning.

OUTDOOR SKILLS
Campsite selection, shelter and stove use, fire-building, sanitation and waste disposal, cooking and baking, nutrition and rations, equipment care and selection, keeping warm and dry, route finding and navigation, backpacking, kayaking, horsepacking, sailing, fishing, telemark skiing, dog sledding, caving, climbing, canoeing.

ENVIRONMENTAL STUDIES
Minimum-impact camping and resource protection, ecosystems, flora and fauna identification, geology, weather, astronomy, land management and cultural issues, public service, wilderness ethics.

COLLEGE CREDIT
Many NOLS students elect to earn optional college credit either by 1) making arrangements with their college or university to earn credit via an off-campus or independent study program; or 2) prearranged credit through the University of Utah, Division of Continuing Education, Department of Recreation and Leisure (and Department of Biology for some NOLS courses). Further information will be sent in your enrollment packet or is available by calling the NOLS Admission Office at (307) 332-6973.
Appendix C: Input Output Resource Diagram
Appendix D: Bathhouse Fixtures

Sun Family Solar Water Heater

The Sun Family solar heater keeps water hot through the night, the same way a thermal belt keeps your coffee at the right temperature—with a vacuum layer that drastically reduces heat loss. Made of super-strong, high-tech glass, that can withstand the blast of a 350°F bathtub, the heater utilizes a double tube design that provides a full 360° of heat collecting surface.

Regardless of the sunny angle, the Sun Family can soak up the maximum possible amount of heat, morning, noon, and evening, in every season of the year. Even so, some reflected heat will go unabsorbed. Combination a Sun Family with a supplemental instantaneous-demand water heater, and you’ll always have the hot water you need—at tremendous savings. Since the PK-20 can heat both a hot and a cold water supply, you can have separate tanks. For example, you can use the Sun Family to heat water in a house or apartment house, as well as small, individual installations. The Sun Family heater is the most exciting development in water heating to date—and the most cost-effective system on the market. We at Real Goods give it our highest recommendation.

ALTERNATIVE ENERGY SOURCEBOOK

109
Appendix E: Sun Angle Diagram
Illustrations

Map of the Baja Peninsula 12
Map of Bay of Concepción 13
Map of Coyote Bay 14
Sketch of Coyote Bay from the East 15
Approaching Coyote Bay from the East 16
Approaching Coyote Bay from the East 16
Approaching Coyote Bay from the East 17
House in Coyote Bay 18
House in Coyote Bay 18
House in Coyote Bay 19
House in Coyote Bay 19
House in Coyote Bay 20
Detail of House in Coyote Bay 20
Abandoned Building 21
Gateway to Trailer Park 21
Less Developed Bay to the North of Coyote Bay 22
Less Developed Bay to the North of Coyote Bay 22
Detail of More Developed Bay 23
Detail of More Developed Bay 23
Plan of Existing Site 24
Plan of Existing Site Showing Views of Photographs 25
Morning View of Main House Looking Out to Coyote Bay 26
Morning View of Main House 26
Morning View of Site Interior 27
Water Tower Against Mountains 27
Beach Front and Sea Wall 28
View Between Houses Towards Coyote Bay 28
Access Road 29
Road of Site Interior 29
North Side of Workshop 30
Workshop and Instructor Housing 30
Plan and Section of Existing Main House 31

Plans and Sections of Workshop and Instructor Housing 32
Cholla 33
Bougainvillea 33
Mesquite 34
Pickleweed 34
Mangrove 35
Huitatave 35
Cardón 36
Mexican Fan Palm 36
Plan Diagram of Views to Landmarks 37
Section Diagram of Views to Landmarks 37
View to Coyote Island 38
Interpretive Sketch of Existing Site 39
Proposed Master plan 40
Anasazi Dwelling of Mesa Verde 43
Aboriginal Structure of Australia Made from Tree Bark 43
Ocotilla under Construction 44
Ocotilla Interior 44
Glen Murcutt House 45
Glen Murcutt House 45
African Roof Structure in Burundi 46
Georg Grotenfelt House 46
Mission in Mulegé 47
Mission in Mulegé 47
House in Mulegé 48
Building under Construction in Mulegé 48
Section of Student Issue 49
Proposed Student Issue Building 49
Proposed Student Issue Building 50
Vocabulary of Materials 51
Plan for Proposed Instructor Housing 55
Section of Proposed Instructor Housing, AA Above and BB Below 56
Plan of Proposed Main House 57
Sections of Proposed Main House, CC Above and DD Below 58
Bibliography

Smith, Maurice, Professor Emeritus MIT, *Fragments*.