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On Trees and Logs

Abstract

In this paper we critically examine the main workhorse model in asset pricing theory, the
Lucas (1978) tree model (LT-Model), extended to include heterogeneous agents and multiple
goods, and contrast it to the benchmark model in financial equilibrium theory, the real assets
model (RA-Model). Households in the LT-Model trade goods together with claims to Lucas
trees (exogenous stochastic dividend streams specified in terms of a particular good) and long-
lived, zero-net-supply real bonds, and are endowed with share portfolios. The RA-Model is
quite similar to the LT-Model except that the only claims traded there are zero-net-supply
assets paying out in terms of commodity bundles (real assets) and households’ endowments
are in terms of commodity bundles as well. At the outset, one would expect the two models to
deliver similar implications since the L'T-Model can be transformed into a special case of the
RA-Model. We demonstrate that this is simply not correct: results obtained in the context
of the LT-Model can be strikingly different from those in the RA-Model. Indeed, specializing
households’ preferences to be additively separable (over time) as well as log-linear, we show
that for a large set of initial portfolios the LT-Model — even with potentially complete financial
markets — admits a peculiar financial equilibrium (PFE) in which there is no trade on the bond
market after the initial period, while the stock market is completely degenerate, in the sense
that all stocks offer exactly the same investment opportunity — and yet, allocation is Pareto
optimal. We then thoroughly investigate why the LT-Model is so much at variance with the
RA-Model, and also completely characterize the properties of the set of PFE, which turn out
to be the only kind of equilibria occurring in this model. We also find that when a PFE exists,
either (i) it is unique, or (ii) there is a continuum of equilibria: in fact, every Pareto optimal
allocation is supported as a PFE. Finally, we show that most of our results continue to hold
true in the presence of various types of restrictions on transactions in financial markets. Port-
folio constraints however may give rise other types of equilibria, in addition to PFE. While our
analysis is carried out in the framework of the traditional two-period Arrow-Debreu-McKenzie
pure exchange model with uncertainty (encompassing, in particular, many types of contingent
commodities), we show that most of our results hold for the analogous continuous-time mar-
tingale model of asset pricing.

JEL Classifications: D50, GO0, G12

Keywords: Lucas tree model, Equilibrium theory, Peculiar financial equilibrium, Nonunique-
ness of equilibria, Portfolio constraints



1. Introduction

One of the most commonly employed models in asset pricing theory is the Lucas [15] asset-
market tree economy. Investment opportunities in this economy are represented by claims to
exogenously specified stochastic dividend streams paid out by firms (Lucas trees) and long-lived
real bonds. Households trade in goods and shares of trees or, as we will call them, stocks and
bonds so as to maximize their expected lifetime utility defined over intertemporal consumption.
Initial endowments of the households are in terms of portfolios of shares of stocks and bonds. By
imposing clearing in spot goods and asset markets, one obtains an environment for determining

equilibrium asset prices.

In this paper we critically examine the Lucas tree model (LT-Model) extended to include
heterogeneous agents and multiple goods. Dividend streams of the trees are specified in terms of
a particular good; different trees pay out in different goods. (In fact, our results are easily extended
to cover trees which pay out in a variety of goods, as described at the end of Section 2 below.) We
weigh equilibrium implications of the LT-Model against those of the benchmark real assets model
(RA-Model) in financial equilibrium theory, in which (i) there is no production (and therefore there
are no firms); (ii) households diversify risk by trading IOU’s whose promised returns are specified
in terms of commodity bundles (real assets); and (iii) initial endowments are also commodity
bundles. At the outset, one would expect the two models to deliver similar implications since the
LT-Model can be transformed into a special case of the RA-Model. Consequently, the wide array
of equilibrium results developed in the context of the RA-Model should then readily apply to
the LT-Model. It turns out that this is simply not correct: the LT-Model has certain embedded
structure that makes it significantly different from the RA-Model, and part of our goal is to
highlight this structure and the implications it may lead to.

In particular, specializing households’ preferences to be additively separable (over time) as
well as log-linear, we show that for a large set of initial portfolios the LT-Model — even with
potentially complete financial markets — admits a peculiar financial equilibrium (PFE) in which
all stocks but one are redundant. Put differently, even though returns to the trees — one can think
of these as the net output flows of firms involved in production of different commodities — are
generally unrelated, goods prices always adjust to make the yields (returns in value terms) from
traded claims to the trees perfectly correlated. This result is in sharp contrast to a fundamental
implication of the RA-Model (see, in particular, Magill and Shafer [17] for the case of potentially
complete financial markets, and Duffie and Shafer [10], as refined by Bottazzi [3], for the case of
intrinsically incomplete financial markets): under mild regularity conditions (satisfied in the LT-

Model), the matrix of yields on the stocks has full column rank generically in initial endowments



(i.e., except for a closed, measure-zero subset of endowments). Furthermore, while in the real asset
economy households typically must trade in all assets to achieve equilibrium, in our Lucas tree
economy trading in bonds only occurs at the initial date, and the desired objective from trading
in stocks can always be achieved by means of a single, fixed portfolio of stocks (for example,

consisting of just a single stock).

It then follows that since there are necessarily fewer non-redundant assets in equilibrium than
there are states of the world, financial markets are always incomplete. In the RA-Model, when
financial markets are incomplete, for given household preferences and asset returns, but for a
generic subset of initial endowments, equilibrium allocations are never Pareto optimal (as can be
argued, for example, along the lines of Geanakoplos, Magill, Quinzii and Dreze [11]). Strikingly,
in the LT-Model, PFE allocations are always Pareto optimal. Also, for a large subset of initial
endowments, this peculiar financial equilibrium in our model exists in general, while existence is

only generic in the RA-Model (again see Magill-Shafer and Duffie-Shafer, as refined by Bottazzi).

The very peculiar characteristics of equilibria in our economy bring to the fore an important
structural difference between the LT- and RA-Models. One of the key features driving our puzzling
implications is the specification of endowments. While in the LT-Model, endowments are specified
in terms of shares of stocks and bonds, in the RA-Model endowments are specified in terms of
commodities. If in addition to portfolios of shares, households in our model were endowed with

bundles of commodities, equilibrium would typically no longer be of the peculiar kind.

It is not unrealistic, however, to have endowments specified in terms of shares of assets. And,
in fact, this specification may lead to a number of new results in equilibrium theory. In particular,
equilibrium theorists have usually assumed that endowments are nonnegative. And while a non-
negativity assumption is certainly very defensible in a model with commodity endowments, there
is nothing contradictory in dropping this assumption in a model with share endowments, especially
when there are no restrictions on asset trade. In our model we allow for short initial positions
in some assets. Our log-linear utility specification best highlights one of the implications of this
additional degree of freedom. It is a standard result in microeconomics that in a pure-distribution
economy with (nonnegative) commodity endowments and log-linear utility, competitive equilib-
rium is always unique. In contrast, in our model we can find share endowments for which this
is no longer true. In fact, we can show that there may even be a continuum of equilibria, all
of the peculiar type, and supporting all of the Pareto set. The subset of initial portfolios for
which this can occur is of a smaller dimension than the space of all initial portfolios, so getting a
continuum of equilibria is atypical, but it is nonetheless a distinct theoretical possibility. We fully

characterize the errant subset. The proposition about nonuniqueness does not require that there



be multiple goods in the economy, it encompasses the one-good case as well.

We then explore the robustness of our results. In particular, we investigate whether the
peculiar financial equilibria that we exhibit survive various types of restrictions on transactions
in financial markets. We find that for a large class of portfolio constraints, our implications are
robust. For example, if households are unconstrained in their bond trades and unconstrained in
trading at least one stock (but face arbitrary portfolio constraints on the remaining stocks), the
PFE still occur. This is because, in contrast to well-explored single good models with portfolio
constraints, there are other markets which are open in addition to asset markets: spot goods
markets. So, it is possible to replicate the unconstrained equilibrium allocation by trading in one

stock, bonds and goods, thus fully circumventing portfolio constraints.

Finally, we investigate whether there are other (or ordinary) financial equilibria (OFE), apart
from the peculiar ones, in our model. At first blush it appears as if this problem should be very
similar to the problem of establishing the possibility of sunspot equilibria as in Cass and Shell [6].
Indeed, a natural transformation of the units of the quantities of goods in our model reveals that it
is essentially deterministic in the sense that (in the transformed units) the aggregate endowment
of each commodity in each date-event is always unity. Then, all PFE in the transformed economy
can be identified with the nonsunspot equilibria of Cass-Shell, and the remaining equilibria — OFE
— with their sunspot equilibria. It turns out, however, that this suggestive parallel is illusory:
the only FE are PFE, whereas, in contrast, in the leading example of the benchmark model of
incomplete financial markets (but with asset returns specified in value, i.e., nominal rather than
real terms) there is typically a continuum of sunspot equilibria (Cass [4]). On the other hand,
even in the presence of portfolio constraints under which (some of) the PFE survive, there may
or may not also be OFE: this depends on the nature and scope of the constraints, as we illustrate

by example.

Most of the above results have their analogues in continuous time. There, equilibria in the
model are peculiar in the sense that, for arbitrary stochastic processes representing dividends paid
by the trees, the volatility matrix of securities in the investment opportunity set of the agents
is always degenerate. Continuous time offers additional tractability over the original two-period
model: we are able to parameterize stochastic processes for the state prices and stochastic weight-
ing for a representative agent in the economy. We feel that this extension may be particularly
useful for a further investigation of the effects of portfolio constraints on asset prices and goods

allocations in our model.

Closely related to our work is the analysis by Zapatero [19], who uncovers a financial equilib-

rium of the peculiar variety in the context of a two-country two-good model of asset prices and



exchange rates. In fact, it was Zapatero’s results which led us to thinking about our trees and
logs model. In the same vein is the earlier work of Cole and Obstfeld [7] , who also document
occurrence of something like a PFE in an equilibrium international model. Also related is the
strand of literature investigating the special structure of preferences belonging to the linear risk
tolerance class (see Magill and Quinzii [16], Chapter 3, and the references contained therein). In
the context of a one-good model, it has been shown that “effective” market completeness, and
hence Pareto optimality obtains in an incomplete financial market when households’ preferences

display linear risk tolerance with the same coefficient of marginal risk tolerance.

The remainder of the paper is organized as follows. Section 2 describes the economy. Section 3
characterizes the set of equilibria and investigates its properties. Section 4 contains an extension
in continuous time. Section 5 outlines a major avenue for future research, while two Appendices

contain all proofs.

2. The Economic Environment

Most of our basic framework is very standard in the Finance literature. There are two periods,
today and tomorrow, labeled (when useful) ¢ = 0,1 (= T'). Uncertainty tomorrow is represented
by future states of the world, labeled w = 1,2,...,Q < 0o, so that it is also natural to represent
today as the present state of the world, labeled w = 0. In our only major departure from the
common conventions in asset pricing theory (but the common convention in financial equilibrium

theory), we assume here that there are many goods in each state, labeled g = 1,2,...,G < 0.

Production is described by exogenous stochastic streams of output of each type of good, §9(w),
all g, all w, what in Finance have traditionally been viewed as dividend streams from stocks, but
more recently as real returns from Lucas trees. The main difference here is that our trees or — as
we will usually refer to them — stocks correspond one-to-one with the goods, and are accordingly
also labeled g = 1,2, ..., G. Quantities of stocks are denoted s, all g, all ¢, and are by definition

each in initial positive net supply of one unit.

Stocks are the sole source of goods in the economy, as well as one type of investment oppor-
tunity. The only other type of investment opportunity is long-lived real bonds,' each of whose
promised returns is also specified in terms of a single good, by definition one unit of that good in
each state. The bonds are labeled g = 1,2, ..., G < G — where returns from bond g are specified

in units of good ¢ = § — and are in zero net supply. Their quantities are denoted b*9, all g, all

LOur particular specification of the alternative available investments to stocks is chosen primarily for expositional
convenience. In fact, our results generalize immediately to any real (Economics) or derivative (Finance) assets —
as long as they are in zero net supply.



t. Even though the returns on bonds are nonstochastic (and specified equal one unit of particular

goods), later on it will be useful to denote them by the abstract notation 69(w), all g, all w.

Households are the consumer-investors in this economy, and are labeled h =1,2,..., H < co.
Each household is endowed with an initial portfolio of assets (b7, s9), and trades on a spot market
for goods and assets at spot 0, and then again, after the future state of the world w > 0 has
been realized, on a spot market for goods at spot w. Short sale of stocks (as well as borrowing) is
permitted. Purchase, and therefore also consumption of goods is denoted ci(w), all g, all w, and
the terminal portfolio (b,ll, s,ll), while spot goods, bond, and stock prices are denoted p?(w), all g,
all w,qg ,all g, and ¢?, all g, respectively. Both consumption of goods and spot goods prices are

always assumed to be strictly positive.

Each household evaluates its actions according to a von Neumann-Morgenstern utility function

over present and prospective future consumption

un(cn) = Y m(w)on(en(0), en(w)),

w>0

where m(w) > 0, w > 0, with > _,m(w) = 1, represent common prior probabilities, and
vy R?ﬁ — R represents the household’s two-period certainty utility function. Expected utility
is assumed to satisfy textbook regularity, monotonicity, and convexity assumptions, in particu-
lar those (minimally) consistent with additively separable log-linear certainty utility: vy is C2,
differentiably strictly increasing, and differentiably strictly concave, and satisfies the boundary

condition, for every (c¥,c}/) > 0,
cd{(ch,c) € RZZ s up(ch, cp) > vp(cy, e )} € R
Later on we will specialize to log-linear utility

vp(cn(0), cp(w)) = Z 0429 log ¢ (0) + B Z 04,119 log ¢ (w),
9 9

so that

up(cp) = Z agg log ¢} (0) + Z 7(w) B Z afllg log ¢} (w),
g g

w>0

with a;? > 0, all g, and Y oy = 1, all £, and 3, > 0.

Since one of our primary concerns will be with the relationship between equilibrium allocation
and Pareto optimality, for the most part we will concentrate on the situation where there are
potentially complete financial markets, that is, where G + G=0 (so that 2 < 2G). However, our
main results do not depend on this assumption, and are equally true for the case where G + G <

Q, so that there are intrinsically incomplete financial markets — as well as, obviously, the case



where G+ G > €, so that there are necessarily redundant assets. Notice that when assets provide,
effectively — as they do in this economy — both initial endowments (of goods) and investment
opportunities, having “necessarily redundant assets” (in the conventional sense) is not immaterial;

such “redundancy” typically enlarges the set of possible initial endowments.

For certain purposes we will also concentrate on what we will refer to as the leading example,
where Q =3, G = 2, G =1, and H = 2, the smallest dimensional case with more than one good
in which a bond is required in order to provide potentially complete financial markets. This is
purely for expositional purposes, where there is no especial insight gained by introducing more

generality.

Incidentally, it is well worth stressing that the whole of our main results is still valid when,
instead of there being trees paying off in terms of distinct goods, described by §9(w) > 0, all w,
there are actually firms (perhaps hybrid trees), labeled f = 1,2,..., F < oo, paying off in terms
of distinct bundles of goods, described, say, by

(69(w)y?, all g), all w,

provided only that

Zy}gc =7r9>0, al g,
f

(so that total resources are strictly positive) and, without any loss of generality,
rank[ngc, all f, all g] = F <G.

Under this interpretation, Yy = {(yfc, all g)} can be viewed as a typical firm’s (single point)
production set,? and {69(w), all g}, w > 0, as goods-specific multiplicative aggregate uncertainty
— covering the standard case of purely multiplicative aggregate uncertainty, where 69 (w) = d(w),

all g, w > 0. Then, without a doubt, the yields
D (@) (w)yh, all w
g

represent a typical firm’s dividend stream (in terms, say, of some appropriate units of account).

We will appeal to this generalization during the course of the following analysis; in fact,

the sequencing of this development is partly dictated by a desire to encompass this simple but

nonetheless important, interesting extension.?

20f course, when some good is an input for some firm, additional restrictions on initial portfolios may be required
in order to guarantee, for instance, that households have positive initial endowments of at least some commodities.
3In fact, aside from issues concerning the assumptions required to guarantee existence of equilibrium, Ry can be



Finally, we again emphasize that — except for the assumption of many goods — this model,
including log-linear utility, is a standard workhorse in Finance, even more so when there are

intrinsically incomplete financial markets, or institutionally imposed portfolio restrictions.

3. Characterization of Equilibrium

3.1. Preliminaries

3.1.1. Notation

We adopt the obvious convention for forming vectors (and, similarly, matrices) from indexed
scalars or vectors: simply suppress the common index, and write the corresponding set of indexed
scalars or vectors in their natural order. Thus, for instance,

p(w) = (p?(w), all g) and p = (p(w), all w), while

ch(w) = (cl(w), all g), ¢, = (cp(w), all w), and ¢ = (¢, all h).
Also, modifying the standard convention in mathematics that € R™ is an n-dimensional column
vector, we will treat price (e.g., p(w)) and price-like (e.g., o) vectors as rows rather than columns

of their elements.

3.1.2. Financial Equilibrium

From each household’s viewpoint, the returns from an asset are simply a vector of goods — albeit a
particular, possibly a very special vector of goods — and their initial portfolio (of assets) represents
their initial endowment (of goods). For this reason it is useful to begin by formulating the concept
of financial equilibrium (FE) in terms of the real asset equivalents of bonds and stocks, initial
endowments, and net changes in portfolio holdings. Such a general formulation also highlights
the differences between the LT-model and the RA-model, and facilitates comparing properties of

their equilibria. Let

G
wor || "o L)
0 G-G

taken to be an arbitrary closed, convex set, in which case the typical firm should choose

rf(w) = arg max p?(w)d? (w)rf, all w.
! T ERy zg: !
A slight further possible extension is to assume that the typical firm’s production set depends on the date (though

not on the event).



and

G

As(w) = | 39 (w) G
0 .

be the (G x G)- and (G x G)-dimensional matrices representing the goods returns from bonds and

stocks, respectively, so that

en(w) = [Ap(w)As(w)] (b, 55)

is the initial endowment of household h in state w. Also let

2p = (b,lZ — bg) and zg = (s,ll — 3%)

be the net change in the portfolio holdings of household h. Then, (p,c,q, 2) is a FE if

e households optimize, i.e., given (p,q) (and A = [A(w), all w] = [[Ap(w)As(w)], all w],

according with our convention), for every h, (cp, ;) is an optimal solution to the problem

(H) maximize,, ., un(cp) with multipliers
subject to p(0)(cn(0) —en(0)) + gz, =0 An(0)
and P (@) — en()) — p)A@)m = 0,0 >0, Ay(w)

and

e spot goods and asset markets clear, i.e.,
(M) > (cp, —ep) =0, and
h
Z Zh = 0.
h

For the purpose of presenting and interpreting our main results concerning the structure of
FE, it is necessary to introduce two auxiliary concepts: first, the concept of a certainty equilibrium
(CE) — which is the Walrasian equilibrium in a related two-period, pure-distribution economy
that we will refer to as the certainty economy (see Cass-Shell, pp. 207-8) — and second, the device

for relating FE to CE, the concept of a puzzling or peculiar financial equilibrium (PFE).

3.1.3. Certainty Equilibrium

Consider the two-period, pure-distribution economy without uncertainty for which utility func-
tions, initial endowments, and consumption for each household are vy, €, = (Eg,é}l), and ¢, =
(62,6#), respectively, and goods prices (on overall goods markets in period 0) are p = (p°,p"). In
such a certainty economy, (p,¢) is a CE (otherwise known as a Walrasian, competitive, or general

equilibrium) if



e households optimize, i.e., given p, for every h, ¢ is the optimal solution to the problem

(H) maximizez, vp(cp) with multiplier
subject to  p(¢p —e€p) =0 An

and

e overall goods markets clear, i.e.,

(M) (ch — &) = 0.

h

It will be convenient, when analyzing existence of FE, to have a means of referring to the set

of certainty endowments for which CE exists. So, given total resources 7 = (7%, 7') = 1, let

E={ec (RQG)H : Zéh =7 and there is a CE}.
h

Note that here there is a major departure from the mainstream Walrasian tradition: we consider all
conceivable certainty endowments, and, specifically, do not require that they lie in each household’s

consumption set.

3.1.4. Peculiar Financial Equilibrium

Our first main result concerns the particular kind of FE we refer to as PFE in an economy in

which (as in the original economy, the economy described in Section 2)

en(w) = [Ap(w)Ag(w)] (b9, s2), all w, all h, (3.1)

but (in sharp contrast to the original economy)

69(w) >0, all §, and 69 (w) =1, all g, all w, (3.2)

that is, Ap(w) is essentially unrestricted while Ag(w) = I. The crucial implication of the second

assumption is that, in this economy, total resources, denoted r, are stationary across states
r=[r(w), all w] = [As(w)1, all w] = 1.

It is then straightforward to apply this result to the original economy with log-linear utility,

through a simple transformation of the units of goods.

When Ag(w) =1, all w, a FE is a PFE if



(i) irrelevancy: zp, = —bY, all h, i.e., households completely liquidate their initial portfolio of
bonds;

(ii) degeneracy: rank [p(w)As(w), w > 0] = rank [p(w),w > 0] = 1, i.e., households are
completely indifferent to which (equally valued) terminal portfolio of stocks they hold; and yet

(iii) optimality: rank [\, all h] =1, i.e., the goods allocation is Pareto optimal.

3.2. Existence

The key feature of a PFE which permits a simple characterization is that, effectively, the spot
market budget constraints in a FE collapse to the Walrasian budget constraint in a CE with

certainty endowments given by the formulas

en = (en(0), Z;Oﬂ'(w)eh(w))
= (Do (O)A (O] (4, 55). 3 7()[Ap(w)A(w)](6). 55), all b (33)

w>0

This will become obvious when we detail the proof of Proposition 1 in Appendix A. So now let

Ea={e €E : for some (b9,s?), all h, such that 9, s9) = (0,1), € satisfies (3.1)}.
hs Sh hs Sh
h

Note that, generically in A, dim Ea= (H — 1)(G' + G), which in the leading example equals 3.
For simplicity, normalize prices so that p'(w) = 1, all w, and p'* = 1 (later on we will find

that another price normalization is more useful when analyzing the nature of PFE).

Proposition 1 (Existence of PFE). Consider an economy which satisfies (3.1) and (3.2),
together with the related certainly economy which satisfies (3.3).

() If (p,c,q,z2) is a PFE, then € € Ex and there is a CE (p,c) such that
p= (p(0), (M (1)/m(1)A1(0))p(1))
and (3.4)
¢ = (cn(0),cn(1)), all h.
(ii) If e € Ea and (p,¢) is a CE, then there is a PFE (p,c,q,z) such that

=0
| P w=20
plw) = { 1—91/1—)117 w>0
and (3.5)

%, w=0
Ch(“)_{ci, w>0, allh.

10



Returning now to consideration of the original economy, we observe that if units of goods are
converted into per-stock-return units, that is, if, in each state w, one unit of good g becomes
1/69(w) units of good g, then the return matrix for stocks Ag(w) becomes simply the identity
matrix. Furthermore, with log-linear utility functions, each household’s utility in the old and the
new units is identical up to an additive constant. This leads immediately to a characterization
of FE in such an economy, which we can state succinctly in terms of the “trees and logs” of the

paper’s title.

Corollary to Proposition 1 (PFE with Trees and Logs). The characterization of PFE in
Proposition 1 applies to an economy with trees and logs after conversion to per-tree-return units

of goods.

An economy in which stocks return the same amount of goods in each state is itself not
really very interesting. On the other hand, the trees and logs model (TL-Model) is intrinsically
interesting and — as it turns out — much can be inferred about the finer structure of FE in this
model. For this reason we now focus exclusively on the TL-Model, assuming conversion to per-
tree-return units (so that hereafter, 69(w) > 0, all g, all w, while Ay(w) = I, all w). At the same
time we will also occasionally concentrate on the leading example. We must emphasize, however,
that the Corollary to Proposition 1 is valid for arbitrary dimensionality — including the general
case of intrinsically incomplete markets, as well as the special case commonly considered in the

Finance literature, where there is a single good.

Before turning to questions of uniqueness and, say, exclusivity — that is, whether there are
other (or “ordinary”) financial equilibria (OFE) in the TL-Model* — it is quite instructive to
highlight the peculiarity of the PFE. We accomplish this by, first, contrasting the results reported
in Proposition 1 with well-known properties of the RA-Model, and second, relating them to well-

known properties of the Cass-Shell sunspot model (SS-Model).

4We should mention explicitly, that for the economy of Proposition 1, it is fairly straightforward to establish
exclusivity, by slightly modifying Mas-Colell’s [18] variant of Cass and Shell’s original argument that sunspots can’t
matter with complete markets. We are indebted to Paolo Siconolfi for bringing this to our attention. However, such
an argument relies on a construction which cannot be applied in the case of hybrid trees unless ' = S, and later on
we actually employ this extension of the model in the case where F' < S. So we have chosen instead to provide an
alternative proof which can be so applied (and which relies heavily on the specification of log-linear utility). Our
particular argument can also be adapted for other purposes, though the full extent to which this yields interesting
results remains to be seen.

11



3.2.1. The LT-Model v. the RA-Model

The “well-known” properties asserted here can be found — or easily inferred following the lead of
related results in the RA-Model literature.> We contrast these to the results reported in Propo-
sition 1 applied to the TL-Model. For this purpose, when presenting a result which is (within a
well-specified conventional context) true without any qualification we will use the term “general”
or “generally”. Otherwise, when a result is only true generically (on some given open, full measure
set of parameters), we will use the term “typical” or “typically” (in contrast to “exceptional” or
“exceptionally”). We also use self-explanatory tables to describe the RA-Model literature. Bear
in mind that, looking ahead to subsection 3.5 below (where we establish exclusivity, that OFE
can never occur), it is accurate to simply identify PFE with FE in the TL-Model.

1. Existence

Existence of FE

FM are / Existence is typical only typical
Potentially Complete Magill-Shafer Hart [12]
Intrinsically Incomplete Duffie-Shafer Cass [5]

In the TL-Model, on the other hand, the operative condition in Proposition 1 — € € Ex —
characterizes the very large set of initial portfolios for which there is generally a PFE (depending,
of course, on the other parameters of the model, in particular, 69(w), all g, all w). It is important,
and we stress the point, that this condition clearly encompasses much more than just the initial

portfolios for which € >> 0 (see subsection 3.4 below).

2. Optimality

By virtue of Arrow’s Equivalency Theorem [1], for the RA-Model, when financial markets are
potentially complete, Pareto optimality is closely related to the rank of the matrix of asset returns

in value terms, or yields.® So we tabulate both optimality and rank properties for this model.

°In fact, many of the counterexamples are so obvious, or so easily constructed based on other results in the
financial equilibrium literature that they are hard to find explicit cites for. We will refer to such “well-known”
results as “folklore”.

SFor example, in the TL-Model, this matrix is

[p(w)[Ab(w)As(w)],w > 0O].
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Optimality of FE

FM are / Pareto Optimality is typical only typical exceptional
Potentially Complete Magill-Shafer folklore no
Intrinsically Incomplete no no Geanakoplos et al

Matrix of Asset Yields

FM are / Full Rank is typical only typical
Potentially Complete Magill-Shafer folklore
Intrinsically Incomplete Duflie-Shafer folklore

The TL-Model obviously turns all this on its head: The matriz of asset yields never has full

rank, and yet allocation is always Pareto optimal! FE in this model are very, very peculiar, indeed.

3. Trade in Assets

Using the fact that, typically, in the RA-Model the matrix of asset yields has full rank, it is
a routine application of the Transversality Theorem to show that, again typically, all assets must
be traded by all households. In the TL-Model, contrarily, financial markets are quite inactive. In
the first place, households transact on the bond market only to the extent that they completely
liquidate their initial positions. In a model with many periods, that is, where T" > 1, this means
that, beyond today, bond markets are completely inactive.” In the second place — the point of
Proposition 1 — only a single stock market need be active, though, obviously they all can be. So,

in this respect as well, PFE are also very, very peculiar!

4. The Explanation

Why such striking disparity between the two models? The answer is both very simple and
obvious. The TL-Model is an extraordinarily atypical specification of the RA-Model, for two basic
reasons: First, tree returns, and hence total resources are identically one in each state of the world.
Second, initial endowments must both (i) lie in the span of the matrixz of asset returns, and (ii) add
up to the tree returns in each state of the world. In particular, when there are potentially complete

financial markets, it must be the case that if households own (independent) initial endowments, in

"By the way (and this should really go without saying!) all the results concerning the discrete date-event version
of our model are easily generalized to many periods — provided all assets can be retraded. “Many periods” and
“asset retrade” (what is labelled “dynamically ...” in Finance) are of course inherent in the continuous date-event
version of the model; see section 4 below.
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addition to initial portfolios, then all the anomalies revealed above (typically) simply disappear.®

What more is there to say, really?

3.2.2. The TL-Model vis-a-vis the SS-Model

For one familiar with the literature on the SS-Model (as one of us, anyway, surely is!), the
parallel between PFE and nonsunspot equilibria (NSE) is inescapable. Both types of equilibrium
exhibit stationarity in the precise sense that they are equivalent to CE. Moreover, both are,
in their respective economic environments, the only equilibria for which goods allocations are
Pareto optimal. This suggests another possible interesting parallel, that between what we have
earlier labeled OFE and sunspot equilibria (SSE). It turns out, however, that even though there
is a strong parallel between the two concepts, it is far from exact. The essential difference is a
consequence of the fact that optimality in the TL-Model has nothing to do with financial market
completeness, whereas in the SS-Model this is a very significant consideration. Thus, for instance,
in the TL-Model, as we will establish in section 3.5 below, there can be no OFE whether financial
markets are potentially complete or not, while in the SS-Model there is typically a distinct SSE in
the leading example with an incomplete financial market (this can be inferred from the analysis
in Cass [4] together with Balasko and Cass [2], pp. 145-9; when asset returns are specified in value

terms, there is typically even a continuum of distinct SSE).

We now turn to consideration of another very important implication of the fact that degeneracy

and incompleteness of financial markets are part and parcel of the PFE.

3.3. Portfolio Constraints

Financial markets with portfolio constraints have recently become the major area of research in
asset pricing theory (see Karatzas and Shreve [14] and references contained therein). The main
bulk of this analysis is undertaken in the context of a single-good economy. Rather surprisingly,
however, very little is known about the robustness of various implications within a multiple-good

setting.

Our objective here is to illustrate the interaction between the spot goods market and portfolio
constraints, and to see to what extent the possibility of trade in the real markets can alleviate
frictions in the financial markets. Toward that end, we present a straightforward implication of

the arguments in the proof of Proposition 1.

8In the leading example, for instance, this will be the case if and only if, for some w’, w” > 0, §* (w') # §' (w");
see Magill and Shafer, pp. 174-5.
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Proposition 2 (Portfolio Constraints). Consider a class of portfolio constraints under which
it is feasible for the households in the economy to liquidate their initial bond holdings in period
0 and invest the proceeds (net of p(0)cy(0)) in some (fized) portfolio of the stocks. Then in this
constrained economy, as long as it is feasible for the households to jointly hold one share of each
stock, the relevant PFE — in particular, including those for which initial portfolios also satisfy the

constraints, and saving takes place in terms of the (fized) portfolio of stocks — still obtain.

In particular, Proposition 2 encompasses the case of restricted participation in the stock mar-

ket.

Corollary to Proposition 2 (Restricted Participation). Suppose that b? € R, all g, and
szg € R, some g,t =0, 1, all h. Then, for arbitrary constraints on the remaining stocks, as long

as market clearing in those stocks is feasible, the relevant PFE still obtains.

This result is in striking contrast to the implications of a single-good model with multiple
stocks. Portfolio constraints in the TL-economy can be fully circumvented by households trading
in the spot goods markets (nonexistent in a single-good model). The policy replicating the un-
constrained optimum involves a combination of trades in the assets and the exchange of goods for

those paid out by the stocks whose share holdings are constrained.

3.4. Uniqueness

In the TL-Model the question of uniqueness of PFE for given initial portfolios is equivalent to the
question of uniqueness of CE for the corresponding initial endowments (3). This question has a

very straightforward answer.

It is a routine exercise given in the graduate microeconomic theory sequence to show the
following: in the standard 2x2 model of pure distribution with log-linear utility, Walrasian equi-
librium is unique. This property stems from the fact that, in this example, the prices which
support allocations in the Pareto set define lines which are either parallel — in the borderline case
of identical log-linear utility — or intersect outside the Edgeworth-Bowley box. In other words, the
only initial endowments for which there are multiple equilibria must lie outside the households’

consumption sets — and this violates the spirit of the model.

In the certainty model equivalent of the TL-Model, however, there is absolutely no reason,
given the opportunities of both borrowing and short-selling, that initial endowments must lie in

the households’ consumption sets. This yields an interesting result for the leading example.



Proposition 3 (Uniqueness of PFE). For the leading example, the CE, and hence the PFE is

unique

e in the borderline case where of = ok, t = 0,1 and By = Be, for all initial endowments & € Ex,

but otherwise

e in the general case, for all initial endowments except possibly those which lie on a line segment,

say, € € I_/A C EA.

Also, for € € La, every Pareto optimal allocation is supported as a PFE.

In other words, either the PFE is unique, or there are PFE corresponding to each allocation in

the Pareto set (on a relatively small subset of possible initial portfolios, to be sure!).

The intuition behind this result is presented in Figure 1 for the case in which G = Q =1, G = 1,
and H = 2; the redundant bond is required so the €] is consistent with portfolio choice (otherwise,
for an initial portfolio consisting of just one stock, it must be the case that €} =€} = s{ > 0, and

the PFE is unique). Note also that in this example, since G =1, a, =1, h = 1,2.

3.5. Exclusivity

When one first encounters the pervasiveness of PFE — mainly because these financial equilibria
are so strange — an immediate, natural reaction is to ask “Just how important is this peculiar
phenomenon, anyway?”, or more objectively, “Are there other FE which have substantial presence

as well?” In this subsection we establish that the answer is a blunt and clear “No!”
Proposition 4 (Exclusivity of PFE). The only FE are PFE.

Our particular method of proof for this result (which fully exploits the trees and logs structure)

admits an immediate corollary concerning restricted participation.’

Corollary to Proposition 4 (Restricted Participation I: Some households are barred
from transacting in some stocks). Suppose that, for h < H, there is G, C {2,3,...,G},
such that, for g € Gy, household h faces the constraint sflg =0, t =0, 1, while household H is
unconstrained. Then the only FE is PFE.

However, matters may become quite complicated with more general portfolio constraints, as

the following result indicates.

9By generalizing to hybrid trees we also get an immediate corollary concerning the situation where both house-
holds can freely transact in the bond, but can only trade stocks in terms of a fixed portfolio with equal shares.
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Cautionary to Proposition 4 (Restricted Participation II: Some households face gen-
eral constraints on transacting in some stocks). For the leading example, consider the
possibility that Ms. 1 faces a constraint of the form ¢(si?) > 0, where ¢ : R — R is differentiable

and strictly quasi-concave. Then

o if (51%) =0 = s12 € [0, 1], the only FE is PFE, otherwise

e for some economy (specified, in part, by ¢) there is an OFFE as well as a unique PFE.

4. Extension in Continuous Time

We now consider a continuous-time variation on our leading example. Results presented this
section are parallel to those of the discrete date-event version. For that reason this section is
going to be intendedly dense. The economy has a finite-horizon, [0, T']. Uncertainty is represented
by a filtered probability space (Q, F,{F;},P), on which is defined a two-dimensional Brownian
motion w(t) = (wi(t), wa(t)), t € [0, T]. For simplicity, the Brownian motions w; and ws are taken
to be independent of each other. All stochastic processes are assumed adapted to {F;t € [0, T},
the augmented filtration generated by w. All stated equalities involving random variables hold
P-almost surely. Note that this continuous-time specification of the state space is in parallel to
that of the discrete-time leading example: there, a random variable was represented by three
possible future realizations corresponding to the three branches of the date-event tree; in the
continuous-time version, each process would be parameterized by a triple (u, o1, 02) — the drift

and volatility processes.

The risky stocks pay out the strictly positive dividend stream at rate 69, in good g, following
an Itd process
dod(t) = 69(t)[pd(¢t) dt + o (t) dw(t)], g=1,2,

where ug and og = (041, 052)T are arbitrary stochastic processes. The relative price of good 2 (in

terms of good 1, the numeraire), p, will be shown in equilibrium to have dynamics

dp(t) = p(t) [y (t)dt + op(t)dw(t)],

where p1, and ¢, = (01, 0p2) | are (endogenous) drift and volatility processes.

Analogously to those in the discrete-time leading example, investment opportunities are repre-

sented by three securities: an instantaneously riskless bond, ¢}, in zero net supply, and two risky
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stocks, and the stock prices, ¢7. The bond price and stock prices are posited to follow

day (t) = g, (t)r* (t)dt %(0) =1,
dg,(t) + 8' (t)dt = g5 (t) [, (¢ )dt + oy (t)dw(t)]
dq3(t) + p(t) 0% (t)dt = q3(t)[u(t)dt + o3 (t)dw(t)]

where the interest rate r!, the drift coefficients us = (ul, u2), and the volatility matrix o =
{04, i, j = 1, 2} are to be determined in equilibrium. Under this specification of the investment

opportunities, financial markets are (potentially) dynamically complete.

The two households maximize their expected lifetime log-linear utility

un(cn) = E [ /0 ! e—Phtuh(ch(t))dt] h=1,2, (4.6)

where vy, (cp(t)) = af log ci (t) + i log c2(t) and pp, > 0, subject to the dynamic budget constraint

A0 =W 0)r (0t~ ch(0) +p)E )+ su(0) 1) (1300 770 )

18 ) dw(t), W3 (0) = bs(0) + 5,(0) " g5(0), (4.7)

where W (t) = by (t)q; (t) + sn(t) Tgs(t) is the household’s wealth and I, is a 2 x 2 diagonal matrix

Og
0'

+ sp(t) T I(t) <

with diagonal elements ¢! and ¢2.!° The volatility matrix in the representation of the investment

0= (7o )

is not necessarily invertible. If it is then the two risky stocks are linearly independent and markets

opportunity set,

are complete, otherwise the two stocks represent the same investment opportunity and markets are
intrinsically incomplete. Appealing to the martingale methodology, standard in asset pricing, we
deflate household h’s wealth by the (possibly personalized — if markets turn out to be incomplete
in equilibrium) state prices in order to convert its dynamic budget constraint into a static Arrow-

Debreu budget constraint of the form

[/ (OIeh(0) + p) (0| = [/ E.(0leb(t) + PR ()de] | (48)

where £, (t,w) is the Arrow-Debreu price of a unit of the numeraire good in state w € €2 at time ¢
per unit of probability P, as perceived by household h, and e}, g = 1,2, is, as before, the dividend

stream from the initial shareholdings.

0For simplicity of exposition, we assume that aj, and a? are constants. The analysis below can be extended to
incorporate time-dependent coefficients in a straightforward fashion.
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A financial equilibrium is defined as a collection of prices (£, p, ¢) and associated optimal
policies (cp, by, sp, h =1, 2) such that the goods, bond and stock markets clear, i.e., V¢ € [0,T],
forg=1, 2:

> eht) =), (4.9)
h

D) =
h

PILACE
h

For analytical convenience, we introduce a representative agent with utility

ven =5 | [ Tv(c(t)m)dt] |

where

v(c;m) = Jnax me Py (er) + mee” P ua(eo),

and 7 > 0, h = 1,2, may be stochastic. If in an equilibrium, n; and 7y are constants, then
the allocation is Pareto optimal, otherwise it is not. Since in equilibrium the weights for the
representative agent are unique up to a multiplicative constant, we adopt the normalization n; = 7,

ne=1-mn,1n€(0,1).

We are now ready to characterize equilibria in the economy.

Proposition 5 (Characterization of PFE). If an equilibrium ezists in the leading example, it

1s a PFE. Equilibrium prices are identical across households and are given by

a%ne*plt + a%(l —n)e Pt

&) = e , (4.10)
(t) = a%nefplt ol Zme () (4.11)
Pu) = —p1t —p2t §2 ’
ajne 1! + aj(1l —n)e (t)
the equilibrium allocations are
9ne—P1LS9
(1) = -1 20 g=12, (4.12)
ajne= 1t + ap(1 — n)e=rat
9(1 — —p2t59(¢

(t) = ap(l = m)e ' 9%(t) =1,2, (4.13)

afne=rt 4+ af (1 —n)e=r2t
where the constant weight n is determined from either household’s static budget constraint with

the optimal consumption allocations (4.12)—(4.13) substituted in, i.e.,

[/5 AA) + ot ler] - [/5 o] (4.14)
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Furthermore, the prices of stocks expressed in terms of goods they are claims to, and the interest

rate are given by

glp) = rodn(eT?t = e ) + ppao(L— (e — e (4.15)
: et P+ a1 e B
2t p(t) = Lemne M = e M) ppab(L = m)(e P = e ) (4.16)
’ prp2(afne 1t + a3(1 — n)e=r2') 7

_ 04% npleiplt + Oé%(l — 77)P2€7p2t o |O_1(t)|2
af ne=r1t + al(1 — n)e—rat ’

ri(t) = ps(t)

Conversely, if there exist £, p and n satisfying (4.10)—(4.11) and (4.14), then the associated

optimal policies clear all markets.

It is easy to see that the equilibrium is a PFE. Analogously to the discrete date-event version,
the relative price of the two goods is proportional the ratio of the dividends. It is easy to see
then that in equilibrium the volatility matrix in the representation of the investment opportunity
set, X(t), is degenerate, or, equivalently, the two stocks yield the same investment opportunity.
The mapping into the certainty model is also apparent from the characterization in Proposition
5: in per-tree-return units, optimal consumption and prices are deterministic functions of time.

Furthermore, since the weight n is constant in equilibrium, the allocation is Pareto optimal.

We now turn to the nonuniqueness of peculiar equilibria.

Proposition 6 (Nonuniqueness). Consider the set of initial endowments of household 1, ey,

satisfying:

E [/OT <a%e’)1t igg + ade 1t (ﬁgg) dt] = 1_;1—111T? (4.17)
E [ /O ! <a{ef’2t (‘ig + a2e 2t Zigg) dt] = 0. (4.18)

On this set of endowments, there is a continuum of PFE with the characterization given by (4.10)-

(4.11) and (4.12)-(4.13) for alln € (0,1).

Proposition 6 is an exact analogue of Proposition 3 in the discrete date-event version. Note
that for condition (4.18) to be satisfied it is necessary that household 1 be endowed with a short

position in one of the securities.

The continuous-time formulation offers additional tractability over the discrete-time version in
that one can parameterize the processes for state prices and stochastic weighting in the economy,
which proves to be very useful for getting explicit formulas in economies with frictions. Com-

prehensive investigation of the effects of portfolio constraints in the TL-economy is the focus of
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a companion project, and is not included in this paper. Here, we just concentrate on a specific

constraint: restricted participation in one of the risky securities.

Proposition 7 (Restricted Participation). Consider the economy where household 1 is re-
stricted from investing in one of the risky stocks, e.g., stock 1, but can take an unrestricted
position in the bond and stock 2. Household 2 is unconstrained. Equilibrium in this constrained
economy coincides with that of the unconstrained with the characterization given in Proposition
5.

5. Final Remarks

Our thorough examination of the Lucas tree model when extended to include multiple goods
uncovers a variety of puzzling characteristics. In particular, we show that under the maintained
assumption of log-linear utility, the only equilibria in the model are peculiar financial equilibria, in
which all the stocks represent the same investment opportunity — and yet, nonetheless, allocation

is Pareto optimal.

Fairly complete analysis of the effects of portfolio constraints in the general trees and logs
economy is a separate issue. In this paper, we merely demonstrate that for a certain large class of
portfolio constraints — in contrast to a single-good model — their impact on the economy can be
fully alleviated by the possibility of trade in the spot goods markets. This result however must be
heavily qualified: even within this class of portfolio constraints, there may be additional financial
equilibria in which allocation is not Pareto optimal. Another important class of constraints to
consider is the one which leads to allocation which is not Pareto optimal (and therefore financial
equilibria which are not peculiar). In this situation constraints on transactions could only, at best,
be partially alleviated by trading in the spot goods markets, and it would be of interest to quantify
the extent to which trade in goods can circumvent restrictions on trade in assets. Conversely,
we should be able to use our framework to investigate the interaction between restrictions on
transactions on goods markets (e.g., one cannot transact an unlimited quantity of a particular
good, or certain goods have to be purchased concurrently) and transactions on asset markets. This
analysis will of course make use of the remarkable tractability of our model: despite the presence
of multiple positive-net-supply stocks, it appears possible to explicitly characterize equilibria in

an economy encompassing a variety of realistic constraints on transactions.
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Appendix A: Proofs of the Main Results

We begin by writing down the extended system of equations which provides the whole basis for
our formal analysis. This consists of the Lagrange conditions characterizing an optimal solution
to each household’s optimization problem (H) together with the spot goods and asset market
clearing conditions (M). For the time being we will continue to assume that spot goods prices are
normalized at each spot in terms of good 1 as the numeraire p'(w) = 1, all w, and all pertinent
quantities are expressed in per tree-return units. Also, to avoid unnecessary clutter, where it is
obvious from context, “all w,” “w > 0,” or “all A” are understood as given.

A.1 The Extended System of Equations

First-order conditions (FOC’s)

> 7(w)De, 0y vn(cn(0), ca(w)) = A(0)p(0) = 0 (A1)
w>0
and
W(w)Dch(w)vh(ch(O), cp(w)) — Ap(w)p(w) = 05 (A.2)

No-arbitrage conditions (NAC’s)
M(0)gy — Y An(w)p(w)Ap(w) = 0 (A.3)
w>0

and

A(0)gs = D Ap(w)p(w) = 0; (A4)

w>0
Budget constraints (BC’s)
p(0)(cn(0) — en(0)) + qzp =0 (A.5)
and
p(w)(cn(w) — en(w)) — p(w)A(w)zn = 0; (A.6)

Market clearing conditions (MCC’s)

D enlw)—1=0 (A7)

h

and

> =0 (A.8)
h

Also bear in mind the definition of initial endowments,
en(w) = [Ap(w)I] (b, 7)- (A.9)

Remarks:
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1. By virtue of the NAC’s (A.3)-(A.4), we can replace the first BC (A.5) by a personalized
Walrasian-like BC

D An(w)p(w)(en(w) — en(w)) = 0. (A.5)
w
This fact will prove to be very useful in the course of most of our argument.

2. By virtue of the BC’s (A.5)-(A.6) and the MCC’s (A.7)-(A.8), Q + 1 of these equations are
redundant (the analogue of Walras’ law), for example, Mr. H’s BC’s. We will explicitly
drop these particular redundant equations later on.

3. Taking account of the preceding remark together with the spot goods price normalizations,
it follows that there are (at most)

J =HGQ+1)+H(G+G)+ (H-1)(Q+1)+GQ+1)+(G+G)
=HGOQ+1)+HG+G+HQ+1)+(G-1)(Q+1)+(G+G)

independent equations in the J independent variables
Chs Zh;s )\ha (pg(w),g > 1, all w)a and q.

Of course, at a solution corresponding to a PFE, and therefore a Pareto optimal allocation,
the NAC’s (A.3)-(A.4) are not independent. This means that, with potentially complete
financial markets, all of the equations (A.1)-(A.8) can never be independent (since otherwise
one would get an immediate contradiction based on Arrow’s Equivalency Theorem), and this
tends to complicate their analysis.

A.2 Proof of Proposition 1

(i) Suppose that (p,c,q, z) is a PFE. Then, by degeneracy, p(w) = p(1), and by irrelevancy,

p(w)en(w) + p(w)A(w)z, = p(w)s,

so that (A.2) and (A.6) become simply
7(w) De, () v (cn(0), ch(w)) = Ap(w)p(1) =0 (A.10)

and
p(1)(cn(w) —s}) = 0. (A.11)

From our textbook assumptions about vy, it follows that (A.10), (A.11), and (A.7) describe
an identical Walrasian equilibrium at each spot w > 0. Thus, from (A.10) it also follows that

cn(w) = cp(1) and A\p(w)/7(w) = Ap(1)/7 (1) ,w > 0,
and from optimality (or, equally well, the NAC (A.4)) that
An(1)/m(1)An(0) = A1 (1)/m(1)A1(0).
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Hence, (A.5) becomes simply
p(0)(cn(0) — [Ap(0)1](By, s3))+

(Aa(1)/m (DAL 0)p(1)(en(1) = D m(w)[Ap(w)I](b, 57)) = 0, (A.12)

w>0
while (A1) and (A10) become simply

Dch(O)vh(Ch(O)v Ch(l)) - )\h(O)p(O) =0 (Alg)

and

De,,1yvn(en(0); en(1)) = An(0)(A1(1)/7(1)A1(0))p(1) = 0. (A.14)

Finally, making the identifications (3.3)-(3.4) together with A;, = A\;(0), we see that (A.12)-
(A.14) characterize the optimal solution to (H), and that these necessarily satisfy (M), so that
this half of the proof is complete.

(ii) Suppose that € € Ea, and that (p,¢) is a CE. Then, given p, (¢4, A) solves the analogues
of the Lagrange conditions (A.12)-(A.14),

p(ep, —ep) =0, (A.12))
Dgyun(ep, ;) — A’ =0, (A.13')

and
Dgyon (&, 8) — Anp' =0, (A.14)

with e, satisfying (3.3) for some (b9, s?). Making the identifications (3.5) together with A,(0) =
S‘hv
A (w)/m(w)Ai(0) = 5,
and, say,
sp =89+ (AsY,0,...,0) such that p'(c} — s7) =0,

one can then simply reverse the steps of the preceding argument. Since this procedure is obvious,
we omit its details. B

A.3 Reduction to The True Equations

From here on we will maintain the assumption of log-linear utility. This permits substantial
simplification of the extended system of equations (A.1)-(A.8). We also drop Mr. H’s BC’s as
being redundant.

With log-linearity, the FOC’s (A.1)-(A.2) become, for all g,

ay? [5(0) — A (0)p?(0) = 0 (A.15)
and
m(w)Brey? /ef (w) = Ap(w)p?(w) = 0. (A.16)
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From (A.15) it follows that
A (O)p(0)cr(0) = 1 (A17)

and, together with (A.7) for w = 0, that

p(0) = > (1/An(0))af. (A.18)

h

Similarly, from (A.16) it follows that, for w > 0,

An(w)p(w)ep(w) = m(w)Br (A.19)

and, together with (A.7), that

(@) Y (Br/An (W), (A.20)
h

What this means — and this is the main advantage of assuming log-linear utility — is that, for
all practical purposes, we can ignore the FOC’s (A.15)-(A.16) as well as the MCC (A.7): the
information these equations contain concerning the household’s goods consumption can easily be
recovered from the system of equations consisting of (A.3)-(A.6), (A.8), and the spot goods price
equations (A.18) and (A.20) (SGP’s).

It will be very convenient to record this fact formally, but only after first introducing two
additional modifications, (i) substituting, in the appropriate places, for the Lagrange multipliers
An(w) the so-called stochastic weights

nn(w) = Br/An(w),

and (ii) substituting, in the the NAC’s (A.3)-(A.4) for h < H, for the asset prices ¢ defined by
the NAC’s (A.3)-(A.4) for h = H.

All this manipulation and consequent simplification then leaves us with what we only half-
jokingly refer to as The True Equations (TTE).

Spot goods prices

Znh )(@h/Bn)- (A.21)
and
W) Y mn(w)ag; (A.22)
h
No arbitrage conditions (for h < H)
> (1(0) /1 (w) = 0z (0) /mr (w))p(w) Ap(w) =0 (A.23)
w>0
and
> " (4 (0)/mn(w) — 0 (0) /na (w))p(w) = 0; (A.24)
w>0
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Budget constraints (for h < H)

(14 1/80) — S/ (@))p() Do) ) (B, 58) = 0 (A.25)

w

and
(W) (w) — p(w)[Ap(w) 1] (b}, 51,) = 0; (A.26)

Asset market clearing conditions

> (b sh) = (0,1) = 0. (A.27)

h

Finally, we will now find it much more useful to normalize prices according to the formulas
> mnw) =1. (A.28)
h

Remarks:

1. In deriving (A.25)-(A.26) we also used (A.9), (A.17), and (A.19).

2. The stochastic weights 7, (w) owe their name to the fact that the FOC’s (A.15)-(A.16)
can be derived from the social welfare/social planner’s problem of maximizing a fictitious

representative agent’s utility function of the form

D n(0) D (@p? /i) log &4, (0) + Y w(w)mn(w) Y, log ef (w)]
g

h g w>0

subject to feasibility of goods allocation (with associated multipliers p). Note that this fact
implies that, for goods allocation to be Pareto optimal, it must be the case that

nn(w) = 1,
which in turn implies that it must be the case that a FE is a PFE.

3. TTE preserve consistency of equations and variables. For this system of equations there are
(at most)

K = GQ+D)+H-D)G+G)+H-1)Q+1)+(G+G)+(Q+1)
= HG+G)+HOQ+1)+GOQ+1)

independent equations in the K independent variables

(b}w S}L)’ Mhs and p.

A.4 Proof of Proposition 2 (and Corollary)

Obvious. W
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A.5 Proof of Proposition 3

For the leading example, in terms of just &, (so that, by definition, e =1 — é7),
{e1eR*:0< e <1} C ECRY,

that is, F is a full-dimensional subset of R%. On the other hand,

Exn C {é € E : for some (b?,s[l)) él =

(51(0) + 5(1)17 5127 Z + 5(1)17 5(1)2)},
w>0
that is, (given 7(w)) generically in 6! (w), all w, EA is a full-dimensional subset of a 3-dimensional
linear subspace in R* (noting that, necessarily, e;° = 6(1]2).

This said, in order to check for uniqueness of CE in terms of €1, we only need to consider
solutions to Ms. 1’s certainty BC (in terms of just her constant stochastic weight 0 < 71 < 1; see
below), but given certainty endowments in the lower-dimensional subset Ea.

To formalize this problem, we begin by observing that the analogues of TTE in the certainty
economy are identical to (A.21)-(A.28) when @ = 1,G = H = 2, and G = 0 (setting, say,
512 = 5{2) after making appropriate changes in notation (replacing p(0) with p!, s{ with &9, and
so on). Hence, after substituting from the SGP equations (A.21)-(A.22) into the BC (A.25) for
h =1, and also setting, for convenience, 0 <7} =n<landnl=1—-ni =1-n,t=0,1, finally
we find that the question of nonuniqueness of CE, and a fortiori, PPE boils down to this: when

does the linear equation, for &; € Ea,

n(1+1/8) = [n(af/B1) + (1 —n)(ad/B2))e] + [nay + (1 —n)agle; = 0 (A.29)

admit every 0 < 1 < 1 as a solution? But this will be the case if and only if the pair of equations

(F/B1 — a3/B2) (e, &%) + (a1 — ab)(er',ef*) — (1+1/8) =0 (A.30)
and
(a5/B2) (e, &%) + ap(eq, &) = 0 (A.31)

(together with the identity €12 = &{?) has a solution in Ex. Since (A.31) but not (A.30) is a
homogeneous equation, this is possible only if

/61— af!/Bs ol —afl (af/61 +al) - (o /B + af)
o'/ ot B+ af

that is, only if b # af, some t, or 32 # (31. The set of such solutions then defines the line segment

rank =2,

La C Ea't Note that, because the coefficients in (A.31) are all positive, any solution must have
both positive and negative elements.

" Of course, there may be no solutions to (A.30)-(A.31) in Ea, as in the example depicted in subsection 3.4 when
there is no redundant bond. However, for the leading example, it is easy to find parameter values for which there
are solutions (using the analogues of TTE and the degrees of freedom afforded in choosing 6*(w), all w). Tt is also
worth pointing out that (A.29) can also be exploited to give a precise description of Ea.
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A.6 Exclusivity of PFE
A.6.1 Proof of Proposition 4

We want to show that the only solutions to TTE satisfy
nh(w) =nk(0), w >0, all h. (A.32)

Consider just the NAC’s (A.23)-(A.24) together with the second period BC’s (A.26) and the price
normalization (A.28). Multiply (A.26) (after replacing h by k') by

(1n.(0)/nn(w) — 1 (0) /1 (W),

sum over w > 0, and use (A.23)-(A.24) to simplify, which yields the equations
> (1 (0) /mn(w) = 0 (0)/npr (@) (w)w(w) =0, h < H, ' < H. (A.33)
w>0

But from the NAC (A.24) for g = 1 together with the SGP equation (A.22) for g = 1 (again after
replacing h with A') and (A.33) it also follows that

> (mO)/ () = O/ @) ()7() = 0. < H. (A.34)
Focusing on (A.33)war just &' = h (fixed) and (A.34) then yields the equations
20/ () ) = 0/ (O (A.35)
and
> () anw)) ) = 1 0)m0): (A.36)

So now letting t(w) = np(w)/nm(w), and defining f(x) = 1/, for z > 0, a strictly convex function,
(A.35)-(A.36) can be rewritten

and

S flt(w)lr(w) = f0);

w>0

because of Jensen’s inequality, this can only be true if
t(w) =t(0),w >0,
or (because h is arbitrary)

nn(w)/nn(0) = na(w)/nu(0), w >0, h<H. (A.37)
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Finally, to see that (A.37) implies (A.32), suppose that
nh(w) = 0(w)np(0) with (w) >0, w >0, all h.
Then (A.28) implies that

1= m(w) =0w) D m(0) =0(w), w>0,
3

and the proof is complete. B

A.6.1 Proof of the Corollary to Proposition 4

Since household H can transact freely in every stock, the relevant NAC’s imply that (A.33) also
obtains in this model. The rest of the argument is then identical to the foregoing. B

A.6.2 Proof of the Cautionary to Proposition 4
This is detailed separately in Appendix B. B

A.7 Continuous Time
A.7.1 Proof of Proposition 5

Step 1. We first show that if (&, p, ¢, ¢, bn, Sp, h = 1, 2) is an equilibrium in the model, then
the stocks represent the same investment opportunity.

Suppose there exists an equilibrium where none of the risky stocks is redundant. That is, each
agent faces an investment opportunity set represented by (4.7) such that the volatility matrix

1
X(t) = 9 o5 (t) is invertible. Then then households face complete markets, and hence
o5 (t) +op(t)

the martingale representation approach of Cox and Huang [8] and Karatzas, Lehoczky and Shreve
[13] is applicable.
Household h maximizes (4.6) subject to (4.8) with &, (t) = £(t), Vh. Its first-order conditions

are given by
ape " ) (t) = yn&(t), (A.38)
ae™ " /cp(t) = yng(t)p(t), (A.39)
where y;, is the multiplier associated with (4.8). This together with goods market clearing (4.9)
implies

£ = aje Pt fyy + age P2 [y,
f( ) - (51(t) )
afe P Jy; + aze Pt fyy 61(t)
aje Pt /yr + ager2t fyy 62(t)

p(t) =

Making the standard identification with the weights in the Representative Agent in the economy
n = 1/y1, 1 —n = 1/y2, we obtain expressions (4.10) and (4.11). Applying It6’s lemma to the
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above to identify the dynamics of the relative price process p(t), we derive the following for the
volatility of p(t):
op(t) = ah(t) — o2(1). (A.40)

The no-arbitrage condition for the stock prices yields

qi(t)—EUS )61(s)ds |F| and g2t —EU& 2(syds|F| . (A1)

Upon substitution of (4.10) and (4.11) in the above, we explicitly evaluate the conditional expec-
tations to yield (4.15)-(4.16). Expressions for the volatilities of the stock prices are then obtained
by applying It6’s lemma to (4.15)-(4.16):

05(t) = 05(t),  02(t) = o3 (t) + op(t).

This together with (A.40) implies
N(t) = ( o5 (t) )
a5(t) )

The volatility matrix ¥(¢) is not invertible, yielding the desired contradiction.

Step 2. Since there are no equilibria in the model in which (¢) is invertible, we concentrate on
the only remaining possibility for an equilibium: the one in which the two stocks represent the
same investment opportunity and hence financial markets are incomplete.

Since one of (¢!, ¢?) is redundant, define a composite security, ¢s, paying out in good 1.
Households’ trading strategies for investing in individual securities are indeterminate, however
the position in the composite security (consisting of one share of both stocks) would be uniquely
identified. The composite security has dynamics

dgs(t) + (8 (t) + p(t)8%(t))dt = gs[ps(t)dt + o(t)dw(t)].
In the remainder of the proof, consider an incomplete market (g}, gs).

The first-order conditions to the optimization problem (4.6) subject to (4.8) are

ate Pt /el (1) = ynén(t), (A.42)
aze Prt ek (t) = ypln(t)p(t), (A.43)
where the state-price density &, that household h will be facing in equilibrium is now personalized.

At the optimum,
1 g 1 2
Wh(t) = mE (&n(s)ch(s) + En(s)p(s)cy(5)) ds | Fi | -
t
Substituting in the first-order conditions (A.42)—(A.43), we have

1 T rale=Pns  q2e=Pns
WtzE/(h + —h >ds]-"]
n(®) En(t) [ ¢ Yn Y |

e—Pnt _ o=pnT
- - . A.44
Yn P En(t) ( )

30



Hence

1_,—pnt
Prag €
cp(t) = m Wh(t) (A.45)
aZe Pnt
2 (t) Phh Wi(t). (A.46)

" (et — e T) p(t)

The dynamic budget constraint that household & is facing is similar to (4.7), except that now
there is a single composite risky security available for investment

AWy (t) = Wi (t)r' (8)dt — (e (8) + p(t)ci, (1)) dt + sn(t) (s (t) — ' (1))dt + sp(t)os(t)dw(t) .
This combined with (A.45)—(A.46) gives

phe_pht
e—Prl — e*PhT

+ on(t) (us(t) = r(8)]dt + Wi (t)dn (t)os(t)duw(t)
(A.47)

AW (t) = Wi (8)[r (t) —

where ¢, denotes the proportion of the household’s wealth invested in the composite security.
Solving the above stochastic differential equation for In W, (t), we obtain

e PhS — ¢ pnT

t e~ Phs
I Wa(0) = Wa(0)+ [ 17 (6) = =P+ 0n(5) ns(s) = 17(5) = ghonls)ra(s) Pl
/ on()rs(s)du(s) (A.48)

Household A is solving

T
maxE e Pht[af Inch () + o Inch(t)]dt

_ pre”Prt
= E/ Prt) e s +arlna), +ailnas —ai pt) + (af + a2) In W, (0) — a2 p(t)

phe —PhS

() = s oz T Pn(8) (s () = 7(5)) — %\%(s)os(s)lﬂdt,

where we made use of (A.45)—(A.46) in the first equality and (A.48) in the second. Since Wj(0),
p and ! are taken as given by a household, the optimization problem of solving for the trading
strategies becomes a pointwise problem

1
max ¢p, () (us(t) — (1)) — =|dn(t)os(t)?
¢h(t>)<¢h( )(us(t) =12 (8)) = 5lon(t)os(t)]
yielding at the optimum

on(t) = (os(t)od (1)~ (us(t) — (1)) (A.49)

Note that the proportion of wealth invested in the composite security is identical for both house-
holds.
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We are now ready to show that the state-price densities driving the investment opportunity
sets of the two households are identical. It is given by (A.44) that

efpht — eip}LT

ult) = YnonWh(t)

Parameterizing the household-specific state-price density in the standard fashion by the interest
rate 7“,11 and market price of risk 9,1Z processes, applying 1t6’s lemma to both sides of this equality
and simplifying we have

—pPnt
O=rL(®)dt — 0L () dw(t)] = ———
6(Orh O — 0} (e =~
e—Prt _ o=pnT 1 phe_Pht

1
T ) r(t) — + n(t) (s (t) — 77 (t))]dt
e—Pnt _ o=pnT e—Prt _ o=pnT
Yo Wal(t) h(B)os(B)dult) + ynpnWh(t)
= —&(t)[r' (t)dt — ¢(t)os(t)dw(t)],

where we used (A.47) and (A.49). So, ri(t) = r'(t) and 0}(t) = ¢(t)os(t), Vh = 1,2. The two
households face identical state-prices densities, hence markets are effectively complete, the weight

e—Prt — e—pnrT

’¢h(t)gs(t)‘2dt

7 in the representative agent is constant, and a Pareto optimal allocation obtains.

We can then proceed with the same derivations as in Step 1 of this proof to derive (4.10)—
(4.11) and then the no-arbitrage prices of redundant securities (4.15)—(4.16) from (A.41). (4.12)—
(4.13) follow from (A.38)—(A.39) combined with (4.10)—(4.11). The constant 7 reflects an initial
allocation of wealth and is determined from either household’s static budget constraint with
equilibrium quantities substituted in. Finally, to determine the interest rate, we apply Ito’s
lemma to (4.10) yielding

o1 pre” Pt 4+ aj(1 —n)pae P2t
aj et + ag(1 —n)e=rt

de(t) = E(O)[(—ps(t) — + o5 (8))dt — o (t)dw(?)]

and identify the negative of the drift term with the interest rate in the economy. M
A.7.2 Proof of Proposition 6

The weight 7 is determined from either household’s budget constraint with optimal quantities
substituted in, e.g., household 1’s:

[/é [e1(t) + p(t)ci(t dt} [/5 ()e%(t)]dt].

Substituting (A.38)-(A.39) and (4.10)—(4.11), we have

T 1 2 T —p1t 11— —pat
o[ (e o [ st )

a(
+E[/0Ta ine p1t+oz(§)1 n)e P2t
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Rearranging and using n = 1/y;, we arrive at

1—e T {/T _ el(t) 1—n r el(t)
- =F e Pital —L dt} + FE {/ e Ptal —L dt}
p1 0 0) n 0 2 oL(t)
T i(t) 1—n T ei(t)
+F {/ e P2 a dt} + F {/ e P2lal -1 dt} . A.50
) o™ T EL T e (4.50)

Due to (4.17) the sum of the first and third terms on the right-hand side of the last expression is
1_81)%&, while the sum of the second and fourth is zero due to (4.18). Hence (A.50) is satisfied
Vne(0,1). N

A.7.3 Proof of Proposition 7
Obvious. R

Appendix B: An Example of an OFE with a Portfolio Constraint

B.1 Further Simplification of TTE

B.1.1 For H>1
(bl;, st;) only appear in (A.27), so the latter can be used to define the former.

B.1.2 For H=2

We can use (A.28) to substitute

mw) =n(w) and pp(w) =1 —m(w) =1—-n(w), alw

into (A.21)-(A.26). This permits rewriting

m(0)/m(w) —n2(0)/m2(w) =
1(0)/n(w) = (1 =n(0))/(1 =n(w)) =
n(0)(1 = n(w)) = (1 = n(0)n(w) _
n(w)(1 = n(w))
n(0) —n(w) 1
L=n(w) nw)
and thereby simplifying (A.23)-(A.24), which in turn permits “renormalizing” p(w)/n(w) — p(w)
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in (A.21)-(A.26), resulting finally in the system of equations

a1+ a2~ p(0) =0 (B.1)
wwial + 1 M n(w)al - ple) =0, w0, (B.2)
;(”(10) T )i =0 (8.3
ST R
(14 1/81) - (0 @)/8' @), pe)(, s =0, and (B.5)
= (0 ()8 (@), ) )G ) =0, w50 (B.6)

Note: The yield matrix has become

Y = [n(w)(p!(@)/6' (W), pw)), w > 0],

which, since m(w) > 0, n(w) > 0, w > 0, necessarily has the same rank as the matrix which now
defines Ms. 1’s second period budget constraints

[(p" ()3 (), pw))/7(w), w > 0].
B.2 The Leading Example When Ms. 1 Faces an Arbitrary Constraint on Transacting

in Stock 2

Let ¢ : R — R be differentiable and strictly quasi-concave, and add a constraint of the form
#(51%) > 0 to Ms.1’s optimization problem.

Note: There is an issue as to whether this requires — for logical consistency in describing the
economy — adding the requirement for initial portfolios (;5(3(1)2) > 0. For simplicity, we sidestep
this issue here, and permit s{? € R.

Note: It will be established that such a constraint can only be (effectively) binding at si? if
12
51 ¢ [07 1]

Let 8 > 0 be the multiplier associated with this constraint. If it is binding in a FE, then two
changes are required of TTE.

Note: Bear in mind that, in terms of the original extended system of equations,
Mh(w) = Br/An(w),
and that, for present purposes, we have substituted p(w) for p(w)/n(w).
(i) The NAC’s (B.4") become

n0) —nw)\ 4 _ [0, if g=1,
Z ( 1—nw) )p (W) = { —un(0), ifg =2, and (B.4)

w>0
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(ii) Ms.1’s first period BC (B.5’) becomes
(14+1/81) = Y (p"(@)/6" (@), p(w) (B, 57) — p(s1® = s9%) = 0, (B.5)
w>0
where p is defined by
Bip = 0D(s1°).

This suggests the following approach to constructing an OFE. First, observing that neither u nor
p(0) appears in the system consisting of (B.2), (B.3), (B.4) for g = 1, and (B.6) (say, System I,
use System I, first, to construct values of the variables p(w) and n(w) # 1(0), w > 0 such that

rank((p! (w)8' (w), p(w))/7(w)] = 3,

and then construct (b}, s}). Second, given values for these variables, use (B.1), (B.4) for g = 2,
and (B.5) (say, System II) to construct values of the remaining variables p(0) and g (which, by
Proposition 4, is necessarily nonzero). Finally, simply specify any ¢ such that ¢(si?) = 0 and
sign D¢(s1?) = sign p.

Notice that, assuming that si? has been fixed by ¢(s}?) = 0, the system (B.1)-(B.6) consists
of 15 equations in the 15 variables

pw), all w, nw), all w, p, b} and sit,
given the 12 independent parameters
0<a afl=1-0al<1,t=0,1, B, >0, h=1,2, §'(w) >0, all w,
and 0 < m(1), m(2), 7(3) =1—-7(1) —m(2) < 1.

B.3 Results

Claim 1. If (B.2), (B.3), (B.4) and (B.6) has a solution in which n(w) # n(0), (some) w > 0,
then si? ¢ [0,1].

Claim 2. There is an economy for which (B.1)-(B.6) has a solution satisfying n(w) # n(0), w > 0
(i.e., and OFE for an appropriately specified portfolio constraint function ¢), as well as a unique
solution satisfying n(w) =n(0), w > 0 (i.e., a unique PFE).

Proof of Claim 1. Let
0)—n(w .
b = { Yoo "t 7). =,
Z<.u>0 % 7T(‘*’>7 if h =2.
Then substituting from (B.2) into (B.4) yields the system
0‘%11#1 + 06%177[)2 =0,
(1 - 04%1)7,01 + (1 - O[%l)’ll)2 = —Mn(o)’
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which can only have a solution with p # 0 if ad! # all, and has the solution
g _ 1 —ay' pn(0)
(05 oAl — adl \ ag'un(0)

uw#0 = signiyy = —signy # 0. (B.7)

if ad # al. Hence,

Note: Here it is useful to recall that the analogue of (B.6) also holds for h = 2:
1 —n(w
L2 (8" (), ple))/m()) 0, 53) = 0, > 0 (B.)

(This can be inferred from (B.2) and (B.6) together with the identity (b, si) = (b, 1 — si),
bearing in mind our having “renormalized” p(w)/n(w) — p(w) earlier.)

Now multiplying each of the equations in (B.6) and (B.6") by

77(0) — "7(”)7T(w)

1—n(w)
summing over w > 0, and using (B.3)-(B.4) yields the property
_ [ m(0)si?, ifh=1,
Vn = { un(0)si?, if h = 2. (B.8)

Since we have the identity s3> = 1 — s}2, both (B.7) and (B.8) can obtain with n;(w) # 1(0),
(some) w >0, (= p #0) only if si2 ¢ [0,1]. B

Proof of Claim 2. This merely requires displaying an example. See the following calculation.
|

B.4 Calculation

Step 1. Existence of a solution to System I in which 7n(w) # 1(0), w > 0.

e Parameter Values

all =1/3, adl =2/3,
ot(1) =1, 51( )=1,0(3) =5/3,
m(1) = 5/12, 7(2) = 4/12, 7(3) = 3/12.

e Proposed Solution

For simplicity we set n(2) = n(3) = p(2)/7(2) = p(3)/m(3), i.e., we impose identical spot
market equilibrium for w = 2, 3.

p(1)/m(1) = (7/3, 5/3), p(2)/m(2) = p(3)/7(3) = (5/9, 5/9).
n(0) = 1/2, n(1) = 1/4, n(2) = n(3) = 3/4.
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e Checking the solution for (B.2), (B.3), and (B.4),g=1

For (B.2):
p(0)/n(1) = (af!, 1= aft) 4 2= 0l 1 ad) = (1/3.2/3) + 10213, 1/3) = (173,573
p2)/n(2) = p3)/n(3) = (af!, 1= o)+ - I 0l 1 - o) = (5/9.7/9
For (B.3):
5 M) 54 = 1 6/12)(7/3) = 15 412)6/9)1/2) = {71 6/12)(5/9)6/3
w>0
=0
For (B.4), g
> M) = SR612)1/3) - 1 126/9) - 155 6/12)6/9
w>0
=0

e Verifying full rank of the yield matrix, i.e., the solution for (B.6)

[(p" (w) /8" (W), P! (w), P*(w))/7(w), w > 0]
[ 7/3 7/3 5/3

=| 5/18 5/9 7/9]

| 25/3 5/9 7/9

[1/3 0 0 7T 75
=l 0 1/9 0 5/2 5 7
0 0 1/9 25/3 5 7

Consider the system

Tv1 + Tvg 4 dvy = 0, (B.Q)
(5/2)v1 + bva + Tvg =0, and (B.10)
(25/3)v1 + bug + Tvg = 0. (B.11)

We know that Y will have full rank if and only if the only solution to (B.9)-(B.11) is
v1 = vo = v3 = 0. However

(B.10) and (B.11) = v =0, v3 = — (5/7)ve

while

vi =0 and (B.9) = vz =—(7/5)va,

which are consistent only if v9 = v3 = 0 as well.
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e Checking that the solution to
[(p(w) /8" (W), p(w))/m(w), w > 0)(by, s1) =1 (B.12)
satisfies 512 ¢ [0, 1]

(B.12) becomes (using (b1, si!, s12) — (b, st, s?))

7 75 b 3
5/2 5 7 st =19
25/3 5 7 52 9
or
7h 4 Ts' + 552 =3 (B.13)
(5/2)b+ 5st + 75> = 9, and (B.14)
(25/3)b + Bs' + 752 =9. (B.15)

From (B.13)-(B.15) it follows that
(B.14) and (B.15) = b= 0 (sic), s* = 9/7 — (5/7)s".
The latter and (B.13) yield 7s' +5(9/7 — (5/7)s') = 3, so that

st =—1, and s> =2 > 1.

Step 2. Given the solution to System I in which n(w) # 7(0), w > 0, existence of
a solution to System II for which (¥}, s!) is positive but small (which implies a
unique PFE).

This is a “laydown.” Use (B.4) for ¢ = 2 to calculate u. It is then easily verified that,
for b = 0 and s = 0, and for any choice of 0 < af! < 1,0 < o' < 1, and §'(0) > 0,
when (3, is sufficiently small, the solution to (B.5) satisfies 0 < s{! < 1 (so that 0 < &; =
((s9, 0), (9, 0)) <1, and there is a unique CE, hence a unique PFE).

Note: Given the sign of p (in the example, un(0) = 5/27) and si% ¢ [0,1], choose any ¢
such that
$(s1?) = 0 and sign Dp(s1?) = sign p.
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Figure 1. Equilibria in the TL-Model. The Edgeworth-Bowley box is presented
for the (certainty) case of G = Q =1, G = 1, H = 2. The thick solid line depicts the
Pareto set, the dotted lines correspond to the prices which support allocations in
the Pareto set. (), €{’) is the endowment point for which a continuum of equilibria
obtains.



