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New Bounds for Restricted Isometry Constants
T. Tony Cai, Lie Wang, and Guangwu Xu

Abstract—This paper discusses new bounds for restricted isom-
etry constants in compressed sensing. Let� be an ��� real matrix
and � be a positive integer with � � �. One of the main results of
this paper shows that if the restricted isometry constant �� of �
satisfies

�� � �����

then �-sparse signals are guaranteed to be recovered exactly via
�� minimization when no noise is present and �-sparse signals
can be estimated stably in the noisy case. It is also shown that the
bound cannot be substantially improved. An explicit example is
constructed in which �� �

���

����
� ���, but it is impossible to

recover certain �-sparse signals.

Index Terms—Compressed sensing, � minimization, restricted
isometry property, sparse signal recovery.

I. INTRODUCTION

C OMPRESSED sensing aims to recover high-dimensional
sparse signals based on considerably fewer linear mea-

surements. Formally one considers the following model:

(1)

where the matrix (with ) and is
a vector of measurement errors. The goal is to reconstruct the
unknown signal based on and . A remarkable fact
is that can be recovered exactly in the noiseless case under
suitable conditions, provided that the signal is sparse.

A naïve approach for solving this problem is to consider
minimization where the goal is to find the sparsest solution in the
feasible set of possible solutions. However, this is NP hard and
thus is computationally infeasible. It is then natural to consider
the method of minimization which can be viewed as a convex
relaxation of minimization. The minimization method in
this context is

subject to (2)
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where is a bounded set determined by the noise structure. For
example, in the noiseless case and is the feasible set
of the noise in the case of bounded error. This method has been
successfully used as an effective way for reconstructing a sparse
signal in many settings. See, e.g., [6]–[9], [11], [13], [2], [3].

One of the most commonly used frameworks for sparse re-
covery via minimization is the Restricted Isometry Property
(RIP) introduced by Candès and Tao [7]. The RIP essentially
requires that every subset of columns of with certain cardi-
nality approximately behaves like an orthonormal system. A
vector is -sparse if , where

is the support of . For an ma-
trix and an integer , the -restricted isometry
constant is the smallest constant such that

(3)

for every -sparse vector . If , the -restricted
orthogonality constant , is the smallest number that sat-
isfies

(4)

for all and such that and are -sparse and -sparse re-
spectively, and have disjoint supports. For notational simplicity,
we shall write for and for hereafter.

It has been shown that minimization can recover a sparse
signal with a small or zero error under various conditions on
and . For example, the condition
was used in Candès and Tao [7], in
Candès et al. [6], and in Candès and Tao
[9]. In [4], Caiet al. proved that stable recovery can be achieved
when .1 In a recent paper, Cai et al. [3]
further improve the condition to .

It is important to note that the RIP conditions are difficult
to verify for a given matrix . A widely used technique for
avoiding checking the RIP directly is to generate the matrix

randomly and to show that the resulting random matrix
satisfies the RIP with high probability using the well-known
Johnson–Lindenstrauss Lemma. See, for example, Baraniuk,
et al. [1]. This is typically done for conditions involving only
the restricted isometry constant . Attention has been focused
on as it is obviously necessary to have for model
identifiability. In a recent paper, Davies and Gribonval [10]
constructed examples which showed that if , exact
recovery of certain -sparse signal can fail in the noiseless
case. On the other hand, sufficient conditions on has been
given. For example, is used by Candès [5] and

by Foucart and Lai [14]. The results given in

1For a positive real number �� � and � are understood as � and
� .
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Cai et al. [3] implies that is a sufficient condition
for sparse signal recovery.

Among the conditions of the form , the most natural
and desirable condition for recovering a -sparse signal is ar-
guably

for some quantity .
The purpose of this paper is to establish, to the best of our

knowledge, the first such condition on . To be more specific,
we show that under the condition

(5)

-sparse signals are guaranteed to be recovered exactly via
minimization when no noise is present and -sparse signals can
be estimated stably in the noisy case. Although we are mainly
interested in recovering sparse signals, the results can be ex-
tended to the general setting where the true signal is not neces-
sarily -sparse.

It is also shown in the present paper that the bound (5) cannot
be substantially improved. An upper bound for is also given.
An explicit example is constructed in which ,
but it is impossible to recover certain -sparse signals.

Our analysis is simple and elementary. The main ingredients
in proving the new RIP conditions are the norm inequality for

and , and the square root lifting inequality for the restricted
orthogonality constant . Let . A direct consequence
of the Cauchy-Schwartz inequality is that .
Our norm inequality for and gives an upper bound for the
quantity , namely

(6)

This is an inequality of its own interest. The square root lifting
inequality is a result we developed in [3] which states that if

and are positive integers, then

(7)

Indeed we derive a more general result on the RIP and obtain
(5) as a special case.

The rest of the paper is organized as follows. In Section II,
after some basic notations and definitions are introduced, the
square root lifting inequality and the norm inequality for and

are discussed. These inequalities are the main technical tools
which enable us to make finer analysis of the sparse recovery
problem. Our new RIP bounds are presented in Section III. In
Section IV, upper bounds for the RIP constants are given.

II. PRELIMINARIES AND SOME INEQUALITIES

We begin by introducing basic notations and definitions re-
lated to the RIP. We also include two important inequalities
needed for the later sections.

For a vector , we shall denote by the
vector with all but the largest entries (in absolute value) set to
zero and define , the vector with the
largest entries (in absolute value) set to zero. We use the standard
notation to denote the -norm of the
vector . We shall also treat a vector as a function

by assigning .
For a subset of , we use to denote the sub-

matrix obtained by taking the columns of according to the
indices in . If with support , then

The following monotone properties can be easily checked

(8)

(9)

Candès and Tao [7] showed that the constants and are
related by the following inequalities

(10)

A. Square Root Lifting Inequality

The following properties for and , developed by Cai, Xu
and Zhang in [4], have been especially useful in producing sim-
plified recovery conditions

(11)

It follows from (11) that for any positive integer , we have
. This fact was further generalized by Cai,

Wang and Xu in [3] to the following square root lifting in-
equality.

Lemma 2.1 (Square Root Lifting Inequality): For any
and positive integers such that is an integer

(12)

It is interesting to note that some useful properties of the re-
stricted isometry constant can be established by the square root
lifting inequality. For example, for any positive integer

if is even

if is odd



4390 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010

B. Norm Inequality for and

In the last part of this section, we will develop a useful in-
equality for achieving finer conversion between -norm and

-norm.
Let . A direct consequence of the

Cauchy-Schwartz inequality is that

and the equality hold if and only if .
The next result provides a sharp upper bound for the quantity

. This norm inequality plays a major role in the
subsequent analysis of the RIP conditions.

Proposition 2.1: For any

The equality is attained if and only if ,
or for some positive integer and satisfies

for some and
for .

Proof: It is obvious that the result holds when the absolute
values of all coordinates are equal. Without loss of generality,
we now assume that and not all
are equal. Let

Note that for any

This implies that when is decreasing in ;
otherwise is increasing in . Therefore, if we fix and

, when achieves its maximum, must be of the form
that and for some

. Now

Treat this as a function of for

By taking the derivative, it is easy to see that

Now, since , we have

We can also see that the above inequality becomes an equality
if and only if and .

Remark 2.1: A direct consequence of Proposition 2.1 is that
for any

III. NEW RIP BOUNDS OF COMPRESSED SENSING MATRICES

In this section, we consider new RIP conditions for sparse
signal recovery. However, the results can be easily extended to
general signals with error bounds involved with , as
discussed in [3], [4].

Suppose

with . Denote the solution of the following mini-
mization problem:

subject to (13)

Theorem 3.1: Suppose is -sparse. Let be positive
integers such that and . Let

Then under the condition

the minimizer defined in (13) satisfies

In particular, in the noiseless case where minimiza-
tion recovers exactly.

Proof: Let . For any subset ,
we define

where denotes the indicator function of the set , i.e.,
if and 0 if . Rearranging the indices if

necessary, we assume
.

Let and let be the support of . The
following fact, which is based on the minimality of , has been
widely used, see [3], [6], [13].
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Note that and both have elements,
so we have

We shall show that this implies that

In fact

Partition into the following sets:

Then it follows from Proposition 2.1 that

Now

Note that

Also the next relation

implies

Putting them together we get2

Remark 3.1: Different choices of and can result in dif-
ferent conditions. Here we list several of them which are of cer-
tain interest.3

Remark 3.2: It should be noted that when , we can
set . In fact, this can be observed by taking and
noting for , in the
proof of Theorem 3.1.

2If � � �, then the theorem is trivially true. So here, we assume that
� �� �.

3Here we assume that the the fraction multiple of � are integers. Otherwise,
we have to use the ceiling notation.
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The following is our main result of the paper. It is the conse-
quence of Theorem 3.1 and the square root lifting inequality.

Theorem 3.2: Let with . Suppose is
-sparse with . Then under the condition

the constrained minimizer given in (13) satisfies

In particular, in the noiseless case recovers exactly.
To the best of our knowledge, this seems to be the first result

for sparse recovery with conditions that only involve .
Proof: We will present the proof for the case

in this section. This is the case that can be treated in a concise
way and for which the proof also conveys the main ideas. A
complete proof for the general case is given in the Appendix.

In Theorem 3.1, set and . Let

Then under the condition

we have

Using the square root lifting inequality, we get

In this case

Remark 3.3: In the proof of Theorem 3.2, we used a weaker
form of estimation in the last line. The purpose is to make the
result consistent with the general case which will be treated in
the Appendix.

For the special case of , we actually have a
slightly better error bound, that is

For simplicity, we have focused on recovering -sparse sig-
nals in the present paper. When is not -sparse, minimiza-
tion can also recover with accuracy if has good -term ap-
proximation, i.e., is small. Similar to [2], [4], this
result can be extended to the general setting.

Theorem 3.3: Let with . Suppose

for some . Then the constrained minimizer given in
(13) satisfies

We now consider stable recovery of -sparse signals with
error in a different bounded set. Candès and Tao [9] treated the
sparse signal recovery in the Gaussian noise case by solving

with and referred the so-
lution as the Dantzig Selector. The following result shows that
the condition is also sufficient when the error is in
the bounded set .

Theorem 3.4: Consider the model (1) with satisfying
. Suppose is -sparse and is the minimizer

Then

provided .
The proof of this theorem can be easily obtained based on a
minor modification of the proof of Theorem 3.1.

IV. UPPER BOUNDS OF

We have established the sufficient condition

for sparse recovery in the previous section. It is interesting to
know the limit of possible improvement within this framework.
In this section, we shall show that this bound cannot be sub-
stantially improved. An explicitly example is constructed in
which , but it is impossible to recover certain

-sparse signals. Therefore, the bound for cannot go beyond
0.5 in general in order to guarantee stable recovery of -sparse
signals. In the special case of and
so the upper and lower bounds on the RIP are very close in this
case.

This question was considered for the case of . In [3],
among a family of recovery conditions, it is shown that
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is sufficient for reconstructing -sparse signals. On the other
hand, the results of Davies and Gribonval [10] indicate that

is likely the upper bound for .

Theorem 4.1: Let be a positive integer. Then there exists
a matrix with the restricted isometry constant

, and two nonzero -sparse vectors and with
disjoint supports such that

Remark 4.1: This result implies that the model (1) is not iden-
tifiable in general under the condition and, therefore,
not all -sparse signals can be recovered exactly in the noiseless
case. In the noisy case, it is easy to see that Theorem 3.2 fails
because no estimator can be close to both and when the
noisy level is sufficiently small.

Proof: Let be a matrix such that each diagonal
element of is 1 and each off diagonal element equals .
Then it is easy to see that is a positive-semidefinite matrix
with rank .

Note that the symmetric matrix can be decomposed as
where is a matrix with rank .

More precisely, since has two distinct eigenvalues and
0, with the multiplicities of and 1 respectively, there is
an orthogonal matrix such that

Define as

. . .

Let with . Then it can be verified
that

. . .

The characteristic polynomial of is

This shows that for

Since the rank of is , there exists some such
that and . Suppose are given by

and

Then both and are -sparse vectors but .
This means the model is not identifiable within the class of

-sparse signals.

APPENDIX A
COMPLETION OF THE PROOF OF THEOREM 3.2

In Theorem 3.1, let , and

Then under the condition , we have

By the square root lifting inequality

Denote and let

then

Since is increasing when and

decreasing when .
Let be the integer such that .

Now we choose specifically as follows:

if
if

By the definition of we get immediately that
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It can be easily verified that .
From this fact we get for

A direct calculation shows that

In order to estimate for , we note from the remark
of Theorem 3.1 that in these cases and . So

These yield

With the above relation, we can also get

The theorem is proved.
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