
Intuitive Fully Integrated Platform for

Designing Interactive Objects in Quest Atlantis

by

David Lam

Submitted to the Department of Electrical Engineering and Computer Science in

Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology MASSACHUE LINSITUTE

May 2011 JUN 2 1 2011

Copyright 2011 David Lam. All rights reserved. LIBRARIES

ARCH[VES

The author hereby grants to M.I.T. permission to reproduce and

to distribute publicly paper and electronic copies of this thesis document in whole and in part to any

medium now known or hereafter created.

Author
Department of Electrical Engineering and Computer Science

May 16, 2011

Certified by

Accepted by

Eric Klopfer
Associate Professor

Thesis Supervisor

Dr. Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee

Intuitive Fully Integrated Platform for
Designing Interactive Objects in Quest Atlantis

by
David Lam

Submitted to the
Department of Electrical Engineering and Computer Science

May 16, 2011

In Partial Fulfillment of the Requirements for the Degree of
Masters of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Quest Atlantis is a 3D multi-user narrative game used as a teaching tool for children
from ages 9 to 16. It has become highly successful and used by over 15,000 4* - 8a
graders worldwide. Building upon this successful Quest Atlantis project, the designers
of Quest Atlantis want to develop a narrative-based programming environment where
users are able to design their own objects in the virtual world, script certain sequences
of animations and behaviors into them, and share these narratives with others.
Through this, users of this system will be able to learn fundamental computer science
concepts and skills. Previous work has been done to build a simple platform that
enables users to accomplish this. However, this previous platform was immature and
lacked many of the important needed features. As a result, using this previous
platform as the groundwork, I designed a fully integrated platform that is not only easy
to use, but also contains all the features a user would need.

Thesis Supervisor: Eric Klopfer
Title: Associate Professor

1 4

Acknowledgements

I would like to thank Professor Eric Klopfer for giving me the opportunity to pursue this

project to make this thesis possible. I would like to thank Daniel Wendel for his advice,

guidance, and feedback throughout the course of the project. I would like to thank Adam

Ingram-Goble for his help and feedback with the programming and implementation details of

the project as well as his help in defining the focus of the project. Finally, I would like to

thank the Scheller Teacher Education program and the designers of Quest Atlantis at Indiana

University for all their help in making this project possible.

6

Contents

1 Introduction 9

2 Active Worlds Platform
2.1 Active Worlds Scripting Language 11
2.2 Active Worlds SDK 12

3 Previous Work
3.1 Web Editor Interface for Creation of Objects 13
3.2 Scripting of Objects using Flashblocks 14
3.3 The Quest Atlantis Bot 16
3.4 Database Tables 17

4 Initial Setup
4.1 Environment Setup 20
4.2 Source Code Repository 21
4.3 Migration from XVM Server to Scripts.MIT.EDU Server 22

5 Addition of New Commands
5.1 Say Command 23
5.2 PlaySound Command 24
5.3 Walk Command 24
5.4 Transport Command 24
5.5 Transform Command 25
5.6 Scale Command 25
5.7 Media Command 26

6 Web Interface to Modify State Values of Objects
6.1 Index Listing of Created Objects 27
6.2 Basic Object Info Modification 28
6.3 Object Behavior Modification 30
6.4 Object Position Modification 31

7 User Permissions
7.1 Database Setup 34
7.2 Integration into Platform 35

8 Scriptblocks
8.1 Drawbacks of Flashblocks System 37
8.2 Implementation of Scriptblocks 38
8.3 Integrating Scriptblocks Into The Platform 39

9 Improvement of the QA Bot
9.1 Drawbacks of Current Quest Atlantis Bot 41
9.2 Modification of Startup/Shutdown Process 42

9.3 Consistency Check Between Database and QA World

10 Admin Interface
10.1 Creation of New Object Models 45
10.2 Creation of New Object Commands 46
10.3 Ability to Select Which Commands Each Model Can Have 50
10.4 Admin Home 53

11 Conclusion 54

12 References 56

Appendix

A Setup 58

B Source Code - Quest Atlantis Bot
B.1 bot db.rb 59
B.2 objecteditor.rb 60

C Source Code - Web-App Ruby Controllers
C.1 admin controller.rb 71
C.2 objectscontroller.rb 73

D Source Code - Web-App Ruby Models
D. 1 animation.rb 78
D.2 ownedobject.rb 78
D.3 paletteobject.rb 78
D.4 project.rb 78
D.5 q_action.rb 78

E Source Code - Web-App Ruby Admin Views
E. 1 command.html.erb 79
E.2 listing.html.erb 80
E.3 model.html.erb 81

F Source Code - Web-App Ruby Object Views
F.1 edit.html.erb 83
F.2 listing.html.erb 83
F.3 scriptblocks.html.erb 84
F.4 tweak.html.erb 86

G Source Code - Javascript
G.1 numeric-stepper.js 89
G.2 ScriptblocksXML.js 91

1 Introduction

The use of technology as an education tool has been an extremely popular topic over

the last few years. With the advancement in technology, researchers and scientists have been

able to come up with new tools for learning. One of these tools is to use video games.

Research has shown that there is educational potential in video games because they can help

students discern and process information faster as well as increase the rate and accuracy of

their reasoning skills'. Quest Atlantis, an international learning and teaching project, is an

example of one of these games.

Quest Atlantis is a 3D multi-user narrative game used as a teaching tool for children

from ages 9 to 16. In this game, users set off on a variety of journeys that focus on a

particular school subject. Throughout each journey, users are able to engage in a series of

short educational tasks known as Quests, talk with other users, and build a virtual persona.

Quest Atlantis has become highly successful and used by over 15,000 4h - 8h graders

worldwide. It has played a critical role in standardized test gains, dozens of research

publications, the creation of theoretical frameworks, the development of new media literacies,

and the scaffolding of transformative experiences that involve both game-based and real-

world narratives'.

Building upon this successful Quest Atlantis project, the designers of Quest Atlantis

want to develop a narrative-based programming environment where users are able to design

their own objects in the virtual world, script certain sequences of animations and behaviors

into them, and share these narratives with other users. Through this, the users of this system

will be able to learn fundamental computer science programming concepts and skills.

Unfortunately, the current Quest Atlantis system lacks an intuitive interface that would allow

Barab, Sasha, "Transactive Narrative Art Proposal", Indiana University
9

users to perform all these needed actions. As a result, my role is to work with the designers of

Quest Atlantis to build an intuitive platform that would allow users to design and script their

own interactive objects so that they are able to produce their own interactive narrative.

This thesis begins with an examination of the technology that Quest Atlantis is built

on as well as the previous work that has been done in developing this platform. The paper

then proceeds to describe the development work that I did in building this platform.

2 Active Worlds Platform

Quest Atlantis is built using the Active Worlds virtual reality platform. The Active

Worlds virtual reality platform contains two main methods to allow designers to build their

own games on the platform: an SDK for building applications that function within the Active

Worlds virtual environment and an object scripting language that allows designers to add

animations and behaviors into objects. This section details these two Active Worlds

technology.

2.1 Active Worlds Scripting Language

Each object in Quest Atlantis has an action state field that can be populated with

statements using the Active Worlds Scripting Language. These statements will dictate the

object's animation and behavior under certain conditions. The Active Worlds Scripting

Language is used in the following way:

- triggerl commandl paraml param2 ..., command2 param]l param2 ... ;

trigger2 commandl paraml param2 ... , ;

As we can see, any action script will begin with a trigger statement. All the commands that

follow a trigger belong to the trigger and all the parameters that follow a command belong to

the command. Each trigger is separated by ";" and each command is separated by a ",". A

trigger represents the condition in which its respective commands will be executed. For

example, the activate trigger will execute its respective commands when the object is

clicked2.

Unfortunately, one of the drawbacks with using this Scripting Language is that it does

not actually change the state of the object. For example, if we use the move command to

move a given object 10 units forward, the object will move back to its original position after it

2 Active Worlds Object Scripting. <http://wiki.activeworlds.com/index.php?title=ObjectScripting>

11

performs the action instead of staying in the new position. Another drawback with using

Active Worlds Scripting Language is that the language does not allow us to chain commands.

For example, assume that we have an object that has a script in the following format:

- activate commandl paraml command2 param2 command3 param3;

When we click on this object, instead of executing command1, command2, and command3

one by one in that sequence, it actually executes command1, command2, and command3

simultaneously. These drawbacks show the limitations in the Active Worlds Scripting

Language.

2.2 Active Worlds SDK

The Active Worlds SDK is a C/C++ library that provides an easy way for developers

to create applications that function within the Active Worlds virtual environment. The most

common type of application that is built using the SDK is a bot. A bot is typically an avatar

that lives in the virtual world, but is driven by a computer program instead of a human being.

Using this SDK, we are able to manipulate objects in Quest Atlantis3. For example, the SDK

allows us to permanently change the state of an object. As a result, using the SDK, we are

able to permanently change the location of an object, something that could not be done using

the Active Worlds Scripting Language.

Unfortunately, while we are able to use the SDK to permanently change the state of an

object, we are not able to use the SDK to add animations and behaviors into an object. As a

result, we need to use both the Active Worlds Scripting Language and the SDK to create

animations and behaviors that are able to change the state of an object.

3 Active Worlds SDK. <http://wiki.activeworlds.com/index.php?title=SDK>

3 Previous Work

As discussed in section 2, Quest Atlantis is built using the Active Worlds virtual

reality platform. Using a combination of Active Worlds scripting language and the SDK,

previous work has been done to build a simple, relatively immature platform that allows users

to design and script their own interactive objects so that they are able to produce their own

interactive narrative. This section briefly details the previous work that has been done in

building this platform4.

3.1 Web Editor Interface for Creation of Objects

One key aspect of this platform is the ability to allow users to create and add

interactive objects into Quest Atlantis. Previous work has already been done to build a Ruby-

on-Rails web application that allows for this functionality. While the back-end of this web

application is built using Ruby-on-Rails, the front-end is built using a combination of HTML,

CSS, and JavaScript.

Essentially, this web application .. e e.

contains a 2-dimesional grid that

represents the coordinates in Quest

Atlantis. On the right hand side is a

panel consisting of the types of ii

interactive objects that a user is able to

create and add into Quest Atlantis. To

Figure 1: Web Interface that allows users
to add their own interactive objects into
Quest Atlantis

4 Irizarry, Angel, "Intuitive Interface for Object Interactivity and Storytelling for Quest Atlantis",
Master's Thesis, Massachusetts Institute of Technology, 2010

13

add a particular object into Quest Atlantis, all the user has to do is drag that particular object

from the right hand panel into the designated coordinate in the 2-dimensional grid.

The interactive objects that are available on the right hand panel of the Web

application is determined by the PaletteObjects table of the database. This table is pre-

populated with the information of all the available interactive objects that a user is able to

create in Quest Atlantis.

The web application communicates with Quest Atlantis through the use of the

database. When a user creates and adds an interactive object on the web application's 2-

dimensional grid, an entry is added into the QActions table of the database. A bot, discussed

in section 3.3, running on a remote server will then read these entries from the Q_Actions

table of the database and perform the necessary actions to add the specified interactive objects

into the Quest Atlantis virtual world. Once the bot has created and added an object into the

world, an entry containing information regarding this object gets added into the

Owned Objects table of the database. As a result, this Owned Objects table will contain an

entry for every object that is currently instantiated by users in the Quest Atlantis world.

3.2 Scripting of Objects using Flashblocks

Another key aspect of this platform is the ability to allow users to add sequences of

animations and behaviors into the interactive objects that they have created in Quest Atlantis.

Previous work has been done in this area to create a system that allows users to accomplish

this through the use of Flashblocks. Flashblocks is an Adobe Flash implementation of the

OpenBlocks block-programming framework, which was inspired by the work done on

StarLogo TNG5 . The use of Flashblocks makes the scripting of animations and behaviors into

interactive objects in Quest Atlantis an extremely simple process. Users are not expected to

5 Roque, Ricarose Vallarata, "OpenBlocks : an extendable framework for graphical block programming
systems", Master's Thesis, Massachusetts Institute of Technology, 2007

14

understand or learn any programming languages or concepts to use these Flashblocks.

Essentially, all the user has to do is take these blocks and connect them together to form some

sequence of animations and behaviors.

There are two main types of blocks that a user must use to create any sequence of

animations and behaviors: trigger blocks and command blocks. Trigger blocks represent

events that trigger series of animations and behaviors that are associated with each object.

Command blocks represent the animations and behaviors that each object can have.

Graphically, what separates these two types of blocks from each other are their shape and

color. The shapes and colors of these two types of blocks enforce the constraints on how

these blocks may be connected.

TV

ON

T P

Now

AWL

Figure 3: Command Blocks

Figure 4: Trigger Block
Connected with Command
Blocks to Form A Sequence
of Animations and Behaviors

Figure 2: Trigger Blocks

Slide Fwvward

Slid e aa6umrd

Tum Left

.....
TumAtight

3.3 The Quest Atlantis Bot

The Quest Atlantis Bot is the most important component and the heart of this

platform. This bot runs on a separate server from Quest Atlantis and acts as the bridge

between Quest Atlantis and the web application that allows users to create objects in the

Quest Atlantis world as well as the bridge between Quest Atlantis and the Flashblocks system

that allows users to add sequences of animations and behaviors into their objects. In addition,

this bot is also responsible for handling event triggers as well as object animations and

behaviors.

The bot facilitates communication from the web application and the Flashblocks to

Quest Atlantis. The web application and Flashblocks each sends requests to the QActions

table in the database and the bot then takes each request in the QActions table and processes

it. There are three types of requests that the bot can process: create request, delete request,

and script request. The create and delete requests are generated from the web application and

are used to create and delete objects from Quest Atlantis. The script request is generated from

the Flashblocks system and is used to add sequences of animations and behaviors into an

object. The bot will periodically check the QActions table to see if there are any new

requests it needs to process. After processing any new requests, the bot will then delete those

requests from the QActions table. We can now see the critical role the bot plays in tying all

the different components of the platform together.

Finally, the bot also plays a critical role in handling event triggers as well as object

animations and behaviors. This is primarily where the use of the Active Worlds Scripting

Language and Active Worlds SDK comes into play. The bot uses the scripting language to

perform each animation and the SDK to listen to over 50 different types of events in Quest

Atlantis 6. The main events that this bot is interested in are the events that are used to trigger

series of animations and behaviors that are associated with each object. When an event does

trigger a given object, the bot is responsible for carrying out the sequence of animations and

behaviors that is associated with the object. The bot accomplishes this by spawning a new

thread to execute the sequence of animations and behaviors. For each animation and behavior

that the bot executes, the bot is also responsible for changing the object's state through the use

of the SDK if the animation and behavior requires it.

3.4 Database Tables

There are three main tables in the database for this platform: PaletteObjects,

OwnedObjects, and QActions. The PaletteObjects table is pre-populated with all the

different types of Quest Atlantis objects that a user is allowed to create. Each entry in this

table consists of a model name, a human-readable name, and a description of the object. The

OwnedObjects table contains all the objects that users have created in Quest Atlantis. Each

entry in this table consists of an AWObjectID, the x, y, and z coordinates of the object, the

exact orientation of the object, the action that the object is currently scripted with, and finally

a palette object id that references the type of Quest Atlantis object the object belongs to.

The Q_Actions table is essentially a request queue that stores request from the web

application and the Flashblocks system. For each request, this table is populated with

key/value pairs that represent parameters for the request. As a result, a given entry in the

QActions table consists of an action name, an action id, a key, and a value. The action name

represents what kind of request this entry belongs to. Since a given request has multiple

entries in the table, the action id is a random number that is used to tie all the entries that

belongs to the same request. The number of entries that a given request has is equal to the

6 Active Worlds Documentation. <http://wiki.activeworlds.com/index.php?title=MainPage>

17

number of parameters that the request has. This type of setup makes the QActions table

extremely flexible. It is very easy to create new types of request and it allows a request to

have a variable number of parameters.

Figure 5: Representation of QActions Table

id action_name actionid key value

- QWWfqges
T4 e consjgting of
agU tap oippts
creggi

Tglg ecgi of
a4 te @if gt
oj gs tWt a u4e
cgp cregp agad to

of qgegpd ap,,s
t4b*nqqg to he

pjroqcp

Ikpievs easy fsty

t4ge Vd gWge~ss eaph eggy.

Crven _Q iggt qW V

cogxogugps, creat tef o et

Givea objogpt apo a set of

cbagge&s, ineror e top ph es

into the QOhjct

aswgciggg vy* the pjven

Ojpt ftqgg

4i4t aqoggg'Wes e
tote jpt

Figure 6: Flow Diagram of the Quest Atlantis Bot

T*es in an q gt qaasOpg f
agtio"s a4d RWys thes#ng *igo a
igt of ap4gps Spyps, t* Wit of

4Qge t agse g T-pta

fg)aipof th1l0 a~d aq4W it
149 9 ee 11gl as

sCPAWiit int oe wpet

Tiw 4gg4gr for "Wher

T'dgr 4.gdtr for "'.g
MAWVs

A #|VA900
Aggr ggy agiven

sWgs ofg A0ct sgg,,h as
I N cg g g g g g

4 Initial Setup

Previous work was done to build a simple platform that allowed users to design and

script their own interactive objects so that they could produce their own interactive narrative.

However, this platform was still immature and lacked a lot of important needed features.

Therefore, using the previous work as a guideline, my role was to work with the designers of

Quest Atlantis to build a fully integrated platform that was not only easy to use, but also

contained all the features that a user would need. However, before doing so, the environment

had to be set up and the source code for the bot had to be obtained from the previous platform.

This section details all the initial setups that had to be done7.

4.1 Environment Setup

The Quest Atlantis Bot needed to run on a 32-bit Ubuntu operating system with the

following installed:

-build-essential

- zliblg-dev

- ruby

- rubygems

- ruby-dev

- libopenssl-ruby

- libmysql-ruby

- curl

- git-core.

All of these were installed using the Synaptic Package Manager. Next, the following

RubyGems needed to be installed in this exact order:

7 Irizarry, Angel, "Intuitive Interface for Object Interactivity and Storytelling for Quest Atlantis",
Master's Thesis, Massachusetts Institute of Technology, 2010

20

- sudo gem install rails -version '=2.3.5'

- sudo gem install ffi --version '=0.3.5'

- sudo gem install activeworldsffi

Finally, the Active Worlds SDK needed to be downloaded from the following location:

- http://objects.activeworlds.com/downloads/awsdk77.tar.gz.

A file named libawsdk.42.so.77 then needed to be extracted from the downloaded file,

renamed to libawsdk.42.so, and moved to the following location: /usr/local/lib. Since the

activeworldsffi RubyGem searches the environment variable LDLIBRARYPATH for the

Active Worlds SDK, we had to set this environment variable. This was done using the

following terminal command:

- export LDLIBRARYPATH = /usr/local/lib

Fortunately, I was able to obtain a virtual machine image with the entire environment set up to

the specifications provided above.

4.2 Source Code Repository

After having set up the Ubuntu environment to run the Quest Atlantis Bot, I needed to

obtain the source code for the bot. This source code was obtained from the github repository

by using the following command:

- git clone git://github.com/angelman/QA-Object-Editor-Bot.git ObjectEditorBot

The bot was then started by going to the ObjectEditorBot folder and running the following

command:

- ruby object.editor.rb 42982 qamit qadev

4.3 Migration from XVM Server to Scripts.MIT.EDU Server

The Ruby-on-Rails web application that allowed users to create and add interactive

objects into the Quest Atlantis world was originally hosted on the xvm.mit.edu server.

Unfortunately, I did not have the necessary permissions to modify the specific instance of the

xvm.mit.edu server that this web application was hosted on and there was not enough space

on the xvm.mit.edu server at the time to run a new instance of the web application. As a

result, I needed to migrate this web application on to a new server. I decided to use the

scripts.mit.edu web hosting service because of its support for Ruby-on-Rails as well as its

support for database hosting on sql.mit.edu. As a result, the Ruby-on-Rails web application is

currently being hosted on scripts.mit.edu and the database is being hosted on sql.mit.edu.

5 Addition of New Commands

The available animations and behaviors that a user was able to add into objects using

the previous simple platform included: slide forward, slide backward, turn left, and turn right.

As we can see, this list of available actions was very limited and any user using this platform

would want a richer list of actions. As a result, in building this platform, I added additional

commands that a user is able to add on to an object. This section details the set of commands

I added to the platform.

5.1 Say Command

The say command takes in a string and outputs the string on to the chat window in

Quest Atlantis as part of the object's sequence of animations and behaviors. This command

was created using Active Worlds Scripting Language say command.

A ~ ~ f 1Bgc rvz::pe, fs Cer , vToosta ar cPac
Vronig' atn C h2r. Welme to Alp-ancre, the rst historif an t tare

n tual werb on he internet Cneck oA ANPertals ra
coiec serc featu~ e

cYouve joed the Scarane chat ntwork. Use #help For
help an see n'wswc ty.net for news

Syntax; The say function is printed right into the users chat box }

egra o By en: 7 anutes ago~

Figure 7: Example of an Output on to the Chat Screen by the Say Command

8 Active Worlds Say Command. <http://wiki.activeworlds.com/index.php?title=Say>

23

5.2 PlaySound Command

The playsound command takes in a URL to a sound file and allows the sound to be

incorporated into an object and played as part of the object's sequence of animations and

behaviors. The URL can be either the name of the sound file located in the "sounds" folder of

the world's object path or it can be an absolute URL to a .wav, .mid, or .mp3 file anywhere on

the web. When the sound file gets invoked, the sound will play over other sounds that are

currently playing. This command was created using Active Worlds Scripting Language noise

command9 .

5.3 Walk Command

The walk command takes in a number and dictates how far a created character object

should walk as part of its sequence of animations and behaviors. This command was created

using a combination of Active Worlds Scripting Language seq command and move command.

The seq command takes a specified animation sequence that is part of the object's path and

applies it to an object 0 . In this case, the animation sequence that is used is the walk sequence.

However, this walk animation sequence does not actually move the object. To move the

object, we had to use the move command". Thus, by simultaneously using the seq and move

command, we are able to create the walk command. The Active Worlds Script to do this is:

seq walk, move xy z.

5.4 Teleport Command

The teleport command takes in a location and teleports the user to the new location as

part of the object's sequence of animations and behaviors. This teleport command can only

9 Active Worlds Noise Command. <http://wiki.activeworlds.com/index.php?title=Noise>
4 Active Worlds Seq Command. <http://wiki.activeworlds.com/index.php?title=Seq_(buildingcommand)>

" Active Worlds Move Command. <http://wiki.activeworlds.com/index.php?title=Move>

24

teleport the user to a new location that is in the same world. In other words, the teleport

command cannot teleport the user to a different world. This command was created using the

Active Worlds Scripting Language warp command".

Unfortunately, due to the platform's inability for commands to take in more than one

argument, the teleport command had to broken down into a teleport x and a teleport z

command. As the names suggest, the teleportx command sends the user to a new x location

while keeping the z location constant and the teleport z command sends the user to a new z

location while keeping the x location constant.

5.5 Transform Command

The transform command takes in an object model name and transforms the object to

this new object model as part of the object's sequence of animations and behaviors. If a non-

valid object model is given as the input, then the transform command would not do anything.

This transform command requires the manipulation of objects in the Quest Atlantis World

which is something that cannot be done using Active Worlds Scripting Language. As a result,

this command had to be created using Active Worlds SDK, specifically through the Quest

Atlantis Bot.

5.6 Scale Command

The scale command takes in a scale factor and changes the size of the object by that

scale factor as part of the object's sequence of animations and behaviors. For example, if the

scale factor is 2.0, the command will make a given object twice as big. Similarly, if the scale

factor is 1.0, the command would not do anything to the given object. This command was

created using Active Worlds Scripting Language scale command".

12 Active Worlds Warp Command. <http://wiki.activeworlds.com/index.php?title=Warp>
13 Active Worlds Scale Command. <http://wiki.activeworlds.com/index.php?title=Scale

25

5.7 Media Command

The media command takes in an URL to a media file and plays that media file as part

of the object's sequence of animations and behaviors. Similar to the playsound command,

the URL can be either the path to a media file or it can be an absolute URL to a media file

anywhere on the web. The types of media files that are supported are the same as the types of

media files that are supported by the installed version of Windows Media Player. This

command was created using Active Worlds Scripting Language media command.

Figure 8: Example of a Streaming Media File Using the Media Command

4 Active Worlds Media Command. <http://wiki.activeworlds.com/index.php?title=Media>

6 Web Interface to Modify State Values of Objects

Users in Quest Atlantis are able to modify the states, such as location and rotation, of

any interactive objects that they have created in Quest Atlantis. To do so, all the user had to

do was go to Quest Atlantis, find the object, and click on the object to open the sidebar

interface containing the modifiable state fields for the given object. In addition, the

Flashblocks system where users are able to script their own sequences of animations and

behaviors into objects also had to be accessed through the sidebar of the Quest Atlantis game

interface. While this type of setup worked, it was not ideal. Instead, we envision a fully

integrated web interface where users should be able to accomplish all their desired tasks in

designing their own interactive objects without having to go through Quest Atlantis or any

other program. This section details the work that was done to accomplish this.

6.1 Index Listing of Created Objects

Before we were able to create this fully integrated web interface, we had to find a way

for users to select which objects they want to modify without selecting the object through

Quest Atlantis. As a result, as part of the Ruby-on-Rails web application where users are able

to create and add their own interactive objects into the world, we added a link that leads to an

index listing of all the interactive objects that have been created. In addition to the object

name, for each object, this listing contains other information regarding the object as well as an

edit link for the object. Now when a user wants to modify the state values of an object or

script new animations and behaviors into an object, all the user has to do is click on the edit

link of the desired object from this listing and a new web interface containing the modifiable

state values and a link to the Flashblocks interface will open up. By using the new

permissions checking logic as discussed in section 7, for any given user, this index listing of

objects is restricted to only contain objects that were created by the given user or those that

were created by the given user's teammates.

Object Listings

AW Object ID Object Name Description X Coordinate Z Coordinate Click To Edit Object ProprtIes
1864915 Bench This is a test bench 3 2 Edit
1864916 Lamp This is a test amnp 5 4 Edit
1864917 Car This is a test car 2 5 Edit
1864918 Girl This is a test gir 6 2 Edit
1864919 Tre This is a test tree 1 3 Edit

Hoe

Figure 9: The Index Listing of Created Objects page

6.2 Basic Object State Modification

In creating this new web interface, we envision users being able to modify the name,

model name, and description state fields of a given object. To do so, we first had to add two

additional fields into the OwnedObjects table of the database. These two additional fields

were the name field and the description field. We did not need to add a model field into the

table because that field was already represented in the PaletteObjects table, which gets

referenced by the OwnedObjects table.

The name field is not actually a valid field in Quest Atlantis' representation of an

object. This field only exists in the web interface as a way to allow users to easily identify

their objects by giving each object their own unique name. However, both the model name

field and the description field are valid fields in Quest Atlantis' representation of an object.

The model name field of an object dictates what kind of Quest Atlantis object the given object

belongs to. The description field of an object is an informative piece of text that gives a

description of the object. As a result, changing the model name field or the description field

of an object involves the manipulation of the state of the given object. To do this, we used the

Active Worlds SDK, through the Quest Atlantis bot, to change these state values of the object.

The SDK method to change the model name of an object is awstringset(

A WOBJECTMODEL, newmodel name) and the SDK method to change the description of

an object is aw-stringset(A WOBJECTDESCRIPTION, newdescription).

As discussed in section 3.3, the different components of this platform communicate

with the Quest Atlantis bot mainly through the use of the QActions table of the database.

This was no different with this new web interface. To allow this new web interface to

communicate with the bot, a new type of request known as a change request was created.

Each change request added into the QActions table consisted of two entries with the keys

model and description. The values associated with the keys model and description are the

new model name and the new description, respectively, of the given object. Once a change

request gets added into the QActions table, the bot will process this request and delete this

request from the table.

Object Options

AW Object ID 186491S

Nmre Bench

Model fzol benchLrwx

This is a test bench

Descriptions

Figure 10: Users can now modify the name, model name, and description field of an object

6.3 Object Behavior Modification

In addition to having the ability to modify the name, model name, and descrption

fields of an object via this web interface, users should also have the ability to modify the

actions field of a given object. The actions field is essentially the sequence of animations and

behaviors that an object will execute under certain trigger events. Currently, the only way a

user is able to script animation and behavior sequence into an object is through the

Flashblocks system. However, in addition to this Flashblocks System, we also want users to

have the option to modify an object's animation and behavior sequence through a textbox.

To accomplish this, we added an additional actions field into the OwnedObjects table

of the database. This actions field now contains the string representation of the sequence of

animations and behaviors for a given object. Since the Flashblocks System communicates

with the Quest Atlantis bot by outputting a string representation of the scripted sequence of

animations and behaviors into the QActions table, we simply used this same string to

represent this new actions field in the OwnedObjects table. The following is an example of

this string:

- {WhenClicked[SlideForward(5), TurnLeft(90), SlideForward(5)]}

Basically, when the object scripted with the above string gets clicked on, it is supposed to

move forward five units, rotate left ninety degrees, and move forward another five units.

Propagating changes in an object's animation and behavior sequence to Quest Atlantis

again involved the use of the Quest Atlantis bot. Similar to all the other components of this

platform, communicating changes in the actions field for an object was done through the

QActions table of the database. Each actions field change added into the QActions table

was considered as a change request entry with the key action. The value associated with the

key action is the string representation of the new animation and behavior sequence of the

given object.

Actions

Figure 11: Users can now modify the actions field of an object

6.4 Object Position Modification

This new web interface should also allow users to have the ability to modify the

location and orientation of an object in Quest Atlantis. Again, similar to all the other

modifiable fields in this new web interface, these location and orientation changes gets

communicated to the Quest Atlantis bot through the Q Actions table of the database. Each

location field change added into the QActions table is consider as three change request

entries with the keys x, y, and z. These three keys represented the 3D x, y, and z positions,

respectively, in the Quest Atlantis world. Each rotation field change added to the QActions

table is considered as three change request entries with the keys yaw, tilt, and roll. These

three keys represented the possible rotation orientation on the y, x, and z axis respectively.

Once a location or rotation change request is inserted into the QActions table, the bot will

retrieve and process these request and change these states on the given object using Active

Worlds SDK. The SDK methods to carry out these changes are:

- aw int set(AW_OBJECTX, new x)

- awjint-set(AW_OBJECTY, newzy)

- aw_intset(AW_OBJECTZ, new z)

- awJntset(AW_OBJECTYAW, newyaw)

- aw_int_set(AWOBJECT_TILT, newtilt)

- aw_int_set(AW_OBJECT_ROLL, new roll)

Originally, we designed these modifiable location and orientation fields on this new

web interface as standard html input text fields where users are able to enter any input of their

choice. However, we found that this was not optimal since users were able to enter a non-

valid location or orientation as inputs. Instead, we wanted to restrict users to only be able to

enter valid inputs into these fields. As a result, we decided to make the location and

orientation input fields so that each field had both an up and down arrow button. By having

this, users are only able to modify the location and orientation field by incrementing the field

value or decrementing the field value through the up/down arrow buttons. Users are limited

by how high they can increment the field value and the same goes for how low they can

decrement the field value. This was accomplished using a combination of html and jQuery,

which is a powerful Javascript library' 5 .

By using jQuery technology, we also made it so that when a user presses an up or

down arrow button on any of the location and orientation fields for an object, that object in

Quest Atlantis will receive the update in real-time without having the user press the save

button on the web interface. For example, if a user presses an up arrow button on the x

location field, the respective object in Quest Atlantis will move forward in the x direction by

one unit in real-time. This allows users to get a better sense of exactly how the location and

orientation changes they are applying to the object is affecting the object as well as how they

should go about applying these changes.

15 Javascript Numeric Stepper. <http://www.htmldrive.net/items/show/540/Javascript-numeric-stepper-
with-inputbox.html>

Object Options

AW Object ID

Name

Model

Descriptions

Actions

Location

Rotation

This is a test girl

X (W-E): 6 Y (Up-Down): o Z (N-S): 2

Yaw (Y Axis): 0 Tilt (X Axis): 0 Rol(Z Axis): 0

Animate Object!
Back to Obiect Listing

Figure 12: New Web Interface To Modify State Values of Objects

1864918

Ciri

modgirl1

7 User Permissions

One of the biggest flaws with the previous platform was that users were able to modify

the interactive objects created by other users. As a result, from the user's standpoint, there

was no sense of ownership of objects since any user was able to freely modify any interactive

objects that were created in Quest Atlantis. As a result, we added the use of permissions into

this new platform to limit users to only be allowed to modify certain objects. Essentially,

users will only have permission to modify the interactive objects that they created and the

interactive objects that their respective teammates created. This section details the work that

was done to accomplish this.

7.1 Database Setup

Before we could begin adding the permissions checking logic into this platform, we

first modified the database so that it could store the information necessary to perform this

permissions checking. To do so, we added a Projects table into the database that had a one-

to-many mapping with the OwnedObjects table and a many-to-many mapping with users of

Quest Atlantis. In other words, all objects created in Quest Atlantis can belong to only one of

the projects in the Projects table and all users in Quest Atlantis can belong to any of the

projects in the Projects table. To accomplish this type of mapping between tables, a

project id field was added to the OwnedObjects table and a separate table containing

project id/user id pairings was added.

Based on this database setup, a given user could modify a particular object only if that

user belongs to the same project that the object belongs to. Since multiple users can belong to

the same project, multiple users can have the ability to modify the same object. Similarly,

since a user can belong to multiple projects, a user could modify multiple objects where each

object belongs to a different project.

7.2 Integration into Platform

After setting up the database, we added the permissions checking logic into the

platform. Specifically, we modified the web editor application as well the Quest Atlantis bot.

As discussed in section 3.1, the web editor application contains a 2-dimensional grid that

displays the coordinates and the relative location of all the interactive objects that were

created and added into Quest Atlantis. We modified this web editor application to take in a

projectid variable and used this project id to only display objects that belong to the project

with this projectid. Additionally, since users of this platform use this web application to

create and add their own objects into Quest Atlantis, we modified this web editor application

so that any object created will belong to the project with this project id.

As discussed in section 6.1, a new addition to the web editor application is an index

listing of all the interactive objects that were created by a given user or that user's teammates.

This was also accomplished by using this new permissions checking logic. Assuming that the

given user and all of the user's teammate belong to the same project with some project_id,

then we used this project_id, which gets passed in as an argument into the web editor

application, to only display objects that belong to the project with this projectid.

Finally, we modified the Quest Atlantis bot as well as the communication layer

between the bot and the web editor so that it could perform permissions checking on any

object modification requests coming to the bot. As discussed in section 3.3 and 3.4, the web

editor communicates with the bot mainly through the use of the QActions table. For any

modification request that the web editor adds to the QActions table, we made it so that an

additional entry that belongs to this request gets added into the table with the key project id.

The value associated with this key is the project id parameter that got passed in earlier as an

argument to the web editor. In other words, each modification request that gets

communicated from the web editor to the bot will contain an additional project id parameter.

The bot then checks to ensure that for each request, the interactive object that the request is

for has the same project_id as that of the request.

8 Scriptblocks

As discussed in section 3.2, Flashblocks is an Adobe Flash implementation of the

OpenBlocks block-programming framework that makes the scripting of animations and

behaviors into interactive objects in Quest Atlantis an extremely simple process. All the user

has to do is take these blocks and connect them together to form some sequence of animations

and behaviors. Unfortunately, while the Flashblocks system accomplishes the task of

providing an easy way for users to script animations and behaviors into interactive objects, the

Flashblocks system does have its limitations. This section details the drawbacks of the

Flashblocks system as well as a new block-programming framework that we decided to

replace Flashblocks with in our platform.

8.1 Drawbacks of the Flashblocks System

One of the biggest limitations with the Flashblocks system is that it did not have the

ability to save a snapshot of the blocks that users had assembled together. In other words,

after a user had finished assembling together the blocks to form some sequence of animations

and behaviors for a given object, the user was not able to go back and make a small change to

that block structure. Instead, users had to re-assemble the Flashblocks every time they wanted

to make some change to the animation and behavior sequence of an object. As we can see,

this type of setup was very limited.

As a result, we decided to look into modifying the Flashblocks system to try to fix this

limitation. Unfortunately, another limitation of the Flashblocks system was the lack of

documentation on the system. This made it incredibly difficult to make any changes and

improvements to the system. Because of this, we came to a quick realization that modifying

the Flashblocks system to fix its limitations was not a feasible option.

37

We then decided to look into a new block-programming framework known as

Scriptblocks, which was being built by researchers from the MIT Media Lab. After studying

this new framework, we saw that Scriptblocks solved all the problems that we had with the

Flashblocks system. Thus, we believed that the Scriptblocks system was a viable candidate to

replace the Flashblocks system in our platform.

8.2 Implementation of Scriptblocks

Scriptblocks was built using Javascript and the Google Closure Tools. As a result, the

Scriptblocks framework did not require any additional plug-ins to run and could easily be

integrated into our platform. An important part of the Scriptblocks framework was an XML

library that allows us to specify via an XML file, the different types of blocks our system

needs. This made Scriptblocks extremely flexible as we were able to change the

specifications of our blocks without the need to modify and re-compile the Scriptblocks

source code.

Additionally, the Scriptblocks XML library allowed us to save to a XML file a

snapshot of the workspace containing the blocks that we had assembled together. After

outputting the XML file, the Scriptblocks XML library then had the ability to parse the XML

file back in to reconstruct the entire block structure that we had assembled earlier. In other

words, in the Scriptblocks framework, after we finished connecting the blocks together to

form some block structure, we could go back to the block structure and make changes to it

without having to re-assemble the entire block structure.

As we can see, this new Scriptblocks system is a great improvement compared to the

Flashblocks system. It lacks the limitations that the Flashblocks system had and as a result, it

solved our entire problem with the Flashblocks system.

8.3 Integrating Scriptblocks Into the Platform

To integrate the new Scriptblocks system into our platform, we had to make a few

modifications on both the Scriptblocks system and our platform. As discussed in section 6.3,

the Flashblocks System communicated with the Quest Atlantis bot by outputting a string

representation of the scripted sequence of animations and behaviors into the QActions table

of that database. The following is an example of this string:

- {WhenClicked[SlideForward(5), TurnLeft(90), SlideForward(5)]}

If we want to integrate the Scriptblocks system into our platform without modifying the Quest

Atlantis bot, then we would need to modify the Scriptblocks system to output a similar string

representation of the scripted sequence of animations and behaviors. As a result, we added

this functionality to the Scriptblocks system. After adding this functionality to the

Scriptblocks system, we created the XML file detailing the block specifications for our

platform. Essentially, there are three types of blocks in our system: trigger, command, and

constant. Shown below is a table detailing the blocks we needed for our platform.

Trigger Blocks Command Blocks Constant Blocks

WhenClicked SlideForward 1
WhenBumped SlideBackward 5

WhenApproached TurnLeft 10
RightAway TurnRight 25

Walk "This is a test string"
PlaySound

Say
Transport
Transform

Scale
Media

Figure 13: Table Showing the Needed Blocks For the Scriptblocks System

After making these modifications to the Scriptblocks system, we had to make some

modifications to our platform before we were able to completely integrate the new

Scriptblocks system into the platform. Specifically, we added an additional blockXML field

to the Owned Objects table of the database. This field contained the XML of the saved

snapshot of the blocks that a user had assembled together for the respective object. With this

modification, the Scriptblocks system is now able to output the XML string of the saved

snapshot into the database instead of outputting it to a file. Similarly, the Scriptblocks system

is now able to reconstruct the entire block structure that was assembled for a given object by

reading in that XML string from the database. After all these modifications, we were able to

completely integrate the Scriptblocks system into the platform as well as removed the

Flashblocks system from the platform.

Figure 14: The Scriptblocks Workspace

40

9 Improvement of QA Bot

As discussed in section 3.3, the Quest Atlantis bot is the most important component

and the heart of this platform. Running independently on a Linux server, the bot has three

main responsibilities: 1) facilitating communication between the new fully-integrated web

application and Quest Atlantis, 2) responding to event triggers in Quest Atlantis, and 3)

handling object animations and behaviors. Unfortunately, the Quest Atlantis bot is still

limited in certain respects and there are a lot of improvements that can be done to it. This

section details the drawbacks of the current Quest Atlantis bot and the different improvements

that were made to it.

9.1 Drawbacks of Current Quest Atlantis Bot

One of the biggest drawbacks with the current Quest Atlantis bot is that it did not

persist the sequences of animations and behaviors for all created objects in Quest Atlantis into

the database. Instead, all the animation and behavior information for the objects were saved

in memory. As a result, when the Quest Atlantis bot was restarted, the sequences of

animations and behaviors for all the objects got deleted and were lost forever. Since, the bots

in practice will be restarted on a regular basis, this type of setup did not work.

Another drawback with the current Quest Atlantis bot is that during the startup process

as well as the shutdown process of the bot, the bot deleted all the existing interactive objects

that were created from the database. The bot accomplished this by going into the

OwnedObjects table of the database and removing all the entries in that table. Not only did

this delete all the hard work users put into creating their interactive objects, but this also

created an inconsistency between Quest Atlantis and the database. While the bot may have

deleted all the entries from the OwnedObjects table during its startup and shutdown process,

41

the bot never deleted the respective interactive objects from Quest Atlantis using the Active

Worlds SDK. As a result, all the interactive objects that were created still remained in Quest

Atlantis. However, since the bot no longer had knowledge of these objects after it had

restarted, the bot was not be able to respond to any event triggers or execute the animations

and behaviors that were associated with these objects. Again, since the bots will be restarted

on a regular basis, this type of setup did not work.

According to the documentation detailing the design of the Quest Atlantis bot, the bot

was designed this way because bots should only be able to manipulate and animate objects

that they own". Since there will be multiple bots running and reading from the same

database, for any given object that gets created, the object belongs to the bot that instantiated

the object and added it to Quest Atlantis. Therefore, when the bot exits or when a new bot

starts up, the records of all owned objects must be cleared to prevent the new bot and any

future bots from attempting to manipulate and animate objects it did not own.

9.2 Modification of Startup/Shutdown Process

According to the designers of Quest Atlantis, since there are multiple worlds in Quest

Atlantis, they planned to have a single instance of the Quest Atlantis bot for each of these

worlds. Because of this, instead of having the restriction that bots should only be able to

manipulate and animate objects that they own, we modified this restriction to be: bots should

only be able to manipulate and animate objects that belonged to the same Quest Atlantis

world as the bot. By modifying this restriction, we now could modify the startup process and

shutdown process of the bot so that the bot does not delete any of the created interactive

objects from the database. To accomplish this, an additional qa world field was added into

the OwnedObjects table of the database. This new qa world field contains the Quest

16 Irizarry, Angel, "Intuitive Interface for Object Interactivity and Storytelling for Quest Atlantis",
Master's Thesis, Massachusetts Institute of Technology, 2010

42

Atlantis world that the respective object belongs to. Before manipulating or animating an

object, the bot will use this qa world field of the object to first check to ensure that the object

and the bot belong to the same world. By doing this, the Quest Atlantis bots are now able to

freely exit and restart without affecting any of the interactive objects that were created.

However, even after modifying the bot so that it does not delete any of the created

interactive objects from the database during its startup and shutdown process, we still ran into

the problem of losing the animation and behavior information for all the objects once the bot

got restarted. Therefore, for each object, we had to persist the animation and behavior

information into the database. Fortunately, as a side effect of the new functionality that

allows users to modify an object's action field, an object's animation and behavior

information was already persisted into the database. As discussed in section 6.3, the new

actions field in the OwnedObjects table of the database contains the string representation of

the sequence of animations and behaviors of the respective object. Using this actions field of

the OwnedObjects table, we were able to modify the startup process of the bot so that the bot

will re-cache the animation and behavior information for all the objects that the bot is

responsible for.

All in all, by making all of these changes, the bot can now be shutdown and restarted

on a regular basis without the need to make any type of modification to the database.

Additionally, even after the bot gets shutdown and restarted, we do not lose any information

regarding any of the created interactive objects. Thus, the users' experience will not be

affected at all when the bot gets restarted.

9.3 Consistency Check Between Database and QA World

Even after all these changes were made to the Quest Atlantis bot, the created

interactive objects in Quest Atlantis could still potentially get out of sync with that of the

database. In Quest Atlantis, users have the ability to delete objects as well as change the

location and orientation of objects without going through the platform. Because of this,

objects can potentially be in a different location and orientation from what it should be based

on the database. Similarly, an object can be deleted from Quest Atlantis but still exist in the

database. From this we can see the potential consistency problem between Quest Atlantis and

the database.

To solve this, we modified the bot to periodically perform a consistency check

between Quest Atlantis and the database. Essentially, this check did the following:

- For each object entry in the OwnedObjects table:

o Check if the object exists in the respective Quest Atlantis world

o If it does not exist, then delete that entry from the table.

o If it does exist, then check if the location and orientation of the object

matches that of the table.

o For any location or orientation fields that does not match, modify the

entry so that it does match.

This periodic consistency check ensures that the created interactive objects in Quest Atlantis

will be in sync with that of the database.

10 Admin Interface

In building this intuitive fully integrated web platform that allows users to design and

script their own interactive objects in Quest Atlantis, we also wanted to build an interface that

allows an admin to make simple modifications to the platform. Specifically, an admin should

have the ability to determine the types of objects that are available for users to create in Quest

Atlantis and the animations and behaviors that are available for users to add into their

interactive objects. In the existing platform, there is not an easy way for an admin to make

these types of modifications. For example, if an admin wants to change what objects are

available for users to create, the admin would have to modify the PaletteObjects table of the

database. Similarly, if an admin wants to change what animations and behaviors for available

for users to add into their objects, the admin would have to modify the XML file in the

Scriptblocks system as well as modify the Quest Atlantis bot. Not only are these methods

inconvenient and non-intuitive, but they can also be damaging to the system. By granting

write permission to the database, the Scriptblocks XML file, and the Quest Atlantis bot, an

admin has the potential to make accidental modifications that breaks the entire platform. As a

result, we added an admin web interface to the platform that allows an admin to perform these

simple modifications to the platform. This section details the design and development of this

interface.

10.1 Creation of New Object Models

Before building the admin web platform, our original solution for easy modification of

the types of objects that are available for users to create in Quest Atlantis was through the use

of a Ruby YAML file. Since the PaletteObjects table of the database is what determines

which objects are available to the user, we just put all the information that we wanted in the

PaletteObjects table of the database in a YAML file. Then, when needed, we used Ruby to

read the information from this YAML file and re-populate the PaletteObjects table with the

information. However, we quickly saw that this was not an ideal solution.

As a result, a core component of this new admin web interface is an interface that

allows an admin to easily specify which objects are available for users to create. Shown in

figure 15 is a screenshot of this interface.

Model Information

Model Name:

Model Number.

Description:

Figure 15: Interface to Add New Object Types Into the Platform

Using this interface, an admin can now add a new object type in to the platform simply by

entering the name, model number, and description of the object into the interface. The admin

interface then reads in these values and modifies the PaletteObjects table of the database to

reflect these new changes to the platform. Similarly, an admin is also able to modify or delete

an existing object type through the home page of the admin web interface, which is discussed

in section 10.4.

10.2 Creation of New Object Commands

As discussed earlier, the existing platform does not allow for easy modification of the

animations and behaviors that are available for users to add into their objects. For example, if

an admin wants to add a new animation/behavior to the platform, the admin would have to

modify the Scriptblocks XML file as well as modify the Quest Atlantis bot to include this new

animation/behavior. However, giving an admin the ability to modify the Scriptblocks XML

file and the Quest Atlantis bot can be potentially damaging to the system as a whole. In

addition, it is unreasonable to expect an admin to have the computer science knowledge

necessary to successfully modify the bot. Therefore, another core component of the admin

web interface is an interface that allows an admin to easily specify the animations and

behaviors that are available for users to add into their interactive objects.

As discussed in section 8.3, the Scriptblocks XML file contains the specifications of

the command blocks that are available in the Scriptblocks system. Unfortunately, this type of

setup did not work well for this new interface since designing this new interface to be able to

modify the Scriptblocks XML file is no easy task. As a result, in building this new interface,

we modified the start-up process of the Scriptblocks system to read in the list of available

animations and behaviors from the database instead of the Scriptblocks XML file.

Specifically, the Scriptblocks system will be reading from a newly created Animations table in

the database.

The Animations table contains the specifications of all the command blocks that were

originally placed in the Scriptblocks XML file. In other words, each entry in the Animations

table contains information pertaining to a particular animation/behavior block in the

Scriptblocks system. By having the new animations table dictate which command blocks are

available to the Scriptblocks system, we are now able to easily add new commands as well as

modify existing commands to the Scriptblocks system.

Unfortunately, even with this new Animations table in place, the modification and

addition of commands that are available for users to add into their objects still involved the

modification of the Quest Atlantis bot. This is so because the programming logic for each

command was hard-coded into the Quest Atlantis bot using a combination of Active Worlds

Scripting Language and SDK. However, as we saw in section 5, most of the commands can

be represented using Active Worlds Scripting Language. As a result, instead of hard-coding

the corresponding Active Worlds Script for each command into the bot, we stored them into

the database. This was accomplished by adding an additional awscript field into the

Animations table of the database.

id animation arg-name argtype aw-script

Figure 16: Schema of New Animations Table

While this new setup works for most commands, there still exists commands that

cannot simply be represented strictly using Active Worlds Scripting Language. For example,

the transform command, which is discussed in section 5.5, can only be implemented using

Active Worlds SDK. As a result, commands like these were hard-coded into the Quest

Atlantis bot and contained the record "None" or an empty record in the aw-script field of the

corresponding entry in the Animations table.

After making these changes, we modified the Quest Atlantis bot to read in the

aw-script for each command from the database. To do so, we modified the start-up process

of the bot to read in each entry from the Animations table and store the (key, value) pair of

(animation, [arg type, aw-script]) in an in-memory hash table. By having all this

information in memory, the Quest Atlantis bot can carry out each animation/behavior by

taking the corresponding aw script and executing it.

However, we did not want to have to restart the Quest Atlantis bot every time we add

a new command or modify an existing command. In other words, any change we make to the

Animations table of the database should be propagated to the Quest Atlantis bot in real-time.

This was accomplished by using the QActions table of the database. As discussed in section

3.3, the QActions table is the primary method of communication between the different

components of this platform and the Quest Atlantis bot. To communicate changes in the

Animations table to the Quest Atlantis bot, a new type of request known as an

A W_SCRIPTCHANGE request was created. Each A W_SCRIPTCHANGE request consisted

of three entries with the keys animation, arg type, and script. The values associated with

these keys are the corresponding animation, arg type, and aw_script fields of the Animations

table. Once an A WSCRIPTCHANGE request is added into the QActions table, the bot will

process this request by adding these new values to the hash table.

By implementing all these changes to the different components of the platform, we

created an interface that allows an admin to easily create new animations and behaviors for

users to add into their interactive objects. Shown in figure 17 is a screenshot of this interface.

Command Information

Command Name:

Argument Name:

Argument Type (number or string):

AW Script:

Figure 17: Interface to Add New Commands Into the Platform

49

Using this interface, an admin can now add a new animation/behavior in to the platform

simply by entering the name, argument name, argument type, and awscript of the command

into the interface. The admin interface then reads in these values and modifies the Animations

table of the database as well as propagates this new command to the Quest Atlantis bot.

Similarly, an admin can now modify or delete an existing command through the home page of

the admin web interface, which is discussed in section 10.4. However, as mentioned earlier,

keep in mind that this interface only works for commands that can be represented using

Active Worlds Scripting Language.

10.3 Ability to Select Which Commands Each Model Can Have

In addition to being able to determine the types of objects that are available for users

to create in Quest Atlantis and the animations and behaviors that are available for users to add

into their interactive objects, an admin should also be able to use this new admin interface to

determine which commands a specific object type should have. The implementation changes

to the platform discussed in sections 10.2 only allowed an admin to determine which

animation/behavior were available for users to add into any interactive object created in Quest

Atlantis. However, there are certain animation/behavior that an admin may wish to only be

available for certain object types. For example, an admin may want the walk command to

only be available to avatar object types. Therefore, as part of this new admin interface, for

any given object type, an admin is able to select which commands are available for that

object. Similarly, for any command that an admin creates using this new admin interface, the

admin is able to select which object types are allowed to have this command.

To add this functionality to the admin interface, we first created a many-to-many

mapping between the Animations table and the PaletteObjects table of the database.

Essentially, this allowed a given palette-object to be associated with many animations and

similarly a given animation to be associated with many palette objects. After creating this

mapping in the database, we modified the Scriptblocks system so that when a user opens up

the Scriptblocks interface for a given object, the Scriptblocks system will use this new

mapping in the database to determine which command blocks it should display for that object.

Figure 18: An admin is now able to select which object types can have a given command

Model Information

Model Name:

Model Number.

Description:

Available Commands

Select which commands this model can have

0 SlideForward

0. SlideBackward

O TurnLeft

L TurnRight

L Walk

O PlaySound

0 Say

L Teleport_X

L Teleport_Y

O Transform

[Scale

Figure 19: An admin is now able to select which commands a given object type can have

10.4 Admin Home

Finally, using this new admin web interface, an admin should be able to view or

modify all of the existing types of objects that are available for users to create in Quest

Atlantis and the existing animations and behaviors that are available for users to add into their

interactive objects. The implementation changes to the platform discussed in section 10.1,

10.2, and 10.3 only allowed an admin to create and add new object types and commands into

the platform. As a result, as part of this new admin web interface, we built a homepage that

contains a listing of all the existing object types and commands in the platform. Additionally,

next to each object type and command listing is an edit and delete link that allows an admin to

modify or delete the corresponding object type or command. As we can see, this homepage is

essentially what ties all the other components of the admin web interface together.

I QA Models Listing

Name Model Number

Bench fzoLbenchl .rwx

Lamp mblamp4lag

Tree poak4

Car cd-car0075

Elf malelfl

Gir mod-giril

WaterLady waterlady-01

QA Commands Listing

Description Available Commands Edit Delete

Bench TeleportX, Say, PlaySound, TurnRight, TurnLeft, Scale, Transfb, TeleportY, SlideBackward, SlideForward Edh Delkc
Lamp SlideForward, SlideBackward, TumLeft, TurnRight, PlaySound, Scale, TeleporL, TeleporLX Edk Deli=
Tree SlideForward, SlideBackward, TurnLeft, TurnRight, PlaySound, Scale, TeleporLY, TeleportX Edk Dei=
Car SlideForward, SlideBackward, TurnLeft, TurnRight, PlaySound Ed s Delnie

Elf SlideForwad, SlideBackward, TurnLeft, TurnRight, PlaySound, Say,Walk Edit Delete

Girl SlideForward, SlideBackward, TumLeft, TurnRight, PlaySound, Walk, Say Edit Delete

WaierLady SlideForward, SlideBackward, TumLeft, TurnRight, PlaySound, Walk, Say Edit Delete

Command Arg Name Arg Type Script

SlideForward steps

SlideBackward steps

TumLeft degs

TurnRight degs

Walk steps
PlaySound arg

Say arg

TeleporX steps
TeleportY steps

Transform

Scale ratio

number move 0 0 #[parameter} wait=2 Itn global

number move 0 0 -#[parameter] wait=2 lan global

number rotate #[parameter/6] time=1 wait=2 global

number rotate -#[paraneer/61 dme=I wait=2 global

number seq walk, move 0 0 #[parameterl timre= 1. wait=2 itn global

string noise #[paramcier global

suing say \'#[pararneter]\"

number warp +#[parameter] +0 1.a
number warp +0 +#[parameter) 1.5a

None

number scale #[parameter)

Models With This Command Edit

WaterLady, Girl, Elf, Car, Tree, Lamp, Bench Edit

WaterLady. Girl, Elf, Car, Tree, Lamp, Bench Edit

Watertady, Girl. Elf, Car, Tree, Lamp, Bench Edit

WaierLady, Girl. Elf, Car, Tree, Lamp, Bench Edit

Watertady, Girl, Elf Edit

WaterLady, Girl, Elf, Car, Tree, Lamp, Bench Edit

WaterLady, Girl, Elf, Bench Ed"t

Bench, Tree, Lamp Edit

Bench, Tree, Lamp Edit

Bench Edit

Tree, Lamp, Bench Edit

Delete

Delete

Delete

Delete

Delete

Dele

Delete

Add new model Add new command

Figure 20: Home Page of the New Admin Interface

11 Conclusion

The successful completion of this thesis project has added a whole new dimension into

Quest Atlantis. The addition of this intuitive fully integrated platform for designing

interactive objects in Quest Atlantis will now allow users to create and design their own

objects in Quest Atlantis without the need to learn any programming language or complex

platform. Users of the platform will be able to use their creativity in Quest Atlantis and they

will also be introduced to fundamental computer programming concepts and skills. As a

result, this will make Quest Atlantis an even more important teaching tool, specifically in the

area of computer science.

Previous work has been done to build a simple platform that allows users to design

and script their own interactive objects so that they are able to produce their own interactive

narrative. Specifically, previous work has been done to build the Ruby-on-Rails web

application, the Flashblocks system, and the Quest Atlantis bot. The Ruby-on-Rails web

application allowed users to create and add interactive objects into Quest Atlantis. The

Flashblocks system allowed users to add sequences of animations and behaviors into their

interactive objects. The Quest Atlantis bot facilitated communication from the web

application and the Flashblocks to Quest Atlantis as well as handled event triggers and object

animations and behaviors.

However, this previous platform was immature and lacked many important needed

features. As a result, using this previous platform as the groundwork, my role was to work

with the designers of Quest Atlantis to build a fully-integrated platform that is not only easy

to use, but also contains all the features a user would need. In summary, the following are the

main additions I made to the platform.

- Creation of new animations and behaviors that users are able to add into their

interactive objects

- Creation of a web interface that allows users to modify any object's basic property,

animation/behavior, and position

- Creation of user permissions to limit users to only be allowed to modify the

interactive objects that they created and ones that their teammates created

- Replacement of the Flashblocks system with the Scriptblocks system since the

Scriptblocks system contained the needed flexibility and functionality that the

Flashblocks system lacked

- Re-engineering of the Quest Atlantis bot so that restarting the bot will have no

impact on the platform

- Creation of an admin interface that allows an admin to determine the types of

interactive objects that are available for users to create in Quest Atlantis and the

animations and behaviors that are available for users to add into their interactive

objects

These additions to the platform have turned the platform into a powerful fully

integrated tool that allows users to create and design their own objects in Quest Atlantis.

However, with that said, there is still much work that can be done to improve the platform as

a whole. One improvement is the user interface of the Scriptblocks system. Work can be

done to make the user interface of the Scriptblocks system much more intuitive. Another

improvement is the admin interface. Work can be done to make the admin interface a much

more powerful tool for an admin. For example, a data-mining component can be added to the

system that gives meaningful data regarding how users are using the platform.

12 References

[1] Fisher, Timothy. Ruby on Rails Bible. Indianapolis, IN: Wiley Publishing, 2008.

[2] Rails API Documentation. <http://api.rubyonrails.org/>

[3] Active Worlds Documentation.

<http://wiki.activeworlds.com/index.php?title=MainPage>

[4] Active Worlds Object Scripting.

<http://wiki.activeworlds.com/index.php?title=ObjectScripting>

[5] Active Worlds SDK.

<http://wiki.activeworlds.com/index.php?title=SDK>

[6] Active Worlds Say Command.

<http://wiki.activeworlds.com/index.php?title=Say>

[7] Active Worlds Noise Command.

<http://wiki.activeworlds.com/index.php?itle=Noise>

[8] Active Worlds Seq Command.

<http://wiki.activeworlds.com/index.php?title=Seq_(buildingcommand)>

[9] Active Worlds Move Command.

<http://wiki.activeworlds.com/index.php?title=Move>

[10] Active Worlds Warp Command.

<http://wiki.activeworlds.com/index.php?itle=Warp>

[11] Active Worlds Scale Command.

<http://wiki.activeworlds.com/index.php?title=Scale>

[12] Active Worlds Media Command.

<http://wiki.activeworlds.com/index.php?title=Media>

[12] Javascript Numeric Stepper.

<http://www.htmldrive.net/items/show/540/Javascript-numeric-stepper-with-inputbox.html>

[13] Irizarry, Angel, "Intuitive Interface for Object Interactivity and Storytelling for Quest

Atlantis", Master's Thesis, Massachusetts Institute of Technology, 2010

[14] Roque, Ricarose Vallarata, "OpenBlocks : an extendable framework for graphical block

programming systems", Master's Thesis, Massachusetts Institute of Technology, 2007

[15] Barab, Sasha, "Transactive Narrative Art Proposal", Indiana University

A Appendix - Setup

As discussed in section 4.3, the Ruby-on-Rails web application is currently being

hosted on scripts.mit.edu. Specifically, the web application that allows users to create and

edit their own interactive objects is hosted on http://d_lam2Ol.scripts.mit.edu/qaeditor.

Additionally, the admin web application that allows admin to make simple modifications to

the platform is hosted on http://dlam2Ol.scripts.mit.edu/qaeditor/admin. The database for

these web applications is currently being hosted on sql.mit.edu.

To setup the necessary environment to run the Quest Atlantis bot, please follow the

instructions listed in section 4.1. The source code for the Quest Atlantis bot is no longer

hosted on github and is instead hosted on the education.mit.edu/svn/newqa svn server.

Similarily, the source code for the Ruby-on-Rails web application is also hosted on the same

svn server. To get access to this svn server, one must create a username/password

combination. One can do this by going to the following website to generate a

username/password hash combo: http://www.4webhelp.net/us/password.php. Once the

username/password hash combo has been generated, it must be sent to Professor Klopfer

(klopfer@mit.edu).

Having the source code, one can setup the Ruby-on-Rails web application as well as

the database on a different server. However, in doing so, one must make modify the database

configuration file to point to the new database.

B Source Code - Quest Atlantis Bot

B.1 bot db.rb

require 'rubygems'
require 'active-record'

#TODO: Grab these values from the rails YAML file
ActiveRecord::Base.establishconnection(

:adapter => "mysql",

:host => "sql.mit.edu",
:database => "d-lam20l+qaeditor-development",
:username => "dlam201",
:password => "password"

)

class QAction < ActiveRecord::Base

Grabs the first message off of the queue and all other messages
with the same action id. They form a set, where each message holds
a key/value pair that acts as a parameter for the message set.
See: process-message-set(msg-set)
def self.newmessage-set

if QAction.exists?
return QAction.find(:all, :conditions => { :actionlid => QAction.first.action-id})

else
return [];

end
end

end

class PaletteObject < ActiveRecord::Base
end

class OwnedObject < ActiveRecord::Base

def self.get-all-objects
if OwnedObject.exists?
return OwnedObject.all

else
return [];

end
end

end

class Animation < ActiveRecord::Base

def self.get-allcommands
if Animation.exists?
return Animation.all

else
return [;

end
end

end

class ObjectPermission < ActiveRecord::Base

end

B.2 objecteditor.rb

#! /usr/bin/env rubyl.9.1
require 'rubygems'
require 'activeworlds-ffi'
require 'bot-db'

include ActiveworldsFFI

$log = Logger.new(STDOUT)
$log.level = Logger::DEBUG

########## Globals ##########

This stores the AW scripts for each command
$commands = Hash.newo
$commands.default = {}

This stores a hash of the information programmed (using blocks)
for each owned object.
$object-actions = Hash.new()
$object-actions.default = {}

The amount of time animations wait at their end before
changes the objects' states. (in seconds)
$WAIT = 2

The amount of time the bot waits
(in milliseconds)
$AWWAIT = 200

TRIGGER HANDLERS

def handle-activate
handle-trigger("WhenClicked")

end

def handle-rightaway
handle.trigger("RightAway")

end

def handle-bump
handle-trigger("WhenBumped")

end

the bot permanently

between each check to the database.

def handle-trigger(trigger)

o = OwnedObject.find(:first, \
:conditions =>

["aw-objectid = ?", awint(

if !(o.nil?)
$log.debug("Right Away handler called for object

end

AWOBJECTID)])

#{o.awobject-id}.")

Save the script of the current object so it can be restored to its original
state after all of the animations for this trigger are over. To make sure
the create-triggered actions only happen once, those scripts are removed.
first-script = aw-string(AWOBJECTACTION)
first-script.gsub!(/create.*; activate/, "activate")

if !(o.nil?)
actions-hash = $object-actions[o.aw-object-id]
if (actions-hash.keys.length > 0)

actions-array = actions-hash[t rigger];
unless (actions-array.nil?)

Thread.new(o, actions-array) { Imy-object, my-actions-arrayl
first-action = true
my-actions-array.each do laction-combol

if (first-action)
$log.debug("First action. Skipping animation setup.")
first-action = false

else
Set up the next animation.
$log.debug("Next action. Setting up the next animation #{action-combo[0]} with param

#{action-combo[1]} for #{o.aw-object-id}")
script = script.string("RightAway", action-combo[0], action-combo[1]) +

Activate the animation
aw-int-set(AWOBJECTID, myobject.awobject-id)
aw-intset(AWOBJECTNUMBER, 0)
rc = aw-object-query()
if (rc != RCSUCCESS)

$log.error("Tried to animate an object that no longer exists. (reason #{rc})")
else
aw-string-set(AWOBJECTACTION, script)
rc = aw-object.change()
if (rc != RCSUCCESS)

$log.error("Something went wrong during an animation transition point. (reason #{rc})")
else

$log.debug("Object #{my-object.aw-object-id} set to next animation: <#{script}>")
end

end
end
Wait until the animation is over, then make the permanent change.
sleep(1)
apply-action(my-object, action-combo)

end

When all animations are over, reset the object to contain the script
it started with. This allows the object to be retriggered by the same
trigger.
aw-int.set(AWOBJECTID, my-object.aw-objectid)
awint.set(AWOBJECTNUMBER, 0)
rc = aw-object-query()
if (rc != RCSUCCESS)
printf("Tried to animate an object that no longer exists.\n", rc);

else
awstring-set(AWOBJECTACTION, first-script)
rc = aw-object-change()
if (rc != RCSUCCESS)

printf("Something went wrong during an animation transition point.\n")
else

puts "Transition triggered!"
end

end

}
end

end
end

end

Utility functions

def script-string(trigger, action, parameter)
script = ""
trigger = case trigger

when "WhenClicked"
"activate"

when "WhenBumped"
"bump"

when "RightAway"

"create"
end

if ($commands.has-key?(action))
command-info = $commands[action]
command = ""

if(command-info["ArgType"] == "number")
lindex = command-info["Script"].index("#[")
r-index = commandinfo["Script"].index("]")

input = command-info["Script"][1index, r-index - ljindex + 1]
input = input[2, input.length - 3]

input = input.sub("parameter", parameter.to-s)
input = eval(input)

command = command-info["Script"][0, lindex] + input.to-s + command-info["Script"][rindex + 1,
command-info["Script"].length - r-index - 1]

else
command = command-info["Script"]
command = command.sub("#[parameter]", parameter.to-s)

end

script = "#{trigger} #{command}"

else

#AW Script Doesn't Exist Cuz the Command is too Complex

end

return script
end

def create.object(objname, obj-x, obj-z)
aw-int-set(ANOBJECTX, obj-x * 100)
aw-int-set(AWOBJECTY, 0)
aw-int-set(AWOBJECTZ, obj-z * 100)
awint-set(AWOBJECTYAW, 0)
aw-int-set(AWOBJECTTILT, 0)
aw-int-set(AWOBJECTROLL, 0)
aw-string-set(AWOBJECTMODEL, obj.name)
awstring-set(AW0OBJECTDESCRIPTION, "")
rc = aw-object-add()
if (rc != RCSUCCESS)

printf("Unable to add object (reason %d)\n", rc)
o = Ownedbject.find(:first, \

:conditions =>
["x = ? AND z = ?", obj-x, obj-z])

o.delete
else
obj-id = aw-int(AWOBJECTID)
$log.debug("Object #{obj-idl added to location #{obj-x}, #{obj-z}.")
o = OwnedObject.find(:first, \

:conditions =>
["x = ? AND z ?", objx, objz])

o.aw-object-id = obj-id
o.save

Allow editing
aw-int-set(AWOBJECTNUMBER, 0)
aw-int-set(AWOBJECTOLDX, 0)
aw-int-set(AWOBJECTOLDZ, 0)

default-action = "activate " + defaultoaction-string(obj-id) +
aw-string-set(AWOBJECTACTION, defaultaction)
rc = aw-object-change()
if (rc != RCSUCCESS)

$log.error("Unable to add the default action to object (reason #{rc}).")
end

end
end

def delete.object(o)
if (o)

aw-int-set(AWOBJECTID, o.awobjectid)
aw-int-set(AWOBJECTNUMBER, 0)
rc = aw-object-delete()
if (rc != RCSUCCESS)
$log.error("Unable to delete object (reason #{rc}).")

else
$log.debug("Object #{o.aw-object-id} deleted.")

end
o.delete

end
end

def change-object(o, changes)
if (o)

aw-int-set(AVOBJECTID, o.aw-object-id)
aw-int-set(AWOBJECTNUMBER, 0)
aw-int-set(AWBJECTTYPE, AWOBJECTTYPEV3)

aw-string-set(AWOBJECTMODEL, changes[:model].to-s) unless (changes[:model].nil?)
aw.string.set(AWOBJECTDESCRIPTION, changes[:description].to-s) unless (changes[:description].nil?)

aw-int-set(AWOBJECTX, changes[:x].to-i * 100) unless (changes[:x].nil?)
aw-int-set(AWOBJECTY, changes[:y].to-i * 100) unless (changes[:y].nil?)
aw-int-set(AWOBJECTZ, changes[:z].to-i * 100) unless (changes[:z].nil?)

aw-int-set(AWOBJECTYAW, changes[:yaw].to-i * 10) unless (changes[:yaw].nil?)
aw-int-set(AWOBJECTTILT, changes[:tilt].toi * 10) unless (changes[:tilt].nil?)
aw-int-set(AWOBJECTROLL, changes[:roll].toi * 10) unless (changes[:roll].nil?)

Unset the action field of the object
aw-string.set(AWOBJECT-ACTION, "")

rc = aw-object-change()
if (rc != RCSUCCESS)

$log.error("Unable to update object (reason #{rc}).")
else

$log.debug("Object #{o.aw-object-id} updated!.");
end

if(!changes[:action].nil?)
$log.debug("Calling script-object on #{o.aw-object-id} with script: <#{changes[:action].tos}>.")
script-object(o, changes[:action].to-s)

end
end

end

def cache-object-animations(o, action-string)
actions = {}
blocks-array = action-string.scan(A{.+?\}/)
blocks-array.each do Iblock-stringl

block-string.scan(/\{(.+)\[(.+)\]\}/)
trigger = $1

commands = $2.split(",")
commands.each do Icommand-combol

command-combo.scan(/(.+)\((.+)\)/)
actions[trigger] I b= []
actions[trigger] << [$1, $2]

end
end

Save the actions globally
$object-actions[o.aw-object-id] = actions

end

def script-object(o, action-string)
actions = 11
blocks-array = action-string.scan(/\{.+?\}/)
blocks-array.each do Iblock-stringl

block-string.scanC/\{(.+)\[(.+)\]\}/)
trigger = $1
commands = $2.split(",")
commands.each do Icommand-comboI

command-combo.scan(/(.+)\((.+)\)/)
actions[trigger] I1= []
actions[trigger] << [$1, $2]

end
end

Save the actions globally
$object-actions[o.aw-object.id] = actions

In this section we check each trigger in order and build
#the script to insert into the object. Order matters.
script = ""

The "Right Away" Trigger
trigger = "RightAway"
actions-array = actions[trigger]
unless actions-array.nil?

action = actions-array[0][0]
parameter = actions-array[0][1]
script += script-string(trigger,

end

The "When Clicked" Trigger
trigger = "WhenClicked"
actions-array = actions[trigger]
unless actions-array.nil?

action = actions-array[0][0]
parameter = actions-array[0][1]
script +-= script-string(trigger,

end

The "When Bumped" Trigger
trigger = "WhenBumped"
actions-array = actions [trigger]
unless actions-array.nil?
action = actions-array[0][0]
parameter = actions-array[0][1]
script += script-string(trigger,

end

action, parameter) +

action, parameter) +

action, parameter) +

$log.debug("Object #{o.aw-object-id} is about to get scripted with: <#{script}>.")

Inject the script into the object
aw-int-set(AWOBJECTID, o.aw-objectid)
aw-int-set(AWOBJECTNUMBER, 0)
aw-int-set(AWOBJECTTYPE, AWOBJECTTYPEV3)

aw-string-set(AWOBJECTACTION, script)
rc = aw-objectchange()
if (rc != RCSUCCESS)

$log.error("Unable to add script the object (reason #{rc}).")
else

$log.debug("Object #{o.aw-object-id} successfully scripted!")
o.actions = script
o.save

end
if actions["RightAway"]

handle-right-away()
end

end

def add-aw-script(cmd-name, arg-type, aw-script)
command-info = f}
command-info["ArgType"] = arg-type
command-info["Script"] = aw-script
$log.debug("For command: <#{cmd-name}>, storing aw script: <#{aw-script}>")
$commands[cmd-name] = command-info

end

def apply-action(o, action-combo)

action = action-combo[0]
parameter = actioncombo[l]
changes = {}

awscript = $commands[action] ["Script"]

Check to see if the aw script contains a move command
if(!aw-script.index("move").nil?)

Check to see if it is suppose to move forward or backward
if(aw-script[aw-script.index("#[") - 1, 1] =

Move backward change
parameter = parameter.to-i
angle = (Math::PI * ((o.yaw + 180) % 360)/180)
o.x += parameter * Math.sin(angle)
o.z += parameter * Math.cos(angle)
changes[:x] = o.x
changes[:z] = o.z

else

Move forward change
parameter = parameter.to-i
angle = Math::PI * o.yaw/180
o.x += parameter * Math.sin(angle)
o.z += parameter * Math.cos(angle)
changes[:x] = o.x
changes[:z] = o.z

end

change-object(o, changes)
o.save

#Check to see if the aw script contains a rotate command
elsif(!aw-script.index("rotate").nil?)

Check to see if it is rotate left or rotate right
if(aw-script[awscript.index("#[") - 1, 1] =

Rotate right change
parameter = parameter.to-i
o.yaw += (360 - parameter)

o.yaw = o.yaw % 360
changes[:yaw] = o.yaw

else

Rotate left change
parameter = parameter.to-i
o.yaw += parameter
changes[:yaw] = o.yaw

end

change-object(o, changes)
o.save

65

end

########## Handlers ##########

def consistency-check(o)
aw-int-set(AWBJECTID, o.aw-objectid)
awint-set(AWOBJECT_.NUMBER, 0)
rc = aw-object-query()
if (rc != RCSUCCESS)
$log.debug("Object #{o.aw-object-id} no longer exists.
o.delete

else
if(o.x * 100 != awint(AWOBJECTX))

$log.debug("Fixing inconsistent x location for object
o.x = aw-int(AWOBJECTX)/100
o.save

end

Deleting it from the database")

#{o.aw-object-id}")

if(o.y * 100 != aw_int(AWOBJECTY))
$log.debug("Fixing inconsistent y location for object #{o.aw-object-id}")
o.y = aw-int(AWOBJECTY)/100
o.save

end

if(o.z * 100 != aw_int(AWOBJECTZ))
$log.debug("Fixing inconsistent z location for object #{o.aw-object-id}")
o.z = aw-int(AWOBJECTZ)/100
o.save

end

if(o.yaw * 10 1= awint(AWOBJECTYAW))
$log.debug("Fixing inconsistent yaw rotation for object #{o.aw-object-id}")
o.yaw = aw-int(AWOBJECTYAW)/10
o.save

end

if(o.tilt * 10 != aw_int(AWOBJECTTILT))
$log.debug("Fixing inconsistent tilt rotation
o.tilt = aw-int(AWOBJECTTILT)/10
o.save

if(o.roll * 10 != awint(AWOBJECTROLL))
$log.debug("Fixing inconsistent roll rotation for
o.roll = aw-int(AWOBJECTROLL)/10
o.save

end
end

for object #{o.aw-object-id}")

object #{o.aw-object-id}")

def process-message-set(msg-set)
type = msg.set[0].name

Parse the message and make a hash of key/value pairs
msg-hash = {}
msg-set.each do Imsgl

msg-hash[msg.key.to-sym] = msg.value
end

If a message matches one of the expected types, check to see
if the required paramaters exist, and if so, call the appropriate
method
case type
when "CREATE"
CREATE: x, z, name

$log.debug("Processing a CREATE message set.")
if (msg-hash[:x] and msgihash[:z] and msg-hash[:name])

name = msgihash[:name]
x = msg-hash[:x].to-i
z = msg-hash[:z].to-i
$log.debug("Calling create-object(#{name}, #{x}, #{z}).")
createobject(name, x, z)

else
return false

end

when "DELETE"
DELETE: x, z
$log.debug("Processing a DELETE message set.")
if (msg-hash[:x] and msghash[:z])
x = msg-hash[:x].to-i
z = msg-hash[:z].to-i
o = OwnedObject.find(:first, \

:conditions => \
["x = ? AND z = ?", x, z])

if (o)
if(o.project-id == msgihash[:project-id].to-i)

$log.debug("Calling delete-object(#{o.aw-objectid})")
delete-object(o)

else
$log.warn("Don't have permission to modify object")
return true

end
else

$log.warn("Attempted to delete an object at #{x}, #{z} that did not exist.")
return true

end
else

return false
end

when "CHANGE"
CHANGE: aw-object-id, description, action, x, y, z, yaw, tilt, roll
$log.debug("Processing a CHANGE message set.")
if (msg-hash[:aw-objectid] and msg-hash[:model] and msghash[:description] and msg-hash[:action] \

and msg-hash[:x] and msgjhash[:y] and msg-hash[:z] \
and msg-hash[:yaw] and msghash[:tilt] and msghash[:roll])

obj-id = msghash[:aw-object-id]
model = msg-hash[:model]
description = msg.hash[:description]
action = msghash[:action]
x = msg-hash[:x]
y = msg-hash[:y]
z = msg-hash[:z]
yaw = msg-hash[:yaw]
tilt = msghash[:tilt]
roll = msghash[:roll]
o = OwnedObject.find(:first, \

:conditions => \
["aw-objectid = ?", objid])

if(o and o.project-id == msghash[:project-id].toi)
changes = {}
changes[:model] = model
changes[:description] = description
changes[:action] = action
changes[:x] = x
changes[:y] = y
changes[:z] = z
changes[:yaw] = yaw
changes[:tilt] = tilt
changes[:roll] = roll
$log.debug("Calling change-object on #{obj-id}.")
change.object(o, changes)

67

else
$log.warn("Don't have permission to modify object")
return true

end
else
return false

end

when "SCRIPT"
SCRIPT: aw-object-id, action-string
$log.debug("Processing a SCRIPT message set.")
if (msg-hash[:aw-object-id] and msg-hash[:actionstring])

obj-id = msg.hash[:aw-object-id].to-i
action-string = msg-hash[:action-string]
o = Ownedbject.find(:first, \

:conditions => \
["aw-objectid = ?", objid])

if(o and o.project-id == msghash[:project-id].toi)
$log.debug("Calling script-object on #{obj-id} with script: <#actionstring}>.")
script-object(o, action-string)

else
$log.warn("Don't have permission to modify object")
return true

end
else

return false
end

when "AWSCRIPTCHANGE"
AWSCRIPTCHANGE: animation, arg-type, script
$log.debug("Processing a AW-SCRIPTCHANGE message set.")
if (msg-hash[:animation] and msghash[:arg-type] and msg-hash[:script] and msghash[:script] != "" and

msg-hash[:script] != "None")
cmd-name = msghash[:animation]
arg-type = msghash[:arg-type]
aw-script = msg-hash[:script]
add-aw-script(cmd-name, arg.type, awscript)

else
return true

end
end
return true

end

######## Login & Setup #######

if ARGV.nil? 11 ARGV.size < 3
puts("Usage: hello.rb citizen-id privilege-password world")
exit(1)

end

initialize Active Worlds API
rc = aw-init(AWBUILD)
if(rc != RCSUCCESS)

printf("Unable to initialize API (reason %d)\n", rc)
exit(1)

end

assign the proc to a constant so that it never gets garbage collected
ACTIVATEHANDLER = Proc.new { handle-activate }
BUMP-HANDLER = Proc.new { handle-bump }

install handler for avatar-add event
aw-event-set(AWEVENTOBJECTBUMP, BUMPHANDLER)
aw-event-set(AW.EVENTOBJECTCLICK, ACTIVATEHANDLER)

create bot instance
prc = aw-create("atlantis.activeworlds.com", 5870, nil);
if rc 1= RCSUCCESS

printf "Unable to create bot instance (reason %d)\n", rc
exit 1

end

log bot into the universe
aw-int-set AWLOGINOWNER, ARGV[0].to-i
aw-string-set AVLOGINPRIVILEGEPASSWORD, ARGV[1]
aw-string-set AWLOGINAPPLICATION, "Object Editor Bot"
aw-string-set AVLOGINNAME, "ObjectEditorBot"

#just added this line to see if global vs. non-global state was the issue
aw-bool-set AWENTERGLOBAL, 1

rc = aw-login
if rc 1= RCSUCCESS

printf("Unable to login (reason %d)\n", rc)
exit(1)

end

log bot into the world named on the command line
rc = aw-enter(ARGV[2]);
if (rc != RCSUCCESS)

printf("Unable to enter world (reason %d)\n", rc)
exit(1)

end

announce our position in the world
aw-int-set(AWMYX, 1000) #/* 1W */
aw-intset(AWMYZ, 1000) #/* 1N */
aw-int-set(AWMYYAW, 2250) #/* face towards GZ */
rc = aw-state-change
if rc != RCSUCCESS

printf "Unable to change state (reason %d)\n", rc
exit 1

end

Allow 3-axis rotation globally
aw-int-set(AWWORLDALLOW_3_AXISROTATION, 1)

Check for object consistency between the database and the world
object-set = Ownedbject.get-allobjects
object-set.each do lobjectl

consistency-check(object)
end

Cached the animations for all objects into memory
object-set = Ownedbject.get-all-objects
object-set.each do lobjectl

if(!object.blockString.nil?)
$log.debug("Caching animation: <#{object.blockString}> for object: #{object.aw-object-id}.")
cache-object-animations(object, object. blockSt ring)

end
end

Read in the aw-script for each command and store it in memory
command-set = Animation.get-all-commands
command-set.each do Icmdl

if(cmd.script.nil? or cmd.script = "" or cmd.script == "None")
$log.debug("No aw script for command: <#{cmd.animation}>")

else
add-aw-script(cmd.animation, cmd.arg-type, cmd.script)

end
end

$log.info("Logged in and ready.")

/* main event loop */
begin

counter = 0
while aw-wait($AWWAIT) == RCSUCCESS
Process new actions
msg-set = QAction.new-message-set
unless msg-set.empty?

success = process-message-set(msg-set)

if success
msg-set.each { Imsgl msg.delete }
$log.debug("Successfully processed a message set")

end
end

Perform a periodic consistency check
if(counter = 100)

object-set = OwnedObject.get-all-objects
object-set.each do lobjecti

consistency-check(object)
end
counter = 0

else
counter += 1

end
end

ensure

aw-destroy
aw-term

end

C Source Code - Web-App Ruby Controllers

C.1 admin controller.rb

class AdminController < ApplicationController

def listing
@models = PaletteObject.all
@animations = Animation.all

end

def model
@commands = Animation.all
@model
@model-commands
if(!params[:palette-model-name].nil?)
@model = Palettebject.find(:first, \

:conditions => \
["modelname = ?", params[:palette-model-name]])

@model-commands = @model.animations

end

if request.post?
@model = Palettebject.find(:first, \

:conditions => \
["modelname = ?", params[:model][:model-name]])

if @model.nil?
p = PaletteObject.new
p.pretty-name = (params[: model][:pretty-name]).to-s
p.model-name = (params [:model][:model-name]).to-s
p.description = (params[:model][:description]).tos
p.save

@commands.each do Icl
if(params[c.animation])

p.animations.push(c)
p.save

end
end

else
@model. pretty-name = (params[:model][:pretty-name]).to-s
@model. model-name = (params[: model][:model-name]). tos
@model. description = (params[:model][:description]).to-s
@model.save

@model.animations.clear

@commands.each do Icl
if(params[c.animation])

@model.animations.push(c)
@model.save

end
end

end

redirect-to :controller => 'admin', :action => 'listing'

end
end

def command
@models = PaletteObject.all

71

@command
@command-models
if(!params[:animation].nil?)
@command = Animation.find(:first, \

:conditions =>
["animation = ?", params[:animation]])

@command-models = @command.palette-objects

end

if request.post?
@command = Animation.find(:first, \

:conditions =>

["animation = ?", params[:command][:animation]])

if @command.nil?
c = Animation.new
c.animation = (params[:command][:animation]).to-s
c.arg-name = (params[:command][:arg-name]).tos
c.arg-type = (params[:command][:arg-type]).to-s
c.script = (params[:command][:script]).to-s
c.save

@models.each do Iml
if(params[m.pretty-name])
c.paletteobjects.push(m)
c.save

end
end

else
@command.animation = (params[:cormand][:animation]).to-s
@command.arg.name = (params[:command][:argnane]).to-s
@command.arg-type = (params[:command][:arg-type]).tos
@command. script = (params[: command] [:script]).to.s
@command.save

@command. palette.objects.clear

@models.each do Iml
if(params[m.pretty-name])

@command.palette-objects.push(m)
@command.save

end
end

end

Push this aw-script change into the QActions table so
that the bot can act on it

action-id = rand(10000000)

animation name
action = QAction.new do lal

a.name = 'AWSCRIPTCHANGE'
a.action-id = action-id
a.key = "animation"
a.value = (params[:command][:animation]).to-s

end
action.save

arg type
action = QAction.new do lal

a.name = 'AWSCRIPTCHANGE'
a.action-id = action-id
a.key = "arg-type"
a.value = (params[:command][:arg-type]).to-s

end

action.save

aw script
action = QAction.new do lal
a.name = 'AW-SCRIPTCHANGE'
a.action-id = action-id
a.key = "script"
a.value = (params[:command][:script]).to-s

end
action.save

redirect-to :controller => 'admin', :action => 'listing'

end
end

def delete-model
@model = PaletteObject.find(:first, \

:conditions => \
["model-name = ?", params[:palette-model-name]])

@model.animations.clear
@model.delete

redirect-to :controller => 'admin', :action => 'listing'
end

def delete-command
@command = Animation.find(:first, \

:conditions =>
["animation = ?", params[:animation]])

@command.palette-objects.clear
@command.delete

redirect-to :controller => 'admin', :action => 'listing'
end

end

C.2 objectscontroller.rb

require 'rubygems'

class ObjectsController < ApplicationController

#Main screen that contains the editor grid and the palette of PaletteObjects
def edit
@palette-objects = PaletteObject.all

end

#Sceen listing all the objects a user has created
def listing
@created-objects = Project.find(:first, \

:conditions => \
["name ?", "TestProject"]).owned-objects

end

Edit all of the parameters of an OwnedObject. This screen is opened when clicked by an object.
def tweak

@qa-object = Ownedbject.find(:first, \
:conditions => \
["aw-object-id = ?", params[:aw-obj-id]])

if request.post?
puts "tweak post request"
action-id = rand(10000000)

aw-object-id

action = QAction.new do lal
a.name = 'CHANGE'

a.action-id = actionid
a.key = "aw-object-id"
a.value = (params[:qa-object][:aw-objectic].to-i).to-s

end
action.save

name
action = QAction.new do lal
a.name = 'CHANGE'
a.action-id = action-id
a.key = "name"
a.value = (params[:qa-object][:name]).to-s

end
action.save

model
action = QAction.new do lal

a.name = 'CHANGE'
a.action-id = action-id
a.key = "model"
a.value = (params[:qa-object][:model]).to-s

end
action.save

description
action = QAction.new do lal

a.name = 'CHANGE'

a.action-id = action-id
a.key = "description"
a.value = (params[:qa-object][:descriptions]).to-s

end
action.save

action
action = QAction.new do lal

a.name = 'CHANGE'
a.action-id = action-id
a.key = "action"
a.value = (params[:qa-object][:blockString]).to.s

end
action.save

x location
action = QAction.new do Ial
a.name = 'CHANGE'
a.action-id = action-id
a.key = "x"
a.value = (params[:qa-object][:x].to-i).to-s

end
action.save

y location
action = QAction.new do lal
a.name = 'CHANGE'
a.action-id = action-id
a.key = "y"
a.value = (params[:qa-object][:y].to-i).to-s

end
action.save

z location
action = QAction.new do lal

a.name = 'CHANGE'

a.action-id = action-id
a.key = "z"
a.value = (params[:qa-object][:z].to-i).to-s

end

action.save

yaw
action = QAction.new do lal

a.name = 'CHANGE'
a.action-id = action-id
a.key = "yaw"
a.value = (params[:qa-object][:yaw].to-i).to_s

end
action.save

tilt
action = QAction.new do lal
a.name = 'CHANGE'

a.action-id = action-id
a.key = "tilt"
a.value = (params[:qa-object][:tilt].to-i).tos

end
action.save

roll
action = QAction.new do lal
a.name = 'CHANGE'

a.action-id = action-id
a.key = "roll"
a.value = (params[:qa-object][:roll].toji).to-s

end
action.save

project-id
action = QAction.new do lal
a.name = 'CHANGE'

a.action-id = action-id
a.key = "project-id"
a.value = 1

end
action.save

@qa-object.update-attributes(params[: qa-object])
end

end

def saveScript
#Save the xml string of the block structure
@qa.object = OwnedObject.find(:first, \

:conditions => \
["aw-objectid = ?", params[:aw.obj-id]])

@qa-object.blockXML = params[:blockXML]
@qa-object.blockString = params[:blockString]
@qa-object.save

Add script action into the queue
action-id = rand(10000000)

aw-object-id
action = QAction.new do lal

a.name = 'SCRIPT'
a.action-id = action-id
a.key = "aw-object-id"
a.value = params[:aw-obj-id]

end
action.save

action string
action = QAction.new do lal

a.name = 'SCRIPT'
a.action-id = action-id
a.key = "action-string"
a.value = params[:blockString]

end
action.save

project-id
action = QAction.new do lal
a.name = 'SCRIPT'

a.action-id = action-id
a.key = "project-id"
a.value = 1

end
action.save

Redirect to the tweak page.
redirect-to :controller => 'objects', :action => 'tweak', :aw-obj-id => params[:aw-obj-id]

end

def scriptblocks
@qa-object = Ownedbject.find(:first, \

:conditions =>
["aw-object-id = ?", params[:aw-object-id]])

@animations = @qa-object.paletteobject.animations
end

Ajax call to write entries to the QAction database to perform a create operation.
def create
p = PaletteObject.find-by-modelname(params[:model-name]);

Create an OwnedObject for future tweaking of its parameters
o = p.owned-objects.build
o.aw.object-id = nil;
o.name = p.pretty-name
o.model = params[:model-name].to-s
o.x = params['x'].to-i
o.y = 0
o.z = params['z'].to-i
o.yaw = 0
o.tilt = 0
o.roll = 0
o.project-id = 1

o.save

Create a set of QActions for the ObjectEditorBot to perform the create.

puts "Creating #{params['name']} at location(#{params['x']},#{params['z']})."

actionid = rand(10000000)

model name
action = QAction.new do lal

a.name = 'CREATE'

a.action-id = action-id
a.key = "name"

a.value = params['model-name']
end
action.save

x coordinate
action = QAction.new do lal
a.name = 'CREATE'

a.action-id = action-id
a.key = "x"
a.value = params['x']

end
action.save

z coordinate
action = QAction.new do lal
a.name = 'CREATE'

a.action-id = action-id

a.key = "z"
a.value = params['z']

end
action.save

project-id
action = QAction.new do lal

a.name = 'CREATE'
a.action-id = action-id
a.key = "project-id"
a.value = 1

end
action.save

render :layout => false, :json => { :status => 'success' }
end

Ajax call to write entries to the QAction database to perform a delete operation.
def delete

puts "Deleting object at location (#{params['x']},#{params['z']})."

action-id = rand(10000000)

action = QAction.new do lal
a.name = 'DELETE'
a.action-id = action-id
a.key = "x"
a.value = params['x']

end
action.save

action = QAction.new do lal
a.name = 'DELETE'
a.action-id = action-id
a.key = "z"
a.value = params['z']

end
action.save

#project-id
action = QAction.new do lal

a.name = 'DELETE'
a.action-id = action-id
a.key = "project-id"
a.value = 1

end
action.save

render :layout => false, :json => { :status => 'success' }
end

def owned
data = []
@objects = Project.find(:first, \

:conditions => \
["name = ?", "TestProject"]).owned-objects

@objects.each do lot
element = { :pretty-name => o.name.to-s, :x => o.x.toji, :z => o.z.toi }
data << element

end

data.each do Idl
p d

end

p data
render :layout => false, :json => data

end
end

D Source Code - Web-App Ruby Models

D.1 animation.rb

class Animation < ActiveRecord::Base
has-and-belongsto-many :palette-objects

end

D.2 owned object.rb

class OwnedObject < ActiveRecord::Base
belongs-to :palette-object
belongs-to :project

end

D.3 palette object.rb

class PaletteObject < ActiveRecord::Base
has-many :owned-objects
has-and-belongs-to-many :animations

end

D.4 project.rb

class Project < ActiveRecord::Base
has-many :ownedobjects

end

D.5 qaction.rb

class QAction < ActiveRecord::Base

end

E Source Code - Web-App Ruby Admin Views

E.1 command.html.erb

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>QA Admin Editor</title>
<%= stylesheet-link-tag "jquery-ui-1.7.2.custom.css" %>
<%= stylesheet-link-tag "editor.css" %>

</head>
<body>

<% formtag({:controller => "admin", :action => "command"}, :method => "post") do %>
<h2>Command Information</h2>
<p>

Command Name:

<%= text-field :command, :animation, :size => 75 %>
</p>

<p>
Argument Name:

<%= text-field :command, :arg-name, :size => 75 %>

</p>

<p>
Argument Type (number or string):
<%= text-field :command, :arg-type, :size => 75 %>

</p>

<p>
AW b

<%= text-field :command, :script, :size => 75 %>

</p>

<h2>Models With this Command</h2>
<p>Select which model has this command</p>
<%@models.each do Iml%>

<%@flag = false%>

<%if !@command-models.nil?%>
<%@command-models.each do Ici%>

<%if c.pretty-name = m.pretty-name%>
<%@flag = true%>
<%break%>

<%end%>

<%end%>
<%end%>

<%if @flag%>

<p>
<input type="checkbox" name=<%=m.prettyname%> Checked/>

<%=m. prettyname%>
</p>

<%else%>
<p>

<input type="checkbox" name=<%=m.prettyname%> /> <6=m.prettyname%>

</p>
<%end%>

<%end%>

<%= submit-tag("Save", :class => "form-submit") %>
</p>
<%end%>

</body>
</html>

E.2 listing.html.erb

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>QA Admin Editor</title>
<%= stylesheet-linktag "jquery-ui-1.7.2.custom.css" %>
<%= stylesheet-link-tag "editor.css" %>

</head>
<body>

<hl>QA Models Listing</hl>

<table border="0" cellpadding="3" cellspacing="3">
<tr>

<th align="left">Name</th>
<th align="left">Model Number</th>
<th align="left">Description</th>
<th align="left">Available Commands</th>
<th align="left">Edit</th>
<th align="left">Delete</th>

</tr>
<%@models.each do Iml%>

<%@avail-commands = ''%>
<%m.animations.each do Icl%>

<%@avail-commands += c.animation%>
<%@avail-comands += ", "%>

<%end%>
<%avail-comnands = @avail-commands[0, @avail-commands .length-2]%>

<tr>
<td><%=m. pretty-name%></td>
<td><%=m.model-name%></td>
<td><%=m.description%></t d>
<td><%=@vail-commands%></td>
<td><%= link-to "Edit",

:controller=>'admin',
:action=>'model',
:palette-model-name=>m.model-name%>

</td>
<td><%= link-to "Delete",

:controller=>'admin',
:action=>'delete-model',
:palette-model-name=>m.model-name%>

</td>

<%6end%6>
</table>

<hl>QA Commands Listing</hl>

<table border="0" cellpadding="3" cellspacing="3">
<tr>

<th align="left">Command</th>
<th align="left">Arg Name</th>
<th align="left">Arg Type</th>

<th align="left">Script</th>
<th align="left">Models With This Command</th>
<th align="left">Edit</th>
<th align="left">Delete</th>

</tr>
<%@animations.each do Ial%>

<%@avail-models = ''%>
<%a.palette-objects.each do lpI%>

<%@avail-models += p.prettyname%>
<%@availmodels += ", "%>

<%end%>
<%@avail-models = @avail-models[0, @avail_models .length-2]%>
<tr>

<td><%=a.animation%></td>
<td><%=a.arg_name%></td>
<td><%=a.arg_type%></td>
<td><%=a. script%></td>
<td><%=@avail_models%></td>
<td><%= link-to "Edit",

:controller=>'admin',
:action=>'command',
:animation=>a .animation%>

link-to "Delete",
: cont roller=>'admin',
:action=>'delete-command',
:animation=>a.animation%>

<%end%>
</tr>

<%= link-to 'Add
<%= link-to ' Add

</body>
</html>

new model', :controller => "admin", :action => "model" %>
new command', :controller => "admin", :action => "command" %>

E.3 model.html.erb

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>QA Admin Editor</title>
<%= stylesheet-link-tag "jquery-ui-1.7.2.custom.css" %>
<%= stylesheet-link-tag "editor.css" %>

</head>
<body>

<% form-tag({:controller => "admin", :action => "model"}, :method => "post") do %>
<h2>Model Information</h2>
<p>

Model Name:
<%= text-field :model, :pretty-name, :size => 75 %>

Model Number:
<%= text-field :model, :model-name, :size => 75 %>

</p>

<p>
Description:
<%= text-field :model, :description, :size => 75 %>

</p>

<h2>Available Commands</h2>

</table>

</td>
<td><%=

</td>

<p>Select which commands this model can have</p>
<%@commands.each do IcI%>

<%@flag = false%>

<%if !@model-commands.nil?%>
<%@model-commands.each do ImI%>

<%if c.animation == m.animation%>
<%@flag = true%>
<%break%>

<%end%>

<%end%>
<%end%>

<%if @flag%>
<p>

<%else%>

<%end%>

<input type="checkbox" name=<%=c.animation%> Checked/> <%=c.animation%>

<input type="checkbox" name=<%=c.animation%> /> <%=c.animation%>

<%= submit-tag("Save", :class => "fornsubmit") %>
</p>
<%end%>

</body>
</html>

<%end%>

F Source Code - Web-App Ruby Object Views

F.1 edit.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/1999/xhtml">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;charset=iso-8859-1" />

<title>QA Object Editor</title>
<%= stylesheet-link-tag "jquery-ui-1.7.2.custom.css" %>
<%= stylesheet-link-tag "editor.css" %>
<%= javascript-include-tag "jquery-1.4.1.min.js" %>
<%= javascript-include-tag "jquery-ui-1.7.2.custom.min.js" %>
<%= javascript-tag "var AUTHTOKEN = #{form.authenticity-token.inspect};"
<%= javascript-include-tag("application.js") %>

</head>
<body>
<div id="content">

<hi id="mapTitle">2D Map</h1>
<img id-"trash" alt-"trash" src="<%= image-path("trash.jpg") %>" />

</div>
<div id="right">

<%= link-to 'Object Listings', :controller => 'objects', :action => '1

<h1>Palette</h1>
<% for palette-object in @palette-objects do %>
<p>
<div id="<%a= palette-object.model-name %>" class="draggable">

<p><%= palette-object.pretty-name %></p>
</div>
</p>
<% end %>

</div>

if protect.against-forgery? %>

listing' %>

</body>
</html>

F.2 listing.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/1999/xhtml">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;charset=iso-8859-1" />

<title>QA Object Editor</title>
<%= stylesheet-link-tag "jquery-ui-1.7.2.custom.css" %>
<%= stylesheet-link-tag "editor.css" %>
<%= javascript-include-tag "jquery-1.4.1.min.js" %>
<%= javascript-include-tag "jquery-ui-1.7.2.custom.min.js" %>
<%= javascripttag "var AUTHTOKEN = #{form-authenticity-token.inspect};" if protect-againstforgery? %>
<style type="text/css">

body {
background-color: #abebab;

}
</style>

</head>
<body>
<hl>Object Listings</hl>

<table border="0" cellpadding="2" cellspacing="0" width="70%">
<tr>

<th align="left">AW Object ID</th>
<th align="left">Object Name</th>
<th align="left">Description</th>
<th align="left">X Coordinate</th>
<th align="left">Z Coordinate</th>
<th align="left">Click To Edit Object Properties</th>

</tr>
<%@created-objects.each do 1oi%>
<tr>

<td><%=o. awobjectid%></td>
<td><%=o.name%></td>
<td><%=o. descriptions%></td>
<td><%6=o.x%></td>

<tdy<%=o.z%></td>
<td><%= link-to "Edit",

:controller=>'objects',
:action=>'tweak',
:awobj_id=>o.awobject_id%>

</td>
</tr>
<%end%>

</table>

<%= link-to 'Home', :controller => "objects", :action => "edit" %>

</body>
</html>

F.3 scriptblocks.html.erb

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Script Blocks</title>

<style type="text/css">

#blockWS {
border: 1px solid #333333;
background-color: #FFFFEE;

}

.label {
margin: Opx Opx Opx Opx;

}

.blockPage {
position:absolute;
border: 1px solid #000000;
background-color: #FEFEFE;
width: 500px;
height: 100%;

}

.blockDrawer {
position:absolute;
border: ipx solid #000000;
background-color: #999999;
width: 200px;
height: 100%;

}

.block {
border: 1px solid #000000;
background-color: #9999CC;

</style>
</head>
<body>

<div id="blockWS" style="position:absolute; left:10px; top:10px; width:700px; height:100%;
float:left">

<div id="page" class="blockPage" style="left:200px;"></div>
</div>

<div id="menubar" style="position:absolute; left:720px; top:10px;">
<div>

</div>

</div>
<div>

</div>
<div>

</div>

<button id="clearBtn">Clear</button>

<button id="drawerBtn">Next Drawer</button>

<button type="button" id="saveButton">Save</button>

<%= javascript-include.tag "jquery-1.4.1.min.js" %>
<%= javascript-include-tag("script-blocks-compiled.js") %>
<%= javascript.tag "var AUTHTOKEN = #{form-authenticity-token.inspect};" if

protect-against-forgery? %>
<script type="text/javascript">

<%@animation-array = '['%>

<%@animations.each do Ia%>
<%animation-array
<%@animation-array
<%animation-array
<%animation-array
<%animation-array
<%animation-array
<%animation-array

<%end%>

'{command: "'%>
a.animation%>
'", arg-name: "'%>
a.arg-name%>
'", arg-type: "'%>
a.argtype%>
'"}, '%>

<%@animation-array = @animation-array[0, @animation-array.length - 21%>
<%@animation-array +=']'%>

var commands = <%=@animation-array%>;

var xmlStr = '<%= @qa-object.blockXML %>';

sb.ScriptBlocksDemo.inito;
sb.ScriptBlocksDemo.run(;

$.each(commands, function(index, value){
sb. ScriptBlocksXML.addCommandBlock(value ["command"], value ["arg-name"],

value["arg-type"])
});

sb.ScriptBlocksXML.loadXML(xmlStr);

jQuery(functiono {
jQuery("#saveButton").click(functiono {

var form = document.createElement("form");
form.setAttribute("method", "post");
form.setAttribute("action", "saveScript");

var blockString = sb.ScriptBlocksXML.getBlockStructureAsString();
var blockXML = sb.ScriptBlocksXML.getBlockStructureAsXMLo;

var blockStringForm = document.createElement("input");
blockStringForm.setAttribute("type", "hidden");
blockStringForm.setAttribute("name", "blockString");
blockStringForm.setAttribute("value", blockString);

var blockXMLForm = document.createElement("input");
blockXMLForm.setAttribute("type", "hidden");
blockXMLForm.setAttribute("name", "blockXML");
blockXMLForm.setAttribute("value", blockXML);

var awobjidField = document.createElement("input");
awobjidField.setAttribute("type", "hidden");
awobjidField.setAttribute("name", "awobj-id");
awobjidField.setAttribute("value", <%= @qa.object.aw-object-id %>);

var authtokenField = document.createElement("input");
authtokenField.setAttribute("type", "hidden");
authtokenField. setAttribute("name", "authenticity-token");
authtokenField.setAttribute("value", AUTHTOKEN);

form.appendChild(blockStringForm);
form.appendChild(blockXMLForm);
form.appendChild(awobjidField);
form.appendChild(authtokenField);
document.body.appendChild(form);
alert("About to submit.");
form.submito;

});
});

</script>
</body>

</html>

F.4 tweak.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/1999/xhtml">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
content="text/html;charset=iso-8859-1" />

<title>QA Object Editor</title>
<%= stylesheet-link-tag "jquery-ui-1.7.2.custom.css" %>
<%= stylesheet-link-tag "editor.css" %>
<%= javascript-include-tag "jquery-1.4.1.min.js" %>
<%= javascript-includetag "jquery-ui-1.7.2.custom.min.js" %>
<%= javascript-tag "var AUTHTOKEN = #{form-authenticity-token.inspect};" if protect-against-forgery? %>
<%= javascript-include-tag("tweak.js") %>
<%= javascript-include-tag("numeric-stepper.js") %>
<style type="text/css">
body {
background-color: #abebab;

}
</style>

</head>
<body>
<hl>Object Options</hl>
<% form-tag({:controller => "objects", :action => "tweak"}, :method => "post") do %>
<p>

AW Object ID
<%= text-field :qa-object, :aw-objectid, :size => 20 %>

Name
<%= text-field :qa-object, :name, :size => 20 %>

</p>

<p>
Model
<%= text-field :qa-object, :model, :size => 20 %>

</p>

<p>
Descriptions
<%= text-area :qa-object, :descriptions, :cols => 50, :rows => 3 %>

</p>

<p>
Actions
<%= text-area :qa-object, :blockString, :cols => 50, :rows => 4 %>

</p>

<p>
<table><tr>

<td>Location </td>'
<td><%= label :qa-object, :x, "X (W-E): " %></td>

<td>

<%= text-field :qa-object, :x, :size => 3, :readonly => "readonly"%>
<button type="submit" name="ns-button_1" value="1" class="plus"></button>
<button type="submit" name="ns-button_2" value="-1" class="minus"></button>

</td>

<td><%= label :qa-object, :y, "Y (Up-Down): " %></td>
<td>

<%= text-field :qa-object, :y, :size => 3, :readonly => "readonly"%>
<button type="submit" name="ns-button_1" value="1" class="plus"></button>
<button type="submit" name="ns-button_2" value="-1" class="minus"></button>

</td>

<td><%= label :qa.object, :z, "Z (N-S): " %></td>
<td>

<%= text-field :qa-object, :z, :size => 3, :readonly => "readonly"%>
<button type="submit" name="ns-button_1" value="1" class="plus"></button>
<button type="submit" name="ns-button_2" value="-1" class="minus"></button>

</td>

</tr></table>
</p>

<p>
<table><tr>

<td>Rotation </td>'
<td><%= label :qa-object, :yaw, "Yaw (Y Axis): " %></td>
<td>

<%= text-field :qa-object, :yaw, :size => 3, :readonly => "readonly"%>
<button type="submit" name="ns-button_1" value="1" class="plus"></button>
<button type="submit" name="ns-button_2" value="-1" class="minus"></button>

</td>

<td><%= label :qa-object, :tilt, "Tilt (X Axis): " %></td>
<td>

<%= text-field :qa-object, :tilt, :size => 3, :readonly => "readonly"%>
<button type="submit" name="ns-button_1" value="1" class="plus"></button>
<button type="submit" name="ns-button_2" value="-1" class="minus"></button>

</td>

<td><%= label :qa-object, :roll, "Roll (Z Axis): " %></td>
<td>

<%= text-field :qa-object, :roll, :size => 3, :readonly => "readonly"%>
<button type="submit" name="ns-button_1" value="1" class="plus"></button>
<button type="submit" name="ns-button_2" value="-1" class="minus"></button>

</td>

</tr></table>
</p>

<p>
<%= submit-tag("Save", :class => "form-submit") %>

</p>
<% end %>

<%= link-to 'Animate Object!', :controller => "objects", :action =>
"scriptblocks", :aw-object-id => @qa-object.aw-object-id%>

<%= link-to 'Back to Object Listing', :controller => 'objects', :action => 'listing' %>

</body>
</html>

G Source Code - Javascript

G.1 numeric-stepper.js

* Numeric Stepper
*-------------------

*

* Copyright 2007 Ca Phun Ung
*

* This software is licensed under the CC-GNU LGPL
* http://creativecommons org/licenses/LGPL/7.1/
*

* Version 0.1
*

*/

* Numeric Stepper Class.
*/
var RotationNumericStepper = {

register : function(name, minValue, maxValue, stepSize){
this.minValue = minValue;
this.maxValue = maxValue;
this.stepSize = stepSize;
var elements = getElementsByClassName(document, "*", name);
for (var i=0; i<elements.length; i++){

var textbox = elements[i].getElementsByTagName('input')[0];
if (textbox){

if (textbox.value = undefined I textbox.value == ' isNaN(textbox.vlue))
textbox.value = 0;

textbox.onkeypress = function(e){
if(window.event){

keynum = e.keyCode; // IE
I else if(e.which){

keynum = e.which; // Netscape/Firefox/Opera

I
keychar = String.fromCharCode(keynum);
numcheck =/[0-9\-]/;

if (keynum==8)
return true;

else
return numcheck.test(keychar);

};
textbox.onblur = functiono

if (parseInt(this.value) < RotationNumericStepper.minValue)
this.value = RotationNumericStepper.minValue;

if (parseInt(this.value) > RotationNumericStepper.maxValue)
this.value = RotationNumericStepper.maxValue;

};
var buttons = elements[i].getElementsByTagName('button');
if (buttons[0]){

this.addButtonEvent(buttons[0], textbox, this.stepUp);
I
if (buttons[l])

this.addButtonEvent(buttons[l], textbox, this.stepDown);

}
}

,addButtonEvent:function(o,textbox, func){
o.textbox = textbox;
o.onclick = func;

I
,stepUp:functiono

RotationNumericStepper.stepper(this.textbox, RotationNumericStepper.stepSize);
I

89

,stepDown:functiono
RotationNumericStepper.stepper(this.textbox, -RotationNumericStepper.stepSize);

}
,stepper:function(textbox, val){

if (textbox == undefined)
return false;

if (val == undefined |1 isNaN(val))
val = 1;

if (textbox.value == undefined II textbox.value == '' I isNaN(textbox.value))
textbox.value = 0;

textbox.value = parseInt(textbox.value) + parseInt(val);
if (parseInt(textbox.value) < RotationNumericStepper.minValue)
textbox.value = RotationNumericStepper.minValue;

if (parseInt(textbox.value) > RotationNumericStepper.maxValue)
textbox.value = RotationNumericStepper.maxValue;

}
}

var LocationNumericStepper = {
register : function(name, minValue, maxValue, stepSize){

this.minValue = minValue;
this.maxValue = maxValue;
this.stepSize = stepSize;
var elements = getElementsByClassName(document, "*", name);
for (var i=0; i<elements.length; i++)f

var textbox = elements[i].getElementsByTagName('input')[0];
if (textbox){

if (textbox.value = undefined II textbox.value == I isNaN(textbox.value))
textbox.value = 0;

textbox.onkeypress = function(e){
if(window.event){

keynum = e.keyCode; // IE
} else if(e.which){

keynum = e.which; // Netscape/Firefox/Opera

}
keychar = String.fromCharCode(keynum);
numcheck =/[0-9\-]/;

if (keynum==8)
return true;

else
return numcheck.test(keychar);

textbox.onblur = functiono
if (parseInt(this.value) < LocationNumericStepper.minValue)

this.value = LocationNumericStepper.minValue;
if (parseInt(this.value) > LocationNumericStepper.maxValue)

this.value = LocationNumericStepper.maxValue;
};
var buttons = elements[i].getElementsByTagName('button');
if (buttons[0]){

this.addButtonEvent(buttons[0], textbox, this.stepUp);

}
if (buttons[l])

this.addButtonEvent(buttons[1], textbox, this.stepDown);
}

}

,addButtonEvent:function(o,textbox, func){
o.textbox = textbox;
o.onclick = func;

I
,stepUp:functiono
LocationNumericStepper.stepper(this.textbox, LocationNumericStepper.stepSize);

I
,stepDown:function({
LocationNumericStepper.stepper(this.textbox, -LocationNumericStepper.stepSize);

I
,stepper:function(textbox, val){

if (textbox == undefined)

return false;
if (val == undefined 11 isNaN(val))

val = 1;
if (textbox.value == undefined II textbox.value = II isNaN(textbox.value))
textbox.value = 0;

textbox.value = parseInt(textbox.value) + parseInt(val);
if (parseInt(textbox.value) < LocationNumericStepper.minValue)

textbox.value = LocationNumericStepper.minValue;
if (parseInt(textbox.value) > LocationNumericStepper.maxValue)

textbox.value = LocationNumericStepper.maxValue;
}

}

getElementsByClassName - returns an array of elements selected by their class name.
@author Jonathan Snook <http://www.snook.ca/jonathan>
@add-ons Robert Nyman <http://www.robertnman.com>

*/
function getElementsByClassName(oElm, strTagName, strClassName){

var arrElements = (strTagName == "" && oElm.all)? oElm.all : oElm.getElementsByTagName(strTagName);
var arrReturnElements = new Arrayo;
strClassName = strClassName.replace(/-/g, "\-");

var oRegExp = new RegExp("(A\s)" + strClassName + "(\sI$)");
var oElement;
for(var i=0; i<arrElements.length; i++){

oElement = arrElements[i];
if(oRegExp.test(oElement.className)){

arrReturnElements.push(oElement);
}

}
return (arrReturnElements)

I

function initNumericStepperO{
var myLocationNumericStepper = LocationNumericStepper.register("location-stepper", 0, 10, 1);
var myRotationNumericStepper = RotationNumericStepper.register("rotation-stepper", 0, 180, 1);

}

* addEvent - simple window.onload event loader.
*/

function addEvent(o, evt, f){
var r = false;

if (o.addEventListener){
o.addEventListener(evt, f, false);

r = true;

}
else if (o.attachEvent)

r = o.attachEvent("on"+evt, f);
return r;

I
addEvent(window, "load", initNumericStepper);

G.2 ScriptblocksXML.js
goog.provide('sb.ScriptBlocksXML');

goog.require('sb.ScriptBlocks');
goog.require('sb.Block');
goog.require('sb.BlockSpec');
goog.require('sb.Drawer');
goog.require('sb.Page');
goog.require('sb.Workspace');

* ScriptBlocksXML.js - a convenience class with static methods for initializing,
* loading, and saving ScriptBlocks workspaces from and to XML.
*

* @author djwendel
*

* Modified ScriptBlocksXML.js to create the workspace needed for Quest Atlantis. Instead
* of initializing and loading the workspace from a XML file, the specification for the Quest
* Atlantis workspace is inputted via the createblock function.
*

* @author David Lam
*/

sb.ScriptBlocksXML.commands = []; //array consisting of all the commands that were added to this workspace

sb.ScriptBlocksXML.genusMap = {}; //maps genus name to BlockSpec for that genus

sb.ScriptBlocksXML.loadXML = function(xmlStr){
sb.ScriptBlocksXML.createVorkSpaceo;

sb.ScriptBlocksXML.loadBlockStructureFromXML(xmlStr);

I

sb.ScriptBlocksXML.parseColor = function(colorStr){
return 0x888822;

}

* Create a block given the specified attributes of the block
*

* @param {Object} blockName
* @param {Object} blockLabel
* @param {Object} blockInitLabel
* @param JObject} blockReturnType
* @param {Object} blockArguments
* @param {Object} blockLangSpecProperties
* @param {Object} blockColor
* @param {Object} blockDrawer - string indicating which drawer this block belongs to
* @param {Object} isACommand - boolean indicating if the block is a command block
*/

sb.ScriptBlocksXML.createBlock = function(blockName, blockLabel, blockInitLabel, blockReturnType,
blockArguments,

blockLangSpecProperties, blockColor, blockDrawer, isACommand){

var spec = {};

spec = new sb.BlockSpeco;
spec = sb.BlockSpec.extend(spec, {

name: blockName,
label: blockLabel,
initLabel: blockInitLabel,
returnType: blockReturnType,
arguments: blockArguments,
langSpecProperties: blockLangSpecProperties,
color: blockColor,
drawer: blockDrawer

});

if(isACommand){
spec = sb.BlockSpec.extend(spec, {

connections: [sb.SocketType.AFTER, sb.SocketType.BEFORE]

});
} else {

spec = sb.BlockSpec.extend(spec, {
connections: [sb.SocketType.BEFORE]

});
}

// save spec to the genus spec map
sb.ScriptBlocksXML.genusMap[blockName] = spec;

}

* Create the trigger blocks
*/

sb.ScriptBlocksXML.createTriggerBlocks = functiono

var spec = {};
var specArgs;
var specLSPs;

//Create WhenClicked Block
specArgs = [];

specArgs.push({
name: "actions",
type: "cmd",
socketType: "nested"

});

specLSPs = {};
specLSPs["vm-cmd-name"] = "WhenClicked";

sb.ScriptBlocksXML.createBlock("WhenClicked", "WhenClicked @actions\n", "WhenClicked", "command",
specArgs, specLSPs, "255 0 0", "trigger", true);

//Create WhenBumped Block
specArgs = [];

specArgs.push({
name: "actions",
type: "cmd",
socketType: "nested"

specLSPs = {};
specLSPs["vm-cmd-name"] = "WhenBumped";

sb.ScriptBlocksXML.createBlock("WhenBumped", "WhenBumped @actions\n", "WhenBumped", "command",
specArgs, specLSPs, "255 0 0", "trigger", true);

//Create WhenApproached Command Block
specArgs = [];

specArgs.push({
name: "actions",
type: "cmd",
socketType: "nested"

});

specLSPs =

specLSPs["vm-cmd-name"] = "WhenApproached";

sb.ScriptBlocksXML.createBlock("WhenApproached", "WhenApproached @actions\n", "WhenApproached",
command", specArgs, specLSPs, "255 0 0", "trigger", true);

//Create RightAway Command Block
specArgs = [];

specArgs.push({
name: "actions",
type: "cmd",
socketType: "nested"

});

specLSPs = {};
specLSPs["vm-cmd-name"] = "RightAway";

sb.ScriptBlocksXML.createBlock("RightAway", "RightAway @actions\n", "RightAway", "command", specArgs,
specLSPs, "255 0 0", "trigger", true);

}

* Create a command block based on the given specs
*/

93

sb.ScriptBlocksXML.addConmandBlocks = function(command, arg-name, arg-type){

var specArgs;
var specLSPs;

specArgs = [];
specArgs.push(f

name: arg.name,
type: arg-type,
socketType: "nested"

});

specLSPs = {};
specLSPs["vm-cmd-name"] = command;
specLSPs["stack-type"] = "breed";

sb.ScriptBlocksXML.createBlock(command, command + " @" + arg-name + "\n", command, "command", specArgs,
specLSPs, "255 0 0", "command", true);

sb.ScriptBlocksXML.commands.push(command);
}

* Create the constant blocks
*/

sb.ScriptBlocksXML.createConstantBlocks = functionof
var spec = {};

var specArgs;
var specLSPs;

//Create Number Block with a constant of 1
specArgs = [];

specLSPs = {};
specLSPs["vm-cmd-name"] = "eval-num";
specLSPs["is-monitorable"] = "yes";

sb.ScriptBlocksXML.createBlock("One", "1 ", "1", "number", specArgs, specLSPs, "255 0 0", "constant",
false);

//Create Number Block with a constant of 5
specArgs = [];

specLSPs = {};
specLSPs["vm-cmd-name"] = "eval-num";
specLSPs["is-monitorable"] = "yes";

sb.ScriptBlocksXML.createBlock("Five", "5 ", "5", "number", specArgs, specLSPs, "255 0 0", "constant",
false);

//Create Number Block with a constant of 10
specArgs = [];

specLSPs = {};
specLSPs["vm-cmd-name"] = "eval-num";
specLSPs["is-monitorable"] = "yes";

sb.ScriptBlocksXML.createBlock("Ten", "10 ", "10", "number", specArgs, specLSPs, "255 0 0", "constant",
false);

//Create String block with a constant this is a test string
specArgs = [];

specLSPs = {};
specLSPs["vm-cmd-name"] = "eval-num";
specLSPs["is-monitorable"] = "yes";

sb.ScriptBlocksXML.createBlock("TestString", "This is a test string ", "This is a test string",
"string", specArgs, specLSPs, "255 0 0", "constant", false);

* Create the trigger drawers which consist of all the trigger blocks
*/

sb.ScriptBlocksXML.createTriggerDrawer = functionof
var drawer;
var block;

drawer = new sb.Drawer("Triggers");
sb.ScriptBlocksDemo.workspace.addDrawer(drawer);

if(sb.ScriptBlocksXML.genusMap["WhenClicked"] == undefined){
console.log("No genus definition for WhenClicked");

}
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["WhenClicked"]);
drawer.addBlock(block);

}

if(sb.ScriptBlocksXML.genusMap["WhenBumped"] = undefined){
console.log("No genus definition for WhenBumped");

}
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["WhenBumped"]);
drawer.addBlock(block);

}

if(sb.ScriptBlocksXML.genusMap["WhenApproached"] = undefined){
console.log("No genus definition for WhenApproached");

}
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["WhenApproached"]);
drawer.addBlock(block);

}

if(sb.ScriptBlocksXML.genusMap["RightAway"] == undefined){
console.log("No genus definition for RightAway");

}
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["RightAway"]);
drawer.addBlock(block);

}
I

* Create the command drawer which consist of all the command blocks
*/

sb. ScriptBlocksXML. createCommandDrawer = functionof
var drawer;
var block;

drawer = new sb.Drawer("Commands");
sb. ScriptBlocksDemo.workspace. addDrawer(drawer);

for(i = 0; i < sb.ScriptBlocksXML.commands.length; i++){

if(sb.ScriptBlocksXML.genusMap[sb.ScriptBlocksXML.commands[i]] = undefined){
console.log("No genus definition for " + sb.ScriptBlocksXML.commands[i]);

I
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap[sb.ScriptBlocksML.commands[i]]);
drawer.addBlock(block);

}
}

}

* Create the constant drawer which consists fo all the constant blocks

*/
sb.ScriptBlocksXML.createConstantDrawer = function({

var drawer;
var block;

drawer = new sb.Drawer("Constants");
sb.ScriptBlocksDemo.workspace.addDrawer(drawer);

if(sb.ScriptBlocksXML.genusMap["One"] == undefined){
console.log("No genus definition for One");

}
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["One"]);
drawer.addBlock(block);

I

if(sb.ScriptBlocksXML.genusMap["Five"] = undefined){
console.log("No genus definition for Five");

I
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["Five"]);
drawer.addBlock(block);

I

if(sb.ScriptBlocksXML.genusMap["Ten"] == undefined){
console.log("No genus definition for Ten");

I
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["Ten"]);
drawer.addBlock(block);

I

if(sb.ScriptBlocksXML.genusMap["TestString"] = undefined){
console.log("No genus definition for TestString");

I
else{

block = new sb.Block(sb.ScriptBlocksXML.genusMap["TestString"]);
drawer.addBlock(block);

}
}

* Create the workspace by creating all the needed blocks
* and drawers
*/

sb.ScriptBlocksXML.createWorkSpace = functiono

//Create all the needed blocks
sb.ScriptBlocksXML.createTriggerBlockso;
sb.ScriptBlocksXML.createConstantBlocks();

//Create all the needed drawers
sb.ScriptBlocksXML.createTriggerDrawero;
sb.ScriptBlocksXML.createCommandDrawero;
sb.ScriptBlocksXML.createConstantDrawer();

}

* loads a "project" - a set of blocks which are potentially interconnected, from saved XML
* @param {Object} xml
*/

sb.ScriptBlocksXML.loadBlockStructureFromXML = function(xml){
var parser = new DOMParsero;
var xmlDoc = parser.parseFromString(xml,"text/xml");
var blockElts = xmlDoc.getElementsByTagName("Block");
var spec;
var blocksByID ={;

for (var i=0; i<blockElts.length; i++) {

96

spec = new sb.BlockSpeco;
spec = sb.BlockSpec.extend(spec, sb.ScriptBlocksXML.genusMap[blockElts[i].getAttribute("genus-

name")]);

var connectorElts = blockElts[i].getElementsByTagName("BlockConnector");

var specLabel = spec.initLabel+' ';

var specInitLabel = spec.initLabel;
if (blockElts[i].getElementsByTagName("Label").length > 0) {

specInitLabel = blockElts[i].getElementsByTagName("Label")[0].textContent;
specLabel = specInitLabel+' ';

}

var specReturnType = spec.returnType;
var blockID = blockElts[i].getAttribute("id");

// parse the arguments (sockets) for this instance of the block
var specArgs = [];
for (var j=0; j<connectorElts.length; j++) {

if (connectorEltsl[j]. getAttribute("connector-kind") != "socket") {
specReturnType = connectorElts[j].getAttribute("connector-type");
continue; // only use sockets, not plugs, to create arguments spec

}
if (connectorElts[j].hasAttribute("label") && connectorElts [j] .getAttribute("label") 1=

argLabel = connectorElts[j].getAttribute("label");
//specLabel += argLabel;

} else {
argLabel = 'arg'+j;

}
specLabel += ' @'+argLabel+'\n';
specArgs.push({

name: argLabel,
type: connectorElts[j].getAttribute("connector-type"),
socketType: "nested"

}
if (specArgs.length = 0) { //if no arg override happened, use default args from the genus

specs
specArgs = spec.arguments;

}

// parse LangSpecProperties
IspElts = blockElts[i].getElementsByTagName("LangSpecProperty");
specLSPs = spec.langSpecProperties;
for (var k=0; k<lspElts.length; k++) {

specLSPs[lspElts[k] .getAttribute("key")] = lspElts[k].getAttribute("value");
I

// update the BlockSpec for this instance of the block
spec = sb.BlockSpec.extend(spec, {

label: specLabel,
initLabel: specInitLabel,
returnType: specReturnType,
arguments: specArgs,
langSpecProperties: specLSPs

});

// ID-block mapping (for connection next)
var block = new sb.Block(spec);
blocksByID[blockID] = block;

}

// now loop through and make all of the required connections
for (i = 0; i < blockElts.length; i++) {

blockID = blockElts[i].getAttribute("id");
connectorElts = blockElts[i].getElementsByTagName("BlockConnector");

// look through the sockets and make connections if found
for (var j = 0; j < connectorElts.length; j++) {

if (connectorElts[j].getAttributeC"connector-kind") != "socket") {
continue; // only connect sockets blocks

}
var conBlockID = connectorElts[j].getAttributeC"con-block-id");
var argName;
if (conBlockID 1= '' && conBlockID != undefined) {

if (connectorElts[j].hasAttribute("label") &&
connectorElts[j].getAttribute("label") != '') {

argName = connectorElts[j].getAttribute("label");
I else {

argName = 'arg'+j;
}
// connect the child block (ID = conBlockID) to this block in this socket
blocksByID[blockID].connectChildBlock(blocksByID[conBlockID], argName);

}
}

// now connect the block below it, if one exists
if (blockElts[i].getElementsByTagName("AfterBlockId").length > 0) {

blocksByID[blockID].connectAfterBlock(blocksByID[blockElts[i].getElementsByTagName("AfterBlockId")[0]
.textContent]);

}
}

// add the top-level blocks to the page
for (blockID in blocksByID) {

var topBlock = blocksByID[blockID];

if(topBlock.getParento == null && topBlock.getBefore() == null) {
sb.ScriptBlocksDemo.testPage.addBlock(topBlock);

}
}

}

* returns an XML string representation of the block structure on the page.
* @return {string}
*/

sb.ScriptBlocksXML.getBlockStructureAsXML = functiono
var pages = sb.ScriptBlocks.getWorkspaceo.getPageso;
var xmlstr = '<?xml version="1.0" encoding="UTF-16" ?><SLCODEBLOCKS><PageBlocks>';
var idcounter = 1; //non-zero ID's just to be safe

// first, assign every Block an ID to make linking much easier
for (var i = 0; i < pages.length; i++) {

var pageBlocks = pages[i].getAllBlockso;
for (var j = 0; j < pageBlocks.length; j++) {

pageBlocks[j].id = idcounter;
//console.log(idcounter + ": " + pageBlocks[j].getSpec(.initLabel + ": "

pageBlocks[j].getSpec().drawer);

idcounter++;
}

// now go through again and generate XML for each block
for (i=0; i<pages.length; i++) {

pageBlocks = pages[i].getAllBlockso;
for (j=0; j<pageBlocks.length; j++) {

xmlstr += '<Block ';
xmlstr += 'id="' + pageBlocks[j].id +'" ';

xmlstr += 'genus-name="' + pageBlocks[j].getSpec(.name + '">';
xmlstr += '<Label>' + pageBlocks[j].getSpeco.initLabel + '</Label>';
if (pageBlocks[j].getSpec(.returnType != "command") {

xmIlstr += '<Plug><BlockConnector connector-kind="plug" connector-type=" +
pageBlocks[j].getSpec(.returnType + '" ';

xmlstr += 'init-type="' + pageBlocks[j].getSpeco.returnType + '" label=""

position-type="mirror" ';
if (pageBlocks[j].getParent() instanceof sb.Block) {

xmlstr += 'con-block-id="' + pageBlocks[j].getParento.id + '"

}
xmlstr += '></BlockConnector></Plug>';

}
//if (pageBlocks[j].getArguments(.length > 0) { // TODO:NO WAY TO TEST FOR # of ARGS??
xmlstr += '<Sockets num-sockets="' + 1 /*TODO:WRONG!*/ + >'
for (var argName in pageBlocks[j].getArgumentso) {

var arg = pageBlocks[j].getArgumentso[argName];
xmlstr += '<BlockConnector connector-kind="socket" ';
xmlstr += 'connector-type="' + arg.getDataType() + '"

xmlstr += 'init-type="' + arg.getDataType() + '"

xmlstr += 'label="' + argName + " ';
if (arg.getValueo instanceof sb.Block) {

xmlstr += 'con-block-id="' + arg.getValueo.id + '"

}
xmlstr += '></BlockConnector>';

}
xmlstr += '</Sockets>';
//}
if (pageBlocks[j].getAfterBlock() instanceof sb.Block) {

xmlstr += '<AfterBlockId>' + pageBlocks[j].getAfterBlocko.id +
'</AfterBlockId>';

}
xmlstr += '</Block>';

}
}
xmlstr += '</PageBlocks></SLCODEBLOCKS>';
return xmlstr;

}

* Given the current block structure in the workspace,
* return a string representation that can be parsed by the
* Quest Atlantis bot.
*/

sb.ScriptBlocksXML.getBlockStructureAsString = functiono{
var pages = sb.ScriptBlocks.getWorkspaceo.getPageso;

var retStr = '';
var idcounter = 1;

var lastTriggerID = 0;

// first, assign every Block an ID to make linking much easier
for (var i = 0; i < pages.length; i++) {

var pageBlocks = pages[i].getAllBlockso;
for (var j = 0; j < pageBlocks.length; j++) {

pageBlocks[j].id = idcounter;
idcounter++;

}
}

// now start generating the string representation of the block structure
for Ci = 0; i < pages.length; i++){

pageBlocks = pages[i].getAllBlocks();
retStr += "{";
while(lastTriggerID < pageBlocks. length){

//Find the next trigger block
if(pageBlocks[lastTriggerID].getSpeco.drawer = "trigger"){

retStr += pageBlocks[lastTriggerID].getSpeco.initLabel +

var done = false;
var lastCommandBlockID = 0;

//Find the corresponding initial command block
for(var argNamel in pageBlocks[lastTriggerID].getArgumentso){

var triggerArg = pageBlocks[lastTriggerID].getArgumentso[argNamel];

if(triggerArg.getValue(instanceof sb.Block){

99

var commandBlockID = triggerArg.getValueo.id;
lastCommandBlockID = commandBlockID;

if(pageBlocks[commandBlockID - 1].getSpeco.drawer == "command"){
retStr += pageBlocks[commandBlockID - 1].getSpeco.initLabel + "(";

//Find the corresponding constant block
for(var argName2 in pageBlocks[commandBlockID - 1].getArgumentso){

var commandArg = pageBlocks[commandBlockID - 1].getArgumentso[argName2];

if(commandArg.getValue() instanceof sb.Block){
var constantBlockID = commandArg.getValueo.id;

if(pageBlocks[constantBlockID - 1].getSpeco.drawer = "constant"){
retStr += pageBlocks[constantBlockID - 1].getSpec(.initLabel +

}
}

}
}

}
}

//Find the command blocks following the initial command block
while(!done){

if (pageBlocks[lastCommandBlockID-1] instanceof sb.Block &&
pageBlocks[lastCommandBlockID - 1].getAfterBlock() instanceof sb.Block){

var commandBlockID = pageBlocks[lastCommandBlockID - 1].getAfterBlocko.id;

if(pageBlocks[commandBlockID - 1].getSpeco.drawer = "command"){
retStr += "," + pageBlocks[commandBlockID - 1].getSpeco.initLabel + "(";

//Find the corresponding constant block
for(var argName2 in pageBlocks[commandBlockID - 1].getArgumentso))

var commandArg = pageBlocks[commandBlockID - 1].getArgumentso[argName2];
var constantBlockID = commandArg.getValueo.id;

if(pageBlocks[constantBlockID - 1].getSpeco.drawer == "constant"){
retStr += pageBlocks[constantBlockID - 1].getSpeco.initLabel +

}
}

lastCommandBlockID = commandBlockID;
}

}
else{

done = true;

}
}
retStr += "], ";

}
lastriggerD++;

}

lastTriggerID = 0;
retStr = retStr.substring(0, retStr.length - 2);
retStr += "}";

}

return retStr;
}

100

