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Abstract

There is a wealth of unanalyzed data stored in patient records that could yield insight into
a patient's cardiovascular state during surgery and causes of fluctuations in hemodynamics.
Recent work suggests that time spent outside a certain blood pressure range corresponds to
an increased risk of adverse outcomes after surgery. An analysis of blood pressures recorded
during surgery could also be tied to patient fluid responsiveness, pulse pressure variability
(PPV) can be a predictor of fluid responsiveness in surgical patients. Thus, a comparison
of physiological variables such as cardiac output (CO), total peripheral resistance (TPR),
and PPV of patients who experience adverse outcomes to those who do not could help
explain the link between adverse outcomes and intraoperative blood pressure variations.
Data from patients undergoing cardiothoracic surgery was used to investigate intraoperative
hemodynamics. Patients were separated into two groups: those who experienced adverse
outcomes within 30 days of surgery (cases) and those who did not (controls). A comparison
of blood pressure values extracted from patient data revealed that cases had higher systolic
and lower diastolic values during surgery. CO and TPR were computed from these data
but a comparison of variability for the two groups yielded no conclusive results.
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Chapter 1

Introduction

1.1 Monitoring Patient Hemodynamics

Currently, patients admitted to an Intensive Care Unit (ICU) are closely monitored by a

number of devices and tests that record and output important data regarding their phys-

iological state. These records come in multiple forms; physiological signals from bedside

monitors, records of administered fluids and medications, imaging results and other tests.

The variety of sources forces clinicians to spend time processing and interpreting all the

data, creating a 'data-overload' problem in which they are forced to recognize trends in

clinical data derived from a multitude of sources. This presents the opportunity to inte-

grate the available multi-parameter data and develop a system that can track and analyze

a patient's pathophysiologic state, concentrating all information and data analysis in one

computer. The involved signals are a collection from the hospital archives and patient bed-

side networks. Possibilities for such a system include deriving physiological variables based

on an analysis of the collected waveforms; this would have the benefit of producing more

relevant information in a concentrated source, thereby enabling physicians to make earlier

and more accurate diagnoses.

For patients undergoing surgery, such a system can include the hemodynamic variables

tracked in the operating room, and can possibly help prevent adverse outcomes after surgery.

For instance, studies have shown that blood pressure can be used to predict the likelihood of

adverse events during a patient's peri-operative period. Specifically, Aronson et al. showed

that patients whose intraoperative systolic blood pressure (SBP) varied outside the range

of 105 to 130 mm Hg were more likely to experience adverse outcomes within thirty days



of surgery [1]. Figure 1-1 illustrates a similar analysis done by Chen et al., suggesting that

SBP excursion outside a range of 75 to 145 mm Hg over a 24-hour window increases risk of

adverse outcomes for surgical patients. It is possible to explore the physiological rationale

for this difference in blood pressure values by delving into the information collected during

surgery. Ranging from records of medications and administered fluids to arterial blood

pressure (ABP) and electrocardiogram (ECG) waveforms, the data measured during surgery

allow for continuous estimation of signals that can only be measured invasively. Since

patients undergoing surgery are often already in a vulnerable state, invasive tests increase

the risk of complications after surgery. Continuous values for variables such as cardiac

output (CO), the amount of blood pumped by the heart per unit time, and Total Peripheral

Resistance (TPR) of the arterial tree, derived from the ABP signal recorded during surgery,

can reveal trends during surgery without further endangering a patient's health through

invasive measurements. Furthermore, this information allows surgeons and anesthesiologists

to make more informed decisions during the surgery and reduce the likelihood of an adverse

outcome after surgery.

145

S
B
P

75

Time (24 hrs)

Figure 1-1: Risk of adverse outcomes is proportional to the aggregate excursion outside a

certain range for SAP, depicted above as the area shaded in red [2].

1.2 Using Arterial Blood Pressure

There is a wealth of information in the patient data recorded during surgery that can

yield further insight into a patient's physiological state. However, using the ABP signal

recorded during surgery in an analysis of hemodynamics has multiple advantages. ABP is

continuously monitored using a minimally invasive procedure, providing a waveform from

which continuous estimates of CO and TPR can be obtained (to within a scale factor).

......................... ...... .... . - --- ........... - - - -------- -- - - ----- - -



Extracting CO and TPR estimates from the ABP waveform is a noninvasive procedure and

therefore safe and cost-effective. A system that processes the data recorded during surgery

could help clinicians identify trends in both monitored variables and derived variables, such

as CO and TPR. Additionally, integrating data regarding a patient's cardiovascular state

with the records of fluids administered during surgery as well as respiratory rate can provide

additional insight into a patient's cardiovascular state and may guide therapy. Thus, we

can improve monitoring of surgical patients and further explore cardiovascular dynamics by

integrating and analyzing data recorded during surgery, with the ultimate goal of reducing

adverse events during and after surgery.

1.3 Specific Aims

Currently, there are several methods of estimating CO and thus TPR from the ABP wave-

form. This work seeks to compare these methods of estimation for patients undergoing

surgery. The estimated waveforms can also help towards understanding trends in the data,

thereby supplying clinicians with more information about a patient's state. Ultimately, this

additional insight could help differentiate between patients who experience adverse events

after surgery and those who do not.

As mentioned, an analysis of the cardiovascular state of a patient undergoing surgery

includes integrating the different records kept during surgery. Because changes in hydration

status have effects on pulse pressure and thus fluid responsiveness in critically ill patients,

we also will analyze the pulse pressure time series (obtained from the ABP signal) [9].

Thus, the analysis of CO and TPR can include information noted in a separate record

from the ABP signal, such as the ventilator rate and fluids administered for a patient under

surgery. This is a step towards integrating data from separate sources in an effort to explore

cardiovascular dynamics.

The aims of this thesis are:

1. To compare and validate methods of estimation for cardiovascular variables including

Cardiac Output and Total Peripheral Resistance for patients undergoing surgery.

2. To identify trends in the estimated values for these variables.

3. To identify trends in cardiovascular dynamics related to respiration by integrating data



from the arterial blood pressure waveform with the records for respiratory frequency

and fluid administration during surgery.

1.4 Outline

This thesis is organized in five chapters. In Chapter 2, we will review the relevant elements

of cardiovascular and respiratory physiology. In Chapter 3, we describe the basis of several

algorithms for estimation of cardiac output and total peripheral resistance. Chapter 4 shows

and explains the results obtained by analyzing patient blood pressure signals to differentiate

between patients who experience adverse outcomes after surgery and those who do not.

Chapter 5 concludes this thesis with a summary of my work and an explanation of future

work.



Chapter 2

Cardiovascular and Respiratory

Physiology

2.1 Functional Anatomy of the Heart

The cardiovascular system is responsible for the transport of blood throughout the body

and thus both the delivery of oxygen and nutrients to the body's organs, and the removal

of waste and carbon dioxide from the organs. It includes the heart, which pumps blood to

the organs, and blood vessels of various sizes, which carry blood through the body.

Blood vessels fall in three main categories: arteries, veins, and capillaries. Arteries are

the largest of the three and carry blood away from the heart. They have thick walls because

they are under the highest amount of pressure of any vessel in the vasculature. The arteries

branch into smaller arterioles that feed into the capillaries, the site of gas and nutrient

exchange in the organs. The veins are thin-walled structures that store the largest amount

of blood in the cardiovascular system and carry blood back to the heart [3] . Blood vessels

impede the flow of blood through the body; the aggregate resistance of the peripheral (or

systemic) vasculature is termed the Total Peripheral Resistance (TPR).

The heart functions as two pumps, each comprising an atrium and a ventricle. The

atria are connected to the ventricles via the atrioventricular valves, which prevent blood

from flowing backwards through the heart. The right heart pumps deoxygenated blood

through the pulmonic valve into the pulmonary artery. From here, blood flows through the

pulmonic circulation of the lungs, where gas exchange occurs. The left heart pumps the



oxygenated blood from the pulmonic system through the aortic valve and into the aorta.

From the aorta, blood is directed to the body's organs through the systemic circulation.

The two pumps of the heart function in series; blood travels through the right heart and

through the pulmonary circulation to the left heart, which pumps it through the systemic

circulation before it returns to the right heart.

2.2 The Cardiac Cycle

The cardiac cycle refers to the sequence of events relating to the flow of blood through the

heart during a single heartbeat. As depicted in Figure 2-1, the cardiac cycle begins with

atrial systole, when the atria both contract. Next, the ventricles contract, increasing their

pressure; once the pressures in the ventricles exceed the pressures in the atria, the atrioven-

tricular valves (mitral and tricuspid valves) close. The ensuing phase is termed isovolumic

contraction - the ventricles continue to contract after the atrioventricular valves close, in-

creasing the pressure in the ventricles although the volume remains constant. The semilunar

valves (aortic and pulmonic valves) open when the pressures in the ventricles exceed the

pressure in the aorta (for the left ventricle) and pulmonary artery (for the right ventricle).

The pressure increases to a maximum value, creating a pressure gradient and ejecting blood

from the ventricles. At the same time, the atria are filling with blood in preparation for the

next cardiac cycle. Ventricular pressures and volumes decrease as blood leaves the cham-

bers; once pressures dip below that of the aorta and pulmonary arteries, respectively, the

semilunar valves close and the ventricles relax. During the ensuing isovolumic relaxation

phase, the pressures decrease and volumes remain constant. The atrioventricular valves

open once ventricular pressures dip below atrial pressures, commencing ventricular filling

and the last stage of the cardiac cycle.

The cardiac cycle can be separated into two parts: diastole and systole, both of which

can be extracted from the arterial blood pressure waveform. Diastole corresponds to iso-

volumetric relaxation and ventricular filling, while systole corresponds to the phase of ven-

tricular contraction, comprising isovolumic contraction and ejection. On the arterial blood

pressure waveform, the diastolic arterial blood pressure (DAP) is the minimum, roughly

the pressure at the time the aortic valve opens. The systolic arterial blood pressure (SAP)

is the maximum, occurring prior to the closing of the aortic valve.
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Figure 2-1: Pressure waveforms in the left atrium, left ventricle, and aorta corresponding
to each phase of the cardiac cycle [10].

2.3 Pressure and Volume in the Ventricles

The ventricles are composed of myocardial cells that form muscle fibers. These fibers

control the pressure and volume of the ventricle, determining the amount of blood that

can be stored during systole and diastole. Pressure in the ventricle is dependent on the

tension developed in the myocardial cells. This tension varies with the length of the fiber,

which in turn affects the volume of the ventricle. The preload, defined variably as the

end-diastolic volume (EDV) or the end-diastolic pressure (EDP), is related to the end-

diastolic length of the muscle fibers. It is possible to draw a relation between the preload

and pressure developed in the ventricle or output delivered by the ventricle during systole.

The development of pressure in the ventricle during systole is an active mechanism, as

opposed to during diastole, when the pressure increases passively with volume. As a result,

there is a different relation between pressure and volume in the ventricle during systole and

diastole. Figure 2-2 illustrates the ventricular pressure-volume curves, which represent the

compliance characteristics of the ventricle. At point 1, pressure in the ventricle is equal to

the filling, or preload, pressure. The mitral valve closes and the ventricle begins to contract

(isovolumetric contraction). Systole begins when the aortic valve opens, at point 2, after

pressure in the ventricle exceeds pressure in the aorta at the diastolic pressure (DAP). As

blood is ejected from the ventricle into the aorta, pressure in both increases to the systolic

pressure (SAP) at point 3, and then decreases as the ventricle empties. The aortic valve

.................... ....... ------- . . .............. . . .......... .... - - - -_______ --. ...........



closes at point 4, when pressure in the ventricles is equal to the aortic or afterload pressure,

and the ventricle relaxes (isovolumetric relaxation). At point 5, pressure in the ventricle is

the same as pressure in the atrium and the mitral valve opens, initiating diastole and filling

of the ventricle

300 - Pressure 300 -
(mmHg)

250 - 250 -

200 - 200 -

150 - 150 -

a Aorta
100 ()100

LV
50 50

LA
Pf '1

2
Time (sec)

100 150 200
Volume (cc)

Figure 2-2: Pressure-time (left) and pressure-volume
(see text for details) [10].

(right) relationships in the left ventricle

This relation between pressure and volume in the ventricles is known as the Frank-

Starling mechanism, and states that - within limits - the output from the heart increases

as preload increases. As noted in Figure 2-3, the Frank-Starling relationship between preload

and SV is curvilinear, showing that the compliance varies with the preload.

Stroke volumeO

Preload

Figure 2-3: The Frank-Starling relationship of the heart indicates the extent to which
fluctuations in stroke volume correspond to fluctuations in the preload (also known as
atrial or filling pressure) [11].

............................ -



2.4 Cardiac Output

The cardiac output (CO) is the rate at which blood is pumped out of either ventricle, and

is an important indicator of a patient's hemodynamic state. It is closely related to the

stroke volume (SV), the amount of blood ejected by a ventricle per heartbeat. Given that

the end-diastolic volume (EDV) is the volume in the ventricle before it contracts, and the

end-systolic volume (ESV) is the volume after contraction, then

SV = EDV - ESV (2.1)

Using heart rate, HR, one can then calculate CO using

CO=HR-SV (2.2)

For a normal adult at rest, CO is approximately 6 L/min, HR is about 70-80 beats/min

(bpm), and SV is approximately 80 mL/beat.

There are several methods of directly measuring cardiac output, including an ultrasonic

flowmeter, the Fick Principle, thermodilution, and ultrasonography. Currently, thermodilu-

tion is the method most commonly used to assess CO in clinical settings like the operating

room or intensive care units.

A flowmeter is an ultrasonic flow probe that is placed around the ascending aorta and

measures instantaneous flow in the aorta. Stroke volume is then the flow waveform

integrated over the cardiac cycle, and as previously discussed, CO is the product of

heart rate and stroke volume, or the time-average of the flowmeter waveform. This

technique requires opening of the chest in order to place a flowmeter around the aorta,

rendering it an invasive procedure that is most often used in animal experiments rather

than human patients.

The Fick Principle uses the idea of mass balance applied to oxygen consumption. The

amount of oxygen consumed per unit time is equal to the difference of oxygen con-

centration in the arteries and oxygen concentration in the veins, multiplied by CO.

Thus



02 consumed per unit time
arterial 102] - mixed venous [02

However, a blood sample from the pulmonary artery is required in order to measure

mixed-venous oxygen content, making this an invasive technique as well.

Thermodilution also involves the pulmonary artery: a bolus of cold saline is injected in

the the pulmonary artery and the temperature is measured downstream in order to

obtain the rate of change in temperature. Cardiac output can be obtained from the

integral of the temperature waveform. As mentioned, thermodilution is the method

most commonly used in clinical settings to obtain CO, despite being highly invasive.

Ultrasonography measures the velocity of blood through the aorta. If A is the cross

sectional area of the aorta, T is the length of a cardiac cycle, and v(t) is the blood

flow velocity, then:

SV = A v(t)dt (2.4)
JT

and

CO= HR- A v(t)dt (2.5)

Impedance cardiography is also known as electrical impedance plethysmography, and

uses sensors on the neck and chest to detect the resistive properties of blood flow

in the thorax. This information is then used to calculate values for hemodynamics.

Although noninvasive, this method requires expensive equipment.

M-mode scanning or 4D Imaging is another noninvasive method of calculating cardiac

output. However, as with impedance cardiography, it requires expensive equipment.

Most of the current methods of measuring cardiac output, although reasonably accurate,

have several disadvantages. Many require invasive procedures that pose a risk to patients,

especially those who are already critically ill, while noninvasive methods are generally ex-

pensive. Others require expensive capital equipment or access to an expert technician or

clinician. Furthermore, these methods do not allow for continuous measurement of CO. In

Chapter 3, we will discuss how CO can be derived from the ABP waveform.



2.5 Fluid Responsiveness

Changes in total blood volume (TBV), although a small percentage of overall fluid in the

body, can have a large influence on ABP and CO. Often, critically ill patients are loaded

with fluids in order to increase SV, thus increasing CO and ABP. When fluid is adminis-

tered, filling pressure increases. If the patient already operates on the flat portion of the

Frank-Starling curve (see Figure 2-3), then SV might not increase by much. At higher filling

pressures, the Frank-Starling curve levels off, meaning that changes in the preload corre-

spond to minimal changes in SV. Further increasing the preload will increase the stress on

the heart, which can be very detrimental in patients with weak hearts. Fluid responsiveness

is then defined as the amount of change in SV as a result of changes in preload.

Patients undergoing surgery are often placed on mechanical ventilation, causing periodic

respiratory shifts in SV due to ventilator-induced changes in intra-thoracic pressure. The

magnitude of the shifts in SV can then be used to asses fluid responsiveness. During

inspiration, positive pressure ventilation decreases the pressure gradient for blood returning

to the heart (venous return) thus decreasing right-ventricular preload. Inspiration also

increases right-ventricular afterload by increasing intrathoracic pressure. As a result, during

inspiration, filling pressure, and thus SV, decreases. During exhalation, filling pressure

increases, thus increasing stroke volume. Pulse pressure (PP) is the difference between

SAP and DAP and a surrogate for SV, as will be made clear in Chapter 3. Michard and

Teboul [12] have shown that PP variability (PPV) over each respiratory cycle is a predictor

of fluid responsiveness in patients. Patients with a low PPV were found to respond poorly

to volume expansion (administration of fluids), whereas patients with a higher PPV were

more responsive to volume expansion [12]. The authors defined PPV as

PPma - PPmi
PPV = 100% X PPmax -PPmin (2.6)

(PPmax + PPmin)/2

where PPmax and PPmin are the maximum and minimum PP over a single respiratory cycle,

as shown in the figure below.
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Figure 2-4: Respiratory changes in airway pressure (top) and arterial pressure (bottom) for
a mechanically ventilated patient. PP is at a maximum as the end of inspiration, while the
minimum PP is recorded during expiration [12].

2.6 Medications Administered During Surgery

What follows is a list of the drugs administered to the patients studied during surgery. These

drugs are given in response to a patient's physiological state and often affect intraoperative

hemodynamics, causing shifts in ABP, CO, and TPR. As a result, it is helpful to take

these medications into account in order to gain a more thorough understanding of these

physiological variables.

Cefazolin is used to treat bacterial infections.

Dexmedetomidine is a sedative that depresses cardiovascular responses in the perioper-

ative period. It is used as a short-term sedative and slightly decreases sympathetic

tone, thus reducing heart rate and blood pressure.

Esmolol inhibits the effects of epinephrine and norepinephrine, decreasing contractility of

the heart and heart rate. It is characterized by a rapid onset and short duration.

Etomidate is a short-acting (5-10 minutes) anesthetic that allows for conscious sedation

and is less likely to cause a drop in blood pressure compared to other general anes-



thetics.

Fentanyl relieves pain, falling under the opiate class of analgesics. Its effects are charac-

terized by a rapid onset and short duration.

Heparin is an anticoagulant that helps prevent blood clots from forming.

Hydrocortisone raises blood pressure by increasing the vasculature's sensitivity to epinephrine

and norepinephrine.

Lydocaine is a local anesthetic characterized by a rapid onset. It prevents pain by blocking

the propagation of pain signals and is sometimes associated with hypotension when

combined with general anesthesia.

Midazolam is used in conjunction with Fentanyl before anesthesia. It also has a short

duration and can cause hypotension if given too fast.

Nitroglycerine relaxes blood vessels in the peripheral vasculature, reducing the strain on

the heart to pump oxygen to the body. Dilation of the blood vessels lowers total

peripheral resistance and arterial blood pressure.

Pancuronium is a muscle relaxant used with anesthesia to aid mechanical ventilation dur-

ing intubation. It slightly reduces activity of the vagus nerve, moderately increasing

heart rate and thus blood pressure.

Phenylephrine is a vasoconstrictor commonly used as a nasal decongestant because it

constricts the nasal blood vessels and decreases blood flow to the sinus vessels. In

surgery, it is administered to increase blood pressure without affecting heart rate or

contractility.

Propofol is an anesthetic that inhibits sympathetic stimulation, thus inducing vasodilation

and leading to low blood pressure.

Protamine is used in cardiopulmonary bypass surgery to rapidly reverse the anticoagulant

effects of heparin. The interaction between protamine and heparin has been shown

to cause increased pressure in the pulmonary artery and decreased cardiac output,

arterial pressure, heart rate and vascular resistance.



Succinycholine is a short-term paralytic and muscle relaxant, often administered during

surgery to aid with tracheal intubation.

Tranexamic Acid reduces blood loss by inhibiting the destruction of fibrin, an important

component of blood clots. Specifically, it inhibits the production of plasmin, which

degrades fibrin and thus prevents the formation of blood clots.

Vancomycin kills bacteria and is a drug of last resort in order to prevent the development

of resistant bacteria.



Chapter 3

Models of Cardiovascular

Dynamics

Models of the cardiovascular system can help interpret experimental results or clinical data

and can be used to estimate physiological variables that cannot or are usually not measured

directly. In this sense, they might help provide a more comprehensive understanding of

hemodynamics. In this chapter, we go through the models used in our CO analysis of

surgical patients. There are currently a number of models in use, some of which can be

framed as electrical circuit analogs, modeling components of the vasculature as resistive

and capacitive elements. In Section 3.1, we introduce the notion of a lumped-parameter

model of the circulation. In Section 3.2, we describe the well-known Windkessel model,

which underlies several of the methods for CO estimation from the arterial blood pressure

waveform (so called pulse-contour methods). In Section 3.3, we review several pulse-contour

methods for CO.

Table 3.1: Cardiovascular variables and the corresponding electric circuit analogs. Adapted
from [10].

Cardiovascular Variable Electrical Variable
Pressure, P Voltage, v
Flow, Q Current, i
Volume, V Charge, q
Resistance, R = AP/Q Resistance, R = Av/i
Capacitance, C = AV/AP Capacitance, C = Aq/Av



3.1 Lumped-Parameter Model

As blood flows through the body, blood vessels pose resistance to the flow. Equation 3.1

describes the relationship between pressure, P, in the vessel and blood flow, Q, through

the vessel, assuming that the vessel wall is rigid and the flow is steady (i.e. non-pulsatile),

laminar, and blood is a Newtonian fluid.

AP = QR (3.1)

Thus, resistance is a constant that describes the linear relationship between the pressure

difference along the vessel, AP, and flow through the vessel. This constant of proportion-

ality, the resistance R, is dependent on the radius, r, of the vessel, the viscosity of blood,

p, in the vessel, and the length, 1, of the vessel:

R 81 4 (3.2)
7rr

There are many more of these high-resistance paths in parallel, so the effective resis-

tance could be small. In the end, the arterioles contribute the most to resistance (because

they individually have high resistance, and there aren't enough of them for the parallel

combination to counter that). The arterioles also are the most controllable part of the

resistance. The factor of r4 in the denominator suggests that the smaller vessels, including

the arterioles and capillaries, contribute most to the overall resistance of the vasculature.

Units of resistance, assuming pressure is in mmHg and flow is measured in mL/sec, are

expressed as Peripheral Resistance Units, or PRU. A pressure drop of 80 mmHg and a CO

of 5 L/min correspond to a resistance of roughly 1 PRU (mm Hg - sec/ mL).

This model of resistance is dependent on several assumptions regarding the fluid in the

vessel and the geometry of the tube and thus does not strictly apply in most vessels of the

body. Although these assumptions do not always hold, this model nevertheless serves as

a reasonable approximation for the relationship between pressure and flow in the smaller

vessels, where most of the cardiovascular system's resistance resides.

Because vessel walls stretch or constrict in response to pressure, vessels have a capacitive

quality. If transmural pressure is applied across a vessel, the vessel walls stretch to increase

volume and store more blood. As Equation 3.3 demonstrates, the larger the amount of



volume that can be stored in response to a unit step in transmural pressure, the larger the

capacitance, C. Certain vessels will stretch more than others depending on the types of

cells lining their walls. Vessel walls are composed of an endothelial lining, elastin fibers,

collagen fibers, and smooth muscle. Elastin fibers are the most elastic of these four, whereas

collagen fibers are the stiffest. The venous system accommodates a much larger fraction

of total blood volume than the arterial bed. Furthermore, its pressure-volume relation-

ship is approximately linear over a wide range of distending pressures, and its slope (the

incremental compliance) is much larger than that of the arterial tree [6].

C = (3.3)
AP

Figure 3-1 shows the general Lumped-Parameter Model of the peripheral circulation.

Blood is pumped from the heart, which is not shown, but which provides the flow, Q. Both

the veins and arteries have resistive and capacitive components although, as mentioned

before, the resistance of the arterioles dominates the total resistance of the vasculature, and

the capacitance of the veins dominates the total capacitance of the vasculature. Table 3.2

shows typical values for the parameters of the model in Figure 3-1.

Q
- Pa Pv Pf

Ra Rv

a Cv

Figure 3-1: Lumped Parameter model of the cardiovascular system, where Q is blood flow,
Pa is the arterial transmural pressure, P, is the venous transmural pressure, Pf is the right
atrial (filling) pressure, Ca is the total capacitance of the arteries, C, is the total capacitance
of the veins, Ra is the TPR, and R, is the resistance to venous flow [10].

3.2 The Windkessel Model

The Windkessel Model simplifies the more general model of the peripheral circulation shown

in Figure 3-1. Since the venous capacitance, Co, is so much larger than the arterial capaci-

tance Ca, fluctuations in venous pressure Po, are negligible compared to the fluctuations in



Table 3.2: Representative Values for the Lumped Parameter model, adapted from [10].

Variable Value

Ca 2 mL/mmHg
CV 100 mL/mmHg
Ra 1 mmHg/mL/sec
Rv 0.06 mmHg/mL/sec

arterial pressure. Thus, it seems justified to replace the venous side of the model by a fixed

voltage, representing the filling pressure Pf. However, Pf is essentially 0 mm Hg under

normal operating conditions of the cardiovascular system, and so is the pressure outside a

large portion of the arterial vessels, which allows us to connect the arterial resistance, Ra,

and the arterial compliance, Ca to the same potential, namely ground. Thus, we arrive

at the circuit model of Figure 3-2, which is the Windkessel Model, usually attributed to

Otto Frank [4, 16] who published on it in 1899. The model describes the lumped resistive

and capacitive properties of the arterial tree. Flow is usually modeled as an impulse train,

representing pulsatile ejection of blood from the heart into the arteries (see Figure 3-2).

q(t)

III t
q(t) t R C P(t)

C-iiT -

Figure 3-2: Windkessel model of the cardiovascular system. The heart is represented as a
current source generating a periodic impulse train, as shown on the left. R and C are the
lumped resistive and capacitive components of the arteries, and P(t) is the arterial pressure,
where P, and Pd are SAP and DAP, respectively [17].

In this case, MAP (Pm) is the time-averaged ABP over a single cardiac cycle of period

Stroke volume, SV, is given by

Pm = P(t)dt

SV = Ca -PP

where

(3.4)

(3.5)

(3.6)



This results in a convenient expression for CO, since CO = HR -SV and thus,

CO = Ca - PP - HR (3.7)

As PP and HR can both be directly measured from the ABP waveform, CO can be tracked

on a beat-by-beat basis to within a scale factor (Ca) from the the ABP waveform. A single

calibration measurement of CO would allow us to determine the constant of proportionality

and thus anchor the estimates to provide absolute estimates of CO. Usually it is preferable

to have more than one calibration measurement to guard against noise and to provide

more robust estimates of CO. In the absence of calibration measurements, Equation 3.7

can still be used to track relative changes in CO (to within the validity of the Windkessel

approximation). From an estimate of CO and the available ABP waveform, one can compute

an estimate of TPR according to Equation 3.1, namely

Pm
TPR PM (3.8)

where it is assumed that venous pressure is zero. An alternative method of obtaining CO

using the Windkessel method utilizes the RC time constant, T of the system:

Pm Pm Pm39
CO P - Ca - P = Ca - P (3.9)

R RCa I

If CO is calibrated, TPR estimates according to Equation 3.8 will also provide absolute

estimates of peripheral resistance. Many CO and TPR estimation algorithms are derived

from variants of the simple Windkessel model. We will describe some of them briefly in the

next section.

3.3 Pulse-Contour Methods

The following methods can be used to estimate CO from ABP recordings and were used in

our analysis of patient hemodynamics.

The Liljestrand and Zander model [8, 17] modifies the capacitor representing arterial

compliance in the Windkessel model. Because arterial compliance varies with pressure - the

arteries become stiffer and less compliant as pressure increases - the capacitor is modeled



as a nonlinear compliance. The corresponding CO equation is taken to be

Thus,
k

CO = .PP -IIR (3.10)
Ps + Pd

Here, the constant of proportionality, k, is no longer Ca, but a constant with the units of

mL/(mm Hg)2 . In our analysis, we tested two different values of k such that the uncali-

brated estimates of CO were
Pm -P PaCO = P P HR (3.11)

and

Co = P - Pd R (3.12)
Pm + Pd

Parlikar [14] describes a method that extracts the beat-to-beat change in onset pressure

AP, the time-average pressure over each beat P, R and C from each beat. These values

are then used to estimate CO for each beat n:

A Pn Pn
Con = Cn( A + ) (3.13)

where the time constant rn is estimated from the ABP signal, Tn is the period of each heart

beat, and the compliance, Cn can be determined from calibration measurements. Neglecting

the term %i yields an alternative estimate, where Pm can approximate APR:

AP
Con = Cn(, Tn"n) (3.14)

The method defined by Herd [7, 13] defines the pulse pressure for each beat, PPn, as

PPn = O'(Pm,n - Pd,n) (3.15)

where Pm,n and Pd,n are respectively the mean and diastolic pressures for the nth beat. An

uncalibrated COn estimate is then

Con = Pm,n Pdn (3.16)

In clinical settings, MAP is a signal that is most easily accessible, as it is often recorded

and displayed on a bedside monitor. As a result, CO estimates that replace PP with MAP



are more convenient in some cases. Equation 3.8 shows that if peripheral resistance is

constant, MAP is a scaled estimator of CO. However, in the clinical setting, peripheral

resistance is only constant in the case that a patient's vasculature is maximally constricted

and thus the resistance can change no more. In this case, an uncalibrated estimate of CO

is simply

CO = Pm (3.17)

In the next chapter, we will present the results of applying these estimation algorithms

to the data from patients undergoing cardiothoracic surgery.
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Chapter 4

Results

In this chapter, we review the results of our explorations. In Section 4.1, we describe the

patient data available for our analysis. In Section 4.2, we explain the rationale behind our

initial analysis of the data extracted directly from the ABP waveforms recorded during

surgery. Section 4.3 further investigates the results of the exploratory analysis described in

the previous section by applying the CO estimators described in Chapter 3 to the data to

obtain CO and TPR estimates. Finally, Section 4.4 documents the initial steps of analyzing

hemodynamics by using PPV and fluid administration during surgery.

4.1 Patient Data

Patient data were obtained from Beth Israel Deaconess Medical Center's Department of

Anesthesia, Critical Care and Pain Medicine, where they were recorded during cardiotho-

racic surgery and streamed to a Philips-designed database server. Patient signals were

sampled at 125 Hz with 10-bit amplitude resolution. Records had an average length of 4.5

hours, including about 1.5 hours of non-pulsatile ABP data corresponding to when patients

were placed on bypass. Our analysis only involved pre- and post-bypass ABP signals, begin-

ning when the patient was placed on anesthesia. The main pathologies included Coronary

Artery Disease (CAD), aortic stenosis, and mitral regurgitation for 10 females and 19 males

undergoing Coronary Artery Bypass Graft (CABG) and/or valve replacement procedures.

The average age was 68 years for both males and females, with a range of 40 to 84 for

women and 43 to 89 for men. Surgical records included medication and fluids administered

during surgery and were used in the analysis. Figure 4-1 shows the pulse pressure waveform



of a particular patient. Labeled in the figure are also information from the surgical record,

including medications. Signals recorded during surgery usually included arterial blood pres-

sure, pulmonary artery and central venous pressure measurements, three ECG projections,

the pulse plethysmogram, and carbon dioxide level - Figure 4-2 gives a snapshot of the

signals recorded during surgery.

7:27 500 pg Fentanyl 11:37, 11:38, 11:39
150 pg Propofol 1 pg Bolus Milrlnone
10 pg Pancuronium 11:41

8:30 2 pg Cefaolinpg/kg/m 
IV-Epinephrne

8:30 pg efazlin.1 pg/kg/mn IV-Norepinephrine
8:35 1000 pg Tranexamic Acid 11:42

0.06 p~g/kg/min IV-Epnephrine

8:45 250 pg Fentanyl .375 pg/kg/m IV-Mllrinone
11:45

9:05 250 pg Fentanyl .06 pg/kg/m IV-Epinephrine
9:06 23 k-units IV-Bolus Heparin 12:010.05 pg/kg/mm

IV-Norepinephrine
12:48 0.08 pin/mein

e_.06 pk IV-Norepnephrne

0 0. 0.4 0.8 0.8 1 1.2 1.4 1.8 18 2 2.2 2.4 2.6 280 3 3.2 3.4 3.8 3.8 4 4.2 4.4 4.8 4.8 5 5.2 5.4

Tm (h-)

7:39 EndoTrach 8:02 PA catheter 8:49 Sternotomny 12:01 Bypass End
tube placed inserted

Figure 4-1: Example of patient data recorded during surgery, showing the pulse pressure
waveform in terms of time (in hours) for a patient undergoing surgery. The signal is labeled
with additional data from the surgical record, including medications administered during
surgery and procedures, such as placement of the endotracheal tube to intubate the pa-
tient (noted as 'EndoTrach tube placed'), insertion of a catheter in the pulmonary artery
(noted as 'PA catheter inserted'), first major chest incision and opening of the chest wall
('Sternotomy'), and the start and end of bypass. ABP is not shown during bypass.

Patients were sorted into two groups; those who experienced an adverse outcome within

30 days of surgery (cases) and those who did not (controls). There were 13 patients in the

group of cases and 16 in the control group. After completion of the surgery, the data were

retrieved and converted into an open-source Waveform Database (WFDB) format using a

custom-made conversion script [5]. An open-source software algorithm was applied to detect

the onset of each ABP wavelet [18, 19]. The algorithm is based on the curve length of the

ABP waveform and aims to identify the beginning of the systolic upstroke for each ABP

wavelet. Records were reviewed for obvious artifacts in the raw data and possible misplaced

annotations. These artifacts were given a specific annotation (see Figure 4-3) and were not



Figure 4-2: An annotated sample of signals collected from the patient database including
pulmonary artery pressure (PAP), central venous pressure (CVP), arterial blood pressure
(ABP), several ECG projections (I, II, AVR), the pulse plethysmogram (Pleth), and carbon
dioxide (CO 2 ) level waveforms. [N] is the annotation for a normal beat and is marked at
the onset of each wavelet. The window corresponds to a 10-second segment of a patients
record - the start and end times for this segment are displayed at the bottom corners.

Figure 4-3: The same record as Figure 4-2 but with a larger time interval to show the artifact
in more detail (a 30-second time window). Artifacts were given a special annotation [42]
and were not included in the analysis of the record.

.... .... ....... .......... .I ........ .- - - - ---------------



included in further data analysis. Using these annotations, beat-by-beat numerics of SAP,

MAP, DAP, and HR were extracted from the ABP waveform and stored with a time stamp

marking the onset of each pulse. The extracted signals were all passed through a 5-point

median filter before being analyzed.

4.2 Exploratory Data Analysis

An initial analysis focused on the data directly extracted from the ABP waveform in order

to validate findings in the literature and justify a more in-depth investigation. Aronson et

al. [1] identified excursion limits for SAP during CABG surgery, suggesting that a histogram

of the SAP extracted from our surgical records could help differentiate between cases and

controls. Because we also had values for MAP and DAP, this analysis was extended to those

signals as well. We calculated the cumulative distribution function (CDF) for SAP, MAP,

and DAP as seen in Figures 4-4 and 4-5. For a given ABP, the CDF shows the amount

of time spent below this level. Time is expressed as a percentage of the total number of

(annotated) heartbeats recorded during surgery. Thus, the CDF revealed the distribution

of SAP, MAP, and DAP over the time spent under anesthesia, not including bypass.

Figure 4-4 compares the CDFs for SAP and MAP for all patients. The graph of the

SAP data (Figure 4-4a) shows that over half of the cases clustered on the right side of

the group. Close inspection of the individual traces reveals that patients who experienced

adverse outcomes had systolic values above 120 mmHg for over 50% of time spent under

anesthesia. The distribution for MAP (Figure 4-4b) illustrates that at the hypotensive end

of the distributions, there is a clear difference between cases and controls, suggesting that

cases tended to be more hypotensive during surgery. This difference is even more obvious

in Figure 4-5, where the DAP for patients who experienced adverse outcomes tends to be

lower than for patients in the control group. Specifically, over 50% of the values recorded

for DAP for patients in the case group are below 70 mmHg. Thus, in accordance with the

literature, our initial results demonstrated that patients who experienced adverse outcomes

spent more time outside a range of 70-120 mmHg than patients in the control group [1].

Furthermore, our results supported the finding that hypotension during bypass surgery can

be an indicator of adverse events [15]. In summary, the review of the CDF for SAP, MAP,

and DAP, yielded encouraging initial results and prompted a more in-depth analysis of the
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Figure 4-4: Cumulative distribution function for (a) SAP and (b) MAP in terms of percent
heartbeats spent below a threshold pressure. Patients who experienced major adverse events
(cases) are in red; control patients are in blue.
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data extracted from the intraoperative ABP signals.

0-9

0.8 -

0.7 -

a06 --

0.4 -

0.3

0.2 -

0.1

0
0 20 40 60 70 80 100 120 140 160 180 200

mm Hg

Figure 4-5: Cumulative distribution function for DAP in terms of percent heartbeats spent
below a threshold value. Patients who experienced major adverse events (cases) are in red;
control patients are in blue. The threshold pressure of 70 mmHg is marked by the vertical
line; over 50% of diastolic values for cases were below this threshold whereas the diastolic
values for those in the control group were generally above this value.

4.3 Cardiac Output and Total Peripheral Resistance Estima-

tors

To further investigate possible differences in hemodynamics for the two patient groups,

rough estimates for CO and TPR were calculated from the patient data using CO = HR x PP

and TPR M AP This estimate is derived from the Windkessel Model using Equations 3.7

and 3.6. Figure 4-6 shows this time series along with the time series of other hemodynamic

variables for two representative patients (one from each group). Comparing the continuous

signals for TPR, CO, and PP alongside the extracted signals for SAP, DAP, and HR helped

visualize when certain factors were more influential. For instance, in Figure 4-6a, the pre-

bypass CO waveform follows the PP waveform almost to the time of bypass, when HR rises

and noticeably increases CO. Similarly, for Figure 4-6b, the variability of the PP throughout
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Figure 4-6: From bottom to top: HR, SAP, DAP, PP, CO, and TPR plots versus time for
(a) a representative patient in the control group and (b) a representative patient in the case
group during cardiothoracic surgery. The red signals in the bottom two plots of each figure
are the unfiltered signals as they were extracted from the ABP data. The blue segments
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surgery correspondingly affects the variability of the CO signal. Although these estimates

were helpful in visualizing the signals, they yielded no further insight in distinguishing

patients in the two groups from each other.

As discussed in Chapter 3, there are many methods for estimating CO from an ABP

waveform. We used these methods to obtain alternative (uncalibrated) estimates of CO.

These CO estimators are summarized in Table 4.1, and a comparison of these methods for

two representative patients from our database is visualized in Figure 4-7. Unfortunately,

CO values taken during surgery (using thermodilution) were not recorded, so the estimates

could not be calibrated. In order to compare the dynamic variation in these estimates,

we subtracted the mean and divided by the standard deviation for each estimate, yielding

signals centered at zero. The comparison of estimators in Figure 4-7 showed that they

produced very similar trends for CO. Because our estimates were uncalibrated, we could

only compare CO variability as opposed to absolute values for each patient, and thus were

unable to glean further information that could help differentiate patients in the two groups

from each other or provide insight into the difference between blood pressure values for

patients in the two groups.

Table 4.1: Summary of CO estimators (not calibrated).

Method CO Estimate

Parlikar et al. [14] + MAPT

Herd HR (MAP - DAP)

Liljestrand & Zander HR. SAP-DAPMAP+DAP

Liljestrand & Zander II HR MAP-DAP
SAP+DAP

Rough Estimate (MAP) HR MAP

Windkessel Estimate (PP) HR PP

Windkessel Estimate (T) MAP

As part of the comparative analysis of CO estimators, TPR was derived from the CO

estimates using TPR = MAP. The purpose of comparing the obtained TPR signal was

twofold; it was part of the initial investigation into patient hemodynamics during surgery,

and served as a way to assess possible uses for CO estimators. Figure 4-8 gives a comparison

of TPR estimators for a representative patient from each group. As was the case for CO, our

estimates were uncalibrated, preventing comparison of values between patients. To compare
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Figure 4-8: Comparison of TPR derived from CO estimates for (a) a patient in the control
group and (b) a patient in the case group. Each TPR estimate was derived from the
corresponding CO estimate in Figure 4-7.
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estimators, we subtracted out the mean and divided each by its standard deviation but noted

no substantial difference in the estimators.

Initially, it seemed that there was more variability in the hemodynamics for patients who

experienced adverse outcomes after surgery. Using the CO estimate derived by Parlikar et

al. [14] to estimate CO and then derive TPR, we compared the normalized variability,

defined as the standard deviation divided by the mean, for pre-bypass and post-bypass

hemodynamics for each patient. Figure 4-9 shows the comparison, illustrating that there was

neither a difference in variability between the two groups nor in pre-bypass and post-bypass

segments of surgery. However, although the data acquired in the CO and TPR estimator

analysis ultimately did not help differentiate between patients in the two groups, having

those signals visible during surgery could help connect certain events, such as procedures,

or the administration of drugs and fluids, with changes in CO and TPR.

TPR before surgery TPRar sugery

0 0.5 1 1.5 2 0 0.5 1 1.5 2
CO bere surgery CO after surgery
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Figure 4-9: Comparison of normalized variability in (from bottom to top) SAP, MAP, CO,
and TPR for each patient's (a) pre-bypass and (b) post-bypass segments. Patients who
experienced major adverse events (cases) are in red; control patients are in blue.
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4.4 Pulse Pressure Variability

An analysis of CO, and thus SV, can also aid in understanding other physiological features.

For instance, Chapter 2 discussed the use of pulse pressure variability (PPV) in determining

fluid responsiveness in mechanically ventilated patients. Thus, we can integrate our anal-

ysis of the data derived from the ABP waveform with other information collected during

surgery, such as fluids administered for volume expansion. Patients who experienced ad-

verse outcomes after surgery might respond differently to volume expansion. PPV has been

suggested as a predictor of fluid responsiveness [12]. Therefore, an analysis of PPV and fluid

administration during surgery could provide information differentiating the control group

from the group of cases.
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Figure 4-10: Pulse pressure time series displayed as a sample-and-hold waveform.

Pulse pressure variability is obtained from the pulse pressure time series. The original

ABP signal recorded during surgery was sampled at 125 Hz to get the beat-by-beat numerics

for SAP, MAP, DAP, and HR. Taking the difference between the extracted SAP and DAP

signals gave a PP time series sampled at 125 Hz. We resampled the PP time series at 3 Hz

since PP variations occur at respiratory frequencies. The subsequent PP waveform was a

sample-and-hold waveform in which the length of each step was equal to the length of the



corresponding heartbeat (see Figure 4-10). As described in Chapter 2, PPV is calculated

from the maximum and minimum values for PP over each respiratory cycle. Thus, it

is necessary to first find the respiration frequency. Although patients were mechanically

ventilated, we did not have access to the respiration waveforms, making it necessary to

extract the respiration frequency from the PP (or other) time series. The respiration rate

was found by taking the power spectral density (PSD) of the PP time series and analyzing

PP fluctuations in the frequency domain. Figure 4-11 shows the PSD of the PP time

series, with the DC value (PP mean) taken out. According to the surgery notes, respiration

frequency was always set to a value between 8 and 12 breaths per minute, so a high-pass

Butterworth filter was applied to the PP time series in order to focus on frequencies from

0.1 to 0.3 Hz (corresponding to a range of 6-18 breaths per minute). The next step in this

analysis would be to obtain respiration frequency by detecting the dominant peak in this

frequency range and normalizing it by the area under the PSD (or the sum of the squares

of the PP time series). PPV is then calculated by applying a sliding window the length of

the respiratory period to the PP waveform, extracting PPmax and PPmin for each iteration

and using Equation 2.6 to calculate PPV for each window.
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Figure 4-11: PSD of the PP time series shown in Figure 4-10. The peak corresponding
to the respiratory frequency should be in the range of 0.1-0.3 Hz, corresponding to 6-18
breaths per minute.
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Further analysis of PPV could involve annotating the PP time series waveform with the

data for fluid administration to identify shifts in PP caused by volume expansion. Tying

this information in with the values obtained for PPV would not only integrate data from a

variety of sources in the OR (drug record, anesthesiology record, blood pressure) but also

provide surgeons and anesthesiologists with useful information about a patient's state.



Chapter 5

Conclusions and Future Work

5.1 Summary

In this thesis, we have investigated possible differentiators between patients who experienced

adverse outcomes after cardiothoracic surgery and those who did not. We analyzed the

hemodynamics of 30 patients in order to gain further insight into blood pressure variability

during surgery. Our exploratory analysis on the signals extracted directly from patient

ABP data during surgery revealed a difference in the systolic and diastolic blood pressure

signals between patients in the group of cases and patients in the control group. However, a

comparative analysis of CO and TPR, using the estimators described in Chapter 3, yielded

no clues to this difference. We concluded by documenting the initial steps taken towards

analyzing patient PPV in order to investigate fluid responsiveness. The next section details

where a continuation of that process could lead.

5.2 Future Work

Patient Data Set Much of the work behind this exploratory research was in integrating

the data from multiple sources, limiting the number of patients analyzed. In partic-

ular, a lot of time of time was spent extracting the medication information from the

surgery reports and displaying them alongside the hemodynamic data along a com-

mon time axis. A more extensive analysis would involve a larger and more diverse

group, and could possibly show more definitive trends. Furthermore, the addition of

more data could reveal trends for certain groups within the data set.



Cardiac Output and Total Peripheral Resistance Further analysis can be done by

calibrating the CO estimates, allowing direct comparison of CO for patients in the

two groups. Because the thermodilution measurements taken during surgery were not

recorded, we were unable to do this, instead focusing on the normalized variability of

CO and TPR for patients in the two groups. However, using patient records in which

this information is saved would allow for a direct comparison of values for CO and

thus TPR, possibly yielding further insight in our analysis of patient hemodynamics.

Pulse Pressure Variability Because we did not complete our assessment of PPV, future

work would continue the process to calculate the PPV and identify possible trends or

differences between the two patient groups. The analysis would be enhanced by the

fact that we have records of fluids administered during surgery, allowing an investi-

gation of fluid responsiveness in patients undergoing cardiothoracic surgery. By using

PPV as a lens to examine fluid responsiveness, we could tie in this exploration with

the CO and TPR data, leading to a more complete study of the hemodynamics in

these patients.
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