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Abstract

We optimize the synthesis procedure of a videorealistic speech animation system [7] to
achieve real-time speech animation synthcsis. A synthesis rate must be high enough
for real-time video streaming for speech animation systems to be viable in industry
and deployed as applications for user machine interactions and real-time dialogue
systems. In this thesis we apply various approaches to develop a parallel system that
is capable of synthesizing real-time videos and is adaptable to various distributed
computing architectures. After optimizing the synthesis algorithm, we integrate a
videorealistic speech animation system, called Mary101, with a speech synthesizer,
a speech recognizer, and a RTMP server to implement a web-based text to speech
animation system.
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Chapter 1

Introduction

This research continues and expands upon the work started in the Trainable Vide-

orealistic Speech Animation System (also referred to as Mary101) [7]. Mary101 is

capable of generating a speech animation of a human based on the training and anal-

ysis of previous video recordings. Specifically, the human is first asked to read a

particular paragraph. After training, it is possible to synthesize an animated video of

any sentence, as if it had been spoken by the same human. Previous user experience

surveys have concluded that this system has great potential for improving the quality

of user machine interactions with the videorealistic human serving as an "agent."

In this thesis, we focus on optimizing the video synthesis process to enable the

system to generate new video in real time. In other words, the synthesis rate must

be faster than the video playing frame rate. After optimizing the synthesis process,

we integrate the speech animation system with a speech synthesizer so that we can

generate an audio stream from text, and merge the audio with the appropriate facial

animation. Finally, we build a simple web interface so that the users can generate

and view speech animation from any input text.

1.1 Motivation

Major applications of speech animation systems include user-interfaces for desktop

computers, televisions, cellphones, etc. Traditionally, dialogue user interfaces can



only use text or images to interact with users. Although more and more devices now

have the capability to allow users to interact via speech or a touchpad, there is still

very little sensory stimulation during the interaction with the machine interface, aside

from the user reading text prompts or looking at static images.

A speech animation system is a valuable addition to the traditional interface.

Because a videorealistic human is displayed on the screen instead of audio, text, or

static images, users feel like they are speaking to a live agent, rather than interacting

with a machine.

However, since the synthesis rate of the original Mary101 system is only about 6

frames per second and the desired video playback rate is about 30 frames per second,

we must wait until the synthesis is completed before playing back any hypothetical

speech animation clips. This is a major limitation to future applications of the sys-

tem and to improving the user-machine experience because, in order to make users

really feel comfortable speaking with a machine, the system needs to be able to gen-

erate responses quickly based on the context of the conversations. Therefore, the

optimization of the synthesis algorithm is critical to realizing real-time interaction.

1.2 Thesis Organization

The remainder of the thesis is organized in the following manner.

In chapter 2, we present related work completed in the speech animation area.

We compare early development of videorealistic speech animation technology, Video

Rewrite and other 3-D Cartoon speech animation systems with Mary101. We also

discuss the results of a user experience survey that compares the improved usabil-

ity of a user interface with the videorealistic speech animation to other simple user

interfaces.

In chapter 3, we explain the work flow of Mary101 in detail. First, we discuss how

Mary101 analyzes a pre-recorded video to infer motion patterns using a Multidimen-

sional Morphable Model (MMM). We then discuss in detail how MMM is applied to

create novel video.



In chapter 4, we present performance optimization techniques. We first present

profiling results from the synthesis algorithm of Mary101. We obtain and compare

the runtime of each component in the program. Through profiling, we identify the

bottlenecks of the original synthesis procedure. We discuss the details of the opti-

mization approaches we take to improve the synthesis rate, including precomputation

and parallelization. We list implementation details and the effects of each suggested

approach.

In chapter 5, we present how we integrate Mary101 with a speech generator. We

also build a web interface for the integrated system. Human users or any third party

software can generate speech animation based on any text they provide. This chapter

also includes technical details on the usage of FFmpeg libraries, the underlying open

source libraries used to process videos.

Finally, in chapter 6, we suggest areas of potential future work and summarize

the contributions we have made in this thesis.



Chapter 2

Related Work

In this chapter, we provide an overview of related work completed in the field of

speech animation. In the first section, we introduce an early videorealistic speech

animation venture, Video Rewrite. In the second section, we discuss and compare

a few 3-D cartoon animation technologies. In the third section we briefly introduce

the Mary101 system. Finally we present a user experiences survey that compares the

improved usability of a user interface equipped with videorealistic speech animation

with other "naked" user interfaces.

2.1 Video Rewrite

Bregler, Covell and Slaney [6] describe an image-based facial animation system, the

Video Rewrite, which is one of the earliest ventures in speech animation. As the

name suggests, Video Rewrite does not generate previously non-existing, novel video

by analyzing real video recordings. Instead, it creates new utterances from applying

a "cut-and-paste" approach to the pre-generated corpus.

Video Rewrite uses a Hidden Markov Model to label previously recorded video

with segments of triphones. A new audiovisual sentence is constructed by concatenat-

ing the appropriate triphones sequences from the pre-recorded corpus. The transition

among triphone sequences is achieved by using the middle phoneme as a "pivot"

phoneme and allowing the outer phonemes to overlap and cross-fade each other.



When new video is created using Video Rewrite, the triphones in the video must

be properly aligned to the speech transcription. In this last step, Video Rewrite uses

a mask to determine the transformation of mouth movement in different sequences

and correct the different head positions of the background face.

Video Rewrite generates relatively good quality videos and the techniques it uses

for correcting head positions are helpful for later research. However, since Video

Rewrite does not generate new video from analyzing the underlying patterns, to be

feasible for deployment, it requires recording vast amounts of real video. This imposes

a huge burden on the human subject being recorded as well as on the infrastructure

used to store the videos. Furthermore, since the system relies on the triphones before

or after the current triphone to implement transitions adapting the system to any

real-time streaming applications is difficult.

2.2 3-D Cartoon Animation

There have been several attempts to create a 3-D cartoon speech animation system.

These systems are quite different from Video Rewrite and Mary101 since cartoon

animation is not videorealistic. However, the idea of combining various facial motions

for different speech utterances is transferable. This section discusses three different

speech animation technologies: Baldi (a 3-D cartoon animation system that does not

involve training of previously recorded video, but instead maps an image of a person

onto a pre-defined computer graphical model), Hofer's research (which predicts lip

motions by tracking the four points around the mouth) and Wang's research (which

creates a 3-D cartoon avatar by training a Hidden Markov Model).

Baldi has been successfully deployed in classrooms for profoundly deaf children

and has been very influential in the speech animation field. Primarily developed

by Massaro, Baldi is an avatar system that can engage users in simple structured

dialogue. In the Baldi system, any image from a person can be mapped onto a

3-D polygon surface to make Baldi into a familiar face with animation controlled

by a wireframe model. The system can change parameters to move the vertices on



the face by geometric operations. Simple emotions can also be displayed in Baldi

(e.g. sad, angry, surprised, etc.). Baldi can either create speech or use pre-recorded

speech from a real human. The Baldi speech animation system does not have a

"training" process that infers the individual's mouth/head motion pattern nor does

it try to achieve photorealistic video. However, the successful application of a speech

animation system in a classroom setting for deaf children is encouraging.

Hofer, Yamagishi, and Shimodaira describe a speech driven 3-D cartoon anima-

tion system in which lip motions on a human avatar are created from a speech signal

[19]. Hofer's system tracks four points around the lips and predicts lip motions from a

speech signal by generating animation trajectories using a Trajectory Hidden Markov

Model [13]. Compared with a regular Hidden Markov Model, which provides very

disjoint actions, the Trajectory Hidden Markov Model provides much more visually

satisfying results. The major limitation in Hofer's research is that in the current im-

plementation, only four points around the lips were tracked, leading to impoverished

models. However, Hofer points out that that more than four points can be tracked

easily, which can result in more types of lip motion and overall better video quality.

Research conducted at Microsoft Research Asia by Wang has some similarities to

the research presented in this thesis. Wang presents a real-time text to audio-visual

speech synthesis system [12]. Wang uses an HMM approach to create a speech synthe-

sizer [17]. The HMM models for the synthesizer are pre-trained for spectrum, pitch

and duration. To give the cartoon avatar natural head movements while speaking,

an HMM trained from a female announcer is used to generate head movements of

the cartoon avatar, correlated with the speech prosody features. There are two main

differences between Wang's work and our work: first, Wang focuses on a 3-D cartoon

avatar while we create a videorealistic avatar. Second, Wang concentrates on head

movement while we focus on lip motion.



2.3 Trainable Videorealistic Animation (Maryl0l)

Mary101, developed by Ezzat [7], is the main system we expand and improve. It uses

Multidimensional Morphable Models (MMM) [5, 10, 11] to model facial expression.

Mary101 first analyzes real recordings to obtain a set of prototype images, which

MMM can use to synthesize new video frame by frame. We give detailed technical

background and implementation in Chapter 3.

There are a few differences that distinguish Mary101 from Video Rewrite and other

3-D animation systems. Comparing to Video Rewrite, Mary101 synthesizes output

video from the pattern, recognition and analysis instead of cutting and pasting video

segments from stored recordings. Mary101 compared with 3-D cartoon animation

techniques, outputs realistic video rather than cartoons.

2.4 User Interface Survey

Pueblo [14] conducted thorough research on the applications of speech animation

systems on user interfaces. Two systems that adapt Mary101 are used in Pueblo's

research, MarylO.NET and CGI.Mary. MarylOL.NET plays on the website using

pre-generated video while CGI.Mary only plays locally using its own player. In

Mary1O.NET, we have to pre-record all the videos that will be played to the users.

This is not very expandable to a more comprehensive system in which more inter-

actions between users and machines are needed. CGI.Mary achieves semi-realtime

playing by using its own player, which inserts dummy head movements when video

synthesis lags behind playback rates. This approach results in a decrease in the vide-

orealistic and smooth quality desired in a speech animation system. Furthermore,

reliance on its own player prevents us from embedding the CGI.Mary with web-based

applications.

Pueblo's study is conducted with a flight reservation system. Users test and rate

three scenarios. The baseline scenario displays text and plays the corresponding audio.

The cartoon scenario presents the same setup as the baseline scenario, but adds a



static cartoon image of a human as the text is read. The video scenario augments

the baseline by adding a speaking avatar generated by Maryl0l.

In the study, users were asked to judge whether an interface is natural. Based

on the collected feedback, Pueblo found that users experience higher comprehension

in the video scenario than in the cartoon scenario, despite the fact that the text

being communicated is exactly the same. Furthermore, the video scenario also re-

ceived significantly higher ratings than the cartoon scenario - 14 out of 40 responses

described the video scenario as natural, while only 1 out of 40 found the cartoon

scenario natural and 8 out of 40 responses think that the baseline scenario natural.

The positive ratings for video speech animation from this survey are very encouraging

for the further improvement of the speech animation system.



Chapter 3

Workflow of Mary101

In this chapter we discuss the details of the workflow of Mary 101, on which the

backbone of this thesis relies. In the first section, we discuss the training algorithm.

In the second section, we give an overview of the video synthesis algorithm. Finally in

the third section, we discuss in detail how we apply the Multidimensional Morphable

Model (MMM) to video synthesis. An overview of the workflow is shown in Figure

3-1.

Training

Phoneme
Models MMM

Synthesis

Figure 3-1: An overview of the workflow of Mary101.



3.1 Training

The training stage of Mary101 begins with the pre-processing of the recorded video of

pre-designated speech which is converted to a sequence of video frame images. These

images are normalized with a mask to remove head movements. Finally, we train a

Multidimensional Morphable Model (MMM) space from these image frames.

MMM is a facial modeling technique [5, 10, 11]. The MMM models mouth move-

ments in a multi-dimensional space in which the axes are the mouth shape and mouth

appearance. Mouth appearance is represented in MMM by a set of prototype images

(in this case 46 prototype images) extracted from the recorded corpus. Mouth shape

is represented in the MMM as a set of optical flows [2, 3, 9]. The MMM space is

parameterized by shape parameters, a, and appearance parameters, #. The MMM

can be viewed as a black box capable of performing two tasks. First, given a set of

input parameters (a, #), the MMM is capable of synthesizing an image of the sub-

ject's facial expression. Secondly, from a set of prototype images, the MMM can find

the corresponding (a, #) parameters of another image.

To construct the MMM, we first find the set of prototype images. For the purposes

of efficient processing, principle component analysis (PCA) is performed on all the

images of the recorded video corpus. After this analysis, each image in the video

corpus can be represented using a set of multi-dimensional parameters. We use an

online PCA algorithm, termed EM-PCA, which performs PCA on the images in the

corpus without loading them all into memory [15, 16]. After the PCA analysis, we

run a K-means clustering algorithm to divide all the PCA parameters into N = 46

clusters. The image in the dataset that is closest to the center of each cluster is chosen

to be the final image prototype of the cluster. The 46 prototype images we used are

shown in Figure 3-2.



Figure 3-2: 46 prototype images obtained from the training

After obtaining the prototype images, optical flow vectors are computed. First,

one of the prototype images is arbitrarily designated as the reference image. In

Mary101 this reference image is one in which the person's mouth is slightly open and

eyes are open. The optical flow is computed with respect to the reference image and

the data is stored into two displacement vectors, one horizontal and one vertical. The

optical flow of the reference image is zero because it has no displacement from itself.

After the prototype images and the optical flows are obtained, the MMM is able

to estimate (a, #) trajectories for the video stream. We represent each phoneme p

as a multidimensional Gaussian with mean y, and covariance Ep. Each entry in p,

corresponds to the mean of a coefficient from (a, #) and each entry in E, corresponds

to the covariance between the coefficients in (a, #). We analyze and obtain the (a, #)
parameters for each frame. Since each frame is associated with a phoneme p, we can

estimate a distribution of (pp, E,) from all the (a, #), used in the synthesis process.

.... ... ..... ------------ -



3.2 Synthesis

The synthesis of new videos can be divided into two steps. First we analyze the

audio (which can be from an audio synthesizer or from a human recorded audio)

and compute the trajectories (a,#) of the phoneme sequence. We then synthesize

the video frames based on the trajectories (a, 0) computed from the first step. Both

steps of the synthesis can be optimized.

To analyze the audio and compute the phoneme trajectories, we align the stream of

phonemes so that the audio input has a corresponding time-aligned phoneme sequence

{Pt} = (/a/, /a/, /uh/, /uh/...). Each element in the phoneme stream represents

one image frame. As mentioned in section 3.1, we represent each phoneme p as

a multidimensional Gaussian with mean p, and covariance Ep. Given p, and Ep,

generating trajectories becomes a regularization problem [8, 18]. The idea is that

for a coefficient a 1 , for example, we consider the same coefficient across the entire

video stream a= 1 ..S and set up a linear equation to measure the smoothness of this

coefficient. We find solutions to ai=1-.S such that the overall smoothness is maximized.

The same procedure is applied independently to all the other coefficients.

To generate a video based on the trajectories (a, /), we first synthesize each

frame of the video from the estimated (a, #) corresponding to each aligned phoneme.

Given a set of (a, /), synthesis is performed by morphing the prototype images to

corresponding shape-appearance configurations. Note that the MMM is only used

for mouth motion and we still need to integrate the background (including blinking

eyes, slight head motion, etc) with the mouth motions to ensure the output video

is realistic. In the original Maryl0l, all these video frames are saved to a file, and

an external FFmpeg program is used to glue the video frames together to generate a

video file.

Each frame of the video is "relatively independent." Although they are correlated

(since when we are finding the coefficients of (a, /) we need to consider all the frames

to make the video smooth), the frames are relatively independent because once we

know the (a, #) of a frame, the synthesis of this frame is entirely independent of the



(a, 3) of the other frames. This relative independence property is critical for the

parallel algorithm to be introduced in section 4.2.

3.3 Video Synthesis Using the Multidimensional

Morphable Model

In this section, we discuss in details how the MMM is applied to generate novel videos.

Video synthesis consists of two steps: trajectories (i.e. a, 0 coefficients) computation

and frame image synthesis. Details of MMM training are not presented since it is not

the focus of this thesis.

3.3.1 Computing trajectories (az, #)

We compute each coefficient of the trajectory independently. For each coefficient,

(e.g. ao ) Construct a vector y:

Y =z

at-oa0
at-ia0

t=TGO

Then synthesizing vector y can be expressed as an optimization problem [7]: find-

ing y to minimize

E (y - I)TDTE-lD(y - u) + AyT(WTW)zy (3.1)

where



PP1

pP2

"PT

Ep,

E Pt

and P is the phoneme in the i-th frame. ppt and E, are defined in section 3.2.

The term (y - y)TDTlE-D(y - u) is the target term used to find the probability

that maximizes the joint Gaussian mixture of the coefficients. Matrix D is an O(T)

by O(T) diagonal duration weighted matrix which emphasizes the shorter phonemes

and de-emphasizes the longer ones. The intuition behind this expression is from the

density of joint Gaussion distribution:

f(y) = (2r)- | |-.e--(y -_) TE-(y-p)

We want to find a set of y that maximizes the likelihood. Therefore we want to

maximize - y)T)E-1(y - or equivalently, minimize y- p)TZE(y - p). In

this application we add a weighting function that emphasizes the shorter phonemes,

so we minimize (y - p)TDT E- 1D(y - u).

AyT(WTW)zy is a smoothing term, which aims to minimize the jump between the

coefficients. A is the trade-off between the target term and the smooth term. The

constant z is a positive integral order. One has to choose W so that the smoothing

term can measure how smooth the trajectories are. In Mary101 we choose W as



-J I

..- I I ..
W=

... -I I

By choosing this W, we essentially subtract each entry in y from its neighbor, and

add the squares of these differences. If the trajectories are not smooth, the sum of

the squares of the differences will be large. To achieve smooth trajectories, we need

to minimize these differences.

By taking the derivative of (3.1) we find that the minimal value is obtained by

solving

(DTE7lD + A(WTW)z)y = DTE--1Dp (3.2)

Experiment shows that A = 1000 and t = 4 give the best results for the trajectory

computation.

3.3.2 From Trajectories (a, #) to Images

After we obtain trajectories (a, #), we can synthesize new frame images from the

trajectories. We first proceed by synthesizing a new optical vector Cynth by combining

the prototype flow

N
Csynth = Z a C

i=1

Forward warping (see Appendix A.1) may be understood as pushing the pixels of

the reference image along the optical flow vector Ciynih to form a new image. We

denote this operation by W(I, C) that operates on an image I with correspondence

map C. Generally, there is a hole filling step after warping, since optical flows may

not cover the whole set of pixels in the new image (See Appendix A.2).

However, since we only have the optical flow from the reference prototype image to

the rest of the images, a single forward warp will not take into account all the image



texture from all the prototype images (see [7]). In order to utilize all the prototype

images, we reorient as follows (see [4]) to obtain the other correspondence vectors

C ynth = W(Cynth CC) (3.3)

The third step is to warp the prototype images i along the re-oriented flow Cynth

to generate a set of N warped image textures 1Iwarped

jIwarped = W(i , Cynth) (3.4)

Finally, we blend all the warped images with the # coefficients:

N

Imorph Z /Jwarp (3.5)
i=1

Combining all the above equations, we obtain

N N

Imorph = Z W ( f I ,W (Z aC, - Ci, Ci))
i=1 j=1

In practice, we also need a mask to fix the position of Imorph so that head motion

is normalized. In the training stage, we estimated (a, #) from a recorded image, using

the inverse of the above steps.



Chapter 4

Optimization

In section 4.1, we present the runtime profiling results to identify bottlenecks in

the original implementation of Mary101. In section 4.2, we present a parallelization

algorithm used to improve the synthesis procedure. In section 4.3, we introduce

another optimization technique, precomputation. Finally, in section 4.4, we discuss

how to optimize the trajectory computation procedure.

4.1 Runtime Profiling

The synthesis of new video can be roughly divided into three modules: Frame Image

Synthesis, Background Integration and Color Space Optimization. This is a rough

division and the modules are not executed in sequence. In order to quantify how

computational resources are used in Mary101, we use our system to synthesize a video

with 615 frames and obtain the running time of each module. The time consumed by

each module of the system is presented in Table 4.1.



Modules

Table 4.1: Major Time Consumption (in seconds)

Time Total timeOperations

Image Warping 7.28

Hole Filling 16.99

Flow Subtraction 1.88
Frame Image Synthesis 51.8

Flow Reorientation 5.96

Flow Hole Filling 7.04

Morphing Images 12.66

Fetching Frames 23.2
Background Integration 27.8

Combining Textures 4.6

RGB to YUV 1.52

Miscellaneous YUV to RGB 1.47 10.9

Writing Buffered Files to Disk 7.90

The frame image synthesis module includes many computer graphics techniques.

Image Warping and Hole Filling corresponds to the operations in Eq. (3.4). Flow

Subtraction, Flow Reorientation and Flow Hole Filling are from Eq. (3.3). Morphing

images are from Eq. (3.5). The details of each operation are in the appendix. We

can see that the frame image synthesis part of the program consumes the bulk of

processing.

We also spend much time fetching the background images because background

images are stored in the harddrive and frequent reading from harddrive is expensive.

Finally, we also consume a significant amount of time converting between the YUV

color space and the RGB color space and writing buffered files for color conversion

purposes.

In the following sections we outline two optimization approaches: parallelization

and precomputation.



4.2 Parallelization

4.2.1 A Naive Parallelization Attempt

There are two ways to parallelize computations. The first and most straightforward

approach is to parallelize the synthesis of each frame. Operations such as warping,

hole filling, etc are highly parallelizable because the operations on each pixel are

independent (see Appendix A.1, A.2). For example, one can divide an image or a

optical flow vector into four parts and use each of the four threads concurrently to

work on each part of the matrix, as illustrated in Figure 4-1

Thread 1 Thread 2

A B

A B

C D
C D

Thread 3 Thread 4

Figure 4-1: Dividing an operation on an image into four sub-images

We implement this approach with four threads on a quad-core machine. We profile

the runtime of the program and Table 4.2 shows that this approach is not successful.



Table 4.2: Time Consumption with Naive Parallelization

Since this naive parallelization only applies to synthesizing the frame images,

we analyze the time savings only from this module. In Table 4.2, N/A means this

parallelization approach did not speed up that operation and we would be better off

continuing to use the serialized version. As we can see, only 10.17% of the time was

saved in the module, despite running the parallelized program with four times the

processors compared to the serial version.

The naive parallelization does not improve the synthesis rate by much for two

reasons. Parallelizing each frame synthesis operation results in expensive thread syn-

chronization overhead, especially as many short-lived threads are created. For exam-

ple, if we are warping on an image using four threads, all threads have to wait idly

until the longest thread finishes, as shown in Figure 4-2. This idle waiting is costly,

because there are many thread synchronization requirements in this naive paralleliza-

tion approach, and we cannot predict the work load of each thread to guarantee that

the threads will start and stop at the same time.

Module Operations Before After Total Time Saved

Images Warping 7.28 5.01

Hole Filling 16.99 N/A

Flow Subtraction 1.88 N/A
Frame Images Synthesis 5.27 (10.17%)

Flow Reorientation 5.96 2.96

Flow Hole filling 7.04 N/A

Morphing Images 12.66 6.33
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Figure 4-2: Thread synchronization results in idling. Dotted arrows represent wasted
resources.

4.2.2 Another Parallelization Attempt

In this thesis, we adopt a more complex but efficient parallelization approach. We

define three states for each frame of the novel video: unsynthesized, synthesized and

encoded. Unsynthesized frames are the frames that have the trajectories (a, #) cal-

culated but have not yet been synthesized. All frames are initially unsynthesized.

Synthesized frames are the frames whose images have been produced but have not

yet been added to the movie. Encoded frames are the frames that have been added

into the novel movie. Frames do not have to be synthesized in order because of the

relative independency mentioned in section 3.2, but they have to be encoded in order

because of the video format requirement.

Each worker also has two states: synthesizing and encoding. The worker is in

synthesizing state when it is synthesizing a new frame, and the worker is in encoding

state when it is adding synthesized frames to the movie. At anytime, at most most

one worker can be in the encoding state.

We maintain two arrays and a global pointer. Array A is initialized to contain the

set of all unsynthesized frames in order. Array B, initially empty, acts as a buffer in

which frames are stored after being synthesized and removed from Array A. Frames

are removed from Array B, in order, as they are encoded into the video. Pointer P

keeps track of the frame to be encoded from Array B. These data structures allow

workers to efficiently parallelize the synthesis and encoding process, where a worker



can be a different thread on the same machine or a process on a different machine.

At the beginning of the program execution, all workers are in the synthesizing

state. Each worker fetches an unsynthesized frame in A and synthesize it. One

worker cannot fetch the same frame that another worker is already synthesizing.

After the synthesis of a frame is finished, the worker places the frame into array B.

This frame's state is flagged as synthesized. In practice, the process of fetching a

frame to be synthesized is implemented by a mutex on Array A (See Figure 4-4).

After a worker places a frame into array B, it checks if any other worker is in

the encoding state. If so, this worker will remain in the synthesizing state and fetch

another unsynthesized frame. Otherwise, this worker checks if pointer P points to

the frame it just synthesized. If so, the worker enters the encoding state. When

the worker is in the encoding state, it adds the frame pointed to by pointer P into

the movie, changes the state of the frame to encoded, and move P forwards, until P

points to a frame that has not been synthesized. Then the worker will change to the

synthesizing state. In the actual implementation, we protect pointer P with a mutex,

which prevents more that one threads from accessing P. When a worker is in the

encoding state, it locks the mutex. When the worker finishes synthesizing a frame, it

checks if the mutex is locked. If not, it continues to synthesize other frames. If yes,

it checks if the pointer P points to the next frame to be encoded (See Figure 4-4).

We use one short example to demonstrate this parallel algorithm. Assume there

are two workers in the system.

1. Initially, worker 1 is synthesizing frame 1 and worker 2 is synthesizing frame 2.

Both workers are in the synthesizing state. Array B is empty and P points to

frame 1.

2. Suppose worker 1 finishes earlier. Since P points to frame 1, worker 1 enters

the encoding states and starts to encode frame 1 to the video, while frame 2 is

being synthesized. Pointer P is locked.

3. Worker 2 finishes its frame while worker 1 is encoding frame 1 to the video.

Since worker 1 is in the encoding state, worker 2 moves to synthesize frame 3.



4. Since now frame 2 is synthesized, after encoding frame 1, worker 1 continues to

encode frame 2. Frames will be marked as encoded after they are added to the

movie.

5. Assuming worker 2 is still synthesizing frame 3 after frames 1 and 2 are -encoded,

since worker 2 "claimed" frame 3, worker 1 will change to synthesizing state and

synthesize frame 4.

6. Continue the above procedure until all the frames are encoded.

In Figure 4-3, we show a global view of the parallelization structure.

Frame N+6 Frame N+6

Frame N-+5 Worker IFrame* N+5

Fraime N44

orker 2
Frame N+2

Framne N+1

workeir 3 E ngo-----o-

Worker 4

Figure 4-3: A global view of the parallelization structure.

On the left in array A, blue frames are synthesized, orange frames are being

synthesized by the workers and white frames are unsynthesized. On the right in

array B, the green frames has been encoded, orange frame is the next frame to be

encoded and the yellow frame is synthesized but not yet encoded.

In Figure 4-4, we show the implementation of the worker.



Construct a list A of ''unsynthesized frames'', initialized with all the frames

Construct a list B of ''synthesized frames'', initially empty

Keep a pointer P that points to the next frame to be added to the movie

FUNCTION worker:

while not all frames are encoded:

// synthesizing state

LOCK(A)

grab the earliest unsynthesized frame F from A and synthesize F

UNLOCK(A)

put F into list B

TRYLOCK(P)

If pointer P points to F

// encoding state

while P points to a synthesized frame

add F into the movie, move P forward.

UNLOCK(P)

Figure 4-4: Pseudocode of each parallel worker

There are several benefits of this advanced parallel algorithm. First, this approach

is very scalable; we can easily expand to accommodate different architecture - either

using more threads, or running on different computers. Second, this algorithm is very

effective. We avoid the synchronization overhead of frequently starting new threads.

Instead, once a worker begins, it will be kept busy until the entire video is synthesized

and encoded. Finally, this algorithm minimizes the probability of lock starvation.

The only time a worker would wait for a lock release was when it fetches the next

unsynthesized frame. We implement this algorithm on Dell R415 Rack Server with

AMD 4184 dual 6-core processors (12 cores in total). The synthesis rate obtained is

presented in Figure 4-5.
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Figure 4-5: The synthesis rates with respect to number of threads, implemented on
a 12-core machine

From Figure 4-5, we see that the synthesis rate grows proportionally with the

number of threads used until the number of threads exceeds the number of cores.

We can see that the optimal number of threads is equal to the number of cores we

have; using twelve threads can reach a synthesis rate of 74 frames per second. The

threshold required is five threads, at which the synthesis rate exceeds video playback

frame rate, allowing us to stream the novel video in real-time.

4.3 Precomputation

The idea behind precomputation is to trade space for speed. When Mary101 was first

developed in 2002, memory was much more expensive so we could not store much

information in the memory. We had to either store the data on disk or recalculate



when needed. However, now that memory is about 20 times cheaper, we can speed

up the synthesis program by storing all relevant information in memory instead of

writing and reading from the disk or repeatedly computing the same information.

One possible precomputation involves the background mixture. Recall in chapter

3 that after the video of lip movement is synthesized, we embed the mouth motion

into a background video and add natural noise to make the output video look realistic.

Currently, the background images are stored in a file and we have to read frames from

disk whenever we need a background image. This involves many time consuming

operations such as reading data, decoding the video, color space conversion, etc.

However, since we have enough memory, we can just store the background images in

RAM and save the access time.

Another method to optimize synthesis is to precompute and store the value of

frequently used utility functions. For example, during synthesis, we often have to

perform the color interpolation operation: for colors c1 , c2 and an interpolation posi-

tion p, we calculate the mixed color c' = pc1 + (1 -p)c 2. This calculation looks simple

enough, however it consumes much time on the floating point operation. Precomputa-

tion can optimize it. Because the RGB color components range from 0 to 255, we can

store a three dimensional table of size 256 by 256 by 100 (the interpolation position

can be rounded to two decimal digits without noticeably affecting the image quality,

i.e. position takes values of 0.01, 0.02, 0.03 etc). We can save much computing effort

by populating the interpolation table with precomputed function values and looking

up values from the tables as needed.

Precomputation speeds up the synthesis runtime significantly. Without paral-

lelization, using the above precomputation techniques alone can speed up the synthe-

sis rate by about 33%.

4.4 Optimization of the Trajectory Computation

With the approaches described in the previous two sections, we are already capable of

synthesizing the video at the rate faster than the playing rate. However, as mentioned



in section 3.3.1, computing the trajectories (a, 3) is a prerequisite to synthesizing the

video. Therefore, we also need to optimize the trajectory computation.

To find the best trajectory is equivalent to solving the equation (see 3.3.1)

(DTE- D + A(WTW)z)y = DT E- 1Dy (4.1)

We note that D, E and W are all O(T) by O(T) matrices, where T is the number

of frames. Since multiplying or raising a matrix to a constant power has a complexity

of 0(d3 ), where d is the dimension of the matrix, synthesizing the trajectories grows

in the order of O(T 3). This complexity becomes intolerable for longer videos, for

example, a popular video format has a frame rate of 29.97 frames/second. A 43-

second such video has about 1300 frames and takes about 30 seconds to compute (see

Table 4.3). Since trajectory computation must complete fully before video frames

synthesis can begin, users must wait at least 30 seconds before starting to watch a

43-second video.

One way to prevent this excessive wait for trajectory computation is to localize

it. If we divide a sequence of T frames into M trunks, each with T/M frames, then

the complexity would be O(M(T/M)3 ) = O(T 3 /M 2 ). With this approach, we have

to make sure the conjunctions between trunks are smooth. This approach does not

intrinsically improve the theoretical complexity, but it does reduce the time usage in

practice.

Another approach takes advantage of the special form of the D and W matrices

to bypass formal matrix calculations and speed up the computation of (a, 0). First,

computing DTE-D can be easily avoided, since D and E are both diagonal matrices.

In section 3.3.1 we defined the matrix to calculate the smooth-ness as

-I I

.. -I I ..

... -I I



Since all entries of W are either on or next to the diagonal, entries of (WTW)z

will also locate around the diagonal. We can simply compute the product manually

and hard-code the matrix into the program. After this optimization, the complexity

is reduced to O(T 2 ), which is the complexity of solving linear equations.

The runtime of trajectory computation is listed in Table 4.3:

Table 4.3: MMM Trajectory Computation Time Usage

Frames Video Length Old Trajectory Computation New Trajectory Computation A

262 8.75 sec 0.564 sec 0.114 sec 0.450 see

431 14.38 sec 1.273 sec 0.322 sec 0.951 sec

856 28.56 sec 8.614 sec 1.245 see 7.370 see

1302 43.44 29.633 sec 2.860 sec 26.773 sec

From the above table, we can see that a significant amount of time was saved after

adopting the improved trajectory computation algorithm. For a half-minute video,

we just need slightly over 1 second to synthesize all the trajectories. The last column

shows how much time is saved from the optimized trajectory computation algorithm.



Chapter 5

Integration with the Speech

Generator and Web Services

In this chapter, we explain in detail how we expand Mary101 to a speech animation

system that can generate real-time streaming from the provided text. In section 5.1

we explain how we integrate the speech generator and recognizer with Mary101 to

process the user input text. In section 5.2 we discuss how Mary101 was connected

to a web service and an RTMP server to stream the video in real-time. Finally in

section 5.3 we analyze the latency of the expanded system.

5.1 Integration with the Speech Generator and the

Speech Recognizer

Mary101 can generate video based on audio, whether the audio is recorded from a real

human subject or from a speech synthesizer. The only requirement is that the audio

must be aligned with a phoneme sequence. In order to achieve a text-to-audiovisual

speech animator, we need to first generate the audio and the corresponding phoneme

sequence.

We use Nuance Vocalizer, a piece of commercial text-to-speech (TTS) software

developed by Nuance Communications to synthesize the novel speech, and the TTS



engine runs on a server that provides HTTP APIs so that any program can submit a

text string and receive a synthesized waveform. This 8KHZ waveform is upsampled

to 22.05KHZ fit the FLV output format.

Ideally, after obtaining the waveform, TTS should also be able to return a tran-

script of the phonemes. However, due to the constraints of current API, we obtain the

phonemes from a speech recognizer. We use an XML RPC protocol to an automatic

speech recognizer (ASR) perform a forced alignment and obtain a phoneme sequence.

The speech recognizer might return an error if a word is not in the dictionary. Error

handling is introduced in the next section.

Interaction with the TTS and ASR is implemented in Python, embedded in a

C++ program, as Python provides easy interfaces to handle HTTP and XML RPC

requests. Table 5.1 shows the time usage of several synthesizing examples. The total

time required to obtain the waveform and phonemes is relatively short:

Table 5.1: Time Usage to Obtain Phonemes and Waveforms

Frames Video Length Get Waveform and Phonemes

262 8.75 sec 0.23 sec

431 14.38 sec 0.25 sec

856 28.56 sec 0.43 sec

1302 43.44 0.58 sec

We can see from the table that the speech synthesizer and recognizer have very

efficient runtime performance. For a half-minute video, less than 0.5 second is taken.

5.2 Web Interface

The facial animation module is connected to a web interface that allows users to

stream the video online or download the video. The communication between the

web front-end and the facial animation module is implemented by sockets, since this

allows for the separation of web server and synthesizing server. The front end of



the web service is a CGI script that accepts the string to be synthesized, which is

then forwarded via Mary101 to TTS engine and the speech recognizer. Depending on

whether the speech recognizer successfully returns a sequence of phonemes, the facial

animation module returns a success or failure message.

Should the audio synthesis and recognition succeed, the facial animation module

starts to synthesize the video. When synthesizing, it calls an FFMpeg program exter-

nally to stream the video to the RTMP server (popular choices are Red 5 or Wowza).

An RTMP server is able to forward the video streamed from the facial animation

module to the client side player, bit by bit, without modifying or storing the video.

Therefore, the client is able to view the video on a real-time basis.

We choose to use JW Player [1] as our client side player. JW Player is a flash-

based player that supports JavaScript control. This allows us to customize the look

of the player. It also allows the application be embedded in other applications.

When the webpage is loaded, the player plays a background video in which the

human subject is silent with some slight head movements. This background video

loops infinitely. When streaming the new video, JW Player stops the background

video and loads the new video. Since there is a latency of buffering the video, a static

preview image will be loaded to make the transitioning between the background video

and the novel video smoother. After the novel video is finished, JW Player loads the

background video again. In this way, the user always feels that there is a human

subject behind the screen.

A screenshot of such an client interface is shown in Figure 5-1 and Figure 5-2:
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Figure 5-1: Interface snapshot when the client is idle

SbHi how re you

Submit

Figure 5-2: Interface snapshot when the client is streaming

Figure 5-3 illustrates the relationship between different components of the facial

animation module, after it is integrated with the RTMP server, speech synthesizer

and recognizer. The direction of arrows indicates which component initiated the

connections. All these components can be arbitrarily combined to run on different

machines. This provides flexibility for the future applications of the system, and also

... .... . ............... .............. ..-- ... ....... - T . ..... .-- -............ .......... . ........... . ... .......... ......



allows us to use the computational power of the best multi-core machine exclusively

for the novel video generation, which is more comptutationally expensive.

User or Third Waveform and
Prt Transcript

SPare Generation

Report Error, Samples,
HTTP Stream, Request Phonemes

Request Or Download Or Failed
the Video

String to synthesize

Web $erver Facial Animation Module

Succeeded or failed

JW Player FFMPEG with

Subscribe XuglStreaming

RTMP Server

Figure 5-3: The interactions between components.

5.3 Latency

We have already achieved real-time speech animation synthesis, elaborated in Chapter

4. In this section we will discuss the latency from submitting a text to streaming the

video. There are a few components that make up this latency, shown in Figure 5-4;

......... . ... ......... . - __ - - -, T . ......
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Figure 5-4: The composition.of latency

After text is submitted, we call the speech synthesizer and recognizer to obtain

the waveform and the aligned phonemes. The latency of this component is quantified

in Table 5.1. The time usage grows slowly with respect to the length of the latency.

After obtaining the waveform and the aligned phonemes, we compute the MMM

trajectories of the video, as shown in Table 4.3. This part's complexity is O(T 2 ),

where T is the number of frames. However this complexity is acceptable, since for a

half-minute video, we just need slightly over 1 second to synthesize the trajectories

(see Table 5.2).

The latency in the last component is defined as the time elapsed from the epoch

when the facial animation streams the video to the server, to the epoch when the client

is able to view the video. Through experimentation, this latency is independent of

the length of the video, but only related to the configuration of the RTMP server and

client side player. Using JW Player and Red 5 server, the lowest latency we achieve

without sacrificing the audio/video quality is about 1.1 seconds.

We quantified the end-to-end latency in Table 5.2:



Table 5.2: End to End Latency

Frames Length Labeled Waveform MMM RTMP Buffering Total

262 8.75 sec 0.236 sec 0.114 see 1.112 see 1.462 sec

431 14.38 sec 0.251 sec 0.322 sec 1.232 sec 1.804 sec

856 28.56 sec 0.436 see 1.245 see 1.154 see 2.835 sec

1302 43.44 0.581 sec 2.860 see 1.002 sec 4.443 see

One can see that when the video is short, the latency is dominated by the RTMP

buffering time. When video is long, MMM trajectories computation will be the most

dominate component. However, for typical sentences, the latency is under 2 seconds

and can make most of the users comfortable.

Both Red5 and Wowza can provide the RTMP streaming capability. Red5 has

lower buffering latency, though when streaming a video longer than 15 seconds, the

corresponding audio might have some shrill high pitches (this is a confirmed bug by

Red5 development community). In Wowza, the latency is usually about 0.5 second

longer (i.e., the buffering latency would be about 1.6 seconds rather than 1.1 seconds).

However, the quality of the audio streamed through Wowza is much more satisfactory.

We implemented two sets of APIs so that future users can switch between Wowza

and Red5 conveniently.



Chapter 6

Future Work and Conclusion

6.1 Future Work

6.1.1 User Interface Study

With a, synthesis rate that allows real-time streaming, more advanced user interfaces

may be developed. In section 2.4 we discussed a user interface study to compare the

UI with a speech animation, with audio and with text. However, the speech animation

is achieved by first generating a video and then playing back. This limits the possible

responses a speech animation system can give, since all the responses a UI can give

have to be pre-recorded. UI designers have to anticipate all the possible scenarios and

store all the speech animation beforehand. The ability to generate more intelligent

responses is very limited.

Now that Mary101 can synthesize video in real-time, machines can develop re-

sponses to the user instructions in real-time and this would provide a much more

realistic environment. We imagine a live agent can be simulated in such a system, for

example, a kiosk or an online banking system.

6.1.2 Including Facial Expression

Another possible improvement is to incorporate more facial expressions. Currently

we require that human subjects being recorded have no facial expression (happy, sad,



etc.), and we only focus on synthesizing the lips movement. We can consider allowing

more facial expressions. There are two challenges with this issue. First, we need

to expand our MMM space. Second, we need to implement the dynamic transition

between emotional states, i.e, how does one transition from a happy MMM to a sad

MMM.

6.1.3 3-D Modeling

One possible future development of the system is 3-D modeling. Currently, we require

the human subject to face the camera. Therefore, the synthesized video has only one

point of view, which is facing straight towards the camera. If we have a more efficient

algorithm to train the dataset and synthesize the video, we can consider incorporating

large changes in head pose, changes in light conditions, or changes in viewpoints. It

is possible to envision a 3-D scanner that is capable of recording and synthesize a

3D video corpus of speech. We might need to overhaul our trajectory computation

algorithm to enable 3-D synthesis.

6.2 Conclusion

This thesis optimizes a speech animation system, Maryl0l, to achieve real-time

streaming. The main approaches we applied are a parallel algorithm and precom-

putation techniques. We also optimized the MMM trajectory computation procedure

so that the waiting period between the submission of the text and the starting of syn-

thesis is reduced. Finally, we integrated Mary101 with a speech recognizer, a speech

synthesizer, a RTMP server and a web server to implement a complete system that

provides text to real-time speech animation solution. From the results of the past

user surveys, we foresee various potential applications of the system.



Appendix A

Graphical Operations

This appendix includes the most frequently used flow operations that are used to

synthesize the image frames.

A.1 Forward Warping

Forward warping is very similar to "moving" the pixels of an image along the flow

vectors C. In this thesis warping operations were denoated as an operator W(I, C)

and produces a warped image j"rped as the output. A procedual version of our

forward warp is shown below:

FUNCTION W(I', I)
for j= 0 ... height

for i =0 ... width

x = ROUND( i + dx(i,j) )
y = ROUND( j + dy(i,j) )
if (x,y) is inside the image

I' (x,y) = I(x,y)
return I'(x,y)

We also use W(C, C2) to warp around another flow vectors. In this case, x and y

components of C1 = (dx (C1 ), dy (C1 )) are treated as different images, and warped in-

dividually. The newly produced warped flow vector would be (W(dx, C2), W(dy, C2 ))

The forward warping algorithm can be parallelized. Noticing that we are iterating



all the pixels, and for each pixel (i, j) we "push" it to position (i + dx(i, j), j +

dy(i, j)) of the new image. Since all these pixels are considered as independent in this

algorithm, we can use different threads to "push" the pixels in different parts of the

image.

A.2 Hole Filling

Warping will inevitably produce a lot of black holes. This is because not every single

pixel (x, y) has a (i, j) such that x = ROUND ( i + dx (i, j) and y = ROUND ( j + dy(i, j) ).

The hole filling algorithm fills in the holes of these holes by finding the nearest non-

black pixels and average them.

Hole-Filling(I',I)
for j= 0 ... height

for i = 0 ... width

if (x,y) is black
find closest non-black pixels in four directions

( i, Iy1), (X2, Y2), (X3, Y3), (X4, iY4)

I'(x, y) = average of I(Xi, yI), I( 2,iy 2 ), I( 3 , Y 3 ), I(X 4 , y 4 )
return I

There are many ways to average the non-black pixels. In this problem we use the

simple average. Similarly, hole filling algorithm can be parallelized, since for each

hole, we looking for the nearest non-black pixels and this procedure can be done

independently, we can divide the image into several blocks and each thread takes care

of one block.



Bibliography

[1] JW player. http: //www.longtailvideo. com/players/jw-flv-player/.

[2] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow

techniques. International Journal of Computer Vision, 12(1):43-77, 1994.

[3] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based

motion estimation. In Proceedings of the European Conference on Computer

Vision, pages 237-252, Santa Margherita Ligure, Italy, 1992.

[4] D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and

synthesis. Technical report, MIT Al Lab, 1993.

[5] D. Beymer and T.Poggio. Image representations for visual learning. Science,

272:1905-1909, 1996.

[6] M. Covell, C. Bregler, and M. Slaney. Video rewrite: Driving visual speech with

audio. In Proc. Interspeech, Brisbane, Australia, June 1997.

[7] T. Ezzat. Trainable videorealistic speech animation. PhD thesis, Massachusetts

Institute of Technology, 2002.

[8] F. Girosi, M. Jones, and T. Poggio. Priors, stabilizers and basis functions: From

regularization to radial, tensor and additive splines. Technical report, MIT Al

Lab, June 1997.

[9] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelli-

gence, 17:185-203, 1981.



[10] M. Jones and T. Poggio. Multidimensional morphable models: a framework for

representing and matching object classes. In Proceedings of the International

Conference on Computer Vision, Bombay, India, 1998.

[11] A. Lanitis, C.J. Taylor, and T.F. Cootes. A unified approach to coding and inter-

preting face images. In Proceedings of the International Conference on Computer

Vision, Cambridge, MA, 1995.

[12] L. Ma, Y. Qian, Y. Chen, L. Wang, X. Qian, and F. K. Soong. A real-time text to

audio-visual speech synthesis system. In Proc. Interspeech, Brisbane, Australia,

September 2008.

[13] T. Masuko, T.Kobayashi, K. Tokuda, T. Yoshimura, and T. Kitamura. Speech

parameter generation algorithms for hmm-based speech synthesis. In Proc.

ICASSP, page 1315, June 2000.

[14] S. Pueblo. Videorealistic facial animation for speech-based interfaces. Master's

thesis, Massachusetts Institute of Technology, 2009.

[15] S. Roweis. EM algorithms for PCA and SPCA, volume 10. MIT Press, 1998.

[16] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principle component

analyzers. Neural Computation, 11(2):443-482, 1999.

[17] K. Tokuda, H. Zen, J. Yamagishi, T. Masuko, S. Sako, A. W. Black, and T. Nose.

The HMM-based speech synthesis system (hts). http: //hts. ics. nitech. com.

[18] G. Wahba. Splines models for observational data. Series in Applied Mathematics,

59, 1990.

[19] J. Yamagishi, G. Hofer, and H. Shimodaira. Speech-driven lip motion generation

with a trajectory hmm. In Proc. Interspeech, Australia, September 2008.


