o MR-

Message Passing in a Factored OS o TecrmoLoay
by JUN 2 1 201
Adam M. Belay LIBRARIES |

Submitted to the Department of Electrical Engineering and Computer
Science ARCHIVES

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2011

Juwne 20717
(© Massachusetts Institute of Technology 2011. All rights reserved.

Department of Electrical Engineering and Computer Science
May 18, 2011

A :
Certified by.................,... B T ,
/ An’c Agarwal

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted DY . ..o e e FUUTUU
Dr. Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee




Message Passing in a Factored OS
by
Adam M. Belay

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2011, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The fos project aims to build a next generation operating system (OS) for clouds and
manycores with hundreds or thousands of cores. The key design tenant of fos is to
break operating system services into collections of distributed system processes that
communicate with message passing rather than shared memory. This microkernel-
based design has the potential for better performance and more efficient use of archi-
tectural resources. This is because each isolated address space can be scheduled on
a separate dedicated core —— It is anticipated that assigning entire cores to specific
system processes will become feasible in the near future given the trend of increasing
abundance of cores per die and in the datacenter. Cache locality in particular ben-
efits from this approach, as user applications no longer compete with the operating
system for on-core cache resources. However, for such benefits to be fully realized,
the message passing system must be sufficiently low latency. Otherwise, too much
time will be spent transfering requests between cores.

For this thesis, a high-performance message passing system for fos is developed
and evaluated. The system supports a variety of messaging mechanisms, including a
kernel messaging transport optimized for one-off communications, a low latency user
messaging transport tailored to more frequent communications, and inter-machine
messaging over TCP network sockets.

Experiments show that the user messaging transport can be used to make core-to-
core system calls with comparable latency to the trap-and-enter procedure of conven-
tional system calls in monolithic OSes. Thus the latency of messaging to a different
core is sufficiently low to allow for the locality benefits of fos’s distributed OS services
to overshadow any negative impact of messaging costs.

Thesis Supervisor: Anant Agarwal
Title: Professor of Electrical Engineering and Computer Science



Acknowledgments

I would like to thank Anant Agarwal for supervising this thesis and for helping me to
become a better researcher. I am very grateful for the support and guidance he has
provided, and I value his words of wisdom on how to present research effectively. I
would also like to thank David Wentzlaft for his feedback on the research in this thesis
and for his help in shaping the direction of my research in general. I am grateful for
the time he spent, often late into the night, helping with the cache study, which is
included as a chapter in this thesis.

This project would not have been possible without the efforts of the fos team and
the Carbon Research Group, as they provided a solid foundation for me to develop
my research. I am grateful for the many discussions on the messaging system design
and for the team’s willingness to put up with me while I was swamped at the end of
the semester.

I would like to thank Patrick Winston for his sage advice throughout my academic
journey. [ also appreciate Anne Hunter’s dedication to making sure I progressed
through MIT smoothly. Finally, [ would like to thank my parents for their support

and for their confidence in me.



Contents

1 Introduction
1.1 Contributions . . . . . . . . .

1.2 Outline . . . . . . . .

2 Factored OS and Message Passing

2.1 fos: Design and Implementation . . . . .. . . . ... ... ..
2.1.1 System Architecture . . . . .. .. ...
2.1.2 Fleet Services . . . . . ... ...
2.2 Message Passing Optimizations . . . . . . .. ... ... . ... ...
2.2.1 Kernel Messaging Optimizations . . . . . . . . . . . ... ...
2.2.2  User Messaging Optimizations . . . . . . .. . ... ... ...
223 Memory Remapping . . . . . . . ... ... ... ...
2.3 Hardware Message Passing . . . . . . ... . ... . ... ... ... .

3 Cache Performance Study

3.1 Overview. . . . . . ..
3.2 Results. . . ..
3.2.1 CachEMU . . ... ... .
3.2.2 Methodology . . . ... ...
3.2.3 Cache Behavior . . . . ... ... .
3.2.4 Performance Impact . . . . . ... ... ... ...
3.3 Discussion . . . .. ...

10
11

12
12
15
16
17
18
19
20
20



4 Design and Implementation of Messaging
4.1 Overview of Messaginginfos. . . . . . . . . ... ... ... ... ..
4.1.1 Messaging System Properties . . . .. ... ... ... .. ..
4.1.2 Security and Isolation . . . . . .. .. ... ...
4.2  Messaging Architecture and Implementation . . . . . . .. .. .. ..
4.2.1 Kernel Messaging . . . . . . . . . ...
4.2.2 User Messaging . . . . . . . .. .. o
4.2.3 Dynamic Transport Selection . . . .. ... .. .. ... ...

4.2.4 Multi-machine Messaging . . . . . .. ... ...

5 Evaluation
5.1 Testing Procedure . . . . . . . . .. ..o
5.2 Messaging Performance . . . . . . . . ..o
5.2.1 Performance of Messaging for System Calls . . . . . . . . . ..
5.2.2 Latency for Different Message Sizes . . . . . .. .. .. .. ..
5.3 Dynamic Transport Selection . . . . . ... ... ... ... .....

5.4 Is Lower Latency Possible? . . . . . . . . ... ..o

6 Conclusion

6.1 Future Work . . . . . . . e

A Fast IPC Implementation

31
31

33
33
34

38
39

41
41
42
43
44
46
47

49
50

51



List of Figures

2-1 fos Running on Multiple Machines . . . . . . . . ... . ... ... .. 14
2-2  The fos System Architecture . . . . . . .. .. ... .. 15
3-1 Cache Miss Analysis of the Linux Zip Application . . . . . . . .. .. 25
3-2  Comparison of Separate and Shared Caches for Different Sizes . . . . 26
3-3  Memory Performance Impact of Different OS Placements . . . . . . . 28
3-4  Overall Performance Impact of Different OS Placements . . . . . . . 28
4-1 Local Message Passing Transports . . . . . . . .. . .. .. ... ... 34
4-2 User Messaging Shared Memory Layout . . . . . . . . ... ... ... 37
4-3  Multi-machine Messaging . . . . . . .. . . ... ... ... ... .. 39
5-1 Messaging Latency for Different Sizes . . . . . . . . . . ... ... .. 45
5-2  Hybrid Messaging Performance . . . . .. .. ... . ... ... ... 46



List of Tables

5.1 Comparison of fos and Linux System Call Performance . . . . . . ..

5.2 Lowest Possible Messaging Latency



Chapter 1

Introduction

Factored OS (fos) is a new operating system (OS) for multicores and the cloud. Its
construction is motivated by two challenges. First, as the number of cores per die
continues to increase, it is becoming more difficult to maintain OS scalability. Second,
the services that form today’s cloud infrastructure tend to be fragmented because they
each provide their own isolated interfaces.

The fos project addresses these challenges with the creation of a cloud-aware dis-
tributed OS that communicates with message passing. Through message passing, fos
makes more efficient use of architectural resources and provides a uniform interface to
all services. A unique aspect of fos is that it dedicates entire cores to each service. As
a result, message passing does not incur the context switching overhead of traditional
microkernels. Instead, data is passed efficiently between concurrent processes running
on different cores.

This thesis presents the fos message passing system. Message communication is
provided through mailboxes. A mailbox is a named endpoint that can be used to
establish a one-way channel of communication with another process. In the event the
intended mailbox resides on a different machine than that of the sender, a proxy ser-
vice redirects messages over the network. This allows distributed OS services to scale
beyond the confines of a single machine. In other words, a single messaging mecha-
nism can be used both for multiple machines in a cloud data center and for multiple

cores within a single machine. Thus, fos provides a more cohesive communication



mechanism than the ad-hoc methods traditionally used in today’s cloud services.

For local messaging on cache coherent multiprocessors, two separate transports
have been implemented. The first is kernel messaging. Kernel messaging invokes the
kernel to transfer message data to a heap data structure in the receiving process’s
address space. The second is user messaging. User messaging relies on a careful
discipline over a shared memory channel and does not require entry into the kernel.
This form of messaging takes more cycles to set up than fos’s kernel messaging, but
provides lower latency and better throughput. fos is also designed to be compati-
ble with a fourth messaging transport in the near future: architectural support for
message passing. It is anticipated that this mechanism will provide the best possible
performance, and will obviate the need for kernel-traps to handle outgoing messages,
similar to fos’s current user messaging implementation.

fos schedules system services spatially rather than relying on exclusively tempo-
ral multiplexing. It dedicates entire cores (when available) to OS services. Such a
scheduling policy has the potential to reduce the OS’s competition for architectural
resources with the user-level applications that run on top of it. In contrast, mono-
lithic operating systems like Linux, invoke the OS on the same core as the application,
either in response to system calls or to asynchronous interrupts. This causes the op-
erating system to fight with applications for branch predictor state, TLB caches, and
most significantly instruction and data memory caches.

A new tool, called CachEMU, was constructed to quantize the effects of OS pol-
lution on memory caches. CachEMU is built on top of QEMU’s binary translator
and supports full-system instrumentation. Using data gathered with CachEMU, it is
shown that there is potential for fos’s design to better utilize on-die cache resources.
In order for these benefits to be fully realized, however, fos’s message passing system
must have similar latency to traditional trap-and-enter system calls. To this end, the
performance of fos’s message passing system is fully evaluated, and it is shown to not

be prohibitively expensive.



1.1 Contributions

The locality benefits of the fos design are characterized, and a message passing system
that supports the fos design is presented. More specifically, the following contributions

are made in this thesis:

e Cache Performance Study. CachEMU uses dynamic binary translation to
provide real-time full-system memory trace output. The trace output is then
piped to architectural models in order to simulate various cache configurations.
These models show the benefits of running the OS and the application on sep-

arate cores. CachEMU has been made available as an open source tool.

e Fast Messaging Implementation. A highly optimized user messaging ser-
vice, inspired by Barrelfish, is presented. A novel flow control mechanism allows

the receiver to limit the rate that new messages arrive.

e Dynamic Transport Selection. Using competitive messaging, fos switches
between kernel and user messaging dynamically in order to better optimize

performance and memory usage.

e Multi-machine Messaging A single unified interface allows processes to send
messages in a consistent way regardless of whether they are destined for a
process running on the same machine or a remote machine. A proxy service

aids in redirecting messages destined for remote machines.

e Messaging Performance Analysis. The performance of messaging is eval-
uated on cache coherent multicores, demonstrating that messaging can be ex-
tremely fast on contemporary hardware platforms, competitive with the lo-
cal system calls used by monolithic operating systems. Moreover, a minimal,
highly optimized IPC implementation is presented, establishing a lower bound

on achievable messaging latency.

10



1.2 Outline

This thesis focuses on the design and performance of fos and its messaging system.
Chapter 2 provides background information on the fos project, previous message
passing OSes, and hardware support for messaging. Chapter 3 analyzes the cache
behavior of Linux and shows the potential performance improvements that are pos-
sible through transitioning to a fos-like OS model. Chapter 4 provides an in-depth
description of fos’s messaging design and implementation. Chapter 5 characterizes
the performance of message passing in fos. Finally, Chapter 6 concludes the thesis

with a summary and a discussion of future directions.

11



Chapter 2

Factored OS and Message Passing

This chapter presents related work and background information on fos, fast message

passing techniques, and hardware-based message passing.

2.1 fos: Design and Implementation

fos is a next generation OS for future multicores and today’s cloud computing data
centers [30]. It aims to address two emerging challenges.

First, the number of cores per die has been steadily increasing to unprecedented
levels. For example, AMD recently unveiled a 16 core server processor as part of its
"Bulldozer” architecture. In the embedded space, Tilera has developed a commer-
cially available 64 core processor [5]. Furthermore, Intel has constructed a research
prototype called the “single-chip cloud computer” (SCC) with 48 cores and software
addressable on-chip memory [20]. One interesting aspect of the Intel architecture
in particular is that hardware cache coherency is unavailable, necessitating that its
systems software be constructed with message passing.

This trend of increasing core counts creates new challenges for the construction
of OSes. The foremost concern is scalability. Although GNU/Linux has been shown
to scale for up to 48 cores with some modifications [12], it is unclear if a monolithic
kernel will be an adequate design for 100 or 1000 cores. Chapter 3 elaborates on this

issue further, especially from the perspective of ofi-chip bandwidth usage and cache

12



locality.

fos’s solution to the scalability challenge is to construct an operating system with
components that communicate with message passing — User applications are free to
use either message passing or shared memory when it is available. Message based
communication has the advantage of making data sharing explicit, rather than the
implicit communication nature of shared memory. An additional advantage of mes-
sage passing is that it is inherently compatible with traditional network protocols like
TCP/IP. To this end, OS services are constructed using a fleet design pattern [31], or
collections of distributed OS services that are highly scalable and adaptable. Several
fleets have been implemented in the current fos prototype, including a naming service
that provides information about the location of messaging mailboxes, a filesystem and
networking service for 1/0, and a page allocation and process management service
for mediating access to memory and computation.

The second challenge is that system as a service (SaaS) cloud providers use vir-
tualization to multiplex access to physical machines. This forces heterogeneity in the
communication mechanisms used to build cloud applications. Specifically, processes
within a virtual machine can use shared memory or pipes to communication while pro-
cesses cooperating in separate virtual machines must rely on network sockets. Sockets
can have needlessly high overhead, especially in the case where two virtual machines
share the same physical machine. Some work has been done to mitigate these perfor-
mance costs and to provide better interfaces [28,33]. However, more could be done to
simplify cloud application development through providing a uniform communication
mechanism for both local and remote communication.

fos addresses this issue by presenting a single messaging interface and namespace
for all types of communication, similar to the uniform distributed namespace of Plan
9 [24]. fos goes further by providing a single system image; an application running
under fos can scale beyond a single machine provided that it uses message passing to
share data. Figure 2-1 illustrates a scenario where an application scales across several
machines while communicating with a filesystem residing on a single machine. The

application writer need not be concerned with the number of machines being used

13



or the network locations of fos services. Furthermore, a library OS implementation
called libfos hides the message passing details and provides a more traditional OS
interface. The standard C library has been ported to run on top of libfos, and thus
even legacy POSIX applications can be made compatible with fos through only minor

modifications.

libfos |||l tibfos

fos microkernel fos microkernel fos microkernel
Hypervisor Hypervisor Hypervisor

CPU|CPU|CPU CPU|CPU|CPU CPU|CPU|CPU
Machine A : Machine B Machine C

Figure 2-1: A view of fos running on three separate physical machines in a cloud dat-
acenter. For this example, the application requires more cores than a single machine
can provide. As a result, a single image, powered by libfos, maintains the illusion
that the application is running on one large machine. The application relies on a
filesystem service that is provided by the fos OS. Communication with the filesystem
is seemless and uniform, regardless of the physical machine that initiated the request.

A limitation in fos’s single system image is that memory cache coherency is not
supported across machines. Software based cache-coherent shared memory is a cur-
rent area of exploration and may be included in future releases of fos. This would
enable threaded and more generally shared memory applications to gain the multi-

machine scaling benefits that message passing applications currently enjoy. One po-

14



tentially promising approach is multigrain shared memory [32], where fast fine grain
cache-line sharing is used when available in hardware and course grain page-sized

lines are sent across the network when misses occur between machine nodes.

2.1.1 System Architecture

The fos system architecture consists of a microkernel and a collection of distributed
08 services that work together to provide more comprehensive OS functionality. Ac-
cess to these components is abstracted by a library OS implementation called libfos.
Figure 2-2 shows a high-level overview of fos running on a hypothetical multicore

Processor.

r - - - - - - - - - - — — T — "

Figure 2-2: An overview of the fos system architecture. Each core runs a microkernel
in privileged mode and libfos in unprivileged mode. Higher-level OS services run in
separate processes and are accessed through message passing. Two example services
are shown, a network stack and a memory manager.

fos’s microkernel is minimal, providing only secure access to hardware, kernel
messaging, shared memory setup for user messaging, and basic time multiplexing. All

other functionality is implemented in userspace. Access to microkernel functionality



is restricted through a capability system. Only processes possessing a secret nonce
value for a given mailbox can enqueue messages.

The fos microkernel is implemented as a 64-bit x86 guest on top of Xen. This in-
cludes support for Xen’s paravirt interface, allowing for more efficient virtualization
of memory protection and processor control. Additional architecture ports are ex-
pected in the near future. However, it is anticipated that virtual machine platforms
will continue to play a significant role in fos, as they are a natural unit of elastic
computation for cloud service providers.

Libfos serves the critical role of simplifying access to fos’s distributed services
by providing convenient OS abstractions. For example, a file descriptor interface is
provided by libfos, hiding the complexity of mailbox communication with the file sys-
tems server. Libfos also assists in optimizing system performance. For instance, libfos
caches name service lookups and block device reads. Many significant components of
the fos message passing system reside in libfos, including most of the user messaging

transport.

2.1.2 Fleet Services

Most OS services provided by fos are implemented as fleets. A fleet is a set of
distributed processes that work together to provide an OS service. In many ways,
fleets are inspired by todays Internet services. In particular, the fos naming service
maps mailbox aliases to mailbox locations much like DNS [21] maps hostnames to IP
addresses.

The key design goal of fleets is to maximize scalability. This is achieved by using
standard distributed system building techniques, such as replication and load balanc-
ing. Moreover, because fos fleets run on a dedicated set of cores, they engage in less
data sharing and achieve better locality than if their respective service was running
on all available cores, as is typical for monolithic kernels.

Another design goal of fleets is elasticity. To this end, each fleet service dynam-
ically determines the number of cores it uses to process requests and perform work.

One approach is to use Heartbeats [17] to monitor the response rate of a fleet. The

16



system can then adjust the number of cores assigned to that fleet in order to maintain
a desired quality of service.
The following fleet services have been implemented or are currently in development

as part of the fos OS.

e Naming: The fos naming service provides a mapping between human-readable

names called aliases and mailbox locations.

e Filesystem: The fos filesystem provides ext2 support. It is currently single-

threaded. A more advanced filesystem is in active development.

e Networking: fos has a network fleet that is fully parallelized. It provides
TCP/IP support as well as support for protocols such as DHCP and ARP.

e Page Allocation: The page allocation service manages access to physical mem-

ory pages. It is constructed on top of a highly scalable pool data structure.

e Memory Management: A dedicated fos fleet manages per-process virtual

memory assignments. It is also responsible for servicing page faults.

e Process Management: The process management fleet includes a built-in ELF

parser. It manages register state and assists in launching new processes.

2.2 Message Passing Optimizations

Message passing performance issues were a major drawback of microkernels when they
were initially introduced (e.g. Mach’s first implementation had large IPC overheads
[1].) This is because each message incurs a context switching cost whenever the
target OS service is running in a separate protection domain. Such costs discourage
the creation of fine-grain protection domains, instead suggesting that OS functionality
should be clumped together into larger pieces sharing a single address space. Taken
to the extreme, a monolithic operating system with a single protection domain could

be seen as an inherently more performant design. A variety of techniques have been

17



explored in order to make microkernels with multiple protection domains as fast as
single protection domain OSes. Principally, these efforts focused on making large
reductions in message passing and context switching latency, assuming that the OS
and the application would multiplex a single core.

More recently, with the advent of multicores, the cost of context switching be-
tween protection domains on a single core is no longer the central concern. Rather,
the latency of cross-core communication is becoming a limiting factor. Fortunately,
many of the optimizations that were developed, both for kernel-level and user-level
message passing and context switching, are equally relevant toward this new challenge
introduced in modern architectures.

This section provides an overview of specific techniques for efficient shared mem-
ory message passing, including optimizations for kernel-level messaging, user-level

messaging, and large transfers between address spaces.

2.2.1 Kernel Messaging Optimizations

Traditionally messaging is provided as a kernel-level service. 1.4 was one of the first
operating systems that offered fast message passing performance through the kernel
[18]. This was accomplished through a variety of optimization techniques. First, L4
stores small messages directly in processor registers, avoiding the need to read such
messages from memory. This optimization is not possible when messaging between
different cores, because registers cannot be shared between cores directly. Second,
the L4 microkernel sets up temporary virtual memory mappings (exposed only to
the kernel) that allow it to copy the message payload directly into the receiver’s
address space. Great care must be taken to ensure the current TLB reflects the
mappings accurately and that TLB updates are not prohibitively expensive. Third,
the instruction stream is optimized to take conditional jumps faster in the case of a
valid messaging request. Fourth, a flat memory model is used in order to avoid the
need to save and restore segment registers. L4 provides a fully synchronous message
passing paradigm and is optimized for the case of where the process context on a

single core needs to be changed in order to service the message. In contrast, fos

18



requires asynchronous messaging and will typically send core-to-core messages that
require no context changes. Nevertheless, many of the optimizations in L4 could be
relevant to improving fos’s messaging performance simply because they are effective
at reducing the cost of system call entry and exit.

An earlier approach to fast kernel-level messaging, targetting the DEC Firefly
architecture, is LRPC [7]. In many ways it inspired the implementation of L4. One
interesting optimization is that the application and the OS service can share a stack

during a system call.

2.2.2 User Messaging Optimizations

User-level message passing is an alternate approach where the kernel only performs
context switching (for cases that require multiplexing a single core) and memory
setup. All other aspects of message passing are performed at user-level. This notion
was pioneered in URPC [8]. URPC combines an efficient user-level message passing
scheme with user-level thread scheduling. Messages are sent and received by the ap-
plication directly over a shared memory mapping established before the first message
1s sent.

Barrelfish [3] is constructed using both LRPC and URPC messaging mechanisms.
Its URPC implemention is particularly efficient because it uses a scheme that inval-
idates only a single cache line for sufficiently small messages. This is achieved by
sending data in cache-line sized chunks and reserving the last few bytes for a genera-
tion number. The receiver polls the next cache line it expects to be available, waiting
for the generation number to be incremented to the next number in the sequence.
Since the generation number is updated last, this ensures that all of the remaining
data in the line is available. Thus the receiver fetches both data and book keeping in
a single round of the cache coherency protocol. This optimization is leveraged in the

fos user-level messaging implementation.

19



2.2.3 Memory Remapping

For very large data transfers between protection domains, the overhead of copying
bytes, even across a shared memory mapping, can be high. An alternative approach
is to use fast buffers (fbufs) [15]. In fbufs, memory remapping is used to securely
transfer ownership of entire pages of data. Specifically, the sender writes data into
pages of memory and then relinquishes ownership of those pages to the receiver. This
is beneficial not only because the sender can achieve zero-copy transfers, but also

because fbuf operations tend to pollute the sending core’s data cache less.

2.3 Hardware Message Passing

Some emerging multi-core architectures are providing light-weight hardware support
for message passing. For example, Tilera’s Tile64 allows unprivileged code to pass
messages directly through the interconnect network via specialized processor registers
[29]. Moreover it can deliver interrupts to notify userspace processes of message
arrival. This allows it to support both polling and interrupt-based delivery. Tilera’s
messaging hardware completely bypasses shared memory access and does not rely on
cache coherency protocols. As a result, it has the potential to perform better than
even highly optimized user and kernel based message passing methods.

Intel’s SCC also provides an interesting hardware-assisted message passing mecha-
nism [20]. Efficient transfer of data between cores is enabled by a region of ultra-fast
on-chip memory called the message passing transfer buffer (MPTB). A MPTB is
present on each tile along with a set of test-and-set registers. The test-and-set regis-
ters are used to implement fast synchronization primitives, a necessary mechanism for
supporting atomicity. Coherence is managed entirely by the programmer and without
explicit hardware assistance. A communication library called RCCE provides a more
natural programming model by supporting put and get operations. These operations
are fast, as they copy data directly from the sending core’s L1 cache to the receiving

core’s MPTB.

20



Chapter 3

Cache Performance Study

An emerging question in OS research is whether it will be necessary to adopt new
designs in order to support the next generation of multicores. This especially pressing
considering that processors could have hundreds or thousands of cores in the near
future. Most contemporary OSes, including the popular Linux and Windows OSes
have adopted a monolithic design. In this case, each application shares its core
with the OS kernel. Specifically, the kernel steals cycles from the application during
interrupts and in response to system calls. Such a design has the potential to introduce
greater competition over architectural resources. An alternative design, as adopted
by fos, is to dedicate entire cores to the OS. This allows the OS and application to
run separately while still permitting interaction through message passing.

This chapter presents a study of cache performance, comparing the memory be-
havior of the different OS designs. A new open source memory trace generator and
. cache simulator called CachEMU was created to evaluate the inherent advantages
and disadvantages of each design in terms of memory access costs. It is crucial for
future operating systems to use memory resources efficiently in order to avoid higher
latencies and to conserve off-chip bandwidth [13]. Otherwise, poor cache hit rates
could cause cores to loose excessive cycles waiting for memory references. The results
in this study indicate that a fos-style OS accesses memory more efficiently through
improved cache locality. Thus, it has the potential to be a superior design for future

multicores.

21



3.1 Overview

There are two competing factors that determine the cache performance differences
in each OS design. The first is competition and favors running the OS and the
application on separate cores. The second is cooperation and favors running the OS
and application on the same core.

Competition is an effect where the OS and the application fight over the archi-
tectural resources of a core, including memory caches, TLBs, branch predictor state,
registers, and other stateful mechanisms. This effect results in performance losses
because lost architectural state must be recalculated either as a dependency for com-
putation to proceed or as necessary background information to perform successful
speculative execution. The results gathered with CachEMU suggest that fos and
other scalable OSes [3, 10] have inherent performance advantages because their de-
sign results in a reduction in competition. Specifically, because each core is dedicated
to a specific task (belonging to either the application or the OS,) the working set size
on any given core is reduced to better fit within the capacity of the local cache as
well as other architectural resources.

On the other hand, running the OS and application on separate cores causes an
increase in overhead associated with cooperation. Cooperation occurs whenever the
OS and application share memory. For example, during a system call, the application
might pass a cache hot buffer to the kernel as an argument. If the OS were running
on a different core, the shared state would have to be transfer either using the cache
coherency protocol or with hardware message passing. On the same core, however, the
shared state could remain in the core’s local cache. Though certainly impactful, the
added cooperation costs typically do not exceed the benefits of reducing competition
by running the OS on its own core. The reason is that the OS can be placed on a
core that is near the application core, resulting in the potential for more efficient data
transfers. For example, a shared L3 cache between cores could prevent the need to

go off-chip to retrieve shared data.

22



3.2 Results

Using CachEMU, a variety of experiments that examine the effects of competition
and cooperation in the context of OS and application workload placement strategies

are presented.

3.2.1 CachEMU

CachEMU is a memory reference trace generator and cache simulator based on the
QEMU [6] processor emulator. Through modifications to QEMU’s dynamic binary
translator, CachEMU interposes on data and instruction memory access. This is
achieved by injecting additional micro-operations at the beginning of each guest in-
struction and data lookup. CachEMU’s cache model has fully configurable cache size,
associativity, block size, and type (instruction, data, or unified). Raw memory trac-
ing, however, could easily be directed to additional purposes in the future, such as
write-back buffer modeling or simulating TLB costs. Like SimOS [25], CachEMU’s
modeling can be enabled or disabled dynamically, allowing system boot-up or any
other operations that are not relevant to an experiment to run without added over-
head.

Several of QEMU’s advantages are preserved in CachEMU, including the ability to
perform full-system emulation across multiple processor [SA’s with realistic hardware
interfaces. Although this study is currently limited to Linux on x86-64, full-system
emulation makes CachEMU a powerful tool for studying the effects of OS interface on
a variety of potential platforms (e.g. Android mobile phones and Windows desktops.)
Simics provides similar full-system and memory trace capabilities to CachEMU but
is currently proprietary [19].

CachEMU builds upon the work of past memory reference tracers. For example,
ATUM used modifications to processor microcode to record memory traces to a part
of main memory [2]. Previous studies have established that OS interference can have
a significant effect on memory caches [2, 14].

CachEMU brings the ability to study OS interference to new machines and allows

23



for the study of new kinds of applications. Such an effort is relevant now more than
ever because of the dramatic increase in cores on a chip, each with dedicated cache
resources, changes in the scale of applications, and the rise in complexity of cache

topologies.

3.2.2 Methodology

CachEMU was used to evaluate the effects of competition and cooperation, counting
kernel instructions toward the OS and user instructions toward the application. Each
application was given its own virtual machine with a 64-bit version of Debian Lenny
installed and a single virtual CPU. Instruction-based timekeeping, where each guest
instruction is counted as a clock tick, was used with QEMU in order to mask the
disparity between host time and virtual time. For cases where the user and the
OS were using separate caches, a basic cache coherency protocol simulated shared
memory contention by having writes in one cache trigger evictions in the other cache.
Evictions were performed only for unshared caches. For example, a memory reference
could cause an eviction in a separate L2 cache while leaving the entry present in a
shared L3 cache. All cache accesses were modeled with physical addresses and each
cache line used a standard 64 byte block size.

Five common Linux workloads were chosen because of their heavy usage of OS

services. They are as follows:

e Apache: The Apache Web Server, running an Apache Bench test over local-
host.

e Find: The Unix search tool, walking the entire filesystem.

e Make: The Unix build tool, compiling the standard library ’fontconfig’ (in-

cludes gee invocations and other scripts.)

e Psearchy: A parallel search indexer included with Mosbench [11], indexing the

entire Linux Kernel source tree.

24



e Zip: The standard compressed archive tool, packing the entire Linux Kernel

source tree into a zip archive.

3.2.3 Cache Behavior

In order to gain a better understanding of the effects of capacity on competition
and cooperation, a spectrum of single-level 8-way associative cache sizes were tested
ranging from 4KB to 16MB. For each test, the number of misses occurring under
separate OS and application caches was compared with the number of misses occurring
in a shared application and OS cache. In general, it was observed that competition was
a dominant factor that discouraged sharing for small cache sizes, while cooperation

was a dominant factor that encouraged sharing for larger cache sizes.

10 |
w/o Cooperation

Operating System
Competition

" Application
7 1
9]
-
IS
)
<
0
©
O 0.1
o
0.01

4 16 o4 256 1024 4096 16384
cache size (KB)

Figure 3-1: Cache Miss Rate vs Cache Size for the zip application. Shows shared
cache misses attributable to the OS and Application alone as well as the Compe-
tition between them. Also shows additional misses that would occur without the
Cooperation benefits of a shared cache.

For example, figure 3-1 shows the cache behavior of the zip workload when the OS

25



and the application share a cache. For this test, competition effects were dominant
until the cache size reached 1 MB. Then from 1 MB to 16 MB the reduction in
misses because of cooperation — shared data between the application and the OS —
overtook the number of cache misses caused by competition. Although the number of
misses avoided as a result of cooperation is relatively small, the performance impact
is still great because for larger cache and memory sizes (i.e. where cooperation is a
dominant effect) there tends to be much greater access latencies. It is worth noting
that the zip workload generally had a higher proportion of misses caused by the OS,

a common trend observed in all of the test workloads.

100 : ;

) Psearchy =———&—
v Apache =g
a ~ Make =g
= 50 g " Find sewes
(D 2 \“\x\“\nw““\'»\‘“"\‘“\\§\M‘ \{ Z ip 3
< N P
: A
O [>=1 f &
o 0
-
0]
)
©
2 -s50
0
Q
ko)
o\

-100

4 16 04 265 1024 40960 16384
cache size (KB)

Figure 3-2: The percentage decrease in misses caused by splitting the application and
OS into separate caches.

Figure 3-2 includes all five test applications and shows the effect of cache size
from a different perspective; The percentage decrease in total misses caused by having
separate caches was calculated. This normalizes the cache effects to the baseline miss

rate of each cache size. For small cache sizes (usually less than 256 KB,) there were

26



advantages to having separate OS and application caches because of the reduction in
cache competition. For large cache sizes (1 MB and above,) data transfers between
the OS and application became a dominant factor, and a net advantage was observed
for having a shared OS and application cache. The behavior of caches between 256

KB and 1 MB was application specific and depended on working set size.

3.2.4 Performance Impact

The performance impact of OS placement on contemporary processors was studied by
building a three-level Intel Nehalem cache model for cores clocked at 2.9 GHZ. The
model includes separate L1 data (8-way associative) and instruction (4-way associa~
tive) caches, each with 32 KB capacity. For L2 and 1.3 a 256 KB 8-way associative
cache and a 8 MB 16-way associative cache were modelled respectively. Cache la-
tencies of 10 cycles for L2 access, 38 cycles for L3 access, and 191 cycles for local
memory access [22] were assumed. Using these parameters, Figure 3-3 shows the
additional cycles-per-instruction (CPI) due to the memory system for the following
OS placements: all three cache layers shared, separate L1 and L2 but shared 1.3,
and all three cache layers separate. Contention misses caused by shared state were
modeled by adding the equivalent latency of the next higher shared cache level. This
included using local memory latency when all higher cache levels were unshared. In
practice, communication between processors on different dies can be slightly more ex-
pensive than local memory accesses [22], but this should nonetheless be a reasonable
approximation.

CPI calculations were then used to estimate overall application speed up. Since
actual non-memory CPI is workload dependent, and cannot be estimated by our
simulator, a conservative value of 1.0, the median total CPI for the Pentium Pro [9],
is assumed. Figure 3-4 shows projected performance improvements for each of the
five workloads. Running the OS on a different core with a shared L3 cache was always
better than running the OS on the same core, except for the Psearchy workload where

it was equivalent.

27



1.6

1.4

0.8

0.6

0.4

Memory System CPI

0.2

Apache Find Make Psearchy Zip
Workload

8 SameCore  E Different Core(Shared L3) % Different Core(Unshared L3)

Figure 3-3: Memory related Clocks per Instruction (CPI) when executing OS and
Application on same core, different cores but same chip, and different cores and
different chip. This utilizes a model of the Nehalem cache architecture.

Improvement in Total CPI (Percent)

-15 = [ [ ! I [
apache find make psearchy zip
Workload

# Different Core(Shared L3) i Different Core(Unshared L3)

Figure 3-4: Overall percentage improvement in the CPI due to memory effects when
the OS is run on a different core. The non-memory CPI of each workload is not
known, so a conservative value of 1.0 is assumed.



3.3 Discussion

For five Linux test workloads, running the OS on a different core was always more
efficient as long as the two cores shared an L3 cache. Thus, with proper scheduling,
it appears that fos has the potential to better utilize multicore architectures than
monolithic OS designs. Although branch predictor, TLB state, and registers were not
modeled in CachEMU, including them would only further increase the competition
costs of running the application and OS on the same core. Consequently, even better
aggregate results for a fos placement strategy are possible.

FlexSC [26] also confirms this notation by showing that a modified version of
Linux can gain these benefits as well by adopting the fos approach of placing the OS
on a different core. However, CachEMU shows that cooperation and contention alone
are compelling reasons to run the OS on a separate core, whereas FlexSC includes
the additional effect of running the OS and application in parallel (using a custom
thread scheduler) in its end-to-end performance analysis. Thus, the results obtained
with CachEMU provide a more detailed study of the specific factors that contribute
to performance advantages for fos’s OS placement policy. Nonetheless, the ability to
exploit parallelism between the OS and application, especially when the application
can issue system calls asynchronously, is an additional performance advantage of
running the OS and application on separate cores.

One drawback of dedicating an entire core to an OS service is that the core cannot
be used for other purposes, whereas in a typical OS design all cores executes both
application and OS instructions. Fortunately, since a core performing a particular
OS task can potentially service multiple applications at once, this cost tends to be
amortized. Moreover, future multicores may provide a number of cores that rivals the
number of active processes in the system, leaving plenty of space and time to dedicate
entire cores to OS functions.

An aspect that was not explored in this cache study is the cost of making a
core-to-core system call. If messaging costs are comparable to the privilege change

overhead of a local system call then placing the OS on a different core will have no

29



extra costs beyond the cache effects described in this study. In Chapter 5 we show
that this is in fact the case for nearby cores on contemporary architectures. Of course,
hardware accelerated message passing could mitigate both performance concerns due

to cooperation as well as the system call latency of messaging a separate core.

30



Chapter 4

Design and Implementation of

Messaging

This chapter provides an overview of the fos messaging system design. [t includes
a description of user messaging, kernel messaging, and TCP /IP multi-machine mes-
saging. Furthermore, the chapter presents a dynamic transport selection mechanism
based on competitive messaging that chooses between using kernel or user messaging

in order to optimize performance and memory usage.

4.1 Overview of Messaging in fos

In fbs, messaging is a fundamental OS service available to every process. Processes
receive messages through mailboxes. A mailbox is similar in concept to Mach’s port
abstraction [1] and essentially serves as a named messaging endpoint. Mailboxes are
created and destroyed through dedicated system calls provided by the fos microkernel.
However, a newly created mailbox must also be registered with the naming service [4]
for discovery purposes.

The naming service essentially serves as a distributed hash table linking aliases,
unique 128-bit key values, to mailbox locations. In order to register a mailbox with
the name service, an alias must first be determined. Typically, these values will

be calculated by hashing human readable strings. For example, the fos block service

31



uses the string “/sys/block_device_server/input.” The name service also supports
indirect aliases, where one alias refers to a second alias that directly corresponds to

a mailbox. This effectively allows multiple aliases to correspond to a single mailbox.

4.1.1 Messaging System Properties

A variety of decisions and tradeoffs can be made in a message passing system. fos’s

message passing system adheres to the following properties:

e All communication is connectionless. When stateful connections are required,

they can be implemented at the application level.

e Several processes can enqueue messages to a single mailbox, but messages can
only be dequeued by the specific process that registered the mailbox. This

allows for both one-to-one and many-to-one communication patterns.

e Fach mailbox has a fixed size buffer allocated to it. If the buffer is full, new

messages are rejected until enough space becomes available.

e The receiver is guaranteed to receive messages in the same order that the sender
enqueues them. However, the order of messages across multiple senders is un-

specified.

e All messaging communication is asynchronous. In other words, a process can

enqueue a new message before a previous message is dequeued.

A connectionless, many-to-one design was chosen over traditional channel based
messaging (e.g. TCP/IP) for two reasons. First, it is expected to map more closely to
hardware interfaces that support direct access to on-chip-network resources, resulting
in a more raw and high-performance interface. Second, the reduction in messaging

state could make it easier to support live process migration features in the future.

32



4.1.2 Security and Isolation

fos provides secure access to mailboxes through a capability system. Each mailbox
has a secret 64-bit capability value associated with it. Only processes that supply
the correct capability value can enqueue messages on a mailbox. This is enforced by
a security check each time a message is sent.

Typically, a process sends capabilities and aliases over message passing in order
to grant access to another process. A capability depot service provides any interested
party with access to a set of public mailboxes provided by core fos fleets. This helps
to resolve any bootstrapping issues.

Even though shared memory is used in some cases (i.e. user messaging,) isolation
is fully preserved through careful access disciplines. More details on the security of

user messaging are described in section 4.2.2.

4.2 Messaging Architecture and Implementation

A complete message passing system was implemented for fos. It consists of major
components in libfos and in the microkernel as a set of system calls. Additionally,
two fleets serve in a support capacity for fos messaging. The first is a distributed
naming service [4] that provides a mapping between aliases and physical locations.
A physical location is a pair consisting of a host address and a local identifier. The
physical location can be used to determine whether the message destination is a
process on the local machine or a process on a remote machine. In the event that a
message is bound for a remote machine, the second fleet, the proxy service, is used
to redirect traffic over the network using TCP/IP. A corresponding proxy service,
running on the remote system, then passes the message to the target process using a
local communication mechanism.

fos supports two local communication mechanisms, kernel messaging and user
messaging. Kernel messaging uses a system call to copy message data across address
spaces. In contrast, user messaging bypasses the kernel (in the steady-state) and uses

a shared memory channel to communicate between processes. Figure 4-1 shows a

33



Sending Receiving
Process Process
A
User Mgssaging
Y libfos 2 » libfos
\ -V
\
\
1 uk uk

Figure 4-1: The paths that the two local messaging methods take through fos’s soft-
ware stack. User messaging passes data through a shared memory channel. Kernel
messaging uses the microkernel to copy data across address spaces. A line demarcates
processor privilege levels. For both mechanisms, the receiving process does not need
to enter the kernel, and instead relies on libfos to detect and process new messages.

view of the path these two mechanisms take through the fos architecture.

fos’s messaging support is implemented to be transport agnostic — the details
of each transport are abstracted behind the fos messaging layer. This is beneficial
because it allows for local messaging transports to be changed dynamically and trans-
parently without disrupting or interfering with the application. Also, it allows fos to
hide the distinction between local and remote messaging (e.g. over TCP/IP). Coupled
with a single-system-image, this enables fos to present nearby and distant mailboxes
as if they were each part of a single large machine.

4.2.1 Kernel Messaging

Kernel messaging uses the microkernel to transfer message data between processes.
Thus, the microkernel is trusted to modify the receiver’s address space without vio-
lating isolation.

Setup of kernel messaging occurs in libfos and subsequently the microkernel as

follows. During mailbox creation, the receiving process allocates virtually contiguous

34



memory off its local heap. This serves as a buffer for incoming messages. Next, libfos
registers a pointer to the mailbox buffer with the microkernel. The microkernel then
validates the address and stores it in a hash table indexed by the local identifier. The
hash-table lies in shared kernel memory and is protected by a lock. If necessary, a
more scalable lock-less design could be used in the future [16].

For sending messages, libfos makes a system call into the microkernel, providing
a message buffer, length, and local identifier. The microkernel looks up the mailbox
structure in the hash table and copies the message buffer to the address space of
the mailbox’s parent process. New messages are stored in the incoming message
buffer using a specialized heap data structure. Because the incoming message buffer
can be accessed by many sending processes in parallel, atomicity is ensured with a
per-mailbox lock. The lock can be accessed by both user-space and kernel-space, so
great care must be taken to prevent untrusted code from causing the microkernel
to deadlock. This denial of service hazard is avoided by returning a try-again code
whenever the lock is already taken, rather than blocking in the kernel and waiting for
the lock to become available.

Kernel messaging has only a constant initial setup cost in time and memory per
mailbox (i.e. registering the mailbox with the kernel). As a result, its overhead can
be easily amortized, especially when several different processes are sending messages
to the same mailbox. On the other hand, its per-message overhead is higher than user
messaging because each message send operation must incur the overhead of trapping

into the kernel.

4.2.2 User Messaging

User messaging relies on single-reader, single-writer, shared memory channel to trans-
fer data between processes. Channels are created on-demand by libfos in response to
message send requests. A specialized system call is used to request a channel connec-
tion to another process. It allocates memory and modifics the sender’s page table to
include a mapping of the channel. It also modifies a user-level memory region in the

address space of the receiver, called the doorbell. The doorbell is an asynchronous

35



upcall that serves to notify the receiver that a channel request is pending. When the
receiver detects that the doorbell has been set, it invokes the accept channel system
call. This system call completes the setup by mapping the channel in the receiver’s
address space. In the case of multiple pending requests, the accept channel system call
is called repeatedly until no further pending channels remain. Finally, the doorbell
bit is cleared.

Messages are encoded and decoded in a way that fully exploits the performance
potential of hardware implementations of cache-coherent memory. Specifically, mes-
sages are transferred in increments of cache-line sized packets. Each packet consists of
a data payload and a tag containing a generation number, acknowledgement number,
and flags. The tag is placed at the end of the cache-line and is always written after
the data payload. This allows the receiver to poll for the next packet by detecting
a change in the generation number value. When the generation number matches the
anticipated next value, the receiver knows that the packet is ready and that the full
contents of the data payload are available. In most cases, only a single cache-line is
invalidated per messaging packet, although in rare cases, the receiver may invalidate
the cache-line before the the tag has been updated with the next generation number.
For this event, the generation number check would prevent the receiver from proceed-
ing until the sender has finished writing data to the packet. This method of packing
messaging packets into a single cache-line is heavily inspired by a similar implemen-
tation in Barrelfish [3]. Although the shared memory channel is finite in size, it is
treated as a circular ring buffer. Because a message may exceed the size of an in-
dividual packet, each message contains a special header (included in the first packet
of the message) that informs libfos of the overall size of the message. Potentially
unlimited size messages are supported as long as the receiver is actively dequeuing
packets. Figure 4-2 shows the address layout of the packets in the shared memory
channel.

For security reasons, the receiver allocates a buffer to store the complete contents
of each message it dequeues from the shared memory channel. This prevents the

message contents from being inappropriately modified by the sender, perhaps after

36



received data

received data

Receiver
ﬂ new data
Sender new data

partial new data

Figure 4-2: The address layout of the shared memory channel for 64-byte cache-lines
(typical for x86 architectures). The arrows indicate position pointers in the ring
buffer. In this example, the sender has written two packets and the receiver has
processed two packets. A third packet is only partially written by the sender, and
hence, has a stale generation number.

validation routines have been run by the receiving process. Moreover, packet memory
can be freed once the message is copied to the buffer, making space immediately
available for upcoming messages.

One innovative aspect of fos’s user messaging is the way it implements flow con-
trol. Although fos messaging is unidirectional, flow control is nonetheless supported
by having the receiver perform writes to the shared memory region. Specifically it
modifies a dedicated acknowledgement byte reserved as part of the tag data in each
packet. The receiver keeps a count of the number of packets it has dequeued. When-
ever the count crosses a threshold relative to total packet capacity of the channel, the
most recently received packet’s acknowledgement section is set to the received count
and the received count is cleared to zero. In a similar fashion, the sender keeps an
outstanding packets count and increments it whenever it sends out a packet. Before
using a new region of packet memory, the sender checks if there is a non-zero acknowl-
edgement value in the tag. If so, it subtracts the acknowledgement number from its
outstanding packet count. If ever the outstanding packet count is equal to the packet
capacity, libfos will return a busy error when a sender attempts to enqueue a packet.
Altogether, this mechanism prevents the sender from overwriting a packet slot before

the receiver has had a chance to receive the old packet data.

37



Just as messaging channels are created dynamically, they are also destroyed dy-
namically. Channels are evicted by the receiver whenever they become infrequently
used. This is critical because the receiver must poll all channels to determine if a new
message is available. Keeping the number of channels limited helps to ensure that

the polling latency does not grow larger over the lifetime of the receiving process.

4.2.3 Dynamic Transport Selection

Kernel and user messaging have different tradeoffs in performance and memory us-
age. For infrequent communication, kernel messaging is preferred because it requires
less memory and does not incur the overhead of creating a shared memory channel.
Setting up shared memory can be expensive because it requires modifications to the
page tables on both cores. On the other hand, kernel messaging has greater latency
than user me‘ssaging because it must incur the trap and enter overhead of a system
call. Thus, for a longer period of sustained communication the better latency of user
messaging makes up for its initial setup costs.

In fos, kernel and user messaging are switched between dynamically through a
transport selection system using a competitive messaging algorithm. Under the as-
sumption that communication will be infrequent, the first messages sent to a mailbox
always use kernel messaging. A counter measures the number of messages destined for
each mailbox. When the number crosses a threshold, the transport selector switches
over to user messaging by creating a shared memory channel with the destination pro-
cess. fos uses the latency of channel creation to set the threshold, such that the time
spent sending the initial kernel messages roughly matches channel creation latency.

When a shared memory channel is idle for a long period of time, it can get evicted
in response to the creation of a new channel. This removal of channels allows fos to
switch back to kernel messaging automatically when it is better suited.

fos’s ability to dynamically change messaging transports allows it to adjust to
changing application communication patterns. This has the advantage of conserving
resources and avoiding setup costs for rare communication paths, while achieving

maximum performance for frequent communication paths.

38



4.2.4 Multi-machine Messaging

fos provides a single namespace that can span multiple cache-coherency domains
or physical machines. All mailboxes in the namespace are accessible — given the
proper credentials — to each member system, effectively creating a universal way of
referencing resources across machines.

Figure 4-3 shows fos’s messaging architecture for multi-machine support. A proxy
fleet provides the service of forwarding messages across the network. Each proxy fleet
has two types of member processes. The first is a proxy sender, which focuses on
taking local messages and sending them over the network wire. The second is a proxy
receiver, which receives requests and authenticates them before forwarding a message
to a local process. Thesec two component types work together to provide messaging

across machines.

t I

Name Proxy »| Proxy |q »| Name
Service ‘Sender |Re»ceiver Service
Machine A Machine B

Figure 4-3: An overview of fos’s multi-machine messaging infrastructure. When libfos
(not shown) discovers that a message is bound for a remote machine through per-
forming a name lookup with the naming service, it sends the proxy sender a remote
message request. The sender then forwards the message over the network to a proxy
receiver on the remote machine. The proxy receiver performs a second name lookup
to verify the destination, and then it sends the message to the receiving process.

The networking service and libfos also play a significant role in multi-machine
messaging. Whenever a message is sent to a new mailbox, a name service lookup
occurs, returning a location. If the location does not correspond to the local machine,

libfos forwards the messaging request to a proxy sender. Similarly, the proxy receiver

39



uses its local naming service to validate the integrity of a message. Each request
includes the final destination alias, and the name server is used to determine if such
an alias was indeed exported by the local machine.

Like other fleets, the proxy service can have multiple processes working together,
both as proxy senders and proxy receivers. In order to balance load, each libfos
instance can use a different proxy sender. This form of elasticity is especially impor-
tant in the case of multiple network interfaces, where a single core may not be able

to saturate a link.

40



Chapter 5

Evaluation

The performance of the message passing system has a significant impact on fos’s over-
all speed. Each application and fleet service relies on messaging to communicate with
other processes. Thus, messaging is on the hot path of most operations performed
in fos. In order to improve end-to-end performance, great effort was spent toward
minimizing messaging latency. This chapter evaluates the performance of fos messag-
ing. It also demonstrates the operation of dynamic transport switching by showing
how fos can switch from kernel to user messaging in response to messaging activity.
Finally, for the purpose of better understanding the potential for optimizing fos mes-
saging further, performance is compared to a minimal highly optimized interprocess

communication (IPC) implementation that approaches ideal performance.

5.1 Testing Procedure

Two different, processor models, running in 64-bit mode, were used in the messaging
performance experiments. The first processor is a four core Intel Xeon E5530. The
second processor is a twelve core AMD Opteron 6168. Measurements were taken
using the time stamp counter (TSC.) Because fos runs in a virtual machine, great
care was taken to ensure that the TSC was not emulated by software but rather was
provided directly by hardware. Another possible concern with virtualization is that

the host kernel will interrupt the guest OS (e.g. in response to a timer) and thus

41



introduce extra latency into potential measurements. In practice, this turned out to
be a rare event, but nonetheless it was easy to detect because it produced extremely
large messaging latency measurements. These were discarded in order to filter out
this type of interference.

Execution of the RDTSC instruction alone has some inherent overhead. Rather than
allowing this overhead to artificially increase the duration of cycle measurements,
back-to-back TSC instructions were executed in order to calculate the time it takes
the processor to perform zero work. The result was non-zero and was subtracted from
each messaging measurement in order to correct for this effect.

A final concern for benchmarking messaging performance is that processors might
engage in frequency scaling. Without a stable clock frequency, it is very difficult to
determine how cycles (as measured by the TSC) correspond to the passage of time.
For all tests, frequency scaling was disabled because of these concerns. This includes
Intel’s Turbo Boost feature, where a core can be overclocked as long as thermal

conditions allow for it.

5.2 Messaging Performance

Two experiments were conducted in order to determine the performance of fos mes-
saging. First, the messaging latency of fos was compared to Linux system call latency.
Second, the effect of message size on latency was measured. Both experiments used
a message echo operation to simulate typical communication patterns. A message
echo operation works by sending a fixed-size message back and forth between a pair
of communicating processes.

Since fos dedicates entire cores to system services, it is assumed that each process
will run on a separate core. The latency of the cache coherency protocol can vary
greatly depending on which cores are used. Because these benchmarks aim to fully
understand the effects of heterogeneity, measurements were taken with processes run-
ning on two cores from the same chip (shared L3 cache) as well as processes running

two cores from different chips (no shared caches.)

42



5.2.1 Performance of Messaging for System Calls

The fos microkernel supports system calls much like other OSes. However, it would
be unfair to use fos microkernel system call latency as a basis of comparison. In fos,
most OS services are accessed through message passing instead of trapping into the
kernel. Therefore, a roundtrip message between an application and a fos fleet member
is the closest fos equivalent to a conventional trap-and-enter system call.

When evaluating the performance of system calls it is important to measure the
raw overhead imposed by the platform without including operations specific to a par-
ticular type of request. For example, system call benchmark results would be less
useful if they included the latency of disk access along with the overhead of enter-
ing and exiting the kernel. To this end, only the performance of null system calls,
or system calls that perform few or no operations, was measured. For Linux, the
GET_PID system call was used because it performs merely a few memory references.
Linux supports a variety of system call mechanisms. On the AMD and Intel proces-
sors tested, the most performant method was to use the SYSENTER instruction, and
thus this method is used in all experiments. For fos, a message echo operation was
performed to simulate a null fos system call. The size of the message was kept small
(32 bytes.), representing an operation that receives a typical set of arguments and
immediately gives back a return value.

Table 5.1 shows latency measurements for fos echo operations and Linux sys-
tem calls. In general, user messaging was considerably faster than kernel messaging.
Moreover, Linux system call latency had similar performance to user messaging, es-
pecially on the Intel processor. That is to say, user messaging is sufficiently fast to
perform a system call on a different core from the application without negating the
cache locality benefits of such a placement policy. It also appears that the Intel Xeon
E5530 has moderately better cache coherency and trap performance than the AMD
Opteron 6168.

Linux was measurcd as a guest inside a Xen DomU, the same platform as fos. How-

ever, moderately better Linux System call performance is expected on a baremetal

43



AMD Intel Xeon
Opteron E5530
6168

shared cache 1236 (463) 618 (114)
no shared cache | 1381 (509) 984 (619)
shared cache 4785 (1107) | 3117 (271)
no shared cache | 5501 (914) 4010 (243)
Null Linux System Call 874 (120) 726 (251)

fos Userspace

fos Kernelspace

Table 5.1: A latency comparison of null fos system calls (roundtrip messaging) and
null Linux system calls. Measurements are in nanoseconds (o).

host. This is primarily because Xen requires a change in the page table root in order

to trap into the guest kernel, resulting in a greater number of TLB lookups [23].

5.2.2 Latency for Different Message Sizes

Another dimension of messaging performance is the ability to handle different message
sizes efficiently. While smaller message sizes tend to represent most procedure calls,
large message sizes are an important workload for fos too. Specifically, they are typical
of I/O operations such as reading and writing disk blocks or sending and receiving
network packets.

Figure 5-1 shows the performance of fos messaging for a spectrum of different
message sizes. The results indicate that user messaging approaches about half the
latency of kernel messaging for increasingly large message sizes. Certainly one reason
is that user messaging has lower latency for each message sent because it avoids entry
into the kernel. Perhaps the most significant reason, however, is that user messaging
allows the receiver to begin receiving pieces of the message, in cache-line sized chunks,
before the full message has been enqueued. This allows the sender and receiver to
work in parallel to perform the data transfer. Of course, kernel messaging could be
modified to operate in a similar fashion, but such an implementation would be more

difficult because the kernel must cope with multiple concurrent writers.

44



1000 : ; ;
I Intel User s
Intel Kernel s &
AMD User oo yf
R 100 P AMD Kernel ssegesss \ 5?&»*%\ ﬁ’
U) ¥ Y ;
2
&
- 10
in
0
=
0 1
) 1 &
0.1 A i
1 4 16 o4 256 1024 40960 16384

Message Size (bytes)

Figure 5-1: Messaging latency for a variety of message sizes. Results are shown for
both kernel and user messaging on each of the tested processor architectures.



5.3 Dynamic Transport Selection

Figure 5-2 shows fos dynamically switching from kernel to user messaging in response
to mailbox activity. These results were obtained on the Intel processor using cores
without a shared cache. The transition threshold occurred after the fourth message.
The figure further illustrates that although creating a shared memory channel costs
over 40,000 cycles, the cumulative cycles spent on user messaging, including channel
creation, become less than the cumulative cycles spent on kernel messaging after

about six messages.

160000
140000
0
o
— 120000
0
>
L2 100000
o}
= 80000
-
H
o) 60000
Q
0
% 40000
E Kernel oo
20000 B User i
0 beriq<m%%wm

0 2 4 6 8 10 12 14 16 18
Number of Messages

Figure 5-2: The cumulative cycles spent for different messaging policies. Hybrid
messaging illustrates fos dynamically switching from kernel to user messaging. As a
basis for comparison, cumulative cycles are also shown for the policy of only using
user messaging and the policy of only using kernel messaging.

By dynamically switching from kernel to user message, the cost of setting up a
shared memory channel is avoided for one-off messages while still getting lower latency

messaging for sustained message requests. Thus, a competitive messaging approach

46



represents the best of both options.

5.4 Is Lower Latency Possible?

fos user messaging has performance that is comparable to system calls under a Xen
Linux guest. Nonetheless, an interesting question is whether even better performance
is possible. To explore this inquiry, a stripped-down IPC implementation was devel-
oped for the purpose of determining the minimum possible latency. The complete
code of the implementation is included in appendix A. It simulates a system call by
passing a typical collection of register state to a server process. The server process
then executes the request and gives back a return value. The implementation is ex-
tremely restrictive, supporting only cache-line sized data transfers and only a single
request at a time. As such, it is not a full message passing system and thus would not
be suitable for fos. Nonetheless, it does serve to establish a lower bound on achievable
latency.

Careful management of cache lines is the key to the implementation’s good per-
formance. Specifically, the client packs the system call arguments into a cache-line
sized and aligned region of shared memory. When the all of the arguments are ready
to be sent to the server, a flag is set in the last word of the cache line, indicating that
the requester is finished. At the same time, the server constantly polls the last word
in the cache line, waiting for the flag to be set. When the flag is detected, the server
knows that all of the arguments are available. It then executes the request, and writes
over the first word of the cache line with a return value. Finally, to indicate to the
client that the return value is ready, it clears the flag in the last word of the cache
line. After making a request, the client polls the last cache line in a similar fashion
to the server and waits for the flag to be cleared. When the flag is cleared it reads
the return value and the request is complete.

The performance of this procedure is optimal because under typical conditions it
results in only two cache misses, one on each core. Specifically, the client places the

line in the modified state when it writes the arguments and the flag bit. The line then

47



gets transfered to the server, resulting in the first cache miss. Similarly, the server
places the line in the modified state when it writes the return value and clears the
flag bit. The line gets transferred back to the client, resulting in the second cache

miss.

| Latency in Cycles (o)

fos user messaging 1479 (272)
fast minimal IPC 160.8 (66)

Table 5.2: A comparison of fos messaging latency (for a small message echo) to a
stripped-down fast IPC implementation. Tests were run on two cores sharing a cache
on the Intel processor.

Table 5.2 compares the performance of the fast IPC implementation with fos user
messaging. In both cases, the tests were run on the Intel processor with a shared cache
between the cores. The results indicate that there is considerable room to improve
performance, with the fast IPC implementation being around nine times faster.

fos user messaging is slower for a variety of factors. First, a buffer must be allo-
cated for each message in order to support arbitrary length messages as implemented
in the fos messaging API. Second, since all messages are one-way, fos user messaging
must use two seperate cache lines to send and receive data between a pair of pro-
cesses, resulting in twice as many cache misses. Finally, because name lookups must
be performed (in a hashtable-based local memory cache,) a small number of cycles is
added to each message send. Despite these extra cycle penalties, fos’s user messag-
ing achieves very good performance, especially considering that it is a more flexible
and complete system. Nonetheless, it may be possible to improve fos user messaging

performance further by using some of the techniques in the fast IPC implementation.

48



Chapter 6

Conclusion

This thesis presented a message passing system for the fos OS. The system supports
two kinds of messaging transports. The first is kernel messaging, which has higher
latency but lower setup costs. The second is user messaging, which has lower latency
but higher setup costs. It was demonstrated that a dynamic transport selector can
switch between the two mechanisms, achieving good latency for frequent communica-
tion while avoiding setup costs for one-off messages. Moreover, the fos proxy service
was introduced to provide seamless messaging access to different machines on the
network. This makes it easier to construct applications that use cores across several
machines.

Another contribution of this thesis is an analysis of the performance ramifications
of running the OS on a different core than the application. It was shown that fos
has the potential to better utilize the cache resources of multicore chips, making it
a preferable OS design for the increasingly large core counts of emerging chips. The
performance of fos messaging was evaluated, and in the case of user messaging, it
was measured to be about as fast as Linux system calls on the same platform. Thus,
the cache benefits of running an OS on a different core from the application are not

mitigated by the cost of sending requests between cores.

49



6.1 Future Work

There is great potential to further improve the performance of messaging in fos.
First, the fast [IPC implementation in appendix A demonstrates that faster messag-
ing, with the right restrictions, is possible on cache coherent processor environments.
An interesting challenge would be to incorporate some of the ideas in the fast IPC
implementation into fos. One option might be to have an RPC stub generator en-
code function arguments directly into shared memory, making it more natural to use
a fixed size message buffer. Of course, hardware accelerated messaging could also
be a promising avenue for improving message performance. Thus, porting fos to a
different hardware platform, such as Intel’s SCC could be a good way to investigate
the performance benefits of new kinds of hardware support.

Another area worth exploring is process scheduling and its related implications
to power management. Currently the fos messaging system spends a lot of time
polling mailboxes in order to determine if new messages have arrived. It would be
more efficient if processes yielded control of their cores to the kernel after waiting
for a period of idleness. However, this could negatively impact performance in some
situations. One idea might be to have a fos system call that passes a hint to schedule
a process when a message has been sent to it. A similar technique was developed for

URPC messaging, primarily for single core processors [27].



Appendix A

Fast IPC Implementation

This section presents source code for a minimal optimized IPC implementation de-
signed for cache coherent shared memory. Each request results in only two cache

invalidations.

Listing A.1: syscall.h

#define cpu_relax() __asm.. (" pause” :::"memory”)
#define barrier() -.asm__ __volatile._("" :::"memory")

enum {

REG_RAX = 0,
REG_RDI,
REG-RSI,
REG_RDX,
REG_RCX,
REG.R8,
REG-R9,
NUM_REGS

|

struct syscall_packet {
intb4_t regs [NUMREGS];
intb4_.t ctl;
} __attribute__((packed)) -_attribute__((aligned (64)));

#define CTL.READY 0x1
static inline void set_ready(volatile struct syscall_packet =xpkt)

pkt—>ct! |= CTL_READY;

}

static inline void clear_ready(volatile struct syscall_packet =*pkt)

{
pkt—>ctl &= ~(CTL-READY);

}
static inline int is_ready(volatile struct syscall_packet #pkt)
{
return (pkt—>ctl & CTL_READY);
}



Listing A.2: client.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include " syscall.h”

#define N 5000
static char *shm;

static inline unsigned long rdtscll(void)
{

unsigned int a, d;

asm velatile("rdtsc” : "=a" (a), "=d" (d));

return ((unsigned long) a) | (((unsigned long) d) << 32);
}

static unsigned long calculate_tsc_overhead (void)

{ unsigned long t0, tl1, overhead = "0UL;
int i
for (i = 0; i <N; i++) {
t0 = rdtscll();
asm volatile("");
tl = rdtscll();
if (t1 — t0 < overhead)
overhead = t1 — t0;
}

printf(”tsc overhead is %Ild\n", overhead);

return overhead;

}
static void run_test(void)
{
unsigned long tsc, result;
unsigned long overhead = calculate_tsc_overhead ();
int 1;
volatile struct syscall_packet xpkt = (struct syscall_packet x) shm;
for (i = 0; i <N; i++) {
tsc = rdtscil();
pkt—>regs [REG.RAX] = 1;
pkt—>regs [REG_RDI] = 10;
pkt—>regs [REG.RSI] = 20;

barrier ();
set_ready (pkt);

while (is_.ready (pkt))
cpu-relax();

if (pkt—>regs[REG.RAX] = 30) {
printf (" message send failed\n");
exit(1);

}

result = rdtscll{() — tsc — overhead;
if (result < 10000)
printf("%Id\n", result);



}

int main(int argc, char xargv([])

{
int shmid;
key_t key;

key = 5679;

if ((shmid = shmget(key, 4096, 0666)) < 0) {
perror(”shmget”);
exit (1);

}

if ((shm = shmat(shmid, NULL, 0)) == (char x) —=1) {
perror(”shmat”);
exit (1);

}
run_test ();

return O0;

Listing A.3: server.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm_h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include " syscall.h”

static char *shm;

static int64_.t add_nums(int64_t a, int64_t b)

{
return a + b;
}
static void run_server(void)
{
volatile struct syscall_packet *pkt = (struct syscall.packet =) shm;
while (1) {
while (!is_ready(pkt))
cpu.relax();
if (pkt—>regs[REG.RAX] != 1) {
printf (" message receive failed\n");
exit(1);
}
pkt—>regs [REG.RAX] = add_nums(pkt—>regs[REG_RDI],
pkt—>regs [REG_RSI]);
barrier ();
clear_ready (pkt);
}
}
int main(int argc, char *xargv([])
int shmid;
key_t key;



key = 5679;

if ((shmid = shmget(key, 4096, IPC_.CREAT | 0666)) < 0) {
perror("shmget”);

exit (1);

}

if ((shm = shmat(shmid, NULL, 0)) == (char %) —-1) {
perror(”shmat”);
exit (1);

}

run_server();

return 0;



Bibliography

[4]

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new kernel foundation for unix

development. pages 93-112, 1986.

A. Agarwal, R. L. Sites, and M. Horowitz. Atum: a new technique for capturing
address traces using microcode. In Proceedings of the 15th annual international

symposium on Computer architecture, ISCA '86, pages 119-127, 1986.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Sing-
hania. The multikernel: a new OS architecture for scalable multicore systems.
In SOSP °09: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 29-44, 2009.

Nathan (Nathan Zachary) Beckmann. Distributed naming in a factored oper-
ating system. Master’s thesis, Massachusetts Institute of Technology. Dept. of

Electrical Engineering and Computer Science., 2010.

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, Liewei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey,
D. Wentzlaf, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montene-
gro, J. Stickney, and J. Zook. Tile64 - processor: A 64-core soc with mesh
interconnect. In Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of
Technical Papers. IEEE International, pages 88 598, 2008.

(&)1
&)



[6]

[7]

[10]

[11]

[12]

[13]

F. Bellard. QEMU, a Fast and Portable Dynamic Translator. Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, pages 41-46, 2005.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. Lightweight remote procedure call. ACM Trans. Comput. Syst., 8:37-55,
February 1990.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. User-level interprocess communication for shared memory multiprocessors.

ACM Trans. Comput. Syst., 9:175-198, May 1991.

Dileep Bhandarkar and Jason Ding. Performance characterization of the pen-
tium pro processor. In Proceedings of the International Symposium on High-

Performance Computer Architecture, pages 288-297, February 1997.

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai Yang Zhang,
and Zheng Zhang. Corey: An operating system for many cores. In Proceedings
of the Symposium on Operating Systems Design and Implementation, December

2008.

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis of
Linux Scalability to Many Cores. In OSDI 2010: Proceedings of the 9th USENIX

conference on Operating Systems Design and Implementation.

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of
linux scalability to many cores. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’'10, pages 1-8, Berkeley,
CA, USA, 2010. USENIX Association.

Doug Burger, James R. Goodman, and Alain Kéagi. Memory bandwidth limita-

tions of future microprocessors. In Proceedings of the 23rd annual international



[14]

[16]

[17]

[18]

[19]

[20]

symposium on Computer architecture, ISCA "96, pages 78-89, New York, NY,
USA, 1996. ACM.

J. Bradley Chen and Brian N. Bershad. The impact of operating system struc-
ture on memory system performance. In Proceedings of the fourteenth ACM

symposium on Operating systems principles, SOSP 93, pages 120-133, 1993.

Peter Druschel and Larry L. Peterson. Fbufs: a high-bandwidth cross-domain
transfer facility. In Proceedings of the fourteenth ACM symposium on Operating
systems principles, SOSP '93, pages 189-202, New York, NY, USA, 1993. ACM.

Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In Proceed-
ings of the 22nd international symposium on Distributed Computing, DISC 08,
pages 350-364, Berlin, Heidelberg, 2008. Springer-Verlag.

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and
Anant Agarwal. Application heartbeats for software performance and health. In
Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP 10, pages 347-348, New York, NY, USA, 2010.
ACM.

Jochen Liedtke. Improving ipc by kernel design. In Proceedings of the fourteenth
ACM symposium on Operating systems principles, SOSP ’93, pages 175-188§,
New York, NY, USA, 1993. ACM.

Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt
Werner. Simics: A Full System Simulation Platform. Computer, 35(2):50-58,
2002.

Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas,
Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, and
Saurabh Dighe. The 48-core sce processor: the programmer’s view. In Proceed-

ings of the 2010 ACM/IEEE International Conference for High Performance



26

Computing, Networking, Storage and Analysis, SC '10, pages 1-11, Washington,
DC, USA, 2010. IEEE Computer Society.

P. V. Mockapetris. Domain names - implementation and specification, 1987.

D. Molka, D. Hackenberg, R. Schone, and M.S. Muller. Memory performance and
cache coherency effects on an intel nehalem multiprocessor system. In Parallel
Architectures and Compilation Techniques, 2009. PACT °09. 18th International
Conference on, pages 261 270, 2009.

Jun Nakajima and Asit Mallick. X86-64 xenlinux: Architecture, implementation,

and optimizations. In Proceedings of Linuz Symposium, 2006.

Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9 from bell
labs. In In Proceedings of the Summer 1990 UKUUG Conference, pages 1-9,
1990.

M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. Complete computer
system simulation: the simos approach. Parallel Distributed Technology: Systems

Applications, IEEFE, 3(4):34 43, 1995,

Livio Soares and Michael Stumm. FlexSC: Flexible System Call Scheduling with
Exception-Less System Calls. In 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2010). ACM.

R.C. Unrau and O. Krieger. Efficient sleep/wake-up protocols for user-level
ipc. In Parallel Processing, 1998. Proceedings. 1998 International Conference

on, pages 060 -569, aug 1998.
VMware Inc. VMCI Sockets Programming Guide.

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. On-chip interconnection architecture of the tile processor. IEEE Micro,

27:15-31, September 2007.

28



[30]

31]

David Wentzlaff, Charles Gruenwald, I, Nathan Beckmann, Kevin
Modzelewski, Adam Belay, Lamia Youseff, Jason Miller, and Anant Agarwal.
An operating system for multicore and clouds: mechanisms and implementa-
tion. In Proceedings of the 1st ACM symposium on Cloud computing, SoCC 10,
pages 3—-14, New York, NY, USA, 2010. ACM.

David Wentzlaff, I[II Gruenwald, Charles, Nathan Beckmann, Adam Belay, Har-
shad Kasture, Kevin Modzelewski, Lamia Yousefl, Jason E. Miller, and Anant
Agarwal. Fleets: Scalable services in a factored operating system. Technical

Report MIT-CSAIL-TR-2011-012, MIT CSAIL, March 2011.

Donald Yeung, John Kubiatowicz, and Anant Agarwal. Multigrain shared men-

ory. ACM Trans. Comput. Syst., 18:154-196, May 2000.

Lamia Yousefl, Dmitrii Zagorodnov, and Rich Wolski. Inter-os communication

on highly parallel multi-core architectures.



