
Adaptive Transmit Beamforming for Simultaneous

Transmit and Receive

by

Daniel L. Gerber

B.S., Massachusetts Institute of Technology (2010)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and
Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTMLITE
OF TECHNOLOGY

JUN 2 1 2011

LIBRARIES

ARCHNES

June 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

A u th or V
Department of Electrical Engineering and Computer Science

A /
April 28, 2011

C ertified by V

Paul D. Fiore
Sta ember, MIT Lincoln Laboratory

3eRimtrvisor

Certified by..............
David H. Staelin

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by.........D........................
\- "Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

Adaptive Transmit Beamforming for Simultaneous Transmit

and Receive

by

Daniel L. Gerber

Submitted to the Department of Electrical Engineering and Computer Science
on April 28, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Simultaneous transmit and receive (STAR) is an important problem in the field of
communications. Engineers have researched many different models and strategies that
attempt to solve this problem. One such strategy is to place a transmit-side null at the
receiver in order to decouple a system's transmitter and receiver, thus allowing them
to operate simultaneously. This thesis discusses the use of gradient based adaptive
algorithms to allow for transmit beamforming. Several such algorithms are devised,
simulated, and compared in performance. Of these, the best is chosen to study in
further detail. A mathematical analysis is performed on this particular algorithm to
determine a linearized state space model, which is then used in a noise analysis. An
important benefit of these algorithms is that they do not require computationally
intensive matrix operations such as inversion or eigen-decomposition. This thesis
ultimately provides, explains, and analyzes a viable method that can form a transmit-
side null at the receiver and extract a weak signal of interest from the received signal
while simultaneously transmitting another signal at high power.

Thesis Supervisor: Paul D. Fiore
Title: Staff Member, MIT Lincoln Laboratory

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

First and foremost, I would like to thank my direct supervisor Paul Fiore. This thesis

would not have been possible without the constant support Paul gave me through

meetings, mathematical discussion, and ideas. I would also like to thank Jeff Herd

for his support in organizing and leading the members working on the STAR project

at Lincoln Laboratory. Thanks also to Dan Bliss who put me up to date with current

research in the field of STAR. In addition, I would like to thank my MIT thesis

adviser David Staelin and MIT academic adviser David Perreault for supporting me

in my master's degree. Finally, I would like to thank my family and friends, who have

always supported me and fueled my ambitions.

Contents

1 Introduction 8

2 Background Theory 13

2.1 Control Theory . 13

2.2 Gradient Descent and Numerical Methods 16

2.3 Adaptive Linear Combiner . 18

2.4 Least Mean Squares Algorithm . 20

2.5 Normalized LMS Algorithm . 22

2.6 Applications of the LMS Algorithm 23

2.7 Signal Orthogonality . 27

2.8 Receive Adaptive Beamforming . 30

2.9 Transmit Adaptive Beamforming . 35

3 Methods and Algorithms for Multiple-Input Single-Output (MISO)

Active Cancellation 39

3.1 Transmit Beamforming Method: Trial and Error 41

3.2 System Identification for Channel Estimation 46

3.3 Transmit Beamforming Method: Gradient Descent 49

3.4 Transmit Beamforming Method: Trial and Error Using a Channel Es-

tim ate . 54

3.5 Probe Signals for Channel Estimation 59

Channel Estimation Method: Probing Duty Cycle

Channel Estimation Method: Orthogonality-Based Probing Scheme .

Extracting the Signal of Interest .

4 Mathematical Analysis of the Trial and Error with a

mate Method

4.1 Linearized System Dynamics

4.2 System Response to an Input

4.3 Analysis of Noise on the System Input

Channel Esti-

5 Conclusion

A Source Code

A.1 Matlab Code for Trial and Error Method

A.2 Matlab Code for Gradient Descent Method

A.3 Matlab Code for Trial and Error Method with a Channel Estimate.

A.4 Matlab Code for Probing Duty Cycle Method

A.5 Matlab Code for Orthogonality Based Probing Method

A.6 Matlab Code for Noise Variance Simulation

Bibliography

3.6

3.7

3.8

96

98

98

101

104

108

112

118

121

List of Figures

1-1 STAR Block Diagram

2-1 State Space Block Diagram

2-2 Adaptive Linear Combiner

2-3 Parallel LMS Configuration

2-4 Traversal LMS Configuration

2-5 System Identification LMS Filter

2-6 Adaptive Interference Cancellation LMS Filter

2-7 Two-Antenna Receive Beamforming Canceller

2-8 Traversal Adaptive Filter Array

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

Transmitter Filter Block Diagram

Trial and Error Timing Diagram.

Trial and Error Flow Chart . .

Trial and Error Received Power

Trial and Error Weights

Trial and Error Channel

Channel Estimate Block Diagram

Gradient Descent Received Power

Gradient Descent Weights.....

Gradient Descent Received Power 2

. 42

. 42

. 42

. 44

. 44

. 45

. 46

. 52

. 52

. 53

3-11 Trial Error Channel Estimate Received Power

Trial Error Channel Estimate Weights .

Trial Error Channel Estimate Weights Zoo

Trial Error Channel Estimate Received Po

3-15 Trial Error Channel Estimate Weights 2

Probe Signal Block Diagram

Probing Duty Cycle Timing Diagram

Probing Duty Cycle Received Power

Probing Duty Cycle Received Power 2

Probing Duty Cycle Weights

Probing Duty Cycle Weights 2

Orthogonality Based Probing Received Pc

Orthogonality Based Probing Weights . .

Orthogonality Based Probing Weights 2.

Signal of Interest Block Diagram

Signal of Interest

Signal of Interest Received Power

4-1 Noise Analysis Simulation

3-12

3-13

3-14

. 5 6

m ed 57

wer 2 58

. 5 8

. 6 0

. 6 1

. 6 2

. 6 2

. 6 3

. 6 3

)wer 68

. 6 8

. 6 9

. 7 2

. 7 2

. 7 3

. 95

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

3-27

......... 56

Chapter 1

Introduction

The simultaneous transmission and reception (STAR) of signals on the same frequency

band is an important engineering challenge that still has not been adequately solved.

Past attempts have included isolation methods between the transmitter and receiver

[1, p. 16]. However, such methods offer minimal improvement in cancellation of the

high power transmit signal at the receiver. Antenna isolation can provide a 30dB

drop in transmit signal power at the receiver. An additional 30dB drop can result if

the transmitter and receiver are cross-polarized with respect to one another [1, p. 18]

Another technique under investigation is that of active STAR. Active STAR in-

volves the use of feed-forward electronics and algorithms to use the transmit signal as

an input to the receive control loop. The transmit signal is filtered before it is sub-

tracted from the received signal. As a final result, the transmit signal is cancelled from

the received signal and the receiver can now detect other external signals of interest

(SOI). In addition, the transmitter will not saturate or damage the analog-to-digital

converters (ADC) on the receiver.

Active cancellation greatly improves the system performance at a level comparable

to passive techniques [1, p. 20]. In addition, the techniques for active and passive

cancellation all complement each other in reducing the amount of transmitted signal

at the receiver. For example, an RF canceller can lower the transmit signals' power

by up to 35dB [2, p. 8]. With another 60dB of well engineered antenna isolation and

cross-polarization, the transmit power at the receiver will be 95dB lower.

One cancellation technique that can be applied in any sort of STAR or full duplex

design is the use of multiple input multiple output (MIMO) antenna systems. The

MIMO antenna array is very important for interference cancellation and isolation.

Single input single output (SISO) antenna isolation techniques include polarizing the

transmit and receive antennae in different planes, pointing them in different directions,

distancing them, or shielding them from each other. The MIMO system can utilize

these SISO cancellation techniques, but can also be set up such that the transmit

beampattern places a null at the receive antenna location. In general, null points exist

in systems with multiple transmitters because the transmitted signals have regions of

destructive interference.

An early proposal [3] discusses interference cancellation for use in STAR. That

paper proposed an interference cancellation LMS filter (treated here in Section 2.6) to

cancel the transmitted signal from the receiver, after which experiments are performed

on such a system. Previous work in wideband interference cancellation was performed

in [4], in which several methods were tested in Matlab to compare performance and

computational complexity. Experiments were performed in [1] to investigate various

strategies of antenna isolation and interference cancellation for use in SISO STAR.

These prior experiments differ from the setup in this thesis, wherein MIMO STAR is

used to overcome the challenges of receiver saturation and a time variant channel. A

similar idea [5] suggests augmenting the conventional SISO time domain cancellation

techniques with MIMO spatial domain techniques. The techniques of zero-forcing

and MMSE filtering were investigated and simulated. This thesis does not pursue

these techniques in order to avoid the computationally intensive matrix inversion (or

pseudo-inverse). In addition, the methods of this thesis deal with unknown time-

variant channel models.

The work of Bliss, Parker, and Margetts [6] is the most relevant to this thesis.

Those authors present the general problem of MIMO STAR communication, but

focus specifically on the problems of simultaneous links and a full duplex relay. The

analysis in their paper assumes a known time-variant channel that can be modeled as a

matrix of channel values at certain delays. With knowledge of the signal and received

data, the maximum likelihood channel estimate can be derived using the ordinary

least squares method. The paper follows by proving that this method maximizes the

signal to noise ratio. In addition, it demonstrates the method's performance through

simulations of the simultaneous links and the full duplex relay problems. However,

like [5], [6] requires matrix inversion. This thesis project is aimed at developing a

robust method that does not require computationally intense calculations to solve for

optimal weights. In addition, this thesis accounts for a prior lack of channel data and

presents methods to probe the channels without saturating the transmitter.

This thesis will explore the digital portion of the STAR system design, with an

emphasis on algorithms that make full duplex multipath communication possible in a

changing environment. This STAR system's digital portion revolves around a digital

MIMO LMS filter, as shown in Figure 1-1. The MIMO LMS filter will help to protect

the ADCs from saturation or noisy signals. In addition, it will be able to filter out

the transmitted signal from the received signal after the received signal has passed

into the digital domain. The LMS filter will be the first step in the system's digital

signal processing [2, p. 9].

The remainder of this thesis is organized as follows. A brief summary of the

required background theory is given in Chapter 2. In addition, this chapter will discuss

the current research and progress in the field of transmit beamforming. Chapter 3 will

describe the methods of STAR that have been proposed and tested. For each method,

a brief description of the algorithm and mathematical analysis will be provided and

the method results will be discussed. The best method from Chapter 3 will be chosen

and analyzed in Chapter 4. Chapter 4 will provide an in-depth mathematical analysis,

linearization, and system model for the chosen method. Concluding thoughts are

offered in Chapter 5.

Unwanted Tx - Rx
Coupling

Tx

Transmit
Signal -

o To Rx
Processing

Figure 1-1: Block diagram for the MIT Lincoln Laboratory STAR system proposal
[2]. Although this diagram shows plans for the antennae, analog electronics, and RF
canceller setup, the focus of this thesis is on digital portion of the system that deals
with transmit beamforming. HPA stands for high power amplifier, LNA stands for
low noise amplifier, DAC stands for digital to analog converter, and ADC stands for
analog to digital converter.

Chapter 2

Background Theory

This thesis presents methods for solving the STAR problem with adaptive transmit

beamforming. Knowledge of adaptive beamforming is required in order understand

the mathematical nature of the algorithms presented in Chapters 3 and 4. This

chapter presents the fundamental background theory of adaptive beamforming and

contains equations that will be important to the analysis in later chapters.

2.1 Control Theory

A system response can be determined by the behavior of its state variables, which

describe some type of energy storage within the system. For example, the voltage on a

capacitor is a state space variable in a circuit system. For systems with multiple states,

the entire set of state variables can be expressed as a vector. Systems with multiple

inputs can likewise have their inputs expressed as a vector. The state evolution

equations of a linear time-invariant (LTI) state space system with multiple inputs

can be written as [7, p. 284]

w[n + 1] = Aw[n] + Br[n] (2.1)

r[n] -+ t$I ~ Z ' ~ Uy[n]

Figure 2-1: Block diagram of a state space system, with input vector r[n], state vector
w[n], and output vector y[n].

where w[n] is a vector containing the state variable at sample time n, r[n] is the

vector of inputs, and A and B are coefficient matrices of the state equation.

State space systems can have multiple outputs with a similar vector notation of

the form

y[n] = Cw[n]+ Dr[n] (2.2)

where y[n] is the output vector. Together, (2.1) and (2.2) form the state space

equations of the system, and can be represented by the block diagram in Figure 2-1.

In the z-domain, these equations can be represented as [8, p. 768]

zw(z) = Aw(z) + Br(z)

y(z) = Cw(z) + Dr(z) . (2.3)

The transfer function from input to state vector is defined as

w(z) (zI - A)-1
r(z)

(2.4)

and the transfer function from input to output is defined as

y(z) A C(zI - A)- 1 B + D. (2.5)
r(z)

We shall define the Resolvent Matrix 4(z) as

4(z) = (zI - A)- 1 (2.6)

and note that in the time domain, the State Transition Matrix 4[n] is [7, p. 291]

4[n] = A" (2.7)

for n > 0. With this information, the state vector becomes [7, p. 289]

w[n] = Anw[O] + 1 A-'Br[m] (2.8)
m=O

and the system output function is

t
y[n] = CA w[0]+ C I A"-'Br[m] + Dr[n] . (2.9)

m=O

Note that the second term of (2.8) is a convolution sum.

To determine the steady state behavior of the state vector w[n], An can be de-

composed into [9, p. 294]

" = V-1 AA) V(A) (2.10)

where V(A) is the right eigenvector matrix of A and A(A) is the eigenvalue matrix.

Since A(A) is a diagonal matrix, w[n] will converge only if |Amx,(A) I< 1, where

Ama=,(A) is the maximum eigenvalue of A.

2.2 Gradient Descent and Numerical Methods

Optimization problems involve tuning a set of variables so that some cost function

is minimized or maximized [10, p. 16]. This function is referred to as the "perfor-

mance surface" and describes the system performance with respect to a set of system

variables. In many cases, the performance surface is quadratic, and the local critical

point is the global minimum or maximum [11, p. 21]. Critical points can be found

by determining where the gradient of the performance surface is equal to zero.

Even though an optimal solution to such problems can be mathematically deter-

mined, numerical methods are often useful in practice because they are robust [10,

p. 277]. In this sense, numerical methods are less likely to be affected by practical

difficulties such as modeling errors or poor characterization data.

One particular method of searching the performance surface for local minima is the

gradient descent method. This method starts at some point along the performance

surface, finds the direction of the surface gradient, and steps in the direction of the

(negative) gradient by a small amount [10, p. 277]. In vector form, the gradient of

some function f of a vector w is

awi

Vf(w) - - (2.11)

awKL OWK J

Many numerical methods employ the negative gradient, which often points in the

general direction of a local minimum. By stepping w in this direction every numerical

cycle, the gradient descent method ensures that a local minimum will eventually be

reached if the step size is sufficiently small. Any numerical method that uses gradient

descent will contain an update equation of the form [11, p. 57]

w[n + 1] = w[n] - pVfI[] (2.12)

where p is the growth factor. The growth factor determines the step size, which

governs the speed and accuracy of the numerical method.

X0

". W - - 10

XB
WB

Figure 2-2: Adaptive linear combiner with input x, weights w, and output y.

2.3 Adaptive Linear Combiner

One particular use for gradient descent is in optimizing an adaptive linear combiner,

shown in Figure 2-2. Here, the purpose of gradient descent is to minimize the mean

squared error (MSE) E[E2 [n]] between a measurement r[n], and an estimate y[n] of

that measurement. Using a gradient descent algorithm, the system error can be fed

back into the system input x[n] through the adjustable weight values wk. The rest of

this section follows the derivation from [11, p. 19-22]. In the adaptive linear combiner,

E[n] = r[n] - y[n]

- r-xTw (2.13)

E2 [n] r 2 [n] - 2r[n]xT[n]w + xT[n]wxT[n]w

= 2-[n] - 2r[n]xT[n]w + wTx[n]xT[n]w . (2.14)

Because E[E2] is being minimized over w, w is treated like a constant within the

expectation operator. In other words,

E[E2] = E[r 2] - 2E[rxT]w + w T E[xx T]w

= E[r2] -2pTw + wT Rw

= E[r2] - 2wTp + WT Rw (2.15)

where R E[xxT] is the input autocorrelation matrix and p = E[rxT] is the input-

to-output crosscorrelation vector.

The gradient of the mean squared error is

VE[E2] = E[E2] = -2p + 2Rw. (2.16)
aw

This is the negative of the direction in which a gradient descent algorithm will step

on any given cycle of the algorithm. In order to reach the optimal weight value,

the algorithm will have to update the gradient every cycle and step in the gradient's

direction. Most quadratic performance surfaces such as the MSE have a single global

minimum. One exception is the function xTRx in the case that R is low-rank. If

we assume that R is of full rank, the optimal weight vector wpt can be found by

determining where the gradient is zero. In this case,

0 = -2p + 2Rwopt

wopt = R-1p. (2.17)

The optimal weight vector, also known as the Weiner solution, is the set of weights

that positions the system at the bottom of the performance surface and thus minimizes

the MSE. In addition, (2.17) is a variation of the Yule-Walker equations [12, p. 410].

2.4 Least Mean Squares Algorithm

The least mean squares (LMS) algorithm is a numerical method that uses gradient

descent to minimize the MSE of an adaptive linear combiner. The LMS algorithm

uses E2[n] as an unbiased estimate of E[E2] [11, p. 100]. It follows that

E[-2 2[n] = r2 [n] - 2r[n]xT[n]w + xT [nwxT[n]w (2.18)

V[n] -2r[n]x[n] + 2x[n]xT[n]w

-2p[n] + 2R[n]w (2.19)

where V[n] is the gradient vector. Note that R[n] and p[n] differ from R and p

from Section 2.3 because R[n] and p[n] do not use expected values. One particular

consequence of this difference is that R[n] is rank-one because any outer product of

the form xxT is rank-one [13, p. 461]. This also causes R[n] to have only one nonzero

eigenvalue.

The LMS algorithm uses the gradient descent weight update equation from (2.12).

In this case,

w[n + 1] =w[n] - pV[n]

w[n] + p(2p[n] - 2R[n]w)

(I - 2pR[n])w[n] + 2tp[n] . (2.20)

As shown above, the LMS weight update equation takes on the state space form

of (2.1) and (2.2). If the substitutions

A = I - 2LR[n]

B = 2pxT[n]

C = xT [n (2.21)

are made, state space analysis may be used to determine the time response and

convergence of the LMS algorithm [14]. The steady state convergence and behavior

can therefore be analyzed using (2.8) and (2.10). From (2.8), it follows that

n

w[n] = (I - 2pR[n])"w[0] + Z(I - 2pR[n])n-m(2ptx T [n])r[m] . (2.22)
m=o

Statistical analysis must be used to determine the convergence of the LMS algorithm,

since R[n] only has one nonzero eigenvalue. Therefore, we shall use the matrix R =

E[xxT] from Section 2.3 to study the algorithm convergence. Using (2.21), we have

(I - 2pR)" = V-1 (I - 2pA(R))"V(R)

1
0 < p< (2.23)

1Amax,(R) (

where V(R) is the right eigenvector matrix of R and A(R) is the eigenvalue matrix.

It is easy to see that the weights will not converge if pu is too large.

2.5 Normalized LMS Algorithm

The normalized LMS (NLMS) algorithm replaces the constant p't with a time varying

growth factor p[n]. Specifically, [10, p.355]

t[n] =

x T[n] x[n]

The benefit of normalizing the growth factor with respect to the input is that it

causes the gradient to be more resistant to input noise when the amplitude of the

input is relatively large [10, p. 352]. Another benefit of the NLMS algorithm is that

the stability conditions for [y are constant. As shown in (2.23), the limits on p for

the LMS algorithm are relative to Amax,(R), which depends on x[n]. However, for the

NLMS algorithm, [10, p. 355]

0 < p < 2. (2.25)

2.6 Applications of the LMS Algorithm

In signal processing, the LMS algorithm is used as a filter. The applications of the

LMS filter all differ with how the inputs and outputs are connected. The two basic

LMS filter configurations are parallel (the general form) and traversal [11, p. 16].

Figures 2-3 and 2-4 show the difference between the two configurations. The input

vector for the parallel configuration is a set of inputs at a particular time. The input

vector for the traversal configuration is a set of delayed time samples from a single

input. These two LMS filter configurations can be used in a number of applications.

There are four basic classes of adaptive filtering applications: system identification,

inverse modeling, prediction, and interference cancellation [10, p. 18]. The system

identification filter and the interference-cancelling filter are both important to this

thesis.

System identification is useful for modeling an unknown system or channel, as

shown in Figure 2-5. In the case of the traversal LMS filter, the unknown system is

modeled as a set of gains and delays that form a basic finite impulse response (FIR)

filter. The LMS filter's weights will adjust themselves to the taps of an FIR filter

that best models the unknown system [11, p. 195]. The performance of the algorithm

will decrease if there is noise added to the desired signal. Since the LMS filter ideally

adjusts its weights to minimize E[E2], it is theoretically unaffected by noise if the

input is uncorrelated to the added noise signal [11, p. 196]. In practice, the noise will

affect the system because E2 [n] is used in place of E[E2]. The system identification

filter can also potentially fail if the channel of the unknown system is too long.

Adaptive interference cancellation attempts to subtract an undesired signal from

the signal of interest, as shown in Figure 2-6. This generally requires that the unde-

sired signal can be modeled or generated [11, p. 304]. However, it is often possible

to obtain a reference input that only contains the undesired signal. For example,

noise-cancelling headsets have a microphone outside of the speaker that detects and

Parallel LMS configuration with filter input x, weights w, output y,
desired input r, and error e [11, p. 16].

x[n]
x[n-B]

WBWO

Figure 2-4: Traversal LMS configuration with filter input x, weights w, output y,
desired input r, and error E [11, p. 16].

Figure 2-3:

x Aaapuve rier E

Figure 2-5: System identification LMS configuration with system input x, filter output
y, plant output r, and error E [10, p. 19].

SOl

OutputUndesired
Noise

Figure 2-6: Traversal LMS configuration with filter input x, weights w, output y,
desired input r, and error E [11, p. 304].

records unwanted noise [11, p. 3383, which is then subtracted from the audio signal.

However, in many cases, it is difficult to model the channel between the two inputs.

Noise-cancelling headsets must delay the noise signal by an amount related to the

distance between the microphone and the speaker. The weights of an adaptive noise

canceller can sometimes account for this difference.

2.7 Signal Orthogonality

Another concept important to signal cancellation is that of orthogonality. Orthog-

onality occurs when the cross-correlation (the time expectation of the product) of

a signal and the complex conjugate of another signal is zero. In general, two si-

nusoids with different periods are orthogonal over a certain period of integration L

if this period is a common multiple of the sinusoid periods. This means that the

cross-correlation of sinusoids ri(t) and r2 (t) with frequencies wi and w2 is [8, p. 190]

[r1 (t)r2 (t)] r1 2r()d

1 je ite-iW2t dt

- fjLej(i-W2)t
dt

L 0

1 i =1 ::2 (2.26)
0, wi f4 W2

if the integration interval L is any integer multiple of both 1 and g. The integral

over any number of complete periods of a sinusoid is zero. However, when w1 = W2,

the integrand ej(1 -w2)t is no longer a sinusoid. This property is what allows the

Fourier series formula to separate the frequency components of any periodic signal [8,

p. 191]. In the Fourier series formula, L will always be a multiple of all ' and '.

Note that the expectation operator E[...] in (2.26) is a time averaging operator.

Sinusoids of the same frequency wo have a cross-correlation that is dependent on

their phase difference #0. In this case,

E[ri(t)r2 (t)] = je ej(woto) dt

- e-jo Leje(wo-wo)t dt
L o

e-see . (2.27)

This property is important for phased arrays, which will be covered in Section 2.8.

Any two sinusoids of different frequencies can still integrate to zero even if L is

not a multiple of g or 1E. If L is very large compared to 1 and g, the result willW1 W2 W1 W

still be

E[,r1(t)r2(t)] =' eie- wt dt

= - (e i- - 1jL(wi - w2)

0 (2.28)

given that wi / w2. Since any signal can be represented as a sum of sinusoids at

different frequencies, the cross-correlation of any two deterministic signals will be

nearly zero if these signals occupy different frequency bands.

Averaging random signals over a long period of time is also useful in signal can-

cellation. Let R 1(t) to be an instance of a zero mean white noise process. If the

time-average is taken over a sufficiently long period of time, then [12, p. 154-155]

E[R1 (t)] - 0 . (2.29)

Again, E[...] is a time-average operator. This result assumes that R 1(t) is mean-

ergodic [12, p. 427-428]. In any mean-ergodic signal, the time-average of the signal

over a long period of time can be used to estimate the expected value of the signal.

The cross-correlation of two ergodic signals will also be ergodic [12, p. 437]. We

know from (2.29) that an instance of a white noise process is ergodic. Sinusoids are

also mean-ergodic because their average over a long period of time can approximate

their expected value of zero. Since R 1(t) and r2(t) are both ergodic, we know that

E[R1 (t)r2 (t)] = R1(t)r 2 (t) dt ~0 . (2.30)

The frequency domain provides another way of looking at this problem. R 1 (t) is

an instance of a white noise process, therefore its total power is spread across its

wideband frequency spectrum. Since r 2(t) is extremely narrow band, there is very

little frequency domain overlap between R 1 (t) and r 2 (t), thus there is nearly zero

correlation between these two signals.

2.8 Receive Adaptive Beamforming

Adaptive antenna arrays use beamforming to allow for directional interference cancel-

lation through multiple reference inputs and weights [11, p. 369]. Beamforming allows

an antenna array to position its high gain regions and nulls such that it maximizes

the gain in the direction of the SOI while minimizing the gain in other directions that

may contain noise or other unwanted signals.

RF signals are electromagnetic waves and can be represented as a sinusoid [15, p.

15]

Arcos(wot - kz) (2.31)

where A, is the amplitude of the received signal, wo is the carrier frequency, z is

the position along the z axis, and k is the wave number. Note that (2.31) is the

equation for a narrowband signal with center frequency wo. At the primary receiver,

the signal's position z is constant. If we set the coordinate system such that z = 0 at

the primary receiver, the signal at this receiver rp(t) can be expressed as

rp(t) = Arcos(wot) + n,(t) . (2.32)

where the noise on the primary receiver n, is modeled as a white noise process. The

signal at some reference receiver r,(t) will be

rr(t) = Ar COS(WOt + woo)) + n,(t) (2.33)

where 60 is a time delay that leads to the phase shift w060 . We will assume that the

noise on the reference receiver nr is independent and uncorrelated with np. The time

delay 60 is the amount of time it takes the wave to travel from the reference receiver

\ 'Output
ference X2

J W2

Figure 2-7: Two-antenna receive beamforming that uses LMS interference cancella-
tion with system input x, receiver noise n, filter output y, plant output r, and error
E [11, p. 373].

to the primary receiver in the direction of propagation. It can be expressed as

0 27rLosin(60) (2.34)
Aowo

where AO is the wavelength, LO is the distance between the primary and reference

receivers, and 0 is the angle of propagation relative to the receivers shown in Figure

2-7.

Adaptive beamforming uses the LMS algorithm with complex weights. Real

weights would allow the gain of the received signal to be modulated. However, the

benefit of using complex weights is that both the gain and phase of the received sig-

nal can be adjusted. Adjusting the phase of a received signal is vital to beamforming

because it allows the two received signals to augment or cancel each other through

constructive or destructive interference. Complex weights can be represented by two

real weights: one representing the real (in-phase) part, and the other representing the

imaginary (quadrature) part. The imaginary weight is simply shifted by 90 degrees,

which is equivalent to multiplying it by j = \/_ [11, p. 371].

With complex weights configured as a pair of real weights, shown in Figure 2-7,

the LMS algorithm can be used to place a null in a certain direction. The LMS beam-

forming algorithm is set up such that the error is the difference between the primary

and reference receivers. Therefore, minimizing the error will cause the weights to

configure themselves such that the reference and primary signals cancel each other in

the chosen direction.

The optimal weights can be found in a way similar to the method from Section

2.3. This method follows the proof from [11, p. 372]. The weight vector is a complex

number that represents the phase shift necessary to form a null. Its parts w1 and

w2 form the real and imaginary components of this complex number. As Figure 2-7

shows, the vector x[n] sent to the weights is

x = r.n [n] 1 Arcos(won + wo6o) + nr[n] (2.35)] Arsin(won + wo6o) + nr[n]

The process to find the optimal weights follows by determining the autocorrelation

matrix R[n]. This is found to be

R[n] = E[xxH]

&A + ,2 01L2 0 r Ar(2.36)

where o is the noise variance of r. The result of (2.36) is possible due, to the

properties of orthogonality from (2.26) and (2.27). Specifically, the cross-correlation

of a cosine and sine of the same frequency is zero.

The other vector we must find is p[n], a vector representing the cross-correlation

Primary

-+ Output

Reference A - Z1

005 wA,0* WA,1* WA,B

Figure 2-8: Traversal adaptive array for wideband beamforming.

between the input x and the primary receiver signal rp. This results in

p[n] = E[rpx]

E[Arcos(won)ArCOS(won + wo6o)]

E[ArCOS(won)Arsin(won + wo6o)]

A2CO co(WO6o) 1(.7
2 osir (wooo) J

Again, this result relies on sinusoidal orthogonality. Conveniently, the noise variance

does not appear in p[n] because r, is uncorrelated with x. With R[n] and p[n]

determined, the optimal weights w0rt can finally be calculated as

wopt[n] = R- 1 [n]p[n]

A 2 cos(WOoo)

A2 +2U2 [](2.38)A +2r sin(o60

using the Weiner solution (2.17). These optimal weights will allow the two-antenna

narrowband system to form a null in the direction of 00.

Additional receivers allow for greater degrees of freedom in placing multiple nulls.

In addition, it is possible to place the high gain region in the direction of a SOI in

order to maximize its SNR. Wideband signals, however, contain multiple frequencies,

and single complex weights and phase shifting may not be sufficient in an adaptive

array. For wideband signals, a traversal adaptive array is required [11, p. 399]. As

shown in Figure 2-8, the traversal adaptive array not only has the benefit of spatial

beamforming, but also has the signal cancellation architecture necessary to process

wideband signals.

2.9 Transmit Adaptive Beamforming

Transmit adaptive beamforming is another method of adaptive directional cancella-

tion. In this case, each transmitter in an array adjusts its gain and phase such that

a null is placed in the direction of the designated receiver. Although a relatively

new topic in field of communications, such a strategy can be useful for any wireless

application that can be improved by full duplex communication [6].

In this application of transmit beamforming, it is desired that the power at the re-

ceiver be zero. Adaptive filtering is naturally useful for such an optimization problem.

In a conventional LMS filter, the gradient of the performance surface is derived from

reducing the error to zero. Here, the performance surface is the power at the receiver,

and a gradient function can be found in terms of the weights in each transmitter's

adaptive filter.

To find a function for the power, we must first derive the transmitted signal. Each

transmitter contains an adaptive filter with weights w that act on the reference input

x[n]. The reference input is common to all of the transmitters but each transmitter's

weights can take different values. In any system with a transmit filter, the transmitted

signal from transmitter a is

ta[n] = x[n] * Wa (2.39)

where "*" stands for convolution. The transmitted signal travels through the air

to reach the receiver. On the way, it may reflect off of different surfaces, causing

delays in the signal arrival times. The basic natural phenomena that impact signal

propagation are reflection, diffraction, and scattering [16]. The entire collection of

gains and delays due to these mechanisms is known as the "channel", and can be

represented as a transfer function vector h from the transmitter to the receiver. In a

system with A transmitters, the signal at the receiver r[n] is

A

rfn] = E x[n]I*w* ha. (2.40)
a=1

By definition, the power at the receiver is the square magnitude of the received signal.

The power p[n] is

p[n] = r[n]|2. (2.41)

It is often convenient to express the signal r[n] as a vector r. This allows normally

complicated operations to be expressed as matrix multiplication. The result from

(2.40) can be expressed as

r = Ew (2.42)

where w is a vector that contains all of the weight values for every transmitter and

E is a matrix that is derived from w and h. A full derivation of E is given in Section

4.1. With this notation, the power at the receiver is

p = WTETEw. (2.43)

Another important condition required for transmit beamforming is that the total

transmitted power remains constant. This condition is important because otherwise,

the easiest way to achieve zero power would be to set the weight values to zero. This

condition can be expressed as

wTw =1. (2.44)

The optimal set of weights that minimize (2.43) given the constraint (2.44) can be

found via the method of Lagrangian multipliers [7, p. 1981. If we label the functions

f = WTETEw

g = wT w

h = 1, (2.45)

then we may specify the Lagrange function A as

A = f+A(g-h)

= WTETEw + A(wTw - 1) (2.46)

where A is the Lagrangian multiplier. The Lagrange function takes a form of the

Rayleigh quotient [13, p. 440] and it is already apparent that the optimal w will be

an eigenvector of ETE. However, we will carry out the rest of the proof by taking

the gradient of the Lagrange function and setting it to zero in order to determine its

critical points. When we carry out the operation VA = 0, we find that

aAO= 0=wTw-1

wTw = 1 (2.47)

aA = o=W T(2ETE) + A(2wT)
aw

wTETE = -AwT

ETEw = Aw. (2.48)

The result from (2.48) simply restates the constraint from (2.44). However, the result

from (2.48) proves that the optimal w is an eigenvector of ETE. In addition, the

corresponding A is an eigenvalue of ETE.

We have used the method of Lagrange multipliers to determine the critical points

of (2.43) given the constraint (2.44). However, the optimal weight vector must still

be chosen from this set of critical points. The power can be determined from (2.48)

as

ETEw = Aw

wTETEw = wTAw = wTwA

p = A. (2.49)

In other words, the value of the power at a critical point of (2.43) is an eigenvalue

of ETE. Since we want to minimize the power on the receiver, the optimal weight

vector will be the eigenvector that corresponds to the smallest eigenvalue.

Chapter 3

Methods and Algorithms for

Multiple-Input Single-Output

(MISO) Active Cancellation

The basic STAR system uses a single receiver and multiple transmitters. The reason

for this is that multiple transmitters allow for beamforming methods to create a null

at the receiver. This is desirable because the analog receiver chain and the analog-to-

digital converter are intended for low power signals. High signal power will saturate

and possibly destroy the receiver's electronics [2, p. 8].

Multiple receive antennae arranged in a phased array can function to create a

far-field receive-side null in the direction of the transmitter. However, any signal of

interest coming from the direction of the undesired transmitter will not be picked up

by the receiver if such a directional null is used. Since the transmitters are stationary

with respect to the receiver, these signals of interest will not be detected until the

entire platform changes orientation. One exception would be if instead of a directional

null, a near-field receive-side null is formed at the transmitter. However, forming a

receive-side null at the transmitter is not useful to the STAR system unless the receiver

saturation problem is first solved.

In contrast to receive beamforming, transmit beamforming allows a single receiver

to function as an isotropic antenna and detect signals of interest from every angle.

This is possible because the transmissions can be adjusted to create a null in the

interference pattern at the receiver. In fact, there are usually many different far-field

interference patterns that result in a null at the receiver [17, p. 81].

One way to form a null at the receiver is to adjust the gain and phase of the

transmitters. Under ideal conditions, this would be the best solution for narrow band

transmitter signals [4, p. 8]. However, signals with multiple frequencies react differ-

ently to fixed delays, and so beamforming becomes difficult with only two adjustable

values per transmit antenna [4, p. 12]. In addition, the channel between the trans-

mitters and the receiver is likely to include reflections. Reflections translate to delays

and gains in the channel's impulse response [11, p. 201]. For these reasons, the initial

multiple-transmitter, single-receiver system uses an adaptive filter on each transmit-

ter. These adaptive filters allow the issues of reflections and wide band signals to be

addressed by increasing the number of filter taps. The lower limit to successful trans-

mit beamforming is two transmitters. With knowledge of the channels, two adaptive

antennae can theoretically be configured such they cancel at the receiver. This lower

limit may not be valid if the channel length is much greater than the number of taps.

This chapter will present three methods of transmit beamforming and two methods

of obtaining a channel estimate. These methods all assume multiple transmitters and

a channel that can be modeled by its impulse response. In each case, the channel

is allowed to vary with time. Practical signal processing applications must account

for a time-variant channel even if the antenna platform is stationary [4, p. 62]. It is

important to note that none of the methods presented in this chapter require inverting

a matrix or finding its eigenvalues. This is very beneficial because large inverse or

eigenvalue operations require excessive computation time and resources.

3.1 Transmit Beamforming Method: Trial and Er-

ror

The most basic method of using adaptive filters in transmit beamforming involves

adjusting the filter weights through trial and error. Appendix A.1 gives the Matlab

code for this operation. As shown in Figure 3-1, the only adaptive filters in the entire

system are located on the transmitters. In this system, there are A transmitters and

each transmitter has B weights. Operation of the system requires an arbitrary time

period K for which samples can be collected every time a weight is adjusted. The

size of K will be mentioned in Section 3.2. Figures 3-2 and 3-3 show that every K

cycles, a particular weight from one of the filters is increased by a small step amount.

The new average power pag is then obtained by taking a moving average over the

past K measurements of the power seen at the receiver. The received signal r[m]

represents a voltage or current. Therefore, the average power is related to the square

of the received signal, as shown by [10, p. 116]

pavg[n] = K r[m]| (3.1)
m=n-K

where n represents the sample number or time. If the new average power is less than

the old average power, the weight is left at its new value. Otherwise, it is decreased

by twice the step width. At each weight step, all the weights are re-normalized to

a specified constant weight power Wowe, so as to keep the transmit power constant.

The normalization is accomplished by setting the new weight vector w[n + 1] [7, p.

100]

w[n + 1] = w[n] WTow[) 2 (3.2)
(wT[n] -w[n]f)i

This procedure causes all of the weights to change every cycle. However, the overall

change in power still largely reflects the change in the stepped weight.

reference, x[n]

Figure 3-1: System block diagram for a STAR approach using adaptive filters on the
transmitters. The transmit weight vector for transmitter a is Wa and the channel
between transmitter a and the receiver is ha.

K cycles K cycles

Step weight 1 Test weight 1,
Step weight 2

Test weight 2,
Step weight 3

MEN , Test weight A-B,
Step weight 1

Figure 3-2: Trial and Error algorithm timing diagram. There are A transmitters and
B weights per transmitter, therefore, there are A x B weights total.

Figure 3-3: Trial and Error algorithm decision flow chart. This shows the algorithm's
computation and decision processes every K cycles.

Even with very fine tuning, the performance of this method leaves much to be

desired. The weights take a very long time to properly converge, and significant

power spikes are produced even at convergence. As Figure 3-4 shows, this method

obtains only minimal cancellation. Figure 3-5 reveals that the power spikes are caused

by the sharp steps in weight value. It also shows that the weights never really settle.

Despite all of its disadvantages, one benefit of this method is that it is virtually

immune to noise since all of the calculations use averages of the received data.

The convergence of the weights is largely affected by the speed at which the channel

varies. Figure 3-6 shows one realization of the random time-variant channel model

that will be used in all the simulations of this chapter. In every method presented,

the weights converge more finely if the channel changes slowly.

0 0.5 1 1.5 2 2.5 3
Time (samples) x 104

Figure 3-4: Received power relative to transmitted power for the Trial and Error
method. In this simulation, A = 2, B = 4, K = 100, and the weights were stepped
by 0.1 every K cycles. The channel model varies with time, as shown in Figure 3-6.

0.5 1 1.5 2 2.5
Time (samples) x 104

Figure 3-5: Transmitter adaptive filter weights from the simulation in Figure 3-4.

True Channel

04

-L 0.2

0-

-0.2

-0.4
0 0.5 1 1.5 2 2.5 3

Time (samples) x 10,

Figure 3-6: Channel realization from the simulation in Figure 3-4. The channel from
each transmitter to the receiver has four taps. Each line indicates how the tap values
change with time. Every 4000 samples, the slope of these lines changes to a random
number between -g and .

Figure 3-7: System block diagram for a STAR approach that requires a channel
estimate for transmit beamforming.

3.2 System Identification for Channel Estimation

In contrast to the previous method of transmit beamforming in Section 3.1, all other

methods require a channel estimate. The channel estimate is useful because it allows

for more sophisticated and intelligent algorithms to be used in the transmitter adap-

tive filters. For these algorithms, a channel must be estimated from each transmitter

to each receiver. A good way to estimate the channel is to use a system identification

adaptive filter [18, p. 162]. The system block diagram of Figure 3-7 represents the

basic layout used in any method that requires a channel estimate. The issue of actu-

ally estimating the channel will be addressed in Section 3.5. For now, the descriptions

of these transmit beamforming methods will assume that the channel estimates are

perfectly accurate.

An estimate of the average signal power at the receiver is required in order to

reduce the actual signal power impinging on the receiver. This estimate can be

calculated in terms of known variables and signals. In order to derive the average

power estimate, it is important to show how this estimate relates to the actual received

signal. The signal r[n] at the receiver is the sum over all A transmitters of each

transmitter signal ta [n] convolved with its respective channel ha between transmitter

and receiver. The transmitter signal itself is a convolution between the transmitter

weights w, and some common reference signal xfn]. As explained in later sections,

the reference signal can be designed to have multiple uses. For now, the reference

signal can simply be understood to be any signal input to all the transmitter adaptive

filters.

The receiver ultimately sees the sum of each double convolution of the reference,

transmitter weights, and channel for each transmitter as shown by

A

r [n] E tan]

a=1
A

= x[n] * wa * ha. (3.3)
a=1

Every cycle, a prediction of the received signal is calculated by

A

rpred[r] n x3n] * Wa * heet,a . (3.4)
a=1

This prediction rpred[n] is based on the current values of the reference signal, trans-

mitter weights, and channel estimate he,t,a. The channel estimate comes from copying

the weights of the receiver's system identification LMS filters. Once a prediction is

obtained for the received signal, it is used to determine a prediction for the average

power as

Pavg,pred[fl = K rpred [m] 2 . (3.5)
m=n-K

In a sense, this average is a moving average whose length is determined by the number

K of elements that were taken from the reference signal. It is necessary for K to be

large enough such that (3.5) can average over enough samples to include the delays

due to w and h. The smallest value for K is the length of the impulse response of

w * h, which is equal to the sum of the lengths of w and h.

3.3 Transmit Beamforming Method: Gradient De-

scent

The transmit beamforming method discussed in this section directly optimizes the

received power using a gradient calculation. This method requires a channel estimate.

The derivation for the formula used to calculate the weight update vector is similar

to that of the LMS algorithm. As explained in Section 2.4, the LMS algorithm

uses the instantaneous squared error E2 [n] as an estimate of the mean squared error

E[e2 [n]]. The negative gradient vector of the power, -V[n], points in the direction

that most directly minimizes the mean squared error and contains the weight direction

and magnitude with which to update each weight [11, p. 21]. Once the gradient is

calculated, the weights themselves are updated in the same way as the LMS filter,

given in (2.20) where p is the adjustable growth factor.

As previously shown in (2.19), V[n] is calculated by taking the partial derivative

with respect to each weight. Similar to the LMS algorithm, the gradient vector

for the transmit beamforming method of this section is also calculated using partial

derivatives. The main difference is that the LMS algorithm attempts to minimize the

mean squared error of the filter [11, p. 100], whereas here we attempt to minimize

the average signal power at the receiver. In this sense, the performance surface of the

algorithm discussed in this section is the average receiver power as a function of each

weight in each transmitter's adaptive filter.

The negative gradient vector is the vector of steepest descent along the perfor-

mance surface. The average power gradient vector for transmitter a is

0
Pavg,pred [n)

&Pavg,pred[fl]
09Wa, 1

Va[n] - (3.6)
aa

'Pavg,pred [n]
aWa,B -

As shown in (3.5), the predicted average power Pavg,pred[n] is a function of the predicted

received signal rpred[n]. In addition, (3.4) shows that rpred[n] is a function of x[n], wa,

and heet,.. Since x[n] and hest,a are constant during this partial derivative calculation,

rpred[n] is really just a linear function of each Wab. Using the chain rule,

Va[n] =
9 Pavgpred[f]

OWa

S(pag,pred[n] orPed[] (3.7)
arpred[n] OWa (3.

2 n rrpr ed[m]

K ~Z rpred Im] pra(38
m=n-K

Note that the partial derivative in (3.7) only evaluates to the solution in (3.8) when

the samples in rpred are real. The original predicted power in (3.5) uses |rpredl, which

does allow for complex samples in rpred, but would result in a much more complicated

partial derivative.

The received signal prediction rpred[n] is the sum of the signal contributions from

each transmitter. A prediction for the contribution from transmitter a can be ex-

pressed as

rpred,a[n] = (x[n] * hest,a) * Wa

= ga[r] * Wa

B

- g[n - b]wa,b. (3.9)
b=1

Since each weight Wa,b in a traversal filter with weight vector Wa represents a gain

and a delay [10, p. 5], this equation depicts how the weight vector is convolved with

the other terms. It is now apparent that the partial derivative of the received signal

with respect to each weight is

arpred [n] = ga[n - b] . (3.10)
OWa,b

From this equation and (3.9), it is finally possible to determine the gradient vector

from (3.8) to be

rpredIm)gaIm - 11

Va[n] = .Z(3.11)
m=n-K

rpred[m]ga[m - B]

Appendix A.2 gives the Matlab code for the entire operation.

The method of this section performs much better than the method of Section

3.1. As shown by the simulation results of Figure 3.3, the average received power can

drop to 20dB below the transmit power within 30000 samples. Another benefit of this

method is that it uses direct calculation. This method does not use any conditional

statements such as those shown in Figure 3-3 to test or compare, making it linear in

terms of the weights and much more mathematically sound overall.

However, this method is not without its flaws. The first potential problem is the

speed of convergence. The system has a good steady state average power and has good

long term behavior in general. However, if one of the channels were to undergo a large

change in a small amount of time, the long transient response could pose problems for

achieving the goals of STAR. Another potential problem with this system is that the

power at the receiver does not remain constant after the weights have converged. The

simulation from Figures 3.3 and 3-9 shows that even after convergence, the received

power ranges from -15dB to -25dB relative to the transmitter. Such behavior is

no surprise considering that the transmitter weights are also somewhat mobile after

convergence.

It should be noted that the performance of this method is heavily dependent on

the growth factor. When the growth factor was lowered from 0.02 to 0.005, it caused

the weights to be much more stable and lowered the average receive power by an

additional 5dB as displayed in Figure 3-10. However, with a smaller growth factor,

0 0.5 1 1.5 2 2.5 3
Time (samples) x 104

Figure 3-8:
method. In
with time.

Received power relative to transmitted power for the Gradient Descent
this simulation, A = 2, B = 4, and p-L = 0.05. The channel model varies

0.5 1 1.5 2 2.5
Time (samples) X 104

Figure 3-9: The adaptive filter weights from the simulation in Figure 3.3.

.. -....

'0i -5

E
-10

0

-15

s-20

0a.. -25

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (samples) X 104

Figure 3-10: Received power relative to transmitted power for the Gradient Descent
method. This simulation instead uses ya = 0.005. Note that this simulation was run
for 50000 samples.

the system will take even longer to converge. This behavior is similar to that of the

LMS filter [11, p. 50] and the user may choose to customize this method for either

speed or performance.

3.4 Transmit Beamforming Method: Trial and Er-

ror Using a Channel Estimate

The method discussed in this section uses a test and comparison approach to find the

weight update vector for the transmit beamforming adaptive filter. Like the method

of Section 3.3, it involves the use of an adaptive filter on the receiver that estimates

the channel between each transmitter and receiver. However, it is also similar to the

method of Section 3.1 in that the weight update algorithm uses conditional statements

to determine the gradient (as opposed to the strict mathematical approach of Section

3.3). The method of this section essentially improves the structured gradient descent

algorithm through the use of nonlinear conditional statements. Appendix A.3 gives

the Matlab code for this operation.

A prediction for the average power Pavg,pred is determined in the same way as in

(3.4) and (3.5). After obtaining this prediction, each weight is individually tested to

determine whether a slight increase or decrease in the weight's value will lead to an

overall decrease in Pag,pred. To test the effect of a slight increase a in a weight's value,

a temporary average power prediction Ptemp,up is obtained. The value of ptemp,up can

be found by increasing the desired weight by a and using the new weight vector in

(3.4) and (3.5). Similarly, Ptemp,down is calculated to determine the effect of a slight

decrease in the weight's value. Once all average power predictions are determined,

Pavg,pred, Ptemp,up, and Ptemp,down are compared with each other using conditional state-

ments. Depending on which of the average power predictions has the lowest value,

the corresponding weight will either be increased, decreased, or left unchanged.

As with the method from Section 3.3, the weight update calculation is the same as

that for the LMS filter, given in (2.20). The main difference lies in how the gradient

is calculated. For transmitter a, the gradient vector Va is

Va &W19avgp (3.12)
awa

A good estimate for this partial derivative is the change in average power divided

by the change in weight a. In fact, this estimate is an exact calculation of the

partial derivative in the limit a -+ 0. If it was found that ptemp,up < Pavg,pred and

Ptemp,up < Ptemp,down for an increase in weight b of transmitter a, then

&Pavg,pred APavg,pred _ Ptemp,up - Pavg,pred

OWa,b AWa,b a

In this case, the change in average power is the difference between Ptemp,up and Pavg,pred.

If instead Ptemp,down < Pavg,pred and Ptemp,down < ptemp,up, then

0 Pavg,pred Ptemp,down - Pavg,pred (3.14)

OWa,b ~a

This method of transmitter beamforming is the best in both speed and perfor-

mance. In addition, it is possible to calculate the weights in parallel, allowing for

faster computation. The first simulation of this method yielded relative received

power as low as -25dB as shown in Figure 3-11. As displayed by Figure 3-12, the

weights converge quickly. In Figure 3-12, the weights appear to converge to an exact

number. However, due to the nature of this algorithm, what appears to be a conver-

gence is actually an oscillation as shown in Figure 3-13. The weight value oscillates

about the theoretical optimal weight value that would yield the lowest received power.

This behavior occurs because the weights are always stepped by a constant amount.

Since the step is always in the direction of the optimal weight value, the weights will

usually overshoot their optimal value.

The weight oscillation can easily be reduced by decreasing the growth factor. To

-16
Cd

-18
.)

-20

-22

*0i-24
0-

-26

-28-

-30,
0 0.5 1 1.5 2

Time (samples)

Figure 3-11: Received power relative to transmitted
Channel Estimate method. In this simulation, A = 2,
The channel model varies with time.

15

1

05

00

en

0.5 1 1.5 2 2.5
Time (samples) X 104

x 104

power for the Trial and Error
B = 4, y = 0.05, and a = 0.05.

Figure 3-12: Transmitter adaptive filter weights from the simulation in Figure 3-11.

...-- - --- - --- -------- ----

4) U.V IUV II

.0.95 -

0.94 -

0.93 -

0.92-

1.296 1.298 1.3 1.302 1.304 1.306
Time (samples) X 10

Figure 3-13: Zoomed view of a section of Figure 3-12.

be conservative, a should not be less than p. However, decreasing both values allows

for finer weight step resolution. A finer weight step resolution results in the steady

state weight values being much closer to the optimal weight values. As a result, the

relative received power improves significantly. Figure 3-14 shows that the relative

average received power can be as low as -60dB. However, the time it takes for the

weights to converge is greater in the simulation of Figure 3-15 than of Figure 3-

12. Such is a characteristic of the tradeoffs involved with adjusting t in numerical

methods [11, p. 56-57].

. - -- -- --

-10 -
E

-20

-30-

-40-

a* -50-

-60-

-70
0 0.5 1 1.5 2 2.5 3

Time (samples) x 10,

Figure 3-14: Received power relative to transmitted power for the Trial and Error
Channel Estimate method. In this simulation, A = 2, B = 4, p = 0.001, and

a = 0.001. The channel model varies with time.

0.5 1 1.5 2 2.5
Time (samples) x 104

Figure 3-15: Transmitter adaptive filter weights from the simulation in Figure 3-14.

...............

3.5 Probe Signals for Channel Estimation

Section 3.4 shows that the best approaches for transmit beamforming require a chan-

nel estimate. In the simulations of Sections 3.3 and 3.4, it was assumed that the

channel estimate was nearly perfect. However, actually acquiring an accurate esti-

mate is no easy task. As previously shown in Figure 3-7, the transmitter's adaptive

filters require adaptive filters on the receiver to identify the channel between each

transmitter and the receiver. After the receiver's adaptive filters have successfully

identified the channel, their weights can be directly copied as the channel estimate

hest,a for (3.4).

The reason that this task is so complicated is that the receiver contains signals

from all of the transmitters. Section 2.6 discusses how the channel of a single trans-

mitter system can be identified by supplying the transmitted signal as input to an

LMS filter. However, this will only work if the received signal is solely a result of

the transmitted signal. In this system, the received signal is some combination of the

transmit beamforming signals, the probe signals, and the signals of interest (SOI).

With multiple received signal contributions, special tricks must be used to extract

the probe signals from each transmitter in order to identify the channel. Both of the

methods that use system identification filters on the receivers require a probe signal.

As displayed in Figure 3-16, a different probe signal is added on to each of the trans-

mit beamforming signals. These probe signals are low power and are not designed to

be cancelled at the receiver. In addition, each probe signal is given as the input to

the corresponding receiver LMS filter. Note that the channel estimation methods to

be discussed in Sections 3.6 and 3.7 will use the method discussed in Section 3.4 for

transmit beamforming and active cancellation at the receiver.

Figure 3-16: System block diagram from Figure 3-7, updated to include probe signals.

60

transmitter Tx1 Tx2 Tx1 & Tx2 Tx1 -NE

Probing Probing Probing
task Channel Channel Transmit Beam Forming Channel -

1 1 2 11

Figure 3-17: Probing Duty Cycle timing diagram that shows which transmitter is
active during each phase of the probing period.

3.6 Channel Estimation Method: Probing Duty

Cycle

This method sequentially probes the channels and cancels the transmit beamform-

ing signal at the receiver. In order to determine a channel estimate, the high power

transmit beamforming signal is silenced while probing. Once the channels are prop-

erly characterized, the transmit beamforming signal may be reactivated and active

cancellation may resume. In this way, the system operates periodically, switching

between the phases of channel estimation and transmit beamforming. Appendix A.4

gives the Matlab code for this operation.

During the channel estimation phase, each transmitter is exclusively activated

for a small amount of time as shown in Figure 3-17. The signal amplitude for the

active transmitter is lowered so as to prevent saturating the receiver. However, this

amplitude must be great enough such that it is above the noise and ambient signal

level.

Applying a probing duty cycle to the method of Section 3.4 yields a good conver-

gence speed and performance. With the entire system running, the power received

can be 30dB or 40dB lower than the transmit power as shown in Figures 3-18 and

3-19.

There are several problems that make this algorithm somewhat impractical. The

first problem is that it takes time to probe each channel. Recall from Chapter 1 that

-10
co
C
as

-15

-20

ed -25
-o

-30
0
a.

-35

-40

0 0.5 1 1.5 2 2.5 3
Time (samples) X 104

Figure 3-18: Received power relative to transmitted power for the Probing Duty Cycle
method. In this simulation, A = 2, B = 4, p = 0.05, a = 0.05, probing period =
1000 samples, and probing duration = 100 samples. The channel model varies with
time.

0.5 1 1.5
Time (samples)

2 2.5 3
x 104

Figure 3-19: Received power relative to transmitted power for the Probing Duty Cycle
method. In this simulation, A = 2, B = 4, p = 0.05, a = 0.05, probing period = 150
samples, and probing duration = 15 samples. The channel model varies with time.

5

0

'-5
E

O -10

- -15

20

(* -25

.

-30

-350

Receive Side Weights

--- - - -

1 2 3
Time (samples) X 104

0.6

0.4

0

-0.2

-0.4
0

Figure 3-20: Receiver adaptive filter weights (left)
from the simulation in Figure 3-18.

Receive Side Weights

0.8-

0.4

1 2 3
Time (samples) X 104

0.8-

0.4[

1 2 3
Time (samples) X 104

and true channel tap values (right)

True Channel

2

2

0 1 2 3
Time (samples) x 104

Figure 3-21: Receiver adaptive filter weights (left) and true channel tap values (right)
from the simulation in Figure 3-19.

63

0

-0.2

-0.4'
0

-0.4 -
0

-

True Channel

one goal of the STAR system is the high power broadcast of the reference signal [2].

If more time is spent probing the channel, then less time is spent transmitting the

reference signal. If the probing time required for an accurate channel estimate is very

long, then STAR would be no better than sequentially transmitting and receiving.

Another problem is that the relative received power in Figure 3-18 is littered

with periodic power spikes. These spikes come from the fact that the power on the

receiver due to the probe signal eventually ends up being 10dB to 20dB greater than

that of the transmit beamforming signal. Although these power spikes do not hinder

the performance of the transmit beamforming algorithm, they will likely confuse

the modules that extract the SOI. The periodic power spikes in Figure 3-18 would

essentially add a periodic waveform to the SOI whose fundamental frequency is the

probing frequency.

The final problem is the poor characterization of the channels. The receiver LMS

filter has a somewhat limited amount of time to converge. Therefore, poorly set

growth factors or noise sources can cause problems in convergence. If a weight does

not properly converge before it gets locked in, it cannot be corrected until the next

receiver LMS update phase. This results in the discontinuous staircase-like weight

trajectory displayed in Figure 3-20.

Ways to improve the performance of the receiver LMS filter are to fine-tune its

growth factor, lengthen the allowed convergence time, or probe the channels more

frequently. Of course, the latter two suggestions would involve taking away from the

time that the reference signal can be transmitted. Figures 3-20 and 3-21 both have the

same probing duty cycle, but Figure 3-21 probes more often and for a shorter period

of time. The simulations from Figures 3-20 and 3-21 demonstrate that the probing

period and frequency can be fine tuned together to improve the system performance

without increasing the probing duty cycle. It is important to update the channel

estimate frequently and also to allow time for the receiver LMS weights to settle.

3.7 Channel Estimation Method: Orthogonality-

Based Probing Scheme

The method discussed in this section simultaneously probes the channels and cancels

the transmit beamforming signal at the receiver. Unlike the method in Section 3.6,

this method calls for the constant transmission of a different probe signal from each

transmitter. However, its main advantage is that the transmitters may broadcast their

transmit beamforming reference signals without interruption. The probe signals are

broadcast at much lower power and the system is constantly probing the channels.

Appendix A.5 gives the Matlab code for this operation.

This method is based on the principle of orthogonality as discussed in Section

2.7 and uses the properties of cross-correlation to filter the signal on the receiver

and extract the desired components. As described in Section 3.5, the received signal

consists of the transmit beamforming signals, the probe signals, and the signal of

interest. The probe signal is a pseudo-random number (PN) signal that is generated

for each transmitter. As shown in (2.29), the probe signal will be uncorrelated with

any of the other probe signals. In addition, (2.30) shows that it will be uncorrelated

with the signal of interest. In fact, the only component of the received signal that

a particular probe signal will be correlated with is the component that solely results

from transmitting this probe signal over the channel. Cross-correlating a probe with

the received signal allows the adaptive filtering methods in Section 2.6 to identify the

channel.

The LMS filter contains a built-in cross-correlation. Recall from (2.20) that the

weight vector update equation contains a multiplication of r[n] and x[n]. The mul-

tiplication of scalar r[n] with vector x[n] is effectively a multiplication between the

r and x signals. However, the actual LMS filter weight update equation reduces the

contribution of r[n]x[n] by a factor of p. This reduction is similar to a moving average

technique called the "fading memory" technique, which will be discussed later in the

section. However, the important concept to understand is that the growth factor acts

like a moving average because it reduces the impact of adding r[n]x[n] to the existing

weight values. The weight update equation of LMS filter ultimately cross-correlates r

and x through the multiplication r[n]x[n] and the averaging due to the growth factor

pi. This method is similar to the H-TAG method from [19] in that it uses a moving

average to alleviate the need for prior channel identification.

The problem with the LMS filter cross-correlation is that the length of the moving

average is generally not sufficient for cancelling out uncorrelated signals. Recall from

(2.28), (2.29) and (2.30) that uncorrelated signals will only cancel if the length of

the moving average L is significantly greater than the period of the signal. In the

LMS filter, the moving average length is roughly equal to the number of filter taps,

which is generally shorter than the period of x or r. Therefore, uncorrelated signal

components of x and r will not be absorbed by the LMS filter's cross-correlation.

The solution employed by this method is to use a much longer moving average.

Unfortunately, to increase the averaging length of (2.20), one must increase C, the

number of filter taps. Instead, this method adopts a strategy based on (2.16), the

gradient of the expected value of the error VE[E2]. This gradient can be approximated

by averaging its value over many samples. When implemented with a normalized LMS

filter, the gradient from (2.16) appears in the weight update equation (2.20) as

w[n + 1]

= E[w[n]] - p (VE[E2])

E Ew[n] ± 2p E r[n]x[n]] - E [x[n]xT w])

E[xT [n]x[n]]

1L 2p _ r[n]x[n - 1] - x[n - l]xT [n - 1]w[n - 1]
= - w[n -1] + L Tn-1n-1L 10 E1_0xTn lx -]

(3.15)

where L is the length of the moving average, r[n] is the received signal, and x[n] is

a vector containing the past C values of the LMS input signal x[n]. The results of

(3.15) cannot be achieved simply by setting w[n+ 1] to the average of the past values

of w[n]. Although the expectation operation is linear, the division required by (3.15)

is nonlinear, and therefore (3.15) cannot be simplified.

Storing values is costly in terms of processing time and resources. Therefore, a

much more efficient procedure, known as the fading memory averaging technique is

used. This technique assumes the average of the past values of some variable is equal

to its previous value. For example, the average of the past L values of w[n] can be

approximated as

1 L (L - 1)w[n - 1] + w[n]
LEw[n -l] L (3.16)

1=0

Using the fading memory technique saves on time and resources required to process

the moving average.

The method of this section and that of Section 3.6 are two alternatives for an

implementation of the system shown in Figure 3-16. In terms received power relative

to the transmit power, the method of this section does not perform as well. As shown

5

0-
(D

E

-5

a -10-

Q
*0

0

-15-

-20
0 0.5 1 1.5 2 2.5 3

Time (samples) x 10,

Figure 3-22: Received power relative to transmitted power for the Orthogonality
Based Probing method. In this simulation, A = 2, B = 4, t = 0.05, a = 0.05,
ypR = 1.5, L = 5000. The channel model varies half as fast as the simulations in
Section 3.6.

Receive Side Weights

0.5 1 1.5 2 2.5
Time (samples) X 104

True Channel

0.8-

0.6

> 0.4

7-

C
E 0.2

0

-0.2-

-0.4
0.5 1 1.5 2 2.5

Time (samples) X 10

Figure 3-23: Receiver adaptive filter weights (left) and true channel tap values (right)
from the simulation in Figure 3-22. The receiver adaptive filter cannot operate until
there are L samples of received data available, hence the 5000 sample delay.

68

Receive Side Weights True Channel
1 . . .,.1

0.8 0.8-

0.6 0.6

- 0.4 > 0.4
CU

C
0.2 0.2

0 0

-0.2 -0.2

-9.4 -0.4-
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

Time (samples) X 104 Time (samples) x 10

Figure 3-24: Receiver adaptive filter weights (left) and true channel tap values (right).
In this simulation, A = 2, B = 4, p = 0.05, a = .05, IipR = 1.5, L = 5000. The
channel model varies at the same rate as the simulations in Section 3.6.

in Figure 3-22, the relative power settles at -25 dB, which is slightly greater than the

-30 dB from Figure 3-19. However, the power level in Figure 3-22 after the weights

settle is much steadier than that of Figure 3-19. This result serves to highlight the

main advantage that this method has over the method of Section 3.6. The method

presented in this section has a full duty cycle of both channel probing and transmit

beamforming. Because of this, there will be no power spikes at the receiver and the

signal of interest will appear as a clean waveform.

The receiver LMS filter weights of this method, shown in Figure 3-23, are some-

what sloppier than those of the previous method, shown in Figure 3-21. This was

expected because an LMS filter that uses a cross-correlation to parse the probe out of

the received signal will never be as good as the standard system identification LMS

filter whose received signal is directly related to the probe. Despite this disadvantage,

it is clear from Figure 3-23 that the receiver's weights settle to the correct values and

.......................... - - -- = -_ _ --- - - -- -- - -

attempt to track changes in the channel. The simulation from Figure 3-23 uses a

slowly changing channel. Due to the moving average, this method would not be able

to track a faster channel with much success. Figure 3-24 shows that increasing the

moving average length and increasing the rate at which the channel changes results

in a set of LMS filter weights that track the channel too slowly to be useful.

3.8 Extracting the Signal of Interest

Recall from Chapter 1 that the goal of the system is to extract the SOI from the

received signal [2]. When a SOI s[n] is present, the received signal r[n] is

A

r[n] = s[n] + Zta[n] * ha . (3.17)

a=1

If we assume that hest,a ha, we can improve the system of Figure 3-16 to become

that of Figure 3-25. In this case, we solve for s[n] by calculating

A

s[n] = r [n] - Zta[] * hest,a . (3.18)
a=1

The Matlab code for this operation can be found in Appendix A.5.

Figure 3-26 shows the results of applying (3.18) to the orthogonality based probing

scheme of Section 3.7. Unfortunately, the channel estimation of this method is not

perfect, which causes the estimated s[n] to be noisy. When the s[n] is filtered through

an averager, it appears almost identical to the original SOI. It is important to note

that higher frequency SOIs will be eliminated if the averager is too long. In addition,

the power of the SOI must be somewhere between that of the probe signals and the

transmitters. In Figure 3-27, it is clear when the SOI is in operation.

Figure 3-25: System block diagram from Figure 3-16, updated to include s[n].

Signal of Interest

0.5 1 1.5 2 2.5 3 3.5 4 4.5
X104

Unfiltered Canceller Output

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104
Canceller Output with Moving Average Filter

0

-1
0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

Figure 3-26: SOI, unfiltered s[n], and filtered s[n] for a simulation with conditions
identical to that of Figure 3-23.

-=LZ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (samples) X 104

Figure 3-27: Received power for the simulation of Figure 3-26.

0

-5-

-10-

-15-

-20-

-25-

-30 -
0

-- ---------

Chapter 4

Mathematical Analysis of the Trial

and Error with a Channel Estimate

Method

A mathematical analysis is provided for the method from Section 3.4 titled Trial

and Error with a Channel Estimate (TECE). This method was chosen because its

simulations produced the best results in both convergence time and steady state

receive power. In this chapter, we will develop a linearized state space model for the

algorithm. In addition, we will perform a noise analysis of the state space model and

verify this analysis via simulation.

4.1 Linearized System Dynamics

In this section, we will determine a linearized state space model to describe the weight

values. Specifically, we will determine the A matrix from Section 2.1 for the TECE

method. In this context, the A matrix will describe how w[n + 1] depends on w[n].

Recall from (3.12) that the weight update equation for the TECE method requires

a prediction of the average power Pavg,pred. The average power prediction, as defined

74

in (3.5), requires the receive signal prediction rpred. Recall from (3.4) that

A

rpred = X * hest,a * Wa (4.1)
a=1 (Kx1) (Cx1) (Bxl)

where x is a vector that contains value from x [n - K] to x [n]. The vector dimensions

have been included in (4.1) and the following equations to assist in analyzing the

vector and matrix multiplication.

The convolution of two vectors can be determined by multiplying one vector by a

Hankel matrix generated from the other vector. This matrix is related to the Toeplitz

matrix, but is more convenient for this analysis [13, p. 183]. The Hankel operation,

han(x) is flexible in its dimensions and the resulting Hankel matrix can have an

arbitrary number of columns. In this way, the convolutions of (4.1) can be rewritten

as

x * hest,a = han(x)hest,a
(Ki xC) (Cx1)

x * hest,a * wa = han(x * hest,a) Wa . (4.2)
(K 2 x B) (B x 1)

where K 1 = K + C - 1 and K 2 = K 1 + B - 1. To clarify how han(x) designs a

((K + C - 1) x C) matrix,

x[1] 0

x[2] x[1]

x[C] x[C -1]

x[K] x[K-1]

0 0

0

--- x[2] x[1]

--- x[K-C+2] x[K-C+1]

x[K]

0

x[K -1]

x[K]

With the convolution operations of (4.1) simplified to matrix multiplications, we

can finally express rpred as

rpred

A

= han(han(x)hest,a) Wa
a=1 (KixC) (Cxl) (Bxl)

(K 2 x B)

= han(han(x)hest,1) han(han(x)heet,A) w

(K 2 x AB)

=Ew (4.4)

where E is a temporary place holder matrix and w is an ordered vector that contains

the weights of all the transmitters. Specifically,

W = W,1 W1,B

-T

W2 ,1* WA,1 * . WA,B

(ABx1)

han(x) - (4.3)

(4.5)

In terms of these variables, the predicted average power at the receiver is

1 T
Pavg,pred K2rpredrpred

= (Ew)T(Ew)
K2

1 w ET Ew.
(4.6)

K
2

The previous equations of this section apply for any method that employs a chan-

nel estimate heet and predicted average power pavg,pred. The following equations,

however, apply specifically for the TECE method. Recall from Section 3.4 that the

temporary predicted powers Ptemp,up and Ptemp,down are calculated. We will define

Ptemp,n as the temporary predicted power that results from increasing or decreasing

weight n by the amount a. The value Ptemp,n does not indicate whether weight n was

increased or decreased. However, it will be shown later in this section that stepping

weight n up or down will have the same effect on the linearized TECE system. This

slight increase or decrease of one of the weights can be expressed as w + Awn where

Awi = a 1 0 -.. 0 0 1

AWAB = 0 0 0 -- 0 1 T

AWO<n<AB = O -.- 1 -.. 0 - (4-7)

To calculate the temporary predicted power, we must substitute w + Awn for w.

With this substitution,

Ptemp~n = -temp,n temp,n
K~2

1
= (w + Awn)TETE(w + Awn)

K2
1

= (wTETEw + wTETEAwa + Aw ETEw ± Aw ETEAwn)
K2

-(wTETEw + 2Aw ETEw). (4.8)
K2

The final approximation of (4.8) follows by dropping the terms that are quadratic in

Awn.

After applying values from (4.6) and (4.8) to (3.13), we can calculate each com-

ponent Vn of the gradient vector V to be

1
Vn = -(Ppred - Ptemp,n)

2 (AwT ETEw) . (4.9)
K2 ' "

The gradient vector V is a vertical stack of each component V, and therefore

V1 Aw

2
- - ETEw

K2a'

VABw AB

a 0 --- 0 0

0 a 0 0
2

.. : ETEw
K2a'

0 0 a 0

0 0 --- 0 a-

= E TEw . (4.10)
K2

From this equation, we can conclude that it does not matter whether weight n was

increased or decreased by a.

We may finally advance to the weight update equation of the TECE method.

Recall from Section 2.5 that a normalized algorithm allows the growth factor y and

the system input x[n] to be independent. Also recall from (3.2) that the weights

must be normalized in order for the transmit power to remain constant. The TECE

method normalizes both the gradient and the weights in order to achieve both of the

desired effects. However, in our linearized model, the weight normalization from (3.2)

makes it difficult to analyze the effect of input from the channel estimate (which will

be discussed in Section 4.2). Therefore, the weight update equation only involves the

gradient normalization

w[n+1] = w[n] - V[n]
V T [n]V [n]

= w[n] - pg(w[n]) (4.11)

where g is a nonlinear vector function of w[n].

Further analysis of (4.11) is difficult because it is nonlinear in its current form.

For this reason, it is necessary to develop a small signal model [7, p. 324]. From

(4.11), it follows that

WOP,new + W[n + 1] = wop + w[n] - p g(wop) + a) w[n] (4.12)
1 (aOw wop)

where wop is the vector containing the weights' operating point (bias) and v[n]

is the small signal vector of the weights. The weight operating point woee that

corresponds to v[n + 1] is

WOP,new = WoP - pg(wop). (4.13)

For this analysis, wop represents the optimal weight values wopt, and W[n] is a small

deviation in weight value from wopt. When wop,ne, is removed from both sides of

(4.12), the remaining small signal equation is

W[n + 1] = i[n] -) p g w [n]. (4.14)

It is important to note that (4.14) can only be used to analyze the transient produced

by very small weight disturbances. If the weight disturbance is on the order of wop,

then the linearized small signal approximation will not hold. The final step in solving

(4.14) is to determine the matrix A by calculating

g(w) ETE w(wT(ETE) 2w)]

E T E [(wT(ETE)2w) I + w ((WT (ET E)2W) A)]

2W-1 1 3)-

ETE (W(ETE)2w) I w (- 2(wT(ETE) 2 w) 22wT(ETE)2

ETE(w (ETE) 2wI - WWT(ETE) 2) (w(ETE)2w)<

= F. (4.15)
09w WOp

We may prove that F is symmetric, which will be important in Section 4.3. To
3

start, we have in (4.15) the term (wT(ETE) 2 w)2, which evaluates to a scalar. We

also have the term wT(ETE) 2wI, which evaluates to I multiplied by a scalar. The

symmetry of wwT(ETE) 2 can be proven since w is an eigenvector of ETE, as shown

in Section 2.9. With this, we have

ETEw = Aw

wTETE = AwT

WWT(ETE) 2 = AwwTETE

= A2wwT , (4.16)

where A is the eigenvalue of ETE that corresponds to w. To prove the symmetry of

F, we can show that

ET E(wT(ETE) 2wI - WWT(ETE) 2)

= (wT(ETE) 2 w)ETE - ETEA2wwT

= (wT(ETE) 2w)ETE - A3 WWT, (4.17)

which is a symmetric matrix expression.

Applying the value of F to (4.14) allows one to simplify

- [n+1] = iv [n] - pFW [n]

= (I - pF) iv [n]

= AW -[n] (4.18)

into the familiar state space from of Section 2.1 where

A = I- pF. (4.19)

Given the symmetry of F, it is clear that A is also symmetric.

With the linearized form of (4.18), we can apply the state space analysis from

Section 2.1 to determine the small signal time response. This time response depicts

the transient in iv due to a small disturbance in the weight vector, represented by

the initial conditions i[0]. Similar to (2.8), the time response of this system is

z(i-(z) - v[0]) = Aiv(z)

-(z) = (I -z-A)-W[0]

W[n] = A"v[0]. (4.20)

In addition, we can use the analysis of (2.10) to determine whether or not the system

will converge. The eigen-decomposition of An turns (4.20) into

ivr[n] = V-1 A(A) V(A) w[0]

= V() (I - pA(F)f V(A) V[0] . (4.21)

Similar to (2.23), we must have

2
0 < p 2 (4.22)|Amax,(F)

in order for the small signal weights to converge back to the origin after being subject

to w[0].

4.2 System Response to an Input

The analysis of Section 4.1 resulted in a state space model that described the effect

of a small disturbance in the weights on the small signal transient response. This

disturbance will almost always be caused by an external source. Recall from Section

3.2 that systems involving a channel estimate hest have the transmit-side beamform-

ing algorithm decoupled from the receive-side system identification filter. The only

parameter that connects these two systems is hest. In Section 3.4, we assumed that

hest =h. However, most of the noise and disturbance in the transmit-side system is

due to inaccurate measurements of the channel from the receive-side filter. For this

reason, it is important to find the effect of a small disturbance in the channel estimate

hest on iv.

In Section 4.1, we found rped as a linear function of w. Now, we must determine

rpred as a linear function of hest. To begin, we rearrange the order of convolution in

(4.2) to get

X * Wa * hest,a = han(x * Wa)hest,a , (4.23)

which is a linear function of hest. This result can now be used in (4.1) to find

A

rpred = han(han(x) Wa)hest,a
a=1 (K 3 xB) (Bx1) (Cx1)

(K 4 x C)

= han(han(x)wi) . han(han(x)wA)1 hest

(K 4 xAC)

Ghest (4.24)

where K 3 = K + B - 1, K 4 = K 3 + C - 1 = K 2 , G is a temporary place holder

matrix and heat is an ordered vector that contains each tap of each channel estimate

for every transmitter. Specifically,

- -T

hest = [hest ,1,1 hest,1,C hest,2,1 hest,A,1 -het,A,C T (4.25)

(ACx1)

In terms of these variables, the predicted average power at the receiver is

Ppred = h sGTGhet. (4.26)
K4 ea

Calculating rtemp in terms of heat is slightly more complicated than in Section

4.1. Instead of simply substituting (w + Aw) for w as was done in (4.8), we must

calculate

A

dtemp,n Z han(han(x)(wa + AWn,a))hest,a
a=1 (K3xB) (Bx1) (Bxl) (Cxl)

(K 4 x C)

A A

= S han(han(x)wa)heat,a + E han(han(x)Awn,a)hest,a
a=1 a=1

- Ghest + Gtemp,nheat , (4.27)

where Gtemp is another placeholder matrix. From this, the temporary power that

results from stepping one of the weights can be calculated in a way similar to (4.8).

The temporary predicted power Ptemp,n due to stepping weight n is

1
Ptemp,n = K4mpndtemp~n

1
= h T(G + Gtemp,n) T (G + Gtemp,n)hest

K 4

1T

K4 h GT het + 2he tGTGtemp,nhest + hs GempnGtemp,nhest

1
S ht GTGheat + 2hstG Gtemp,nheat. (4.28)
K4

The gradient follows as

1
Vn = (ppred - Ptemp,n)

22 _hT GTGtemp,nhest (4.29)
K 4ay

hetGTGtemp, hest

V - 2 (4.30)
K4a

hsGT Gtemp,Acheat

This expression is more complicated than (4.10) because the terms of V are each a

quadratic vector function of heat.

The same type of small signal linearization from (4.14) applies to this situation.

In this case, however, g(w[n], heat[n]) is now a function of both w and heat. We must

therefore add the heat small signal term to (4.14), resulting in

(&g 'B. g
i[n + 1] = wop}[n] - p he wop) hest[n]. (4.31)

(OW wophest ,,,)

Differentiating g with respect to he,,t can be performed using the chain rule as follows

V [n]g(hest[n]) =[n]
VT[n]V~n]

ag
Ohest

DV

ahest

Og DV
aV Dhest

=(VTV) -I - V(VTV)-2VT

t GGtemp+ Gemp,iG)

h Tt(GT Gtemp,Ac + GmAcG)

(4.32)

These values can be calculated via matrix multiplication, but instead we will simply

assign

"g
B = '~Dhest hest,op

(.3

With A from (4.18), and B from (4.33), (4.31) now becomes

i-[n + 1] = Aiv[n] + Bhest[n] . (4.34)

This is the familiar state space notation from (2.1) in which hest[n] takes the role of

the system input. An input of het [n] is appropriate because our model is meant to

be used to analyze the effect of a small disturbance on the weights. The frequency

(4.33)

and time domain analyses follows similar to (2.4) and (2.8) as [7, p. 289]

z(W(z) - v[O]) = AiW(z) + Bhest(z)

-(z) = (I - z1A)W[O] + (I -z- 1 A) z-1 Hhest(z)

n-i

=[n] = A"W[0] [A m Hhest[n - 1 - m] . (4.35)

m=o

4.3 Analysis of Noise on the System Input

The main purpose of developing (4.34) is to analyze the effect of noise or other

disturbances in heat on w. To simplify this analysis, we will define the transfer

function I(z) as

w(z) Z-'(Z)hgest(z)

'I(z) (I - zlA) B . (4.36)

It will also be convenient to calculate the Hermitian of 'I(z) as

H (Z) = BH(I _ (z-11AH)-

= BT (I - zAT) 1 , (4.37)

where A was calculated in (4.19) and B is from (4.33). Note that we assume z = e'.

In other words, z is on the unit circle, and therefore, z* z 1 .

To study the effect of noise on the system, we will assume that heat is a white

noise process since it is characteristic of most types of system noise. It will also allow

us to ignore the time delay z- 1 in the first line of (4.36), because time shifts generally

have no effect on the outcome of a white noise process. We can use the properties of

white noise processes to define the matrices

Rhh [n] = U 2 6[n]I

Shh(z) = O21 (4.38)

where Rhh [n] is the autocorrelation matrix of heat, Shh (z) is the z-transform of Rhh [n] ,

and o.2 is the noise variance of heat. With this, S,,(z) can be calculated to be [12,

p. 329]

S,,(z) = J(z)ShhAH(Z)

= 2(I - z-'A)iBBT(I - zAT). (4.39)

Instead of painstakingly extracting the noise variance in w from (4.39), we will

do our analysis on the sum of the noise variances of w using a proof by Paul Fiore.

It is known that a SISO system with frequency response h(z), impulse response h[n],

and input noise variance oU will have an output noise variance or2 equal to [12, p.

312-313]

o1 = o 2(h(z)h(z-1))

= o(h[n] * h[-n]) . (4.40)

In vector notation, this can be expressed as

o 2 = hHho

= Hh| 2 2 (4.41)

where the elements of h are the taps of h[n]. This result is the sum of the squares of

the taps of h. In the case of MIMO, the noise variance can be derived from (4.36).

For element i of w, this translates to

ibi (z) = ''(z)heat(z)

N

= Z ij(z)hest,j (Z) . (4.42)
j=1

Note that i is a row index and j is a column index for 1@, but for w and heat, i and

j are the respective element indices. Another way of looking at (4.42) is that Wi(z)

is the sum of pushing each input hestj(z) through a transfer function Wij(z). With

this, we can use the procedure from (4.40) to analyze the effect of noise on the system

from (4.36). Given that the noise variance for all inputs is of, each tap ofwhas a

noise variance of

N

var(wi) = E'jj (z)i (z-1)var(hestj)
j=1

N

= o ij(z)Iij(z-1) (4.43)
j=1

If we extend (4.41) to each transfer function Iy(z), we get

N

var(wi) = Y>I Ifi(z)|12 (4.44)
j=1

It follows that the sum of the elements in the noise variance vector o- can be expressed

as

M N

1TU2 = o2EZ~jIij(Z)jj2
i=1 j=1

= o (z)||2 (4.45)

where 1 is a vector of ones and || (z)|| is the Frobenius norm of L(z) [13, p. 56].

Now, we must solve for Il(z)||2. It is important to first note that XL(z) can

actually be expressed as the geometric sum

o
I(z) = (I - z-'A)-'B = z-k Ak B . (4.46)

k=O

This allows us to express (z) as

00

||(z)||% = ||lAkB||
k=0

(4.47)

After an eigenvalue decomposition, we get

A = VAV- 1 . (4.48)

Since we know from Section 4.1 that A is symmetric, we have

A = VAVH

|I(z)||2 = ||VA kVH B| .2
k=O

(4.49)

The Frobenius norm has two useful properties. The first is that orthonormal matrices

like V on the outside of a product may be dropped. The second is that the Frobenius

norm of matrix A is equal to the trace of AHA. Applying these properties, we get

||(z)| Y = IAkVBI|2
k=O

00

= tr(BHVAHkAkVHB).
k=O

Further simplification can be made using the properties of the trace of a matrix.

Elements in a trace can be rotated, in that [9, p. 301]

tr(XYZ) = tr(YZX) = tr(ZXY). (

(4.50)

(4.51)

With this property, we get

00

|1& (z)| = tr(AHkAkVHBBHV). (4.52)
k=O

For simplicity, we will make the temporary matrix and vector assignments

M = AHA

m = diag(M)

N = VHBBHV

n = diag(N) (4.53)

in which diag(...) is the Matlab diagonal function that returns a vector of the diag-

onal of a matrix. These assignments allow us to express (4.52) as

0

| tr(MkN)
k=O

00

= mTkn . (4.54)
k=O

With this result, we now have

||&(Z) m
T

kn

k=O

oo A

- E~mana
k=O a=1
A(oo

n m

a=1 k0'

A

- z na (4.55)
a=1 -Ta

These simplifications finally give us an expression that allows us to predict the noise

93

variance on the sum of the weights in terms of the input noise variance. Combining

(4.45) and (4.55) gives

1To, = o | I(z)|I2
A

= o na (4.56)
a1-m

A simulation was created to test the accuracy of (4.55). Appendix A.2 gives the

Matlab code for this simulation. To simulate the linearized TECE system, a white

noise signal on het is applied as the input to a state space system with random

symmetrical positive definite A and B. This type of input results in a semi-random

set of state variables that represent w in this simulation. Unlike the input, the state

variables are not white noise because the time response of a state space system, as

shown in (2.8), is not necessarily time invariant.

Each trial of the simulation is run for 20000 samples. The variance of the weights

and other such statistics are taken over the set of trial results that correspond to each

sample. To test the accuracy of the noise analysis in this section, the sum of the

variance of the weights is compared to the predicted value obtained from (4.55). The

results, shown in Figure 4-1, clearly verify the prediction. Thus, (4.55) can be used

to predict the effect of a noise input on the linearized TECE system.

x 10-4
1.2 I I

1

0.8-

E
CD)

S06
Ca

0.4

0.2-

0 '

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Sample X 104

Figure 4-1: Simulation results that compares the sum of the variance of the weights
(blue) to the predicted value (red) from (4.55). There were 100 trials, 20000 samples,
4 weights, 4 noise inputs, A and B are both normalized to 1 in Frobenius norm, and

Uh = -001-

.....- - -.- -- - = _- --- - --

Chapter 5

Conclusion

This thesis discussed three methods for STAR, and two methods of obtaining a chan-

nel estimate. Based on the performance results, the TECE method of Section 3.4

was determined to be the best for transmit-side beamforming. However, it is not

clear which of the two channel estimation methods are better. The probing duty

cycle method of Section 3.6 can achieve a very low relative received power of -30dB

in a relatively short span of 1000 iterations. However, the orthogonality based prob-

ing scheme of Section 3.7 can probe continuously and thus produces results that are

devoid of power spikes.

The mathematical analysis of the TECE method showed that it can be linearized

and converted to state space form. The linearized form of this method is only valid

if the weights deviate by a small amount from their optimal values. Such a model

allows a noise analysis to be performed, and it is possible to predict the effect on the

weights of noise in the channel estimate.

This method is to be integrated into a larger project at MIT Lincoln Laboratory.

The ultimate goal is to build a system that is capable of STAR. Future work on

this project will involve the construction of this system. The first step is to replace

the simulated channel values with actual channel data. This will involve collecting

realistic RF data and updating the Matlab scripts so that the length of the adaptive

filters can more realistically match the length of the channel. The Matlab code for

the simulations of this thesis will then be implemented with an FPGA. Finally, the

analog system must be constructed, which includes the antenna array, RF canceller,

and all of the RF analog electronics.

Successful completion of a STAR system will ultimately provide for technological

expansion in the field of communications. Full duplex systems are useful for any

application that requires simultaneous communication. Any product that includes

a two-way radio can be improved with the ability to simultaneously transmit and

receive.

Appendix A

Source Code

A.1 Matlab Code for Trial and Error Method

1 close all

2 samples = 30000;
3 transmitters = 2;
4 taps = 4; %number of taps in the transmit side lms filter
5 averaging = 100; %length of moving average and convolution (this

is 'K')
6 update-freq = 50; %how often the weights are updated
7

8 t = 1:1:samples;

9 t2 1:1:samples/2;
10 t3 = samples/2:1:samples;

11 % ref = sin(.5*t);

12 ref = sin((.1 + .05*sin(.065*t)) .*t); %reference signal
13 soi = zeros(1, samples);
14 % soi = [zeros(1, samples/2), .1*sin(.5*t3)];

w = [1 0 0 0; 1 0 0 0]; %weights
grad = ones(transmitters, taps); %gradients
w-change = w; %weight change
u = .1; %weight update growth factor (this is '\mu')
w-power = sum(w(:).^2); %constant weight magnitude level
w-power-old = w-power;

p-old = 0;
w-counter = 1;

noise-factor-tx = 0; %noise added to transmitter
noise-factor-d = 0; %noise added to receiver
% noise-factor-tx = .001; %noise added to transmitter
% noise-factord= .01; %noise added to receiver

tx = zeros(transmitters, samples); %what gets transmitted
for a = 1:1:transmitters

tx(a,1:averaging) = ref(1:averaging);
end

34 h.true = [8 -2 3 1; 7 -3 2 -1]; %the channel
35 h-true = h-true/sqrt(sum(h-true(:).^2));
36 d-true-part = zeros(transmitters, samples + length(h-true(1,:)));
37 d-true = zeros(l, samples); %received signal (this is 'r')
38 h-change-mag = .1; %channel change magnitude
39 h-change-mod = 4000; %channel change frequency
40 h-change-factor = 0; %channel change slope (change per cycle)
41

42 w-track = ones(numel(w), samples - averaging); %weights
43 h-track-true = ones(numel(h-true), samples - averaging); %true

channel
44 t-track = zeros(transmitters, samples - averaging); %transmission ...

signal
45 tp-track = zeros(1, samples - averaging); %transmitted power
46 tp-track-avg = zeros(1, samples - 2*averaging);
47 dp-track = zeros(1, samples - averaging); %received power
48 dp-track-avg = zeros(1, samples - 2*averaging);
49

5o cput = cputime;
si %step through all time
52 for n = (averaging + 1):1:(samples - averaging - 1)

53 %change channel if necessary
54 if(mod(n, h-change-mod) == 0)
55 h-change-factor = ...

h-change-mag*randn (size (h-true)) /h-change-mod;
56 end
57 htrue = h-true + h-change-factor;
58 h-true = h-true/sqrt(sum(h-true(:).^2));
59 d-true-temp = 0;
60 d-est = 0;
61 for a = 1:1:transmitters
62 %transmit signal for an antenna

63 tx-temp = conv(ref(n - averaging:n), w(a,:));
64 tx(a,n) = tx-temp(averaging + 1) + noise-factor-tx*randn;
65 %update true received signal

66 d-true-part(a,1:n+length(h-true (a,:))-1)
67 conv(h-true (a,:), tx(a,1:n)) + noise-factor-d*randn;
68 d-true-temp = d-true-temp + d-true-part(a,:); %receive signal
69 end
70 d-true(n) = d-true-temp(n) + soi(n);
71 %update true and estimated received power
72 p-true = d-true (n - averaging:n)*d-true (n - averaging:n)'; ...

%true power
73 %go through every tap on every transmitter and step weight and ...

redo calcs
74 if(mod(n, update-freq) == 0)
75 if(pold < p-true)
76 w = w/sqrt(w-power/w-power-old);

77 w(w-counter) = w(w-counter) - 2*u*w-power;
78 w = w*sqrt(w-power/sum(w(:).^2));
79 end
80 pold = p-true;

81 w-counter = w.counter + 1;

82 if(w-counter > length(w(:)))

w-counter = 1;

end
w(w-counter) = w(wocounter) + u*w.power;
w-power-old =sum(w(:).^2);

w = w*sqrt(w-power/sum(w(:) .^2));
end

%tracking
for a = 1:1:transmitters

t-track(a,n) = tx(a,n);
end
h-track-true(:,n) = h-true(:);
w-track(:,n) =w(:);

tp-track(n) = sum(w(:).^2);
d-track(n) = dtrue (end);

dp-track(n) p-true/averaging;
if(n > averaging)

tp-track-avg(n) = mean(tp-track
dp-track-avg(n) = mean(dp-track

(n - averaging:n));

(n - averaging:n));

end
end %for n = (averaging + 1):1:(samples - averaging - 1)
cputime - cput

.05 figure
-06 plot (10*loglO (dp-track-avg (round(find(dp-track-avg ==

.07 max(dp-track-avg))*.75):(samples - averaging - 1))))
08 xlabel('Time (samples)')
.09 ylabel('Power (dB, relative to transmitter)')
.10

.11 figure

.12 plot (w-t rack')

.13 % legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...

.14 % 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');

.15 ax = axis;
16 axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),

ax(4)]);
.17 xlabel('Time (samples)')
.18 ylabel('Weight Value')
.19

.20 figure

.21 plot (h-track-true')

.22 title('True Channel')

.23 % legend('h(1,1)', 'h(2,1)', 'h(1,2)', 'h(2,2)',...

.24 % 'h(1,3)', 'h(2,3)', 'h(1,4)', 'h(2,4)');

.25 xlabel('Time (samples)')

.26 ylabel('Tap Gain Value')

100

A.2 Matlab Code for Gradient Descent Method

1 close all

2 samples = 30000;
3 transmitters = 2;
4 taps = 4; %number of taps in the transmit side lms filter
5 averaging = 100; %length of moving average and convolution (this ...

is 'K')
6

7 t = 1:1:samples;
8 % ref = sin(.5*t);
9 ref = sin((.5 + .1*sin(.065*t)).*t); %reference signal

10 .

11 w = [1 0 0 0; 1 0 0 0]; %weights

12 grad = ones(transmitters, taps); %gradients
13 w-change = w; %weight change
14 u2 = .005; %weight update growth factor (this is '\mu')
15 w-power = sum(w(:).^2); %constant weight magnitude level
16 % noise-factor-tx .001; %noise added to transmitter
17 % noise-factor-d .01; %noise added to receiver
18 noise-factor-tx 0; %noise added to transmitter
19 noise-factord = 0; %noise added to receiver
20

21 tx = zeros(transmitters, samples); %what gets transmitted
22 for a = 1:1:transmitters
23 tx(a,l:averaging) = ref(l:averaging);
24 end
25 u3 = 1.5; %receive side LMS growth factor (this is '\mu_{Rx}')
26

27 h-true = [8 -2 3 1; 7 -3 2 -1]; %the channel
28 h-true = h-true/sqrt(sum(h-true(:).^2));
29 h-est = h-true; %assume channel estimate perfectly models channel
30 taps-rlms = size(h-est, 2); %number of taps in the receiver lms ...

filter

31 h-ref = zeros(transmitters, length(conv(h-est(1,:),...

32 linspace(1,1,averaging + 1)))); %appropriately sized conv holder
33 d-true-part = zeros (transmitters, length(conv(conv(h-true (1,:),..
34 linspace(1,1,averaging + 1)), linspace(1,1,taps))));
35 d-true = zeros(l, samples); %received signal (this is 'r')
36 h-change-mag = .02; %channel change magnitude
37 h-change-mod = 4000; %channel change frequency
38 h-change-factor = 0; %channel change slope (change per cycle)
39

40 w-track = ones(numel(w), samples - averaging); %weights
41 w-track-rlms = ones(numel(h-est), samples - averaging); %h-est
42 h-track-true = ones(numel(h-true), samples - averaging); %true ...

channel

43 t-track = zeros(transmitters, samples - averaging); %transmission ..
signal

44 tp-track = zeros(l, samples - averaging); %transmitted power

45 tp-track-avg = zeros(l, samples - 2*averaging);
46 dp-track = zeros(l, samples - averaging); %received power

101

47 dptrack-avg = zeros(1, samples - 2*averaging);
48

49 cput = cputime;
50 %step through all time

51 for n = (averaging + 1):1:(samples - averaging - 1)

52 %change channel if necessary
53 if(mod(n, h-change-mod) == 0)

54 h-change-factor = ...

h-change-mag*randn(size (h-true)) /h-change-mod;
55 end
56 h-true = h-true + h-change-factor;

57 h-true = h-true/sqrt(sum(h-true(:).^2));
58 d-true-temp = 0;

59 d-est = 0;

60 for a = 1:1:transmitters
61 %transmit signal for an antenna

62 tx-temp = conv(ref(n - averaging:n), w(a,:));

63 tx(a,n) = tx-temp(averaging + 1) + noise-factor-tx*randn;
64 %update true received signal

65 d-true-part(a,l:n+taps-1) = conv(h-true(a,:), tx(a,l:n))...
66 + noise-factor-d*randn;
67 d-true-temp = d-true-temp + d-true-part(a,:); %receive signal
68 end
69 d-true(n) = d-true-temp(n);

70 for a = 1:1:transmitters
71 %update receive side LMS filter, from Paul Fiore's lmsmeth.m

72 xvec = flipud(tx(a,n - taps-rlms + 1:n)'); %vector
73 normlms = xvec'*xvec; %scalar
74 y-rlms h-est (a,:)*xvec; %scalar
75 err-rlms = d-true-part (a,n) - y-rlms;

76 h-est(a,:) = h-est(a,:) + u3*conj(err-rlms)*xvec'/normlms;
77 %update estimated received signal
78 h-ref(a,:) = conv(h-est(a,:), ref(n - averaging:n));

79 d-est = d-est + conv(h-ref(a,:), w(a,:)); %receive signal ...
estimate

80 end %for a = 1:1:transmitters
81 %update true and estimated received power
82 p-true = d-true (n - averaging:n)*d-true (n - averaging:n) ;...

%true power
83 p-est = d-est*d-est'; %the estimated receive power
84 %go through every tap on every transmitter and step weight and ...

redo calcs

85 for a = 1:1:transmitters
86 for x = 1:1:taps

87 grad(a,x) = 2*sum(d-est(l:averaging + 1)* ...
88 h-ref(a,averaging + 1 - (x - 1)));

89 end %for x = 1:1:taps
90 end %for a = 1:1:transmitters
91 %update transmit side weights and normalize them
92 if(sum(grad(:)) # 0)
93 w-change = u2*grad/sqrt(sum(grad(:).^2));
94 w = w - w-change;

95 end
96 w = w*sqrt(w-power/sum(w(:).^2));

102

97 %tracking
98 for a = 1:1:transmitters
99 t-track(a,n) = tx(a,n);
00 end

01 h-track-true(:,n) = htrue(:);
02 w-track-rlms(:,n) = hest(:);
03 w-track(:,n) =w(:);
04 tp-track(n) Sum(w(:).^2);
05 dp-track(n) = p-true/averaging;
06 if(n > averaging)
07 tp-track-avg(n) = mean(tp-track (n - averaging:n));
08 dp-track-avg(n) = mean(dp-track (n - averaging:n));
09 end
10 end %for n = (averaging + 1):1:(samples - averaging 1)

11 cputime - cput

12

13 figure
14 plot(10*loglO(dp-track-avg(round(find(dp-track-avg ==

i5 max(dp-track-avg))*.75): (samples - averaging - 1))))
16 xlabel('Time (samples)')
17 ylabel('Power (dB, relative to transmitter)')

.18

.19 figure

.20 plot (w-track')

.21 % legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...

.22 % 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');

.23 ax axis;

.24 axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),
ax(4)1);

25 xlabel('Time (samples)')

.26 ylabel('Weight Value')

.27

-28 figure
.29 subplot(1,2,1);
.30 plot (w-track-rlms')
.31 title('Receive Side Weights');
.32 % legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...

33 % 'w(1,3)', 'w(2,3)',, 'w(1,4)', 'w (2,4)');

.34 xlabel('Time (samples)')

.35 ylabel('Weight Value')

.36 ax = axis;

.37 axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),
ax(4)]);

.38 ax = axis;

.39 subplot(1,2,2);

.40 plot (h-track-true')
41 title('True Channel')

L42 % legend('h(1,l)', 'h(2,1)', 'h(1,2)', 'h(2,2)',...

43 % 'h(1,3)', 'h(2,3)', 'h(1,4)', 'h(2,4)');

L44 xlabel('Time (samples)')
L45 ylabel('Channel Tap Value')

L46 axis(ax);

103

A.3 Matlab Code for Trial and Error Method with
a Channel Estimate

1 close all

2 samples = 30000;
3 transmitters = 2;

4 taps = 4; %number of taps in the transmit side ims filter
5 averaging = 100; %length of moving average and convolution (this ...

is 'K')

6

7 t 1:1:samples;
8 t2 = 1:1:samples/2;
9 t3 = samples/2:1:samples;

1o ref = sin((.5 + .1*sin(.065*t)).*t); %reference signal
11

12 w = [1 0 0 0; 1 0 0 0]; %weights
13 grad = ones(transmitters, taps); %gradients
14 w-change = w; %weight change
15 ul = .001; %weight step factor for gradient (this is '\alpha')
16 u2 = .001; %weight update growth factor (this is '\mu')
17 w-power = sum(w(:).^2); %constant weight magnitude level
18 % noise-factor-tx = .001; %noise added to transmitter
19 % noise-factord= .01; %noise added to receiver
20 noise-factor-tx = 0; %noise added to transmitter
21 noise-factor-d = 0; %noise added to receiver
22

23 tx = zeros(transmitters, samples); %what gets transmitted
24 for a = 1:1:transmitters
25 tx(a,l:averaging) = ref(1:averaging);
26 end
27 u3 = .1; %receive side LMS growth factor (this is '\mu-{Rx}')
28

29 h-true = [8 -2 3 1; 7 -3 2 -1]; %the channel
30 h-true = h-true/sqrt(sum(h-true(:).^2));
31 h-est = h-true; %assume channel estimate perfectly models channel
32 taps-rlms = size(h-est, 2); %number of taps in the receiver lms ...

filter
33 h-ref = zeros(transmitters, taps-rlms + averaging); %temp conv holder
34 d-true-part = zeros (transmitters, samples + length(h-true (1,:)));
35 d-true = zeros(1, samples);
36 h-change-mag = .02; %channel change magnitude

37 h-change-mod = 4000; %channel change frequency
38 h-change-factor = 0; %channel change slope (change per cycle)
39

40 wtrack = ones(numel(w), samples - averaging); %weights
41 w-track-rlms = ones(numel(h-est), samples - averaging); %h-est

42 h-track-true = ones(numel(h-true), samples - averaging); %true ...
channel

43 t-track = zeros(transmitters, samples - averaging); %transmission ...
signal

44 tp-track = zeros(1, samples - averaging); %transmitted power

104

45 tp-track-avg = zeros(1, samples - 2*averaging);
46 dp-track = zeros(l, samples - averaging); %received power
47 dp-track-avg = zeros(l, samples - 2*averaging);
48

49 cput = Cputime;

50 %step through all time
51 for n = (averaging + 1):1:(samples - averaging - 1)
52 %change channel if necessary
53 if(mod(n, h-change-mod) == 0)

54 h-change-factor = ...
h-change-mag*randn (size (h-true)) /h-change-mod;

55 end
56 h-true = h-true + h-change-factor;
57 h-true = h-true/sqrt(sum(h.true(:).^2));
58 d-true-temp = 0;
59 d-est = 0;
60 for a = 1:1:transmitters
61 %transmit signal for an antenna
62 tx-temp = conv(ref(n - averaging:n), w(a,:));
63 tx(a,n) = tx-temp(averaging + 1) + noise-factor-tx*randn;
64 %update true received signal

65 d-true-part(a,l:n+length(h-true(a, :))-l) =

66 conv(h-true(a,:), tx(a,l:n)) + noise-factor-d*randn;
67 d-true-temp = d-true-temp + d-true-part(a,:); %receive signal
68 end
69 d-true(n) = d-true-temp(n) + soi(n);
70 for a = 1:1:transmitters
71 %update receive side LMS filter, from Paul Fiore's lmsmeth.m

72 xvec = flipud(tx(a,n - taps-rlms + 1:n)'); %vector
73 normlms = xvec'*xvec; %scalar

74 y-rlms h-est(a,:)*xvec; %scalar
75 err-rlms = d-true-part(a,n) - y-rlms;

76 h-est(a,:) = h-est(a,:) + u3*conj(err-rlms)*xvec'/normlms;
77 %update estimated received signal
78 h-ref (a,:) = conv(h-est(a,:), ref(n - averaging:n));
79 d-est = d-est + conv(h-ref(a,:), w(a,:)); %receive signal ...

estimate

80 end %for a = 1:1:transmitters
81 %update true and estimated received power

82 p-true = d-true(n - averaging:n)*d-true (n - averaging:n)'; ...

%true power

83 p-est = d-est*d-est'; %the estimated receive power

84 %go through every tap on every transmitter and step weight and ...
redo calcs

85 for a = 1:1:transmitters

86 for x = 1:1:taps

87 %step weight up
88 w-templ = w;
89 w-templ(a,x) = w(a,x) + ul*w-power;
90 dtempl = 0;
91 for aa = 1:1:transmitters

92 d-templ = d-templ + conv(h-ref(aa,:), w-templ(aa,:));
93 end
94 p-templ = d-templ*d-templ';

105

95 %step weight down
96 w-temp2 = w;

97 w-temp2(a,x) = w(a,x) - ul*w-power;

98 d-temp2 = 0;

99 for aa = 1:1:transmitters
100 d-temp2 = d-temp2 + conv(h-ref(aa,:), w-temp2 (aa,:));
101 end

102 p-temp2 = d-temp2*dtemp2';
103 %find minimum power and set gradient
104 if(p-templ < p-temp2)
105 grad(a,x) = (p-templ - p-est)/(ul*w-power);

106 else
107 grad(a,x) = (p-temp2 - p-est)/(-ul*w-power);

108 end

109 end %for x = 1:1:taps
110 end %for a = 1:1:transmitters
111

112 %update transmit side weights and normalize them
113 if(sum(grad(:)) # 0)
114 w-change = u2*grad/sqrt(sum(grad(:).^2));
115 w = w - w-change;

116 end

117 w = w*sqrt(w-power/sum(w(:).^2));
118 %tracking
119 for a = 1:1:transmitters
120 t-track(a,n) = tx(a,n);
121 end

122 h-track-true(:,n) = h-true(:);
123 w-track-rlms(:,n) = hest(:);
124 w-track(:,n) =w(:);
125 tp-track(n) = sum(w(:).^2);

126 dp-track(n) = ptrue/averaging;
127 if(n > averaging)
128 tp-track-avg(n) = mean(tp-track(n - averaging:n));
129 dp-track-avg(n) = mean(dp-track(n - averaging:n));
130 end

131 end %for n = (averaging + 1):1:(samples - averaging 1)

132 cputime - cput

133

134 figure
135 plot (10*loglO (dp-track-avg(round(find(dp-track-avg ==

136 max(dp-track-avg))*.75):(samples - averaging - 1))))
137 xlabel('Time (samples)')
138 ylabel('Power (dB, relative to transmitter)')
139

140 figure
141 plot (w-track')
142 % legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...

143 % 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');
144 ax = axis;

145 axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),
ax(4)]);

146 xlabel('Time (samples)')
147 ylabel('Weight Value')

106

figure
subplot(1,2,1);
plot (w-track-rlms')
title('Receive Side Weights');
% legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)'
% 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');
xlabel('Time (samples)')
ylabel('Weight Value')
ax = axis;
axis([(averaging + taps + 1), (samples - averag

ax(4)]);
ax = axis;
subplot(1,2,2);
plot (h-track-true')
title('True Channel')
% legend('h(1,1)', 'h(2,1)', 'h(1,2)', 'h(2,2)'

% 'h(1,3)', 'h(2,3)', 'h(1,4)', 'h(2,4)');
xlabel('Time (samples)')
ylabel('Channel Tap Value')
axis(ax);

ing - 1), ax(3),

107

,...

,...

A.4 Matlab Code for Probing Duty Cycle Method

1 close all

2 samples = 30000;
3 transmitters = 2;
4 taps = 4; %number of taps in the transmit side lms filter
5 averaging = 100; %length of moving average and convolution (this ...

is 'K')
6

7 t = 1:1:samples;
8 t2 = 1:1:samples/2;
9 t3 = samples/2:1:samples;

10 % ref = sin(.5*t);

11 ref = sin((.5 + .1*sin(.065*t)).*t); %reference signal

12 soi = zeros(1, samples);
13 % soi = [zeros(l, samples/2), .5*sin(.0l*t3)]; %signal of interest
14

15 w = [1 0 0 0; 1 0 0 0]; %weights
16 grad = ones(transmitters, taps); %gradients
17 w-change = w; %weight change

18 ul = .005; %weight step factor for gradient (this is '\alpha')
19 u2 = .005; %weight update growth factor (this is '\mu')
20 w-power = sum(w(:).^2); %constant weight magnitude level
21 % noise-factor-tx .001; %noise added to transmitter
22 % noise-factord = .01; %noise added to receiver
23 noise-factor-tx = 0; %noise added to transmitter
24 noise-factor-d = 0; %noise added to receiver
25

26 tx = zeros(transmitters, samples); %what gets transmitted
27 for a = 1:1:transmitters
28 tx(a,1:averaging) = ref(1:averaging);
29 end
30 % rlms-bd = 0; %receive side lms bulk delay
31 u3 = .05; %receive side LMS growth factor (this is '\mu_{Rx}')
32 probe-period = 150; %how often the system probes itself
33 probe-time = 15; %how long the system probes itself for each time
34 probe-mag = .1; %amplitude of probing signal
35

36 h-true = [8 -2 3 1; 7 -3 2 -1]; %the channel
37 h-true = h-true/sqrt(sum(h-true(:).^2));
38 h-est = h-true; %assume channel estimate perfectly models channel
39 taps-rlms = size(h-est, 2); %number of taps in the receiver lms

filter
4o h-ref = zeros(transmitters, taps-rlms + averaging); %temp conv holder
41 d-true-part = zeros(transmitters, samples + length(h-true(l,:)));
42 d-true = zeros(l, samples); %received signal (this is 'r')
43 h-change-mag = .1; %channel change magnitude
44 h-change-mod = 9000; %channel change frequency
45 h-change-factor = 0; %channel change slope (change per cycle)
46

47 w-track = ones(numel(w), samples - averaging); %weights
48 w-track-rlms = ones(numel(h-est), samples - averaging); %h-est

108

49 h-track-true = ones(numel(h-true), samples - averaging); %true ...
channel

50 t-track = zeros(transmitters, samples - averaging); %transmission ...
signal

51 tp-track = zeros(1, samples - averaging); %transmitted power
52 tp-track-avg = zeros(l, samples - 2*averaging);
53 dp-track = zeros(1, samples - averaging); %received power
54 dp-track-avg = zeros(l, samples - 2*averaging);
55

56 Cput = cputime;
57 %step through all time
58 for n = (averaging + 1):1:(samples - averaging - 1)

59 %change channel if necessary
60 if(mod(n, h-change-mod) == 0)
61 h-change-factor = ...

h-change-mag*randn (size (h-true)) /h-change-mod;
62 end
63 h-true = h-true + h-change-factor;

64 h-true = h-true/sqrt(sum(h-true(:).^2));
65 d-true-temp 0;
66 d-est = 0;

67 probe-number = floor(mod(n, probe-period)/probe-time) + 1;
68 probe-number2 = mod(mod(n, probe-period), probe-time);
69 for a = 1:1:transmitters
70 %transmit signal for an antenna
71 if(probe-number > transmitters)
72 txtemp = conv(ref(n - averaging:n), w(a,:));
73 tx(a,n) = tx-temp(averaging + 1) + noise-factor-tx*randn;
74 else if (probe-number == a)
75 tx(a,n) = probe-mag*ref(n);
76 else
77 tx(a,n) = 0;

78 end
79 end
80 %update true received signal
81 d-true-part(a,l:n+length(h-true (a, :))-l)
82 conv(h-true(a,:), tx(a,l:n)) + noise-factor-d*randn;
83 d-true-temp = d-true-temp + d-true-part(a,:); %receive signal
84 end
85 d-true(n) = d-true-temp(n);

86 %update receive side LMS filter, from Paul Fiore's lmsmeth.m
87 for a = 1:1:transmitters
88 if((probe-number == a) && (probe-number2 > 2*taps-rlms))
89 xvec = flipud(tx(a,n - taps-rlms + 1:n)'); %vector
90 normlms = xvec'*xvec; %scalar
91 y-rlms = hest(a,:)*xvec; %scalar
92 err-rlms = d-true(n) - y-rlms;
93 h-est(a,:) = h-est(a,:) + ...

u3*conj(err-rlms)*xvec'/normlms;
94 end
95 end
96 %update estimated received signal
97 for a = 1:1:transmitters
98 h-ref(a,:) = conv(h-est(a,:), ref(n - averaging:n));

109

99 d-est = d-est + conv(h-ref (a,:), w(a,:)); %receive signal ...
estimate

100 end %for a = 1:1:transmitters
101 %update true and estimated received power

102 p-true = d-true (n - averaging:n) *d-true (n - averaging:n) '; ...
%true power

103 p-est = d-est*d-est'; %the estimated receive power

104 %go through every tap on every transmitter and step weight and ...
redo calcs

105 if(probe-number > transmitters)
106 for a = 1:1:transmitters
107 for x = 1:1:taps

108 %step weight up
109 w-templ = w;

110 w-templ(a,x) = w(a,x) + ul*w-power;

111 d-templ = 0;

112 for aa = 1:1:transmitters
113 d-templ = d-templ + conv(h-ref (aa,:),

w-templ (aa, :));
114 end

115 p-templ = d-templ*d-templ';
116 %step weight down
117 w-temp2 = w;

118 w-temp2(a,x) = w(a,x) - ul*w-power;

119 d-temp2 = 0;
120 for aa 1:1:transmitters
121 d-temp2 = d-temp2 + conv (h-ref (aa,:),

w-temp2 (aa, :));
122 end

123 p-temp2 = d-temp2*d-temp2';
124 %find minimum power and set gradient

125 if(p-templ > p-est && p-temp2 > p-est)
126 grad(a,x) = 0;

127 else
128 if(p-templ < p-temp2)
129 grad(a,x) = (p-temp1 - p-est) / (ul*w-power);

130 else

131 grad (a, x) = (p-temp2 - p-est)/(-ul*w-power);
132 end

133 end

134 end %for x = 1:1:taps
135 end %for a = 1:1:transmitters
136 %update transmit side weights and normalize them

137 if(sum(grad(:)) A 0)
138 w-change = u2*grad/sqrt (sum(grad(:).^2));
139 w = w - w-change;

140 end

141 w = w*sqrt(w-power/sum(w(:) .^2));
142 end

143 %tracking
144 for a = 1:1:transmitters
145 t-track(a,n) = tx(a,n);
146 end
147 h-track-true(:,n) = htrue(:);

110

148 w-track-rlms(:,n) = h-est(:);
149 w-track(:,n) =w(:);
150 tp-track(n) = sum(w(:).^2);
151 d-track(n) = dtrue(end);
152 dp-track(n) = ptrue/averaging;
153 if(n > averaging)
154 tp-track-avg(n) = mean(tp-track(n - averaging:n));
155 dp-track-avg(n) = mean(dp-track(n - averaging:n));
156 end
157 end %for n = (averaging + 1):1:(samples - averaging 1)
158 cputime - cput

159

160 figure

161 plot (10*loglO (dp-track-avg(round(find(dp-track-avg ==

162 max(dp-track-avg))*.75):(samples - averaging - 1))))
163 xlabel('Time (samples)')
164 ylabel('Power (dB, relative to transmitter)')
165

166 figure
167 hold on
168 plot (wt rack')
169 % legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...

170 % 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');
171 xlabel('Time (samples)')
172 ylabel('Weight Value')
173

174 figure
175 subplot(1,2,1);
176 hold on
177 plot (w-track-rlms')
178 title('Receive Side Weights');
179 % legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...

180 % 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');

181 xlabel('Time (samples)')
182 ylabel('Weight Value')
183 subplot(1,2,2);
184 hold on
185 plot (h-track-true')
186 title('True Channel')
187 % legend('h(1,1)', 'h(2,1)', 'h(1,2)', 'h(2,2)',...
188 % 'h(1,3)', 'h(2,3)', 'h(1,4)', 'h(2,4)');
189 xlabel('Time (samples)')
190 ylabel('Channel Tap Value')

111

A.5 Matlab Code for Orthogonality Based Prob-
ing Method

1 %transmit beamforming test

2

3 close all
4 clear all
5

6 samples = 50000;
7 soi-mag = .1; %amplitude of the signal of interest

8 h-true = [8 -2 3 1; 7 -3 2 -1]; %the channel
9 h-change-mag = .1; %channel change magnitude
10 h-change-mod = 18000; %channel change frequency
11 % noise-factor-tx .001; %noise added to transmitter
12 % noise-factor-d .01; %noise added to receiver

13 noise-factor-tx = 0; %noise added to transmitter
14 noise-factord = 0; %noise added to receiver

15

16 transmitters = 2;
17 taps = 4; %number of taps in the transmit side lms filter

18 averaging = 200; %length of moving average and convolution

19 ul = .001; %weight step factor for gradient

20 u2 = .001; %weight update growth factor

21 taps-rlms = 4; %number of taps in the receiver 1ms filter
22 averaging-rlms = 5000; %receive side LMS averager length

23 u3 = 1.5; %receive side LMS growth factor

24 probeamag = .05; %amplitude of the probe signal

25 refamag = 1; %amplitude of the reference signal
26

27 t = 1:1:samples;
28 % ref-tx = ref-mag*sin(.5*t);
29 ref-tx = ref-mag*sin((.01 + .009*sin(t)).*t); %reference signal
30 ref-probe = zeros (transmitters, length(refitx));
31 ref = zeros(transmitters, length(ref-tx));

32 for a = 1:1:transmitters
33 % ref-probe(a,:) = probe-mag*sin((.1 + .3*(a-1))*t);
34 % ref-probe(a,:) = probe-mag*sin((.7 + .2*a + .1*sin(.06*t)).*t);
35 ref-probe(a,:) = probe-mag*randn(1,samples); %probe signal
36 ref(a,:) = ref-tx; %reference signal is same for both ...

transmitters

37 end
38 % SOi = zeros(l, samples);
39 soi = [zeros(1, samples/2), .

40 soi-mag*sin(.002*(samples/2:1:samples))]; %signal of interest
41

42 w = ones(transmitters, taps); %weights
43 grad = ones(transmitters, taps); %gradients
44 w-power = ref-mag*transmitters; %constant weight magnitude level
45 w = w*sqrt(w-power/sum(w(:).^2));
46

47 tx = zeros(transmitters, samples); %what gets transmitted

112

48 for a = 1:1:transmitters
49 tx(a,l:averaging) = ref(a,1:averaging);
50 end

51 y-rlms = zeros(transmitters, samples);
52 err-rlms = zeros(transmitters, samples);
53 wsave-rlms = zeros(taps-rlms*transmitters, samples);
54 xsave-rlms = zeros(taps-rlms*transmitters, samples);
55 psave-rlms = zeros(taps-rlms*transmitters, samples);
56 rsave-rlms = zeros(taps-rlms*transmitters, samples);
57 nxsave-rlms = zeros(transmitters, samples);
58 output-pre-finale = zeros(1, samples); %canceller output
59 output-finale = zeros(1, samples); %canceller output after LPF
60

61 h-true = htrue/sqrt (sum(h-true (:)^2)); %normalize true channel ...

to 1
62 h-est = zeros(2, taps-rlms); %initialize channel estimate
63 h-ref = zeros(transmitters, taps-rlms + averaging); %temp conv holder
64 d-true-part = zeros(transmitters, averaging + length(h-true (1,:)));
65 h-change-factor = 0; %channel change slope (change per cycle)
66

67 w-track = ones(numel(w), samples - averaging); %weights
68 w-track-rlms = ones(numel(h-est), samples - averaging); %h-est
69 h-track-true = ones(numel(h-true), samples - averaging); %true ...

channel
70 t-track = zeros(transmitters, samples - averaging); %transmission ...

signal
71 d-track = zeros(1, samples - averaging);
72 dp-track = zeros(1, samples - averaging); %received power
73 dp-track-avg = zeros(1, samples - 2*averaging);
74

75 Cput = Cputime;
76 %step through all time
77 for n = (averaging + taps + length(h-true (1,:)) + 1):1:
78 (samples - averaging - 1)
79 %change channel if necessary
80 if(mod(n, h-change-mod) == 0)

81 h-change-factor = ...
h-change-mag*randn (size (h-t rue))/h-change-mod;

82 end
83 h-true = h-true + h-change-factor;

84 h-true = h-true/sqrt(sum(h-true(:).^2));
85 d-true = 0;
86 d-est = 0;
87 for a = 1:1:transmitters
88 %transmit signal for an antenna
89 tx-temp = conv(ref(a,n - averaging:n), w(a,:));
90 tx(a,n) = tx-temp(averaging + 1) + ...
91 ref-probe(a,n) + noise-factor-tx*randn;
92 %update true received signal
93 d-true-part(a,:) = conv(h-true(a,:),
94 tx(a,n - averaging:n));
95 d-true-part(a,:) = d-true-part(a,:) +
96 noise-factor-d*randn(1,length(d-true-part (a,:)));
97 d-true = d-true + d-true-part(a,1 + ...

113

98 length(h-true(1,:)):averaging + 1); %receive signal

99 end %for a = 1:1:transmitters

100 d-true d-true + soi(n - length(dtrue) + 1:n);

101 for a 1:1:transmitters

102 %update receive side LMS filter

103 save-rlms-start = taps-rlms*(a-1) + 1;
104 save-rlms-end = taps-rlms*(a-1) + taps-rlms;
105 if(n < averaging-rlms) %prepare initial values

106 xvec=flipud(ref probe (a,n-taps-rlms+1:n) ');

107 xsave-rlms (save-rlms-start:save-rlms-end,n)=xvec;
108 nxsave-rlms(a,n) = xvec'*xvec;

109 psave-rlms(save-rlmsstart:save-rlms-end,n) =

d-true(end)*xvec;
110 rsave-rlms(save-rlms-start:save-rlms-end,n) =
il xvec*xvec'*h-est (a,:) ';

112 wsave-rlms (save-rlms start:save-rlms-endn) =
h-est (a, :) ';

113 else %if(n < averaging-rlms)
114 xvec=flipud(ref -probe (a, n-taps-rlms+1:n)');
115 xsave-rlms(save-rlms-start:save-rlms-end,n) = xvec;

116 nxsave-rlms(an) = xvec' *xvec;
117 nx = mean(nxsave-rlms (a, n-averaging-rlms:n-1) , 2);

118 temp1 = mean(wsave-rlms (save-rlmsstart:save-rlm-end,
119 n-averaging-rlms:n-1) ,2);
120 psave-rlms(save-rlms-start:save-rlms-end,n)

d-true (end)*xvec;
121 temp2 = ...

u3/nx*mean(psave-rlms (save-rlms-start:save-rlms-end
122 n-averaging-rlms:n-1), 2);
123 rsave-rlms (save-rlms-start:save-rlms-end,n)...
124 = xvec*xvec'*h-est(a,:)';

125 temp3 = ...

u3/nx*mean(rsave-rlms (save-rlms-start:save-rlms-end,
126 n-averaging-rlms:n-1), 2);

127 h-est(a,:) = templ + temp2 - temp3;

128 y-rlms(a,n) = h-est (a, :)*xvec;
129 err-rlms(a,n) = d-true (end) - y-rlms(a,n);

130 wsave-rlms (save-rlms-start:save-rlms-end,n)
h-est (a, :) ';

131 end %if(n < averaging-rlms)
132 %update estimated received signal

133 h-ref (a,:) = conv(h-est (a,:), ref(a,n - averaging:n));
134 d-est = d-est + conv(h-ref (a,:), w(a,:)); %receive signal .

estimate

135 end %for a = 1:1:transmitters

136 %calculate canceller output to find SOI

137 output-pre-finale(n) = d-true(end) - sum(y-rlms(:,n))
138 - d-est(averaging + 1); %components of canceller output

139 output-finale(n) = mean(output-pre-finale (n - averaging:n)); ..
%with LPF

140 %update true and estimated received power

141 p-true = dtrue*d-true'; %true power
142 p-est = d-est*d-est'; %the estimated receive power

114

143 %go through every tap on every transmitter and step weight and ...
redo calcs

144 for a = 1:1:transmitters
145 for x = 1:1:taps

146 %step weight up
147 w-templ = w;

148 w-templ(a,x) = w(a,x) + ul*w-power;
149 d-templ = 0;

150 for aa 1:1:transmitters
151 d-templ = d-templ + conv(h-ref (aa,:), w-templ (aa,:));
152 end

153 p-templ = d-templ*d-templ';
154 %step weight down
155 w-temp2 = w;

156 w-temp2(a,x) = w(a,x) - ul*w-power;
157 d-temp2 = 0;

158 for aa = 1:1:transmitters
159 d-temp2 = d-temp2 + conv (h-re f (aa,:), w-temp2 (aa,:));
160 end

161 p-temp2 = d-temp2*d-temp2';
162 %find minimum power and set gradient
163 if (p-templ < ptemp2)
164 grad(a,x) = (p-templ - p-est)/(ul*w-power);

165 else
166 grad(a,x) = (p-temp2 - p-est)/(-ul*w-power);

167 end

168 end %for x = 1:1:taps
169 end %for a = 1:1:transmitters
170 %update transmit side weights and normalize them
171 if (sum(grad(:)) 5 0)

172 w = w - u2*grad/sqrt(l + sum(grad(:) .^2));
173 end

174 w = w*sqrt(w-power/sum(w(:).^2));
175 %tracking
176 h-track-true(:,n) = h-true(:);
177 w-track-rlms(:,n) = h-est(:);
178 w-track(:,n) = w(:);

179 d-track(n) d-true(end);
180 dp-track(n) = ptrue /averaging;
181 if(n > averaging)
182 dp-track-avg(n) = mean(dp-track(n - averaging:n));
183 end

184 end %for n = (averaging + 1) :1: (samples - averaging - 1)

185 cputime - cput
186

187 % figure
188 % plot (tX (1,:))
189 % title('transmission 1');
190 % figure
191 % plot(tx(2,:))

192 % title('transmission 2');

193

194 % figure
195 % plot (d-track)

115

title('Received Signal
xlabel('Time (samples)
ylabel('Signal Value')

% figure
% plot(10*loglO(dp-track (round(find(dp-track
% max(dp-track))*.75):(samples - averaging 1))))
% title('receive power');
% xlabel('Time (samples)')
% ylabel('Power (dB, relative to transmitter)')

figure
plot (10*loglO (dp-track-avg (round(find(dp-track-avg

max(dp-track-avg))*.75):(samples - averaging - 1))))
% title('Average Receive Power');
xlabel('Time (samples)')
ylabel('Power (dB, relative to transmitter)')

figure
plot (w-track')
% title('Weights');
% legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...
% 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');
ax = axis;

axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),

ax(4)]);
xlabel('Time (samples)')
ylabel('Weight Value')

figure
subplot (1,2,1);
plot (w-track-rlms')
title('Receive Side Weights');
% legend('w(1,1)', 'w(2,1)', 'w(1,2)', 'w(2,2)',...
% 'w(1,3)', 'w(2,3)', 'w(1,4)', 'w(2,4)');
xlabel('Time (samples)')
ylabel('Weight Value')
ax = axis;
axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),

ax(4)]);
ax = axis;
subplot (1,2,2);
plot (h-track-true')
title('True Channel')
% legend('h(1,1)', 'h(2,1)', 'h(1,2)', 'h(2,2)',...

% 'h(1,3)', 'h(2,3)', 'h(1,4)', 'h(2,4)');
xlabel('Time (samples)')
ylabel('Channel Tap Value')
axis(ax);

figure
subplot (3,1,2);
plot (output-pre-finale, 'r')
title('Unfiltered Canceller Output');

116

48 % ax = axis;
149 % axis([(averaging + taps + 1), (samples - averaging - 1), ax(3),

ax(4)]);
5o % ax = axis;
51 axis([(averaging + taps + 1), (samples - averaging - 1), -1, 1]);

,52 subplot(3,1,3);
153 plot(output-finale, 'b')
154 title('Canceller Output with Moving Average Filter')
M5 axis([(averaging + taps + 1), (samples - averaging - 1), -1, 1]);

?56 subplot(3,1,1);

257 plot (SOi);

258 title('Signal of Interest');
)59 axis([(averaging + taps + 1), (samples - averaging - 1), -1, 1]);
w6o % axis(ax);

117

A.6 Matlab Code for Noise Variance Simulation

1 TRIALS = 100;

2 SAMPLES 20000;
3 WEIGHTS = 4; %total number of transmit weights
4 %note: H in the simulation is B in the analysis
5 FHFIXED = 1; %l if F and H are fixed for the entire simulation
6 NOISE-IMPULSE = 0; %an optional noise impulse function for the input
7 w = zeros(WEIGHTS,1);

8 u2 = 1; %(this is '\mu')
9 sigma = .001; %channel noise standard deviation

10 w-track = zeros(WEIGHTS,SAMPLES,TRIALS);
ii h-track = zeros(WEIGHTS,SAMPLES,TRIALS);
12 %if F and H matrices vary randomly during the simulation
13 if(FHFIXED == 0)
14 H = zeros(WEIGHTS,WEIGHTS,SAMPLES);
15 F = zeros(WEIGHTS,WEIGHTS,SAMPLES);
16 expected-sigma = zeros(l, SAMPLES);
17 for n = 1:1:SAMPLES
18 H(:,:,n) = .l*randn(WEIGHTS);
19 F(:,:,n) = .l*randn(WEIGHTS);
20 F(:, :,n) = F(:,:,n)*F(:,:,n)';
21 H(:,:,n) = H(:,:,n)*H(:,:,n)';
22

23 [V, Lambda] = eig(eye(WEIGHTS)-u2*F(:,:,n));
24 G = u2^2*V'*H(:,:,n)*H(:,:,n)'*V;

25 g = diag(G);
26 E = Lambda'*Lambda;
27 e = diag(E);
28 psiFN = 0;
29 for m = 1:1:WEIGHTS
30 psiFN = psiFN + g(m)/(1-e(m));
31 end
32 expected-sigma(n) = sigma^2*psiFN;
33 end
34 %if F and H matrices are fixed during the simulation
35 else

36 %create and normalize F and H
37 F = randn(WEIGHTS);
38 F = F*F';

39 F = 1*F/sqrt(sum(F(:).2));
40 H = randn(WEIGHTS);
41 H = H*H';
42 H = 1*H/sqrt(sum(H(:).^2));
43 %calculate expected weight standard deviation (expected-sigma)
44 [V, Lambda] = eig(eye(WEIGHTS)-u2*F);
45 G = u2^2*V'*H*H'*V;
46 g = diag(G);
47 E = Lambda'*Lambda;
48 e = diag(E);

49 psiFN = 0;
50 for m = 1:1:WEIGHTS

118

51 psiFN = psiFN + g (m) / (1-e (m));
52 end
53 expected-sigma = sigma^2*psiFN*ones(1, SAMPLES);
54 end
55

56 for trials = 1:1:TRIALS
57 %run simulation for each trial
58 for n = 1:1:SAMPLES

59 if(NOISEIMPULSE == 0)

60 h-est-noise = sigma*(randn(WEIGHTS,1));
61 else

62 if n < 100 %optional noise impulse

63 h-est-noise = sigma*(rand(WEIGHTS,1));
64 else
65 h-est-noise = zeros(WEIGHTS,1);
66 end
67 end

68 if(FHFIXED == 0)
69 w = w - u2*F(:,:,n)*w - u2*H(:,:,n)*h-est-noise;

70 else
71 %linearized weight update equation

72 w = w - u2*F*w - u2*H*h-est-noise;

73 end
74 w-track(:,n,trials) =w;

75 h-track(:,n,trials) = hest-noise;
76 end
77 w = zeros(WEIGHTS,1);
78 end
79

80 %average over the trials

81 w-avg = mean(w-track, 3);
82 w-var = var(w-track, 0, 3);

83 h-avg = mean(h-track, 3);

84 h-var = var(h-track, 0, 3);
85

86 close all
87 figure
88 plot(w-var')
89 ylabel('Variance')
90 xlabel('Sample')

91

92 figure
93 plot(sum(w-var,1))
94 hold on
95 hand = plot (expected-sigma, 'r'
96 set(hand, 'LineWidth', 2);

97 ylabel('Variance Sum')
98 xlabel('Sample')

99

100 figure

101 w-track-temp = zeros (SAMPLES, TRIALS);

102 w-track-temp(:,:) = w-track(1,:,:);
103 plot (w-track-temp)

119

Bibliography

[1] H. L. Adaniya. Wideband active antenna cancellation. Master's thesis, Mas-
sachusetts Institute of Technology, June 2008.

[2] J. S. Herd, P. D. Fiore, S. M. Duffy, B. T. Perry, and G. F. Hatke. Simultaneous
transmit and receive for look-through electronic attack. Technical report, MIT
Lincoln Laboratory, February 2010.

[3] K. Abe, H. Watanabe, and K. Hirasawa. Simultaneous transmission and recep-
tion system by adaptive cancelling. Electrical Engineering in Japan, 123(1):1-7,
1998.

[4] B. D. Maxson. Optimal cancellation of frequency-selective cosite interference.
Master's thesis, University of Cincinnati, November 2002.

[5] T. Riihonen, S. Werner, and R. Wichman. Spatial loop interference suppres-
sion in full-duplex MIMO relays. In Asilomar Conf. on Signals, Systems, and
Computers, 2009.

[6] D. W. Bliss, P. A. Parker, and A. R. Margetts. Simultaneous transmission and
reception for improved wireless network performance. In IEEE Wrkshp. on Stat.
Sig. Processing, pages 478-482, 2007.

[7] W. L. Brogan. Modern Control Theory. Prentice-Hall, 1985.

[8] A. V. Oppenheim and A. S. Willsky. Signals and Systems. Prentice-Hall, 1997.

[9] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2003.

[10] S. Haykin. Adaptive Filter Theory. Prentice-Hall, 1991.

[11] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, 1985.

[12] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-
Hill, 1984.

[13] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns-Hopkins Univer-
sity Press, 3rd edition, 1996.

[14] B. Hassibi, A. H. Sayed, and T. Kailath. H' optimality of the LMS algorithm.
IEEE Trans. Signal Processing, 44(2):267-280, February 1996.

120

[15] D. M. Pozar. Microwave Engineering. John Wiley and Sons, Inc., 2005.

[16] T. K. Sarkar et al. A survey of various propagation models for mobile commu-
nications. IEEE Antennas and Propagation Magazine, 45(3):51-82, June 2003.

[17] R. T. Compton. Adaptive Antennas. Prentice-Hall, 1988.

[18] L. Ljung. System Identification. Prentice-Hall, 1999.

[19] D. L. Kewley and R. L. Clark. Feedforward control using the higher-harmonic,
time-averaged gradient descent algorithm. JASA, 97(5):2892-2905, May 1995.

121

