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ABSTRACT

As the world continues to do more and more of its signal processing digitally,
there is an ever increasing need for high speed high precision signal
processors in consumer applications such as digital photography.
Technological progress in CMOS fabrication has allowed chips to be made on
nano scale processes, but this still comes at a steep price. Especially in chips
for which analog components are a priority over digital components, some of
the benefits of using nano scale processes diminish, such as smaller area. In
these cases, it is worth investigating whether the same performance can be
achieved with larger feature size, and therefore, cheaper processes.

To that end, a three-stage comparator circuit for use in a digital camera SAR
ADC has been ported from its original 65nm process to a 0.11ptm process. Its
design has been analyzed and performance presented here. Additionally, an
alternative latch-only architecture for the comparator has been designed and
analyzed. In 0.11pm the three-stage comparator operates at the same speed,
13% lower RMS noise contributing 0.9 bits difference, and 11% higher
power than the original in 65nm. More noteworthy, the 0.11pm latch-only
comparator operates at 40% higher speed, equivalent noise, and 72% lower
power.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION
Nano scale CMOS technologies provide many benefits in the implementation of

today's highly digital circuits, especially in consumer electronics. Digital circuitry follows

Moore's law [1] in that moving to a smaller feature size process means more digital

components can fit in the same area. Also, smaller devices offer higher gate speed at lower

power dissipation digital circuitry. Analog circuits, however, do not necessarily shrink as

many designs do not use or allow for minimum length devices. Therefore, in chips in which

analog components are more emphasized, some of the benefits of smaller scale technologies

such as a reduced chip area are no longer as relevant, and are therefore offset by drawbacks

such as higher expense. This makes it worthwhile to investigate implementation of the

circuits in larger feature size processes.

The setting of this thesis is the field of high-speed high-precision signal processors

for digital camera and camcorder applications. One of the major components of these signal

EtR weF processors is the high-speed ADC
AD9920A-0 B VoEr (analog-to-digital converter, see

CCDIN CoS VGA OUT

=6d 1T42d star outline in Fig. 1). Several
3V INPUT D CLK

IVOUTPUT REG different types of ADC's are

INTERNAL CLOCKS

AG ' ....................f 4# +commonly used in signal
VHTOVORIZONTAL

DRIVERS GENERATOR SL
H1TERONS ECK processing applications including

VIA TO VS (3-LEVEL) 19 X1 OX SOATA

V. TO VD6 11G SY~ NC Hflash, pipeline, and Successive

Approximation Register (SAR)
apO?, GPOS

[2]. Flash ADCs are fast parallel
Figure .: Example of' a current 12-bit CCg Signal Processor 31 on the
market by Analog Devices. The ADC is highlighted in with a star.



converters but they have a drawback in that for an N-bit flash ADC, 2N-1 comparators are

necessary, thus power and area becomes an issue. Pipeline ADCs are very good for high-

speed applications, but their power consumption is often an issue [2]. While the high-speed

ADC of choice for the Digital Imaging Group has traditionally been a pipeline ADC, with its

transition from 0.18[im to a 65nm CMOS fabrication process, the group began investigating

the use of SAR ADCs instead. SAR ADCs tend to consume less power than pipelined ADCs at

the cost of speed, but due to the inherent increase in gate speed of the 65nm process node,

this trade-off of speed for power was able to be circumvented, and the same spec was

achieved by the group. Also, unlike pipeline ADCs, SAR ADCs do not require an amplifier and

are thus better suited for smaller process devices with intrinsically lower gain. For this

reason, the group decided to use the SAR architecture for its 65nm ADC.

This thesis describes the design port of a comparator for a SAR ADC in digital still

camera and camcorder applications, from the 65nm to 0.11pm process node. The two

processes have similar characteristics and both operate off a 1.2V supply. Hence, 0.11im

seems like a cheaper alternative to 65nm for chips in which there is less emphasis on digital

circuitry, because the area taken by the analog components will be roughly the same. For

this reason, porting strategies that maintain the 65nm comparator's performance while

moving to the 0.11ptm process are investigated here. Furthermore, a different architecture

from the one used in 65nm is explored and its relative performance is presented.

The group has never utilized a 0.11ptm process before, so this will be the company's

first investigation to transition the design of their high speed SAR ADC comparator from

65nm to 0.11m. The SAR ADC is a 14-bit converter with two redundant bit decisions, for a

total of 16 bit decisions. The first 5 MSBs (most significant bits) are decided by an auxiliary

flash ADC, leaving 11 decisions for the comparator to arbitrate.



The comparator designed by Analog Devices comprised of three stages: two

preamplifier stages, followed by a dynamic latch. While the dynamic latch can make

comparator decisions on its own, the preamplifiers increase the signal to overcome offset in

the comparator. The preamplifiers also shield the input signal from charge kickback in the

latch, defined the charge that is "kicked back" to the inputs through Cgd of the input pairs

when the latch regenerates. While this doesn't have negative repercussions for all input

signals, the inputs in this case come from a capacitive DAC used for sampling that is

sensitive to this charge kickback.

1.2 FUNDAMENTALS AND BASICS OF OPERATION

1.2.1 A PEEK INTO SAR ADCs
A SAR ADC uses a successive approximation binary search algorithm to get a digital

representation of an analog input signal. Fig. 2 shows a simplified representation of a SAR

ADC, whose main components are a Track/Hold stage, a SAR logic/register stage, an N-bit

digital to analog converter (DAC), and a comparator.

Analog in - Track /Hold -N + Comparator

vnAC

V REF N-bit
DAC

DigitaI data out

N-bit (serial or parallel)
Register

SAR Logic

Figure 2: SAR ADC Architecture [2]



Each conversion period consists of two phases: in the first one, the analog signal is tracked

and held, and in the second one, the digital output bits are resolved by the SAR logic. Fig. 3

is an example diagram of a four bit SAR ADC using a feedback capacitive DAC.

VINHv. -- S/H

T 0 T 0 Reset
switch

bfbWb 0th
b 3bz bi b

Successive Approximation Logic

Figure 3: A representative 4-bit SAR ADC Architecture (adapted from [21)

Let us take an example with the held value being VSH=0. 6 V and VREF=1V. After

resetting the DAC voltage VDAC=OV, the most significant bit (MSB), b3, is instantiated as 1.

This connects the capacitor for the MSB to VREF and makes the DAC voltage to be fed into the

comparator to become 0.5*VREF, or O.5V. At the comparator level, this is compared to 0.6V

and since it is higher, the comparator outputs a logic '1', which is translated through the

successive approximation logic to set b3 to 1 for the remainder of the translation. If the

sampled voltage were lower than O.5V, the Reset Switch would be used to reset the

capacitors and turn b3 to 0 for the remainder of the cycle. A similar process is used for the

remainder of the bits, eventually converging VDAC to VSH. The figure below shows this

process in terms of the successive approximation to VSH.



VSH= 0.60V
1.00

0.75-

m~ 0.50-

00 Time
b,=1 b 2=0 b=0 b,=1

Figure 4: Close-up of 4-bit SAR function given VSH=0.6V

1.2.2 COMPARATOR DESIGN FUNDAMENTALS
High speed comparators are critical in making a high speed SAR ADC, because they

are one of the main bottlenecks in the overall speed of the ADC. The comparators used in

this application take the difference between V+ and V- and if it is positive (i.e. V+ is larger)

VS they output a logic '1', otherwise they output a logic '0'. The speed,

V + or a response time in a comparator is defined as the delay between

V_ -the time the differential input passes the comparator threshold

vs_ voltage and the time the output exceeds the input logic level of the

Figure 5: Comparator subsequent stage [4].

One of the simplest forms of a comparator is a two stage compensated op-amp.

Compensation of an op-amp often involves the separation of the poles of an op-amp by

lowering one pole through the addition of a large capacitor at the output [4]. This form of

compensation greatly decreases the speed of op-amps and makes them undesirable for

high-speed applications. Even in the uncompensated case, however, the response time is

still significantly slow due to other parasitic capacitances, and making this type of

comparator inadequate for most high speed applications.

[10]



A significantly more popular approach to making

a high speed comparator involves multiple stages: one

or more high-speed differential pre-amplifier stages

often followed by a dynamic latch stage [4]. The

purpose of the pre-amplifier stages is to cancel offset

and amplify the input voltages to an extent that the

input offset voltage becomes negligible. The dynamic

latch (shown in Fig. 6) in turn uses strong positive

feedback when the clock is high and the input is being

sampled to obtain high gain (albeit non-linear) and

output a logic '1' or '0' very quickly.

Vdd

110
S3

Figure 6: Dynamic Latch [7]

Another design technique to make the comparator even faster involves replacing the

active loads (e.g. diode connected loads) in the pre-amplifier stages with resistive loads [4].

This speed increase is due to the limit on the response time by the parasitic capacitances of

the load devices. One drawback to this resistive load (other than more power being

consumed), however, is that the voltage drop across the resistors can vary significantly

with process variations, such as resistor mismatch.

While the SAR ADC to be investigated is 14-bit, 5 of those bits will go through a flash

ADC, leaving only 9 bits (plus the two redundant bits mentioned in the previous chapter) to

the SAR ADC. The SAR ADC therefore only needs to be mid resolution, and design

techniques similar to those described here will be useful.

[11]



1.3 STATE OF THE ART
One of the earlier comparator architectures was designed by McCarroll, Sodini, and

Lee in 1988 [7]. Pre-amplifier stages were used on Vi. (which is to be compared to Vref),

after which the amplified (Vi. - Vref) was put through a dynamic latch. For the pre-amplifier

stages, three configurations were investigated depending on the required output voltage

(that would be the input to the dynamic latch): a single stage amplifier, a single stage

amplifier with a source follower, and a two stage amplifier with a source follower. The

response time was calculated for each and was plotted as a function of the output voltage.

For an 8 bit ADC it was found that the one stage pre-amplifier plus a source follower was

the optimum configuration. Architectures similar to this one are investigated in detail in

this thesis.

More recent papers on SAR ADCs exhibit successful implementations of comparators

using only the latch stage [8], or using a single preamp stage and latch stage [9]. An

alternative implementation of the 65nm design based on one of these papers will be

discussed further in the thesis. It is also useful to take a step back and compare resolution

and speed specifications achieved in recent literature, along with the choice of process to be

used. The table below compares resolution, speed, and process used in seven recent (2007

on) publications of SAR ADCs. They are organized in order of increasing resolution. Several

trends can be seen from these papers. First, speed decreases significantly when the

resolution transitions from mid-range (10 bit) to high-range (12 bit and beyond). This

follows intuitively because it takes longer to achieve higher-resolution conversion. Another

trend can be seen when comparing the two 10 bit SAR ADCs: higher speed can be obtained

by using a smaller feature size process such as the one we see below from 90nm to 65nm,

something we are trying to circumvent in this thesis (i.e. getting same speed even with a

larger process size).

[12]
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1.4 SPECIFICATIONS OF INTEREST
The three main specifications that this thesis will focus on are speed, noise, and

power. The area of the comparator is only about 4% of the total ADC area, and a small area

increase from going to 0.11pm will be negligible. Therefore, it wasn't a specification of

focus in the thesis (through hand-calculations the 0.11pm comparator area was later

estimated to be minimally different from the 65nm comparator area). Also, while it is not of

special focus in this thesis, it should be noted that offset must be overcome to get the right

bit decision.

The speed, or sample clock rate specification of the 65nm ADC is 80MHz at peak

performance, allowing for integration with the 74.24MHz standard for high definition

digital video (includes resolutions such as 720p60 and 1080i60) [14]. However, because

this particular SAR was designed by the group to be self-timed, there isn't a specific time set

for the comparator to finish making a decision, as long as the overall SAR clock rate is met.

[13]



Thus in this thesis, instead of keeping to a specific value the 65nm comparator's decision

time will be used as a speed benchmark.

In order to match the 65nm comparator noise, the specification here has been set to

71uV rms of input referred noise. Noise in a comparator is not as straightforward to model

and quantify as in most linear circuits because of the transient nature of a comparator's

operation, and thus periodic noise has been measured using the "Spectre RF" simulation

program [15].

The power dissipation specification is also determined by comparison to the one

consumed in 65nm, and has been set to 5.4mW. Power is calculated by measuring the

average current during operation and multiplying by rail-to-rail voltage, in this case 1.2V.

[14]



CHAPTER 2: CHARACTERIZATION OF 65NM
VERSUS 0.11pM PROCESS

If certain trends in the MOS devices in 65 nm and 0.11 pm processes are known, we

can exploit any benefits of 0.11 pm to obtain better performance when moving to this new

process. If there are no benefits, we can at least be aware of the challenges to come. This

thesis focuses on the following MOS parameters: transconductance (gm), switch on-

resistance (Ron), and parasitic capacitance (Cgs,Cgd).

The transconductance is closely related to the

small signal gain of an amplifier: gm*rout (shown in +

Fig. 7). Therefore, higher gm tends to point to a

steady-state higher gain in an amplifier of the same

dimensions. Of course, in applications involving Figure 7: Small-signal MOSFET model

reset switches, speed (versus gain) is of greater importance, and in this case a low on-

resistance is desired. Parasitic capacitances can limit the speed at which a decision is made

(due to 1/RC time constants) so the smaller they are the better.

[15]



2.1 TRANSCONDUCTANCE

.01-

65nm NMOS

a O11pm 1IMOS

.001

M

1I-7 1-5 1-4 001 .01

Current (A)

Figure 8: Transconductance versus curent for the four devices; W=Ism for all, L= minimum length;

Above is a plot of gm per width versus drain current per width of four transistors:

65nm NMOS, 65nm PMOS, 0.11m NMOS, and 0.11ptm PMOS. The length is the minimum

allowed by each process (0.06pim for 65nm and 0.12ptm for 0.11ptm). There are two regions

to be noted in the plot: weak and strong inversion. Weak inversion corresponds to the

region with lower current (roughly less than 2e-5A), in which the MOSFET acts much like a

BJT in that its transconductance varies linearly with current (gm-I/Vth). During the period

of weak inversion, the 65nm NMOS has the highest transconductance, although they are all

quite similar. Later, once the slope of gm becomes quadratic instead of linear (varies as the

square root of current here), the transistor is operating in strong inversion. At currents

[16]



above 1mA, the transistor comes out of saturation and the transconductance can no longer

keep increasing due to velocity saturation (however, we are not operating in this region so

it is of no concern here). In the region of strong inversion, two trends can be seen:

a) 65nm devices on average have a higher transconductance given a certain

drain current than 0.11ptm devices (e.g. for 100A drain current, 65nm

NMOS gm is 17% higher than 0.11m NMOS gm).

b) PMOS devices tend to have a lower transconductance than NMOS devices.

However, due to higher gm for a given current, some of the transistors in the

comparator, such as the input pair in stage 1, were biased in weak inversion. Therefore it is

useful to see what the transconductance is in weak inversion (zooming into the above plot

into gm for smaller bias currents) in each of the four devices. The table below shows gm/W

for a 1 pA bias current (region of weak inversion).

Tran. sconductan

per Width

These results have several implications for the comparator design port. First, the

general trends are the same as in strong inversion, i.e. 65nm has higher trasconductance

than 0.11tm, and PMOS has lower transconductance than NMOS. Why is this important?

When ported to 0.11m, the gm will decrease (given the same W), and a higher width will be

necessary to keep it the same. For instance, stage 1 of the comparator has PMOS input

transistors, so the gm of the input pair will decrease. Taking a look at the table above, we see

[17]



that gm for 65nm PMOS is actually equal (in this case, otherwise very similar) to that of

0.11pm NMOS. This means that if we were to change the inputs to NMOS, this problem

would be alleviated. The architecture in this case required a common-mode voltage of 0.25V

for the inputs and thus PMOS inputs were required, but this may be something that can be

changed in the future to provide a higher gm. While this difference doesn't seem so great in

the table above (0.02 mS versus 0.019 mS), these values correspond to a transconductance

for a unit width, so with input devices of width 576 gm biased at 3 gA, the difference in gm

becomes 1.2 mS (23 mS versus 21.8 mS). While this is still a small difference, it may prove

important in certain applications.

2.2 ON-RESISTANCE

The original comparator contains several reset switches and it is critical that these

switches fully turn on to properly reset the comparator after each decision. Hence another

parameter to consider when moving to 0.11 pm is the on-resistance of a MOS device. The

smaller the on-resistance (Ron) of switch is, the closer to ideal that switch is considered to

be.

In general, as W increases Ron decreases, while as L increases Ron increases. This

trend can be seen by taking the case where W or L is doubled. When W is doubled, the

transistor can be thought to be in parallel with itself (while it is in series with itself when L

is doubled). This means that Ron is also in parallel with itself (R = 0.5Ron) in the case of 2W,

and in series with itself (R=2Ron). Fig. 9 gives one example of this trend: Ron versus width

for an NMOS device in 0.11 pm, confirming the trend that Ron decreases with increased

width.

[18]
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Width (pm)
Figure 9: Ron versus width for 0.1 1prn NMOS device

The 0.11ptm process switches have higher Ron resistance because minimum L was

now increased (keeping W the same). While the case more often involves changing both W

and L so these results cannot be used directly, we will be able to calculate the width

required in O.11m to achieve the same Ron. This comes out to keeping the W/L ratio

roughly the same: at W= 1pm, Ron was 0.7ME for 65nm NMOS (L=60nm), while it was 1.6

Mfl for 0.11 gm (L=0.12 pm). This corresponds to a factor of 2.2 increase in Ron for a factor

of 2 decrease in W/L.

[19]



2.3 PARASITIC CAPACITANCES

In MOSFETs, parasitic capacitances exist between the gate, source, drain, and bulk

terminals. The ones of highest magnitude are most often Cgs and Cgd, and they will be of

focus here. The reason for concern when dealing with high speed circuits is that these

1 capacitances introduce more RC time constants (see equation) and

21rf, slow the circuits down.

The following table shows Cgs and Cgd for the four types of devices in saturation,

each with W=l m and minimum length (0.06ptm or 0.12[im):

65nm NOS 65m PMO 0.11m NMO 0.11m PMO

While the parasitic capacitances are almost identical for W=lpm, it is important to

note the percentage difference in Cgs: 28% increase for NMOS and 7% for PMOS. This

means that especially for NMOS devices, the change in gate capacitance will be significant.

For the purposes of the thesis, this implies that we will need to be aware of this difference

and make sure the NMOS devices (such as the reset switches) are as small as possible to

limit speed decrease in the comparator.

[20]



CHAPTER 3: 65NM COMPARATOR TOPOLOGY
ANALYSIS

This chapter will analyze the comparator design provided by Analog Devices in

65nm. The comparator has three stages. The first two stages serve as preamplifiers and

the final stage is a latch. Once basic operation and the limiting factors to speed, power and

noise are known, they can be used in optimizing the design port to 0.11pm for maximum

performance.

3.1STAGE1:INTEGRATOR
AVDO

s=54 V=00 s-75
rn p12 vps mp 11 mps
illad3 16 4 3.

s-12 3=19 s12
p4 snlpe inps

AVSAViS E AVS

3-30 mfd 1

Vipi DZ-P-91qraLb-bs.

vns D A Avn

Fiu3 AVDDn PPLY PPL

vns - AVAV33

Fiur 10: 65n Stage 1 , 2

[21]



Basic Topology and Function

The first stage of the comparator is a differential amplifier that can be seen as acting

as an integrator because the settling time period is significantly less than the load time

constant (tint << rout *Cint ). It was chosen to work as an integrator because of its higher

power efficiency in achieving the same gain target within a limited time, compared to a

traditional wide-band amplifier. While the circuit does not contain an explicit capacitor on

which to integrate, the input capacitance of the next stage acts as this capacitor. A cascode

stage is added in to increase the output resistance of the amplifier, and therefore the DC

small-signal gain gm*rout. In addition to this, a current stealing technique is applied at the

source nodes of the cascode devices. This allows for less current to flow through the load,

decreasing the headroom required and thereby decreasing the noise of the load. Current

stealing allows for only -1/8 of the bias current to flow through the loads, and a large

resistor could be used instead of active one to achieve the same gain.

Speed - gain in a given amount of time

The voltage gain was approximated to be

Gain gm,nput o tint.
Cint

To figure out why this is so, let us first look at the current flowing out of stage 1. The

output current of stage 1 is determined by the transconductance of the input pair, m', times

the differential input voltage:

[22]



.dv 0 ut
ic = C dt 9mvin

Taking the integral on both sides:

CVOne + CO = gmvindt

C. is 0 because the capacitor is initially discharged and Vin is a constant input in this case,
therefore:

9mvintint = Cvout

yin t

Because the amplifier needs to achieve a certain amount of gain to overcome offset in the

latch, in order to achieve high gain for a given capacitance, we must increase either gm or tint.

In order words, the larger the capacitance on the output, the larger either the input pair

transconductance or the integration time needs to be to achieve a certain gain.

Noise Analysis

The noise in the first stage integrator can be separated as coming from discrete

noise sources such as the input pair, cascode devices, and resistors. The noise contribution

of the input pair is greater than that of the load resistors [2], and as will be shown below,

the cascode devices also contribute negligible noise. The input pair noise of an integrator

is derived to be the following:

E[V2 ] = kT 1 4kTy
E v, = -- tint =3 gm,in 2 9m,intin

where y = ( is the noise factor [2]
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The derivation of this noise voltage comes from realizing that the input pair of the

integrator provides noise according to the noise voltage model of a MOSFET times the noise

bandwidth (NBW). The noise current of an integrator is defined as:

E[in,MOSFET] = 4kTYgm,in

In order to obtain noise voltage from this current, we divide by gm,in 2 (since

v2 g 2 R= 2) in order to obtain:
gm,in

E[ 2 14kT y

E [Vn,MOSF ET]-4y

gm,in

Next, the noise bandwidth in an integrator has been shown to be:

NBW = 1 (NBW = noise bandwidth, tint = integration time) [12]2 t tint

And therefore, the total noise voltage in the integrator (with a factor of 2 to take into

account the differential nature of the input) becomes:

E[vn2] = (4kTy-) (2) -NBW
( m

[ 4kTy
.- . (ti)]n mtint

What design intuition does this noise equation give us? The first point to note is that

the noise voltage does not depend on the integrator's capacitance. Therefore, to get

maximum speed, it makes sense to use as small a capacitor as possible (thus it makes sense

that no external integrating capacitor is added to the output). Second, the higher the

transconductance, the lower the noise voltage power will be. Finally, integration time is

inversely proportional to noise voltage, but since we have a limited total integration time

tint (not to be confused with the time constant) we don't have much room to alter this value.

[24]



Therefore, the trade-off presented by this equation is between power and speed: how much

input pair transconductance is required to achieve a certain noise given an allowed time

specification.

Moving onto the cascode devices, their noise is negligible because the noise currents

in these devices cycle through them instead of flowing out to the resistor to contribute to

the total noise voltage (see Fig. 11).

VaD From between the two transistors at node X,

rout=l/gds can be seen looking up, and 1/ gm can be

- In, seen looking down. Because, rout=l/gs is on average

X much larger than 1/ gm, the noise current of the input

transistor, ln1, travels down through the cascode
Y

transistor, finally to go through the transistor and

contribute to the overall noise voltage. In2 however,
Figure 11: Model of input and cascode
transistor on one side ofthe first stage, makes the same choice and travels up to the midpoint
including each noise current

and back down into itself. Once it travels back down

through the cascode device, In2 can't go down through the load resistor because of KCL at

node Y: if there is a current source In2 going up, none of it can travel through R. Instead it

must instead keep cycling around itself, and because of this, In2's effect can be considered

negligible.

To summarize, the key factors to look out for in the design port of stage 1 are

transconductance (maximizing it in order to minimize noise) and parasitic capacitances on

the output.
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3.2 STAGE 2: PREAMPLIFIER

SUB*

Figure 12: 65nn Stage 2

Basic Topology and Function

The second stage in this comparator is a more traditional amplifier, whose function

is to provide a bit more gain and to set up the bias voltage for the inputs to the 3rd stage.

Because the majority of gain is provided by the first stage, this stage does not require a

cascode device. The loads are realized through cross-coupled diode loads. At the beginning

of the amplification phase, the cross-coupled loads are off, because they have to be charged

up to Vgs before they can turn on and provide a load impedance.

[26]



Gain

The approach taken here to derive gain in

the second stage involves analyzing the current

gain provided by the cross-coupled devices

M1 M2 M3 M4 (shown in Fig. 13). X and Y correspond to the

x=4 y=3 y=3 X=4 relative multiplicative factors of W in each

transistor. For instance, if M2 and M3 had

Figure 13: Model of Stage 2's cross-coupled W=9=3*3, in order to fulfill the X/Y ratio in the
devices

figure, M1 and M4 would have to have W=12=4*3.

Taking a step back to calculate current gain given any X and Y:

KCL applied:

-i = i2 + i4i = i1 + i3

x
il = -

li - -i 4

x
4 "L 3

i2 ~i 3

Using the bolded equations above:

i = -i 2 ~ i4

-ii + i1
x

(x Y l1 x

x ) i x-y

[27]



For the X/Y dimensions in the figure above (dimensions in original design) the

current gain is 4, and therefore the overall gain of the stage is 4x the gain from the input

devices (gm/C*tint).

Noise Analysis

Noise in the second stage can be divided into that coming from the input pair, and

that coming from the loads.

The noise analysis for the input pair can be found similarly to that of the one in stage

1. The only difference from the one found in stage 1 is that now the noise voltage is referred

to the input and therefore we divide E[v (ti)] by the gain squared (since we are dealing

with powers).

Therefore, dividing by (Gainstage 1)2 we get:

4kTy 1
gmtint (Gainstage 1)2

Intuitively, this means that the noise voltage coming from the input pair will be

significantly lower than it was in the first stage. With the DC gain in the first stage designed

to be around 20, the noise voltage power of the input pair is 1/400th of that in the first stage.

[28]



Figure 14: Stage 2 Close-up of Cross-coupled loads

The noise coming from the loads can analyzed by first expressing a diode connected

transistor as a 1/gm resistor (in this case mn6 and mn5), and amplifying its noise current by

the current gain provided by the cross-coupled devices (mn12, mn13), 4x in this case.

4kT
vR(f) = 4kTR --

9m

IR(f) = 4kTgm

Therefore the total noise in this stage is this noise current multiplied by the current

gain:

I2 = 16kTJm

[29]
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Because the loads are not on at the beginning of the amplification phase, not all of

the noise calculated above is actually seen by the comparator.

3.3 STAGE 3: LATCH

AVgCr 

Av Sse0

Figure 15: 65nmn Stage 3

Basic Topology and Function

The regenerative latch represents the third stage of the comparator. It includes a

grounded source NMOS input pair, and cross-coupled PMOS loads. During reset, the outputs

are tied to VDD, while the gates of the input pair are tied to ground (from the previous stage),

allowing no current to flow through the stage at this time. During the decision phase, as the

inputs of the latch increase to above VTH (of the NMOS input pair), the input pair devices

turn on, discharge the output nodes, and turn on the PMOS loads, beginning regeneration.

[30]



Offset is one of the biggest limiting factors in the latch. It can be on the order of 1-5

mV, which is larger than RMS noise in most designs. In addition to this, the latch needs to

be run in over-drive by a certain amount, or else it will take a very long time to achieve a

certain logic level. The topology of the latch is largely limited by the 65nm process. Due to

the high VTH (higher than in 0.11 m) of the devices and the low 1.2 V +/-10% supply, back

to back inverters seen in many conventional latches [source] are not feasible because there

is not enough headroom and the devices will go out of saturation.

Noise Analysis

Noise in a typical regenerative latch has been derived to be the following using

stochastic differential equations [3]:

E [v] = c 2) e T  where T =

While this equation is quite complex, intuitively there are two reasons why the latch

contributes very little noise to the comparator. First, by the time the noise is referred back

to the input, the gain in the first two stages is high enough that it diminishes its magnitude.

Second, since the load devices of the second stage feed directly into the latch and they are

shorted to ground during the reset period, the input pair of the latch isn't on during this

time so its noise contribution is cut down even further.

It is important to note that offset is also an issue in comparators, and especially the

latch. For applications such as this one, however, the DC offset was considered to be able to

calibrated for afterwards, and was thus not a design consideration in this thesis.
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CHAPTER 4: DESIGN PORT
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Figure 16: 0.1.1im Comparator

In considering how to port the design of this comparator from 65nm to 0.11m, a

general methodology is first introduced. When deciding how to size a transistor from the

65nm comparator to 0.11pm, the following three steps were attempted in order:

1. Keep W/L ratio the same

2. Without changing current -

1. If speed is too low -

1. Decrease load capacitances by making switches smaller

2. If speed is high enough, but not resetting properly -

1. Make reset switches larger at cost of speed

[32]



3. If gain is too low or noise too high -

1. Increase gm of input pairs by increasing the size of devices

3. If performance still sub-par to 65nm -

1. Consider increasing the current, and therefore the power of the circuit

The port was done stage by stage, at each checkpoint measuring performance by

comparing to that of the 65nm synonymous circuits. Each stage was optimized first for

speed, then for noise and power. Speed was measured as gain observed given a certain

amount of time to settle. The input of choice here is 640 gV, determined to be one of the

hardest inputs for the comparator to decide on. "DC gain" means the maximum gain

achieved given unlimited time allowed for settling. In the charts to follow, "W/L same"

corresponds to leaving the ratio of W/L of all transistors in the stage equal to that of their

65nm counterparts, and Switches/In-pair "#W" correspond to increasing the width in the

specified transistors by a factor of #. Results are grouped as follows: stage 1 alone, stage 1

and 2 together, and finally all three stages together. Therefore, each builds on the achieved

performance of the last.
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4.1 DESIGN PORT + PERFORMANCE OF STAGE 1

Figure 17: Final Dimensions of 0.11tm Stage 1

[34]



As seen in the chart above, Stage 1 in 65nm achieves

a gain of nearly 13 in 3 0 0 ps, while the ported stage 1 when

W/L is kept the same is only 6.43 (-50% slower). In order

to increase the speed, the reset switch Width was quartered,

bringing the gain to 9.36. The change of input pair width did

not affect the gain significantly, so it was left the same.

Finally, decreasing the

> Ecascode pair width by a

factor of 1/3 increased the

gain to 13.26, higher than
Figure 18: Close-up of Switcses in
O,11pin Stage 1 stage 1 in 6Snm.

s= 120

vIP 1

s=,32

AVSS h
128/0.12

Figure 19: Close-up of Stage 1
input-pair in 0.11pim

First, running through a few hand-calculations it makes sense that quartering the

reset switches had the effect of increasing speed, because the reset switches' Cgs and Cgd

capacitances have gone down by a factor of 4, bringing the overall parasitic capacitances

down by a factor of approximately 20%. Taking the slope or gm/C to be the speed of the

decision with gm ~ 20mS, the speed increased roughly 30%. The actual % increase in speed

from 6.43 to 9.36 is -45%, and while the hand-calculated capacitances do not give the

whole picture of the speed increase, they begin to give us a clue.

Next, let us investigate why the speed did not increase when the input pair width

was doubled. One of the hypotheses from the design of the stage was that if gm was

increased, the speed would also increase (slope is gm/C). The first observation is that

doubling the width of a device does not double its gm (as would be expected given the

formula for gm in saturation is proportional to the square root of width). In fact, gm only

increased from 25.9 to 28.8 mS, an increase of roughly 10%. Despite this, given our
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integrator model of speed as gm/C, the speed should have increased at least a bit. The most

probable reason this didn't occur involves the size of the switches. As we saw in the process

characterization chapter, as the width of a transistor increases, the output resistance

decreases. Doubling the width to 1152 must have dropped the input pair's output resistance,

RDS to a level comparable to the 1/ gm that can be seen looking down into the source of the

cascode pair (see Fig. 20). At this point, some of the drain current of the input transistor

van goes back into itself as opposed to traveling down

through the cascode. This means that not all of the gm

Vi RDS=1/gDs is seen at the output, and the benefit of speed increase

0 is no longer seen. As a quick math check, gm of the

1/9m cascode device is roughly 19.2mS, meaning 1/ gm-52fl.

In comparison, RDS for W=1152 is projected to be less

than 5kil. While this is still much higher, it is much
Figure 20: Resistances looking up and
down between the input and cascode closer to 1/ gm than at W=576, where RDS-10kU.
devices of Stage 1

Finally, the fact that decreasing cascode width by 1/3 gave a 40% speed increase

should come as no surprise, because the cascode capacitance Cgd can be seen at the output.

Running the same hand-calculations as above for the case of the switches, this decrease in

cascode width corresponds to about a 30% decrease in capacitance on the output. Checking

speed as gm/C with gm-19.2mS (assuming that the change in gm was not large, based on the

small change in gm for input pair width change), the theoretical speed increase is

approximately 38%, confirming the trend.

In terms of minimizing noise, the strategy was to keep the input pair gm as large as

possible.
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The first stage's static current is set by a current source to be 1.5mA, and therefore

changes to the device sizes did not change the overall current running through them.

Because the aim in this project was not to optimize power but to match the previous spec,

this was a satisfactory result.

4.2 DESIGN PORT OF STAGE 2, PERFORMANCE OF STAGES 1 + 2

Figure 21: Final Dimensions of Stage 2 in 0.11um

In 400ps, the 65nm stages 1 and 2 simulated together achieved a gain of roughly 26.

At the same W/L ratio, the 0.11um stages could only reach a gain of roughly 17. Similarly to
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stage 1's input pair the original strategy for the input pair was to keep it as large as possible

(maximizing gm achieved was 18, in comparison to 23 seen in 65nm). However, since it is

directly connected to the output of stage 1, the input pair of stage 2 now added significant

parasitic capacitance of about 300fF slowing down the circuit. In order to alleviate the

parasitic capacitance, the inpair width of stage 2 was cut in half, increasing speed by 17%.

The switches to ground were made twice as wide as their 65nm counterparts in order to

ensure proper resetting. This did not contribute to a loss in speed because these switches

were smaller to begin with, and did not contribute as much to the overall capacitance on the

output.
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4.3 DESIGN PORT OF STAGE 3 AND PERFORMANCE OF ALL STAGES

TOGETHER

AVDD@

AVSSO

sue

Figure 22: Stage 3

With equal W/L ratio as the 65nm comparator, the speed of the 0.11ptm comparator

was 20% lower, while the noise and power were within 2% of each other. In order to match

speed the current in the latch was increased by doubling the width of the input pair. This

increased the overall power in the system by 11%.

4.4 RESULTS

"Speed" here is defined as the time it took for the output of each comparator to reach

0.6V, or the middle of the voltage range. It shows that the speed being the same, the noise in

[39]
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the 0.11um comparator was 12.8% lower while the power was 11.1% higher. Given this

trade-off between noise and power, a choice of process can be made depending on the

application involved.

Another trade-off seen is the one between speed and power as well, but given the

overall SAR system, speed was a limiting factor in the group's design whereas power ended

up less than budgeted for (10mW spec), so the increase in power was acceptable.

The following chart describes the major noise sources of the system:

As expected, the majority of noise came from the first stage's input pair, followed by

the other major components in that stage. It can also be seen that the noise contributions

by component are similar between the processes.

[40]
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CHAPTER 5: NEw ARCHITECTURE
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Figure 23: New Latch-only Architecture

Recent common comparator implementations for SAR ADCs in literature involve only

one stage: the latch. This served as motivation in this thesis to implement the comparator in

0.11 m as only one latch stage. Fig. 24 shows an implementation from a 2009 paper [8],

which was followed in this thesis.

ICLK C-ICLK

OUTN OUTP There are benefits as well as drawbacks to using

ICIK a single latch stage as opposed to three stages. Because

INP*- |-eNN there are fewer components, a latch only comparator

ICLK- will be signifiCantly lower in power and faster in

Figure 24: Implementation of Latch-Only making its decisions. However, the latch also expects
Architecture [8]
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to be of higher noise and offset (no preamplifier stages to reduce input-referred noise), and

the input is not protected from kickback charge. Offset compensation will definitely be

necessary if a latch-only architecture is used, because the amplifiers that were previously

used to amplify the input signal to beyond the offset are no longer present.

One difference in the processes that allowed for the above implementation of the

latch (as opposed to the 65nm latch) was the lower Vth in 0.11pm. Lower Vth allowed for the

stacking of an extra pair of transistors in the latch, making it a true coupled-inverter system.

OVERALL RESULTS

. .

0.11um 510ns 61.6 uV rms 6mW

As the table above shows, the new latch only comparator achieves 40% higher speed,

approximately equal input referred noise as the 65nm comparator, and 72% lower power

than the 65nm comparator. As mentioned before, however, offset in the latch will be the

limiting factor when deciding which topology to use.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis presents the design port of a three stage SAR ADC comparator from 65nm

to 0.11im, as well as a new comparator architecture in 0.11pim. The performance of the

comparator in 0.11pm (especially the latch-only architecture) shows promise that the

0.11tm process is one worth going to for this specific application. The 0.11ptm design port

confirmed a trade-off between noise and power, i.e. the correlation between more power

(e.g. higher gm) and lower overall noise, due to the noise voltage power's inverse

relationship with gm. Another trade-off was the one between power and speed - in order to

achieve the same speed at the larger process node, the comparator (latch stage) needed to

burn more power.

The decision to move to the 0.11 m node will most probably stem from a business

perspective more than a technological limitation - whether other parts of the chip in

question also benefit from being in 0.11[tm.

There are many questions left to answer in future work. What happens with

different process skews? Does the system still meet specs? Why is the noise in the latch-

only comparator not significantly higher than the one in 65nm? Is there a hidden trade-off

that has not been looked at in this thesis? In addition, mismatches in devices were not taken

into account here, so a further look into the offset of the comparator would be useful to

decide whether or not it is tolerable or requires background calibration.
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CHAPTER 7: APPENDIX
Simulations were separated into three main areas: testing for speed/accuracy,

testing for noise, and testing for power. Testing for power consumption involved taking

time averages of the instantaneous currents flowing through the devices and due to its

calculation-based nature is not featured here.

7.1 TESTING FOR SPEED/ACCURACY: HYSTERESIS ANALYSIS

The hysteresis test seen below served as the major examination tool in this thesis,

which involves switching between two inputs at a certain period (2ns here for convenience)

and taking a look at the output. This test provides dual benefit in that it checks whether the

switches in the comparator allow it to reset properly, and also lets us compare the slope

(aka speed) of the decisions.
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Figure 25: 640pV/-20ptV Hysteresis test for three comparator types

The two figures here compare the performance of the original 65nm comparator, the

direct design port in 0.11 gm, and the new simplified architecture in 0.11 m. The two sets of

inputs, 640tV/-20pV and 20mV/-160[tV were chosen to simulate the hardest sequence of

decisions the comparator would have to make, in order to test whether it resets properly

and there is no memory from the previous decision to affect the new one. For example, with

an input as high as 20mV, the comparator would regenerate very quickly to 1.2V, and so the

next input of -160pV would seem like a very subtle difference from 0 compared to 20mV. As

can be seen in both figures, the new architecture employing only a latch clearly made a

decision (increased to 1.2V or -1.2V) much more quickly than both of the other comparators.

[45]
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Figure 26: 20mV/-16OtV Hysteresis test for three comparator types
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7.2 NoisE ANALYSIS: SPECTRE RF

As mentioned before, noise in the comparator is different from steady-state noise in

most circuits due to its transient nature. Instead of linearizing a circuit about a single

operating point, comparators require a whole period to be taken into account. For this

reason, SpectreRF software was used because of its ability to provide periodic steady state

(pss) and periodic noise (pnoise) analysis. Essentially SpectreRF linearized the comparator

circuit around a period and used this period as a periodically time-varying operating point.

#14: 0.11um paa
#I$: 65nmpa

#53: 0.11'UM pas

Timepa Ints ta^ken, 0.6n for 014,#16, and 0.32 tor #$3
input was 60UV

12

4S:C>vfqrrt)1.2\

0 11 17 .3 .A . .6 7 .8 .9 1 , . 2 11. 1.4 1.~ 5 18 1.17 1.8 3.9
time, K e-9 econds

Figure 27: SpectreRF pss analysis

Fig, 27 shows the pss analysis run in order to find one period within the comparator's run

time. The original 65nm comparator, the direct design port in 0.11im, and the new

simplified architecture in 0.11im are again compared here for one period, and it is easy to
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see how much faster the simplified architecture in 0.11tm is. Fig. 29 shows the noise power

of the three circuits. The noise is being integrated with frequency, so the last point of each

plot is the actual noise power. The plots are misleading because in order to find input

referred noise we must divide the values we see in the figure by each comparator's gain.

The table on the next page shows the noise power (as read from Fig. 28), each circuit's gain,

and the ratio of noise power/gain, or input-referred noise. We see that the circuit with

lowest input-referred noise actually comes out to be the 0.11ptm design port, even though in

the figure it is the highest curve.
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Figure 28: SpectreRF pnoise analysis
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