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Abstract:  Existing performance metrics utilized by the PGA TOUR have biases towards specific styles of play, 
which make relative player comparisons challenging.  Our goal is to evaluate golfers in a way that eliminates these 
biases and to better understand how the best players maintain their advantage. 

Through a working agreement with the PGA TOUR, we have obtained access to proprietary “ShotLink” data that 
pinpoints the location of every shot taken on the PGA TOUR.  Using these data, we develop distance-based models 
for two components of putting performance: the probability of making the putt and the remaining distance to the pin 
conditioned on missing.  The first is modeled through a logistic regression, while the second is modeled through a 
gamma regression.  Both of these models fit the data well and provide interesting insights into the game.  
Additionally, by describing the act of putting using a simple Markov chain, we are able to combines these two 
models to characterize the putts-to-go for the field from any distance on the green for the PGA TOUR.  The results 
of this Markov model match both the empirical expectation and variance of putts-to-go. 

We use our models to evaluate putting performance in terms of the strokes or putts gained per round relative to the 
field.  Using this metric, we can determine what portion of a player’s overall performance is due to advantage (or 
loss) gained through putting, and conversely what portion of the player’s performance is derived off the green.  We 
demonstrate with examples how our metric eliminates significant biases that exist in the PGA TOUR’s Putting 
Average statistic.  Last, extending the concept of putts gained to evaluate player-specific performance, we show how 
our models can be used to quickly test situational hypotheses, such as differences between putting for par and birdie 
and performance under pressure. 

Keywords: golf, putting, performance modeling, logistic regression, gamma regression, Markov models 

1 Introduction 

The sport of golf has an extremely rich tradition, with origins dating back to at least the 15th century 

(Cornish, 1993).  Other popular sports, such as baseball, basketball, and American football have each 

developed loyal followings of fans who pour over statistics on a regular basis.  But, unlike with these 

sports, statistical analysis of the game of golf has lagged. 
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The game of golf is well-suited to such analysis.  Much like baseball, the game of golf breaks down into a 

sequence of well-defined discrete events, i.e. the shots taken.  Unfortunately, golf analysis currently 

suffers from a few significant drawbacks.  The first is that data officially reported by the PGA TOUR is 

limited to a small number of aggregate statistics, including Drive Distance, Drive Accuracy, Greens in 

Regulation, and Putting Average.  The second issue is that the statistics that are reported do not do a 

particularly good job of differentiating golfer performance.  For example, there is no way to tell whether a 

golfer’s low Putting Average is due to exceptional putting performance or equally impressive 

performance on approach shots.  The third issue is that the reported individual statistics are heavily biased 

by the difficulty of the courses the golfer has played, and professional golfers play in different sets of 

tournaments over the course of the year. 

In our work, we focus on putting, which accounts for approximately 40% of the strokes taken.  In order to 

develop a truer performance metric for putting, we attempt to address the latter two concerns mentioned 

above: distinguishing putting performance and controlling for green difficulty.  Based on a working 

agreement with the PGA TOUR, we have analyzed six years of ShotLinkTM shot tracking data for thirty 

of the top courses on the PGA TOUR.  From this data, we have developed two statistical models for 

analyzing the key aspects of successful putting: 1) making the putt, and 2) leaving it close when missing.  

We demonstrate that when combined using a simple Markov model, these two independently trained 

models explain the vast majority of expected putting performance for the field of PGA TOUR golfers. 

Additionally, we use this Markov model to define a putting performance metric, putts gained per round, 

based on the concept of shot value described in Section 1.3.  By applying adjustments to our two 

statistical sub-models, we are able to account for the fact that PGA TOUR tournaments vary significantly 

in both the challenge of the putting greens and the quality of the field of golfers competing.  These 

adjustments allow us to perform a direct comparison between golfers who have played in different sets of 

tournaments.  Conveniently, calculating putts gained per round also allows us to determine each player’s 

performance off the green.  That is, of the difference between a player’s round score and the round 
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scoring average for the field, we can determine what portion corresponds to putting performance with the 

remainder coming off the green. 

Last, we demonstrate how we can use our combined, adjusted Markov model to analyze various putting 

situations.  First, we evaluate and compare golfer performance on par versus birdie putts.  The benefit 

from using our model for this question is that it allows us to directly assess the difference in terms of 

scoring impact.  Next, we use our model to analyze golfer performance under pressure during the last 

round of each tournament.  Based on the underlying statistical model we evaluate and analyze the 

confidence intervals around these results. 

1.1 The Game of Golf 

A PGA TOUR golf tournament consists of four rounds, played over four days (usually Thursday through 

Sunday).  Each day, the hole is moved to a different location on each of 18 greens.  After the second 

round, the players with the 70 best scores make “the cut”, and advance onto rounds 3 and 4.  The winner 

of the tournament is the player with the lowest cumulative score over the four days of the tournament.   

Until now, golfers have been evaluated by a limited number of metrics.  One metric of interest to golfers 

and fans is greens in regulation (GIR).  To reach the green in regulation, the golfer must reach the green 

within “par minus 2” strokes.  For example, on a par 3 hole, the golfer must reach the green in one stroke 

- from the tee - to have it considered a green in regulation.   The metric most commonly used to evaluate 

putting specifically is Putting Average (PA).  This is the average number of putts a golfer takes when he 

reaches the green in regulation.  A typical professional Putting Average is around 1.7.  We show later that 

this metric is biased to favor golfers with better approach shots.  
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1.2 Strokes-to-Go and Shot Value 

A large vocabulary has grown on the golf course to attempt to describe the worth of particular shots1.  

Birdies, eagles, and albatrosses are good, while shanking, skulling, and chunking are not.  There are shots 

named after conservative republicans and liberal democrats (think about shots erroneously flying right or 

left respectively).  But despite this extensive and colorful vocabulary, there exists no widespread method 

of objectively evaluating how good a good shot is, or how bad a bad shot is.  Building on the work of 

Landsberger (1994) and Broadie (2008), we explicitly quantify the value of an individual shot. 

We use the term strokes-to-go to refer to the expected number of strokes it takes to get from a particular 

location on a particular hole to reach the hole itself.  Here, expectation is taken over the field of PGA tour 

professionals.  This differs slightly from previous definitions in that the baseline is based on the field of 

PGA TOUR golfers rather than on a scratch golfer (cf. Broadie 2008).   

As outlined in Broadie (2008), the value of an individual shot can be calculated by comparing the strokes-

to-go before the shot with the strokes-to-go after the shot.  On average, we would expect strokes-to-go to 

decrease by one with each shot taken.  Any decrease more than this is a good shot, and any decrease less 

than this is a bad shot.   

shot value = strokes-to-goBefore – strokes-to-goAfter - 1  

As an example, let’s look at the par 4 14th hole at Quail Hollow, illustrated in Figure 1. 

                                                      
1 Pennington, Bill.  “Golf’s Colorful Language Goes with Any Green.” New York Times 11 May 2009: D7 
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Figure 1: Example of a hypothetical golfer's shots on the 14th hole at Quail Hollow. 

For this hole, the expected strokes-to-go from the tee is 4.1 (regardless of the fact that the course 

designers set par at 4).  We would expect the average score on this hole to be 4.1 were it to be played by a 

field of average PGA golfers.  A hypothetical golfer might drive the ball off the tee to a place on the 

fairway where the strokes-to-go is 3.22.  (See Location 2 in the figure).  The strokes-to-go before the shot 

was 4.1, and after the shot it was 3.2, and so that shot was worth (4.1 – 3.2 – 1 =) -0.1 strokes.  The value 

is less than zero, implying it was not a good shot.  He then hits the ball onto the green about 15 feet from 

the hole (Location 3 on the figure).  From our model, we know the expected strokes-to-go for this location 

on the green is 1.8, so that the golfer has just picked up (3.2 - 1.8 – 1 =) 0.4 strokes.  In an excellent putt, 

he then manages to sink this 15-footer.  This final putt has a shot value of (1.8 – 0 – 1 =) 0.8.  In all, he’s 

gained (-0.1 + 0.4 + 0.8 =) 1.1 strokes on this hole, relative to the expectation of the field of PGA tour 

golfers.  We could have just as easily calculated this by comparing his actual strokes (3) to the average 

strokes for the hole among PGA TOUR golfers (4.1).  But the benefit of the shot value metric is that we 

                                                      
2 While this paper does not include a model for strokes-to-go off the green, we have developed a model to predict 
strokes-to-go from anywhere on a golf course, including from bunkers, the rough, and the fairway.  All values off 
the green for this example are hypothetical for illustrative purposes. 
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know exactly where he gained or lost strokes.  Our hypothetical golfer had a great putt (picking up 0.8 

strokes), a good approach shot (picking up 0.4 strokes), and a worse-than-average drive (losing 0.1 

strokes).   These values are summarized in Table 1. 

 

Table 1: Example of shot values of a hypothetical golfer's shots on the 14th hole at Quail Hollow. 

The putting model described in this paper predicts strokes-to-go for any position on the green, for any 

player, and for any hole.  Subsequently, since we are focusing solely on the green, we refer to this value 

as putts-to-go.  Knowing the shot value of every putt allows us to compare players’ putting performances 

in a fair, unbiased way. 

1.3 ShotLink
TM
 Dataset 

In 2001, IBM and the PGA TOUR teamed up to introduce an advanced data collection system known as 

ShotLink.  Using about 250 volunteers per tournament, ShotLink captures the ball location for every shot 

taken on the PGA TOUR.  When a ball lands on the golf course, volunteers point a survey laser at the ball 

to pinpoint its location and elevation to within 1 cm on the green and within 1 foot on the fairway.  

Simultaneously, walking scorers use handheld devices to capture non-locational data about each ball, 

such as quality of lie, player, ground slope, score, etc.  For example, on the final round of the 2008 

Crowne Plaza Invitational at Colonial Country Club, Phil Mickelson’s drive on the 18th hole took him to a 

location in the rough 140 yards from the hole, and ten inches below it.  On his second stroke, he hit the 

ball 137 yards onto the green, landing him 9 feet 3 inches from the hole laterally, and 3/16 of an inch 

above the hole vertically.  He went on to make this 9 foot putt for birdie winning the tournament and 

$1.098 million dollars.   

Shot 

Location Strokes-to-Go

Shot value of the 

stroke taken from 

this location

Tee 4.1 -0.1

2 3.2 0.4

3 1.8 0.8

Hole 0 NA
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There are 45 PGA TOUR events per year, each held at a different course.  However, in this paper we 

focus on 30 courses3.  These courses include the tournaments with the best qualities of field as measured 

by the World Golf Rankings of their participants.  The dataset on which we base our analysis includes 

every putt on these thirty courses from 2003 to 2008, approximately 2 million rows of data.  This roughly 

corresponds to [100 players] * [6 years] * [30 courses] * [4 rounds per tournament] * [18 holes per 

tournament] * [about 1.6 putts per hole].  These 2 million putts were taken by over 1000 distinct players.  

In order to validate our model, we hold out 15% of these putts as a test set. 

1.4 Literature Review 

Golfers and statisticians have been trying to model the game of golf for decades.  While analysis has 

covered modeling everything from total score (see for example, Brown, 2007) to the impact of doubling 

the hole size (Landsberger 1998, Bansal and Broadie 2008), the green has been the most prolific area of 

study.  Data from tournaments and controlled putting experiments have been collected since the 1960’s.  

Cochran and Stobbs (1968) measured every ball location for every round for 6 holes in the Dunlop 

Masters Tournament at Royal Birkdale in 1964.  They used this data to plot the sigmoidal relationship 

between distance and probability of holing-out as well as the monotonically increasing relationship 

between average number of putts versus starting distance.  While the scale has changed since then, the 

shape of the plots has not changed much over the last 45 years.   Soley (1977) investigated the 

relationship between the starting distance of putts that missed and the distance remaining to the pin.  He 

collected data on the 25th, 50th, and 75th percentiles of distances-to-go from missed putts, finding a 

roughly linear relationship between starting distance and remaining distance quartile for first putts longer 

than 11 feet. 

                                                      
3 Annandale Golf Club, Bay Hill Club, Brown Deer Park Golf Club, Cog Hill Golf and Country Club, Colonial 
Country Club, Congressional Country Club, Doral Resort and Country Club, East Lake Golf Club, Firestone 
Country Club (South Course), Harbour Town Golf Links, La Cantera Golf Club, Magnolia Golf Club, Montreux 
Golf and Country Club, Muirfield Village Golf Club, Plantation Course at Kapalua, Quail Hollow Country Club, 
Riviera Country Club, Torrey Pines (South Course), TPC Boston, TPC Deere Run, TPC Las Colinas, TPC River 
Highlands, TPC Sawgrass, TPC Scottsdale, TPC Southwind, TPC Sugarloaf, Waialae Country Club, Warwick Hills 
Golf and Country Club, Westchester Country Club, and Westin Innisbrook - Copperhead 
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While these early texts represent important advancements, many of them concentrate on understanding 

the empirical data.  More recent works, on the other hand, have started to build parametric models that not 

only predict the outcomes, but whose parameters give insight into the game itself.  In 1994, Hoadley 

presented a model in which error entered the putting process both in the initial angle of the putter, as well 

as the intended distance (both errors were modeled as normal distributions).  Tierney and Coop (1999) 

took the alternate path of modeling the final position of the ball as a bivariate normal distribution centered 

in back of the hole with asymmetrical “x” and “y” errors (the distance error is more severe than the side-

to-side error).  Carnahan (2002) carried out a controlled experiment – for which “vintage potables 

…[were]….offered as prizes” - in which he attempted to quantify the effect of slope, distance, and break.  

While he mentions logistic regression as a possible next step (which is unpublished as far as we know), 

his analysis focuses primarily on determining if break and slope significantly affect the probability of 

holing-out, and reporting the hole-out percentage of the different distances in the experiment.   

Pope and Schweitzer (2009) predict the probability of holing out, i.e. sinking the putt, using a logistic 

regression model.  The explanatory variables include functions of distance as well as dummy variables for 

eagle, birdie, par, bogey, and double bogey situations.  Their findings support the hypothesis that players 

try harder and take more risks on putts for par as opposed to putts for birdie, even though it is the 

cumulative score over the entire tournament that determines their positions and earnings.   

Landsberger (1994) attached a value to individual strokes for his “Golf Stroke Value System”.  On the 

green, the value of a stroke is the difference in expectation between the starting and ending position of the 

ball.  In 2008, Broadie developed this idea further with his idea of “fractional par”, which is the expected 

number of strokes remaining for a scratch golfer from anywhere on the course.  He then uses fractional 

par to value individual shots, where the value of a stroke is the beginning fractional par minus the ending 

fractional par minus 1. Both of these models are based on empirical data.   
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In terms of looking at professional golf metrics and trying to rank players in an accurate way, less work 

has been done.  Cochran and Stobbs (1968) remark on the biases of the Putting Average metric.  Larkey 

and Smith (1998) discuss some of the shortcoming of other current golf metrics, and the need for 

improvement.  This work is a follow up of Larkey’s 1994 work on ranking professional golfers by skill.  

He had identified the difficulty in ranking players who do not all play in the same tournaments.  Larkey 

develops a metric based on a player’s earnings relative to purse size as a starting point for measure of skill 

(to normalize for inflation).  Connolly and Rendleman (2008) also emphasize the importance of including 

player skill in their work on the role of luck and streaky play in golf.  They use as data professional 

golfers’ aggregated golf scores per round of golf. 

1.5 Contributions 

The primary contribution of our work is the development of a new putting performance metric, putts 

gained per round, which eliminates the most significant biases inherent in existing PGA TOUR putting 

statistics, including Putting Average.  We subsequently develop a simple model to predict strokes-to-go 

off the tee and use this to evaluate off-green performance.  For both our on-green and off-green models, 

we develop an iterative algorithm that allows the full 30 tournaments worth of data to be considered in a 

computationally efficient fashion.  In addition, we show that by applying the concepts of putts gained 

more broadly, there are many interesting questions that can be answered about the game of golf.  We 

believe that incorporation of putts gained per round into the reported PGA TOUR statistics would not 

only help existing fans better understand the game, but would also generate new interest in the sport.   

2 Statistical Modeling 

In this section we describe our statistical modeling process and the resulting models.  In the first three 

subsections, we develop the statistical models that provide the core of our subsequent analysis.  First, we 

model the probability of holing out, i.e. making the putt, using a logistic regression.  Next, assuming the 
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putt is missed, we model the conditional distribution of distance-to-go using a gamma regression.  Third, 

using a simple Markov model, we combine the holing out model with the distance-to-go model to 

estimate the distribution of putts-to-go for the field of PGA TOUR golfers. 

The two regression models, holing out and distance-to-go, utilize distance and simple transformations of 

distance (i.e. logarithm and polynomials) as the primary covariates.  Thus, we ignore features such as 

green speed and the contours of the green.  In Section 2.4, we argue that while these features are 

statistically significant, they are practically irrelevant for our purposes, because their exclusion does not 

introduce any systematic biases when measuring and comparing putting performance. 

Though we feel it is safe to exclude green-specific features in our model, this does not mean we can 

ignore green differences entirely.  As mentioned previously, different golfers play in different 

tournaments with different putting greens and corresponding difficulty levels.  Thus, in order to 

effectively compare putting performance either between players or situations, we need to control for this 

variation.  To do so, we introduce adjustments for green difficulty into our two regression models.  In 

order to separate the impacts of green difficulty from quality of field, we need to simultaneously consider 

adjustments for player skill level.  We describe this process and its benefits in Section 2.5. 

Last, for practical relevance, our approach needs to be computationally extensible to allow for inclusion 

all of the PGA TOUR events.  In Section 2.6, we describe an iterative training procedure for estimating 

the green and player adjustments.  This procedure allows us to consider segments of the dataset 

independently, thus dramatically improving performance.  We use this approach to include 30 courses in 

the results we report throughout the paper. 

2.1 Holing Out Model 

As reviewed in Section 1.4, the probability of holing out has been discussed in the literature.  For many 

questions, an empirical analysis of this probability against distance is sufficient as the data are remarkably 

stable, up to 60 ft. or more.  In Figure 2, we plot the empirical probability of holing out versus starting 
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distance.  This plot is based on 30 golf courses, and starting distances are bucketed into two foot intervals.  

The starting distance point used for each bucket in the plot is the empirical mean of the starting distances 

within that bucket.  

 

Figure 2: Empirical probabilities of holing out plotted against putt distance. 

We desire a parametric model of holing out for two reasons: to smooth out the curve in areas where the 

data are sparse, such as with long distance putts; and most importantly, to analyze additional impacts on 

holing out probabilities, such as green difficulty and quality of field.  With these goals in mind, a 

binomial logistic regression model is a natural choice.  For our first model, we include only an intercept 

term and five distance-based terms corresponding to the logarithm of distance and a 4th-order polynomial 

of distance.  Thus, we write the probability of one-putting as: 

 

  ( )2 3 4
0 1 2 3 4 5

1
log 

1 1[ | ]
d d d d d

P Y d e
β β β β β β− + ++ + +

−
 = = +  
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where Y is the number of putts-to-go and d is the distance to the pin.  In Section 2.5, we include additional 

dummy variables to incorporate the effects of green difficulty and quality of field.  The decision to 
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include the 4th order polynomial and natural logarithm of distance was determined through 10-fold cross 

validation (Hastie, Tibsharani, and Friedman 2001).    

The parameters are fit in order to maximize the likelihood of observing the training data, which is 

equivalent to minimizing the deviance (McCullagh and Nedler 1989).  The fitted values for these 

parameters along with the corresponding Wald test z-statistics and p-values are listed in Table 2.  Each of 

the parameters is significantly different from 0 at an arbitrarily small significance level.  This model leads 

to a reduction in deviance from 2,199,471 for the null model to 988,732 for the model with 5 parameters, 

which is also extremely significant.  Using these fitted parameter values, we plot the model against the 

empirical results in Figure 3.  Based on just a visual inspection, it is clear that the model fits the empirical 

data well.

 

Table 2: Fitted parameters of holing out logistic regression model. 

Estimate Standard Error z-statistic p-value

(Intercept) 7.31E+00 2.48E-02 294.71 < 2E-16

Logarithm distance -5.58E+00 4.59E-02 -121.61 < 2E-16

First-order distance 6.76E-01 1.28E-02 52.99 < 2E-16

Second-order distance -1.97E-02 5.21E-04 -37.80 < 2E-16

Third-order distance 2.93E-04 1.02E-05 28.66 < 2E-16

Fourth-order distance -1.62E-06 7.13E-08 -22.71 < 2E-16
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Figure 3: Empirical probabilities of holing out compared to fitted logistic regression model. 

 

2.2 Distance-to-Go Model 

In this section, we are concerned with where the ball comes to rest if the putt misses.  That is, if a 

professional golfer misses a putt from distance d what is the distribution of distance-to-go, the remaining 

distance to the pin?  In Figure 4, we note a strong, roughly linear, relationship between putt distance and 

the mean of distance-to-go.  Soley (1977) describes a similar trend for each of the quartiles of distance-to-

go.  Note that beyond 80 feet this relationship starts to break down due to the small number of matching 

of observations. 
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Figure 4: Empirical mean of distance-to-go conditional on missing, plotted against initial putt distance. 

Regarding the data, there are two points worth noting.  First, the empirical standard deviation of distance-

to-go is increasing relative to putt distance, as displayed in Figure 5, with a roughly constant coefficient 

of variation4.  Second, distance-to-go is strictly positive, with a positively skewed distribution and a 

strictly positive mode that is typically between 2 and 3 feet from the hole.  For example, in Figure 6 we 

chart the empirical distribution of distance-to-go for 10 foot, 20 foot, 30 foot, and 40 foot putts.  With this 

in mind, we immediately rule out an Ordinary Least-Square (OLS) regression since the assumptions of 

homoscedasticity and normally-distributed errors are violated. 

                                                      
4 The coefficient of variation equals the standard deviation divided by the mean. 
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Figure 5: Empirical standard deviation and coefficient of variation of distance-to-go conditional on missing plotted against 

initial putt distance. 

 

Figure 6: Empirical distributions of distance-to-go conditional on missing for initial putt distances in the one-foot buckets 

centered at 10 feet, 20 feet, 30 feet, and 40 feet respectively. 
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A gamma regression model, one of the standard generalized linear models, is an appropriate choice for 

data with a constant coefficient of variation and error terms that are approximately gamma distributed 

(McCullagh and Nedler 1989).  The gamma distribution, like our data, is strictly positive, positively 

skewed, and peaked away from 0, at least for appropriate values of the shape parameter.  For a 

generalized linear model, such as a gamma regression, the link function determines the functional 

relationship between the linear-in-parameter regression function and the response variable.  For instance, 

if a generalized model has a log link function, the linear-in-parameter regression function predicts the 

natural logarithm of the mean of the response variable.   In our testing, either an identity or log link 

function fit the data equally well, though we choose to report on the results utilizing a log link for two 

reasons: the log link maps the strictly positive distance-to-go to the real domain of the linear-in-parameter 

regression function; and the log link enables a nice interpretation of the results, which we discuss further 

in Section 2.5.  As with our holing out model, we consider only an intercept and distance-related terms in 

our set of independent variables.  In this case, we utilize a 2nd-order polynomial of distance instead of a 

4th-order polynomial.  Additionally, a gamma regression model requires us to fit the shape, k, of the 

gamma distribution.  Thus, for the distance-to-go model, the fitted parameters include the coefficients of 

the logarithm of distance, the 2nd-order polynomial of distance, and the shape, k, of the gamma 

distribution.  We write the density function of distance-to-go, ( | ; , )f z d kβ , as follows: 
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In Equations 2 and 3 above, dµ represents the conditional mean of distance-to-go from distance d, 

( | ; , )f z d kβ  is the equation for the gamma density with shape k and scale µd k , and Γ(·)  is the gamma 

function.  As with the holing out model, the decision to include the 2nd order polynomial and natural 

logarithm of distance was determined through 10-fold cross validation.   
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As with the logistic regression, we estimate these parameters to minimize the model deviance.  The 

estimates for these parameters along with the robust standard errors and t-values5 are listed in Table 3.  

Using these parameter estimates, we plot the mean and standard deviations from the fitted model against 

the empirical results in Figure 7 and Figure 8.  In Figure 9, we similarly plot the conditional distribution 

of distance-to-go based on our model against the empirical distributions for a sample of initial putt 

distances.  As with the holing-out model, we see a close fit between our distance-to-go model and the 

empirical data. 

 

Table 3: Fitted parameters of distance-to-go gamma regression model. 

 

Figure 7: Empirical mean of distance-to-go conditional on missing compared to fitted gamma regression model. 

                                                      
5 While we recognize that using t-tests to determine significance of independent variables in a model whose errors 
are non-normal is only an approximate approach, we are comfortable concluding that the coefficients are significant 
nonetheless because their standard errors are more than an order of magnitude smaller than their coefficient 
estimates. 

Estimate Standard Error t-value p-value

(Intercept) 9.5E-01 9.6E-03 99 < 2E-16

Logarithm distance -3.5E-01 6.6E-03 -53 < 2E-16

First-order distance 4.6E-02 6.3E-04 73 < 2E-16

Second-order distance -1.6E-04 5.8E-06 -28 < 2E-16

Shape (k ) 2.132 0.004
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Figure 8: Empirical standard deviation of distance-to-go conditional on missing compared to fitted gamma regression 

model. 

 

Figure 9: Empirical distributions of distance-to-go conditional on missing for initial putt distances in the one-foot buckets 

centered at 10 feet, 20 feet, 30 feet, and 40 feet respectively compared to fitted gamma regression model. 
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2.3 Putts-to-Go Model 

In this section, we combine our holing-out logistic regression model with our distance-to-go gamma 

regression model to produce a Markov model of putts-to-go.  Although we require only the expected 

putts-to-go for each distance in order to calculate the performance metrics forthcoming, we desire the 

distribution of putts-to-go in order to calculate confidence intervals around these results.  With this in 

mind, in Figure 10 and Figure 11 we plot both the empirical mean and standard deviation of putts-to-go 

for each initial putt distance.  It is interesting to note that between 0 and 10 feet, less than 1% of 

professional golfers 3-putt a hole, thus we can roughly consider the putts-to-go as a Bernoulli trial in this 

range.  This explains the peak in standard deviation around 7 feet, where the likelihood of one-putting or 

two-putting is each approximately 50%.  Between 10 and 30 feet, the likelihood that a professional golfer 

will 2-putt a hole increases rapidly while the chance of 3-putting remains relatively low.  This explains 

the corresponding dip in standard deviation.  The standard deviation begins to rise again beyond 30 feet, 

as the proportion of 3-putts increases at a steady rate.  This non-monotonic behavior of the standard 

deviation is due to the discrete nature of the data. 

 

Figure 10: Empirical mean of putts-to-go plotted against initial putt distance. 
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Figure 11: Empirical standard deviation of putts-to-go plotted against initial putt distance. 

While a multinomial logistic regression or a Poisson regression would model the discrete data directly, we 

instead choose to take an approach that more closely represents the physical act of putting.  With the 

holing out and distance-to-go models at our disposal, we describe the process of putting through a simple 

Markov chain.  The state space is the positive real line, representing the distance to the hole, combined 

with an absorbing state, H, representing the hole.   From any state d
+∈R , the probability of 

transitioning to state H is equal to the holing out probability, and the probability density associated with 

transitioning to state z +∈R  is equal to the probability of missing the first putt times the density 

represented by the distance-to-go model.  In terms of the Markov model, the probability of reaching the 

hole in n putts from distance d corresponds to the probability of first reaching the absorbing state, H, in 

exactly n transitions from state d.  More formally, we have: 
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where, as above, Y is the number of putts, d is the starting putt distance, z is the conditional distance-to-

go, and ( | )f z d  is the gamma density function. 

This model requires two key assumptions.  First, a putt that starts on the green ends either in the hole or 

on the green.  For professional golfers, this is a very reasonable assumption as only 0.036% of putts in the 

ShotLink data set ended up off the green.  Second, we need to satisfy the Markov property, which in our 

context states the probability of reaching the hole in n-putts from a given distance is independent of the 

previous putts the golfer has taken on the hole.  For individual golfers, we would expect the model 

performance to degrade somewhat as the number of putts taken previously is correlated with the skill 

level of the golfer.  This concern is addressed to an extent by the adjustments we make to our model in 

Section 2.5.  Additionally, the Markov property suggests that from the same distance a second putt should 

be just as difficult as a first putt.  In fact, as we show in Section 3.3, the second putt is consistently easier 

than the first putt.  We choose not to model this fact directly in order to maintain the simplicity of the 

model as the basis for an easily interpretable putting performance metric. 

Using Equations 1 and 4, we can easily calculate the mean and standard deviation of putts-to-go.  These 

results are plotted against the empirical values in Figure 12 and Figure 13.  Additionally, in Figure 14, we 

plot the probabilities of reaching the hole from distance d within n putts against the empirical proportions.  

Our model suggests that even at 100 feet, the probability of requiring 4 or more putts to reach the hole is 

less than 3.5%. 
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Figure 12: Empirical mean of putts-to-go compared to fitted Markov model. 

 

 

Figure 13: Empirical standard deviation of putts-to-go compared to fitted Markov model. 
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Figure 14: Empirical "Within N putts" probabilities compared to estimates based on fitted Markov model. 

 

2.4 Considering Additional Features 

In our efforts to build a performance metric for putting, we have made decisions about which features to 

include in our model, and which to exclude.  These decisions are driven by the goal to create a simple 

model, but also to include enough features to allow for the unbiased evaluation of putting performance. 

Features that affect putting (and therefore that can bring bias into any putting metric) can be thought of as 

residing in two groups.  The first group contains features that are relatively consistent for a given hole.  

They include grass type, grass length, hole difficulty and terrain, and – to some extent – weather.  Since 

every golfer does not play every hole (in fact, golfers get to choose in which tournaments they play) it is 

necessary to correct for this: a golfer who always plays on courses with fast, tougher greens should not be 

penalized over the golfer who chooses to play on slower, easier greens.  In Section 2.5, we describe how 

we correct for individual hole difficulty, addressing this first source of bias.  

The second group of potentially bias-inducing features differs from putt to putt, even within a single 

green.  The most obvious of these is distance.  In fact, our motivation to create a better putting metric is 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

P
ro
b
a
b
il
it
y
 o
f 
h
o
li
n
g
 o
u
t 
in
 

n
 p
u
tt
s

Starting Putt Distance (feet)

Model 1 Putt Model 2 Putts Model 3 Putts

Empirical 1 Putt Empirical 2 Putts Empirical 3 Putts



24 | P a g e   J a n u a r y  1 1 ,  2 0 1 0  

 

 
 

driven in part by the observation that some golfers consistently putt from shorter distances than others as 

we demonstrate in Section 3.1.  This makes the popular Putting Average metric ineffective for comparing 

putting performances.   

Another potentially bias-inducing feature in this category is slope.  It is conventional wisdom among the 

golfing community (and supported by our analysis) that uphill putts are easier to make than flat putts, and 

that flat putts are easier to make than downhill putts.  If some golfers have the skill to consistently place 

the ball downhill of the pin more often than their peers, then their putting metrics may look inflated, 

because for a given distance, they are actually often facing easier (uphill) putts.  However, if all golfers 

have about the same distribution of uphill versus downhill putts, we can safely exclude this feature and 

still argue that our putting metric is fair and unbiased.  In fact, we show that it is the case that there is an 

insignificant difference in the distribution of uphill versus downhill putts for all golfers. 

To test the hypothesis that players’ slope distributions are similar, we look at a sub-sample of ten courses 

from our overall sample of 30.  For these courses, we bucket the putts into one foot increments by 

distance.  For each bucket, we run an OLS regression on the corresponding subset of data with slope as 

the dependent variable and player as the independent variable.  Slope is defined in the conventional sense 

as elevation of the pin above the ball divided by the distance from the ball to the pin.  (Note that slope is 

negative if the ball is above the pin).  The F-statistic from this regression, then, provides us with the 

means to test the null hypothesis that “All players’ slope coefficients are equal.”  For distance buckets 

farther than 3 feet from the hole, regressions on all distance subsets – save one – fail the F-test.  Although 

the 8 to 9 foot bucket indicated a statistically significant difference, we find it unlikely that player 

performance differs at this distance while being the same at every other distance from 3 to 24 feet.  Thus, 

we conclude there is not sufficient evidence to believe that slopes vary significantly from player to player 

beyond 3 feet6.    

                                                      
6 The slope data is not exactly normally distributed within each distance bucket.  Therefore, we also performed the 
non-parametric Kruskal-Wallis rank sum test on the slope data.  The results of this test were similar to the F-test.  
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For observations 3 feet and closer, the regressions show that some players’ coefficients are statistically 

significant.  However, practically, these players’ coefficients are irrelevant because: (i) the magnitude of 

the effect is so small; (ii) golfers almost always make these short putts, regardless of exogenous factors 

such as slope; and (iii)  only a small number of golfers have statistically significant slope coefficients.     

For the subset of golfers whose slope coefficients are statistically significant (about 20 out of 600 

golfers), their ability to consistently place the ball downhill from the pin improves their probability of 

holing out at 3 feet from about 95.4% to 95.8%.  Under the assumption that putters sink their balls in 

either 1 or 2 putts from this distance, this implies that their expected putts-to-go improves from 1.046 to 

1.042.    This equates to a potential bias of 0.04 putts per round (assuming that about a third of all putts 

are taken from within three feet, and that there are about 1.6 putts per green).  As we will see later in 

section 3.1, the order of magnitude of the standard deviation of putts gained per round is 0.1, over twice 

the size of this potential bias.   

In addition to linear slope, second order contours such as hills and dips also have some affect on a golfer’s 

ability to hole out.  However, these complicated contours are beyond the scope of this analysis. This 

resulting paucity of features has the benefit of making the model easier to execute and understand, 

without sacrificing our goal of an unbiased putting metric.  

2.5 Green Difficulty and Quality of Field 

As discussed previously, the variation among green difficulty levels is an important factor to consider 

when comparing player performance.  A 10-foot putt on a slower, level green is considerably easier than a 

10-foot putt on a fast, highly-contoured green.  Rather than consider the specific attributes of the green in 

our model, we adjust the individual parameters of our two statistical models on a hole-by-hole basis.  An 

advantage of this approach is that it does not require a description of the green’s physical layout.  

However, it creates a new challenge to be addressed: separating green difficulty from quality of field.  As 

                                                                                                                                                                           
With the rank-sum test, for most distance buckets beyond four feet the null hypothesis that “All players have the 
same slope” failed at the 5% level, except at the 8-9 foot bucket and 10-11 foot bucket. 
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we have mentioned before, each tournament is played by a different set of PGA TOUR professionals.  

Thus, if we solely adjust the model parameters for each hole, it is unclear whether the adjustments capture 

the difficulty of the green or the putting ability of the golfers that played the corresponding tournament.  

To develop a true reading of the hole-specific parameter adjustments, we must simultaneously fit both 

hole-specific and player-specific parameter adjustments.  We do this by adding hole-specific and player-

specific dummy variables to the model.  Equation 5 below lists the hole and player-adjusted logistic 

regression function with a logit link for the probability of making a putt, 1( )P Y = , by player p on hole h, 

where 
pn  and 

hn  represent the number of putts matching the corresponding player or hole in the training 

data.  Equation 6 below lists the hole and player-adjusted gamma regression function with a log link for 

distance-to-go, z, conditioned on a miss by player p on hole h, where pn
γ
 and 

h
n γ  represent the number of 

missed putts matching the corresponding player or hole in the training data7.  The indicator variables 

{ }conditionI  equal 1 if the condition is true and 0 otherwise.  Thus, a player receives an adjustment to a 

model parameter only if that player has a large number of observations.  The more observations a player 

has, the more parameters he will have adjusted.  If a player has very few observations, his parameters will 

be identical to the general model parameters. 

 
5 2000 8000 750

2 3 4

0 1 2 3 4 0 1 0

1
log log log 

1
{ } { } { }

( )

( ) p p hn p n p n hd d I
P Y

d d d dI I
P Y

β β β β β β β β β≥ ≥ ≥

= 
= + >

+ + +


+ +


+ +  (5) 

 ( ) 2

50 1 2 4 0 10 1000 300 10000 1log log 
p p h h

p p h hn n n n
z d Id d I dd IIγ γ γ γβ β β β β β β β

≥ ≥ ≥ ≥
+ + + + + += +

{ } { } { } { }
 (6) 

 

We determine the appropriate parameters to adjust for each hole and player by using our 15% holdout 

sample to protect against over-fitting the data.  More specifically, the problem that we face is determining 

for each hole or player which parameters from the base model described in Sections 2.1 and 2.2 should be 

adjusted.  If we adjust all parameters, including the logarithm term and full polynomial, we are likely to 

                                                      
7In adding player and hole specific adjustment terms, we assume that player performances and hole difficulties are 
relatively stable for the 6 year period spanned by our data. 
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over-fit the data as this would be equivalent to training separate models on each subset of the data.  If we 

adjust too few, we are leaving biases in the model that should be addressed.  Thus, our desire is to find 

threshold observation counts above which the data supports the corresponding adjustment.  For example, 

for player-specific adjustments to the logistic regression model, we adjust the intercept term for players 

who have taken more than 2000 putts and the logarithm of distance term for players who have taken more 

than 8000 putts.  Note that traditional statistical tests, such as a Chi-squared test, can be used to determine 

whether individual parameter estimates are significant.  However, these tests are sensitive to outliers.  A 

player with 1 observation who makes an extraordinary 60 foot putt would receive his own adjustment 

parameter, while a player who has thousands of observations and is slightly (but surely) better than his 

peers could receive no adjustment. 

Although there are other equally valid approaches, we choose to consider this problem in a staged fashion 

to limit the computational burden.   That is, we determine the observation count threshold for adjusting 

the intercept parameter before determining the threshold for the first-order distance parameter, and we 

calculate the thresholds for the hole-specific adjustments prior to the player-specific adjustments.  Thus, 

the first adjustment we consider is hole-specific adjustment to the intercept parameter for both statistical 

models.  Since our two statistical models are trained independently, there is no need to require any 

ordering between them.  And, since each adjustment introduces more complexity, we require the 

thresholds to be monotonically increasing.  Thus, the threshold for adjusting the intercept parameter will 

be lower than the threshold for adjusting the first-order distance parameter.   

As mentioned above, in order to determine the appropriate threshold for each parameter, we utilize the 

out-of-sample deviance on the withheld 15% test sample.  Ideally, we would calculate the out-of-sample 

deviance for separate models trained using each possible threshold value, but this is not feasible for 

computational reasons since each model takes between hours and days to train on the full data set and the 

possible threshold values range from 50 to 10,000.  To address this issue, we complete the following 

steps. 
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1. We train the model without the parameter adjustment, and calculate the out-of-sample deviance 

for each hole or player in the data set, sorted by the number of matching observations descending.  

2. We train the model with the parameter adjustment, and a threshold value equal to the threshold of 

the previous parameter plus 50 (or 50 in the case of the first parameter).  As in the previous step, 

we then calculate the out-of-sample deviance for each hole or player in the data set and sort the 

results according to the number of matching observations descending. 

3. We approximate the total out-of-sample deviance for each possible threshold value by using the 

out-of-sample deviance from the second model for each hole or player above the threshold and 

the out-of-sample deviance from the first model for each hole or player below the threshold. 

With this procedure, calculating the approximate out-of-sample deviance for each possible threshold 

value requires the model to be trained only twice.  Plotting this approximate out-of-sample deviance 

against each possible threshold value provides a roughly convex curve for all parameters we evaluated.  

For each parameter, we choose a threshold value for our final model that approximately minimizes the 

out-of-sample deviance in this plot.  There is still a significant amount of noise in the results, thus we do 

not focus on choosing the true minimum, but rather on choosing a subjectively reasonable threshold that 

is close to this minimum. 

A sample of these plots is provided in Figure 15 and Figure 16.  The first figure compares the estimated 

deviance plots corresponding to the hole first-order distance and player intercept parameter adjustments 

for the gamma regression.  In the hole first-order distance plot, the deviance decreases slightly before 

flattening out and then starting to increase at around 1,200 observations.  In this case, we choose to set the 

observation count threshold to 1,000.  For the player intercept plot, the deviance steadily increases as the 

threshold value increases, thus we keep the observation count threshold at 50.  The second figure 

compares the estimated deviance plots corresponding to the hole log-distance and player log-distance and 

parameter adjustments for the logistic regression.  In the hole log-distance plot, the deviance steadily 

decreases as the threshold value increases, thus we do not adjust the corresponding parameter.  For the 
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player log-distance plot, the deviance flattens out around 8,000 observations before beginning to increase 

again.  In this case, we choose to set the observation count threshold to 8,000. 

 

Figure 15: Estimated out-of-sample deviance plots for hole first-order distance adjustment (left) and player intercept 

adjustment (right) for the gamma regression model. 

 

Figure 16: Estimated out-of-sample deviance plots for the hole log-distance adjustment (left) and the player log-distance 

adjustment (right) for the logistic regression model. 
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In Table 4 and Table 5, we provide the thresholds for adjusting each of the listed parameters along with 

the number of matching observations.  Parameter adjustments that are not supported by the data are not 

listed in these tables.  In the logistic and gamma regression models, we adjust the hole intercept term for 

all 540 holes, where the threshold listed corresponds to the minimum number of observations (rounded 

down to the nearest 50).  Note that for the gamma regression model we adjust the first-order distance 

parameter for the player, whereas for the logistic regression model we adjust the parameter for the log of 

distance term.  For the player-specific adjustments, we tested both the log-distance parameter and first-

order distance parameter for each model. 

 

Table 4: Hole and player-specific parameter adjustment thresholds for holing out logistic regression model. 

 

Table 5: Hole and player-specific parameter adjustment thresholds for distance-to-go gamma regression model. 

At the beginning of this section, we mentioned that the purpose of adding the player-specific adjustments 

is to tease out the quality of field effects from the hole-specific adjustments.  In order to complete this 

task, we need to normalize the player-specific parameter adjustments so that 0 represents an average 

quality of field across all of our tournaments.  We do this by forcing the sum of the player-specific 

parameter adjustments weighted by the corresponding observation counts to equal 0.  For instance, for the 

player-specific intercept adjustment of either model we first calculate the weighted average of the 

Logistic Regression

Observation 

Count Threshold

Number of 

Parameter 

Adjustments

Number of 

Matching 

Samples

Hole Intercept 750 540 1,644,998

Player Intercept 2,000 272 1,410,646

Player Logarithm 8,000 28 248,738

Gamma Regression

Observation 

Count Threshold

Number of 

Parameter 

Adjustments

Number of 

Matching 

Samples

Hole Intercept 300 540 640,525

Hole First-Order 1,000 439 573,130

Player Intercept 50 566 629,519

Player First-Order 1,000 237 517,088
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estimated parameters: 
0

0ˆ
ˆ

pp

p

w n N
β

β=∑ , where in  is the number of observations for player p and N is the 

total number of observations.  Next, we subtract this value from each of the player-specific intercept 

terms, 
0

0 0 ˆ
ˆ ˆ

p p w
β

β β= − , and add it to the base intercept term, 
0

0 0 ˆ
ˆ ˆ w

β
β β= + .  Note that this normalization 

does not change the result for either the logistic or gamma regression function, since we have added and 

subtracted the same value.  Thus, the estimated likelihood of our original model is maintained.  We follow 

the same approach for the player-specific adjustments to the first-order and logarithm parameters.  For 

ease of interpretation, we also normalize the hole-specific adjustments so that 0 represents a green of 

average difficulty.  All parameter estimates that are reported subsequently are based on this normalization 

scheme. 

One nice feature of the gamma regression adjustments with the log link function is that they are more 

easily interpretable.  For instance, in the case of the player-specific parameter adjustments, we can rewrite 

the mean distance-to-go from Equation 2 as follows: 
2

0 1 0 1 2 3
( {) log }p pd d d d

d e e
β β β β β βµ +++ += , where the first term 

represents a player-specific scaling factor relative to the overall mean distance-to-go.  For example, Tiger 

Woods has an estimated intercept adjustment of 0 pβ = 0.3878 and first-order distance adjustment of 

1pβ = -0.0044.  This means that when Tiger misses a putt from 20 feet, we would expect him to end up 

5% closer to the hole than the average across the field (i.e. 1 - 0 3878 20 0 0044( . * . )e − = 0.05). 

In Table 6 and Table 7, we provide sample parameter adjustments for two players: John Huston and Brent 

Geiberger; and two holes: the 1st hole at Sawgrass and the 9th hole at Bay Hill8.  In order to visualize how 

these adjustments affect our models, in Figure 17 and Figure 18 we plot the adjusted curves against the 

normalized field averages.  Notice that Brent Geiberger is a better putter overall as his logistic regression 

curve lies below the mean and his gamma regression curve lies above it, leading to a smaller than average 

putts-to-go. 

                                                      
8 Note that the coefficients in these tables are based on the field-adjusted model, which was normalized as described 
earlier in this section. 
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Table 6: Coefficient adjustments for the logistic regression holing out model. 

 

 

Table 7: Coefficient adjustments for the gamma regression distance-to-go model. 

 

 

Figure 17: Comparison of two player adjustment effects for the fitted logistic regression (left), gamma regression (center), 

and Markov (right) models. These adjustments assume each player is facing an average hole. 

  

Logistic Regression (Intercept)

Logarithm 

distance

First-order 

distance

Second-order 

distance

Third-order 

distance

Fourth-order 

distance

Baseline for normalized model 7.32 -5.573 0.67 -0.019 0.0003 -1.6E-06

(Adjustments to Baseline)

John Huston -0.11 0.005

Brent Geiberger 0.11 0.005

TPC Sawgrass Hole 1 -0.10

Bay Hill Hole 9 0.19

Gamma Regression (Intercept)

Logarithm 

distance

First-order 

distance

Second-order 

distance

Baseline for normalized model 0.93 -0.342 0.04548 -0.0002

(Adjustments to Baseline)

John Huston 0.10 -0.00149

Brent Geiberger -0.11 0.00085

TPC Sawgrass Hole 1 0.11 -0.00005

Bay Hill Hole 9 -0.15 -0.00005
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Figure 18: Comparison of two hole adjustment effects for the fitted logistic regression (left), gamma regression (center), 

and Markov (right) models.  These adjustments assume an average golfer is facing each hole. 

 

2.6 An Iterative Training Approach 

After adding the hole-specific and player-specific dummy terms and interaction terms described in the 

previous section, training the model becomes a significant computational challenge due to the number of 

data columns for each observation.  All of our models are trained and evaluated in the statistical 

computing language R9.  In R, training the final model directly on 30 courses exceeds the 8 GB of RAM 

in our computational environment, because each observation requires 2632 columns of data due to the 

adjustment terms.  Ideally, we would like to be able to train the model for all tournaments available within 

the ShotLink data set.  To address this, we have utilized an iterative approach to training our model. 

Algorithms that fit generalized linear models typically optimize all coefficients simultaneously in an 

iterative fashion until the relative improvement in the model deviance is below some threshold (e.g., 

0.000001%).  Instead of optimizing all 2632 coefficients simultaneously, we train the model on a small 

subset of coefficients at a time.  Thus, in a given overall iteration, our algorithm performs multiple sub-

iterations optimizing over disjoint subsets of the 2632 coefficients.   In each of these sub-iterations, we 

use the current estimates for the coefficients outside of the subset to calculate an offset which is 

subtracted from each observation’s response variable.  Then, we fit the generalized linear model using the 

                                                      
9   R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org 
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adjusted response variable and the subset of coefficients of interest.  The algorithm then moves on to the 

next subset of coefficients, and the next, until every coefficient has been updated.  This completes a single 

overall iteration.  As with the traditional approach, our algorithm iterates until the relative improvement in 

model deviance is below some threshold (0.000001%), at which point it terminates.  

 

Using this approach, we are able to train the model on 30 courses worth of data, in less than 2 days per 

model.  The performance improvement is due to the fact that by optimizing across a subset of the 

coefficients at a time, we need to consider only the subset of the data that corresponds to those 

coefficients.  Note that this procedure does not affect the optimality guarantees, or lack thereof, for the 

original problem, because the procedure is equivalent to a nonlinear, directional, local search.  That is, if 

the original likelihood function is concave in the region of interest, either procedure will converge to the 

maximum likelihood.  The other interesting feature of this approach is that approximate convergence 

occurs extremely quickly.  Table 8 and Table 9 list the resulting model deviance for the first 5 iterations 

of this procedure as well as the final model deviance for the logistic and gamma regression respectively.  

We chose to report on 5 iterations, because 5 training iterations can be completed in under an hour for 

each model.  The improvement in deviance for the logistic regression from the 5th to 27th iteration is just 

0.002%, whereas the improvement in deviance for the gamma regression from the 5th to 178th iteration is 

just 0.014%.  These results suggest that in a practical setting, the model could be incrementally updated as 

new data are available by applying just a few iterations of this procedure. 
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Table 8: Convergence data for iteratively training logistic 

regression model. 

 

 

 
Table 9: Convergence data for iteratively training gamma 

regression model. 

3 Results 

In Section 3.1, we use the field-adjusted putts-to-go model described above to evaluate putting 

performance.  In this section, we use the concept of shot value as described in Section 1.2 to evaluate the 

stroke gain associated with each putt taken.  We aggregate these values for each player to calculate and 

compare each player’s putts gained per putt and per round.  In Section 3.2, we use putts gained per round 

to determine each player’s off-green performance.  To do this, we calculate the field-adjusted scoring 

average for each hole using an OLS regression model.  This allows us to determine the total strokes 

gained, which can be described as the sum of the putts gained and the off-green strokes gained. 

In Section 3.3, we use the player-adjusted putts-to-go model to evaluate situational putting performance.  

First, we evaluate the difference in putting performance on putts for birdie relative to putts for par.  We 

show that although there is a statistically significant difference between the two, the magnitude of this 

difference in terms of a player’s overall score is much smaller than has been previously suggested.  Last, 

we evaluate putting performance on the final round of play in aggregate and for Tiger Woods to test for 

the impact of psychological pressures. 

Logit 

Iteration

Cumulative 

Duration

Logit 

Deviance

0 988,732

1 0:09:58 985,577

2 0:18:46 985,557

3 0:27:51 985,546

4 0:36:43 985,537

5 0:45:31 985,530

27 4:08:45 985,511

Gamma 

Iteration

Cumulative 

Duration

Gamma 

Deviance

0 323,376

1 0:10:30 314,471

2 0:20:52 314,433

3 0:31:13 314,427

4 0:41:33 314,423

5 0:51:46 314,419

178 30:13:49 314,376
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3.1 Putts Gained 

In Section 1.2, we defined the concept of shot value, the strokes gained or lost on a particular shot.  Using 

the field normalized, hole-specific expected putts-to-go function as a baseline, shot value (or putt value) 

allows us to calculate the quality of each individual putt of each player.  Averaging this shot value across 

all putts of a particular golfer, we develop the metric putts gained per putt: 

 
1

1 pTotalPutts

p ip

ip

putts gained per putt putt value
TotalPutts =

− − − = −∑  

Where p represents the player in question and putt valueip is the shot value of player p’s ith putt.  This 

putts gained per putt metric is unbiased and corrected for hole difficulty. 

The metric putts gained per round  is similar to the above, but instead of being normalized by the total 

number of putts taken the metric is normalized by the number of rounds played: 

1

1 pTotalPutts

ip

i

p

p

putts gained per round putt value
TotalRounds =

− − − = −∑  

where again, p denotes the specific player.  Note that this is equivalent to multiplying putts gained per 

putt by the average number of putts the player takes in each round.  While there is no guarantee that 

ordering players by these two different metrics will provide identical rankings (because players’ putts per 

round averages may differ), in practice, the rankings are very close.  In fact, the top 19 putters ranked by 

each method are identical, and the maximum difference in rank between the two methods is 5 golfers, or 

1.5 percentiles.  We use putts gained per round to evaluate players going forward over putts gained per 

putt because the former is more intuitive and its impact on a tournament’s outcome is clearer.  

As desired, putts gained per round is a less biased way of judging putting skill than Putting Average 

(PA).  Recall from the introduction that Putting Average is the average number of putts a golfer takes on 

greens reached in regulation (i.e., reached in no more than (par – 2) strokes).  This metric is also 
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sometimes known as Putts Per Green in Regulation (PPGIR), and it is the most popular metric by which 

golfers’ putting skills are judged.  However, Putting Average can be biased by the quality of golfers’ 

approach shots.  Golfers whose first putts are closer to the hole will have lower Putting Averages, even if 

they are not better putters.  Alternatively, great putters may have terrible Putting Averages because they 

start farther from the hole on average, but actually make amazing putts from these longer distances.  The 

metric putts gained per round corrects for this bias by explicitly correcting for the distance of each putt.  

In addition, putts gained per round corrects for green difficulty, so that sinking a 10 foot putt on a 

difficult green is valued more than doing the same on an easy green.  

The advantage of putts gained per round over Putting Average can be demonstrated through a simple 

example.  Consider two golfers, Ernie Els and Stephen Leaney.  Ernie Els is ranked 15th in Putting 

Average (5th percentile), but is ranked 283rd in putts gained per round (88th percentile).  On the other 

hand, Stephen Leaney is ranked 191st in Putting Average (59th percentile), but 28th in putts gained per 

round (9th percentile).  Table 10 shows the putting statistics and rankings of each player. 

 

Table 10: Comparison of Ernie Els and Stephen Leaney's performance through two putting performance metrics. 

As we discussed earlier, a hypothesis for the discrepancy among these two golfers’ rankings between the 

Putting Average and putts gained per round metrics is that Ernie Els starts closer to the hole on average, 

meaning that his putts are easier.  This would inflate his Putting Average rank.  By this same hypothesis, 

we would expect Stephen Leaney’s average first putt distance to be farther than the average golfer.  In 

fact, this is the case.  Figure 19 shows the cumulative distribution function for first putt distance for Ernie 

Els, Stephen Leaney, and the average for the field of golfers.  These distributions and averages consider 

only those first putt distances for which the golfer reached the green in regulation, since Putting Average 

considers only these putts.  Ernie Els’ first putt on average is 20.0 feet, almost two feet closer to the hole 

Player

Number of 

Rounds Played

Putting 

Average 

 Percentile

Putts Gained 

per Round  

Percentile

Putting 

Average   

Putts Gained 

per Round 

Putts Gained per 

Round Standard 

Deviation

Stephen Leaney 264 59% 9% 1.79 0.26 0.11

Ernie Els 212 5% 88% 1.75 -0.63 0.12
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than the average first putt distance among the field, which is 21.8 feet.  On the other hand, Stephen 

Leaney’s average first putt distance is 23.0 feet, over a foot farther from the hole than the average.   

While at first glance, Ernie Els may appear to be a great putter by the Putting Average metric, the data 

seem to indicate that his true skill is on the approach.  And actually, he is a worse-than-average putter 

with respect to putts gained per round.  After correcting for distance and green difficulty, we find that 

88% of his peers putt better than he does.  

 

Figure 19: Empirical cumulative distribution of Ernie Els and Stephen Leaney's first putt distances for greens reached in 

regulation. 

An additional benefit of putts gained per round is that it is utilizes all available putting data.  Putting 

Average includes only those putts for greens reached in regulation, excluding putts made by golfers who 

took at least an extra stroke to get to the green.  Because it excludes putts on greens not reached in 

regulation – approximately 30% of all putts taken – and the corresponding information these putts 

provide, Putting Average has a higher intrinsic error, i.e., variability. 

Table 11 and Table 12, show the top twenty putters ranked by each metric.  The first table ranks the top 

20 golfers by Putting Average.  The second table ranks the top twenty players with respect to putts gained 

per round.  Notice the large discrepancy between the rankings.  Aside from Tiger Woods – who is first in 
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both rankings – no other golfer has the same ranking using either metric, and many golfers’ ranks differ 

by a large amount.     

 

Table 11: Top 20 putters ordered by the PGA TOUR's Putting Average statistic for golfers with at least 50 rounds of play. 

Player

Number of 

Rounds 

Played

Putting 

Average 

  Rank

Putts Gained 

per Round  

Rank

Putting 

Average   

Putts 

Gained per 

Round 

Putts Gained per 

Round Standard 

Deviation

Tiger Woods 230 1 1 1.71 0.69 0.12

Greg Chalmers 136 2 31 1.73 0.25 0.15

Aaron Baddeley 303 3 5 1.74 0.53 0.10

Fredrik Jacobson 248 4 3 1.74 0.56 0.11

Nathan Green 197 5 4 1.74 0.55 0.12

Scott Verplank 316 6 76 1.74 0.06 0.10

Tim Clark 296 7 54 1.74 0.15 0.10

Vijay Singh 387 8 218 1.75 -0.36 0.09

Aaron Barber 79 9 300 1.75 -0.83 0.20

Vaughn Taylor 301 10 57 1.75 0.14 0.10

Padraig Harrington 134 11 45 1.75 0.17 0.15

Stewart Cink 375 12 7 1.75 0.49 0.09

Bob Heintz 111 13 60 1.75 0.13 0.17

David Toms 268 14 50 1.75 0.16 0.11

Ernie Els 212 15 283 1.75 -0.63 0.12

Brian Gay 388 16 23 1.75 0.28 0.09

Ben Crane 273 17 9 1.75 0.44 0.11

Brenden Pappas 206 18 103 1.75 0.00 0.12

Darren Clarke 107 19 8 1.75 0.45 0.17

Jim Furyk 310 20 101 1.75 0.00 0.10
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Table 12: Top 20 putters ordered by putts gained per round for golfers with at least 50 rounds of play. 

Using the putts gained per round, we are also able to determine the statistical significance between any 

two golfers’ putting skill.  For instance, Tiger Woods’ performance is two standard deviations above 

every putter not in the top 10, and 9 standard deviations above Vijay Singh’s putts gained per round. 

We assert that putts gained per round is a more accurate metric than Putting Average.  Due to its lack of 

bias, intuitive interpretation, and ease of calculation, we suggest that putting skill should be evaluated 

with respect to putts gained per round rather than Putting Average. 

3.2 Off-Green Performance 

Once we determine each player’s total strokes gained, we can use our model for putts gained to calculate 

how many strokes are gained off the green (i.e. total strokes gained minus putts gained).  The challenge is 

that for consistency, the total strokes gained should be calculated relative to the same average field of 

Player

Number of 

Rounds 

Played

Putting 

Average 

  Rank

Putts Gained 

per Round  

Rank

Putting 

Average   

Putts 

Gained per 

Round 

Putts Gained per 

Round Standard 

Deviation

Tiger Woods 230 1 1 1.71 0.69 0.12

David Frost 113 60 2 1.77 0.67 0.16

Fredrik Jacobson 248 4 3 1.74 0.56 0.11

Nathan Green 197 5 4 1.74 0.55 0.12

Aaron Baddeley 303 3 5 1.74 0.53 0.10

Jesper Parnevik 315 47 6 1.76 0.50 0.10

Stewart Cink 375 12 7 1.75 0.49 0.09

Darren Clarke 107 19 8 1.75 0.45 0.17

Ben Crane 273 17 9 1.75 0.44 0.11

Willie Wood 72 92 10 1.77 0.42 0.20

Brad Faxon 246 30 11 1.76 0.41 0.11

Dean Wilson 356 58 12 1.77 0.39 0.09

Jay Delsing 132 52 13 1.77 0.38 0.15

Jay Haas 149 22 14 1.75 0.38 0.15

Steve Stricker 237 26 15 1.75 0.37 0.11

Scott McCarron 197 62 16 1.77 0.37 0.13

Zach Johnson 313 41 17 1.76 0.37 0.10

Daniel Chopra 312 25 18 1.75 0.36 0.10

Stephen Ames 304 40 19 1.76 0.36 0.10

Bob Tway 309 54 20 1.77 0.31 0.10
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PGA TOUR professionals as putts gained.  Strictly averaging the number of strokes taken for each hole is 

insufficient because it would incorporate biases based on each tournament’s quality of field. 

To address this issue, we perform an OLS regression to predict the number of strokes taken for each 

player’s hole of play.  In this model, the independent variables we include are an intercept term, the 

distance from the tee to the pin, a dummy variable for each player, and a dummy variable for the 

interaction of each hole with the day of play.  We utilize the interaction of the hole with the day of play in 

order to pick up day-specific effects such as weather.  We include the distance from tee to pin to provide 

stability for tournaments with fewer daily observations.  The full linear regression function is described in 

Equation 7: 

 [ ] 0 1 0 0E
dp hdY β β β β+ + +=  (7) 

where Y represents the strokes-to-go from the tee for player p on hole h and day d.  After normalizing the 

model using the same technique as described in Section 2.5, we estimate the expected scoring average for 

each hole and day of play based on an average quality of field.  By using the same adjustment and 

normalization approach, we ensure that this corresponds with the average quality of field utilized by the 

two putting regression models.  Last, we calculate the strokes gained for each hole of play by subtracting 

the expected scoring average from the player’s hole score.  As with putts gained, we choose to report off-

green strokes gained using a per round average, because the top 20 golfers remain same regardless of 

whether we normalize by the number of strokes taken or the number of rounds.  As with putts gained, we 

recommend off-green strokes gained per round due to its value as a more easily interpretable metric. 

In Table 13, we provide the breakdown of putts gained per round and off-green strokes gained per round 

for the top 20 golfers as measured by total strokes gained per round.  The most interesting thing to note 

regarding these results is that there is significant variation between how the best golfers pick up strokes 

on the field.  For instance, it is interesting to compare Tiger Woods and Vijay Singh, two elite PGA 

TOUR golfers over the 6 year period.  Tiger excels due to his all-around performance, whereas Vijay is 
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the top player off the green, but his putting performance is well below average.  Another observation is 

that all the top twenty golfers are better than average off-green performers, while roughly a third are 

worse than average putters.  This suggests that bad putting can be salvaged by great performances off the 

green, but not the other way around. 

 

Table 13: Top 20 golfers as measured by total strokes gained per round for golfers with at least 50 rounds of play. 

 

3.3 Situational Putting Performance 

An additional benefit of our putts-to-go model is that it allows us to evaluate situational putting 

performance by comparing the putts gained in each situation relative to player-specific baselines.  That is, 

by building our Markov model using player-specific transition probabilities based on the models with 

Player

Number of 

Rounds Played

Strokes Gained 

Per Round Rank

Strokes 

Gained Per 

Round

Putts 

Gained Per 

Round

Off-Green 

Strokes Gained 

Per Round

Tiger Woods 230 1 3.22 0.69 2.53

Vijay Singh 387 2 2.29 -0.36 2.65

Jim Furyk 310 3 2.03 0.00 2.03

Phil Mickelson 243 4 1.94 0.19 1.74

Ernie Els 212 5 1.85 -0.63 2.48

Adam Scott 220 6 1.77 0.08 1.69

Sergio Garcia 259 7 1.52 -0.67 2.20

David Toms 268 8 1.43 0.16 1.27

Retief Goosen 214 9 1.40 -0.44 1.84

Stewart Cink 375 10 1.39 0.49 0.89

Padraig Harrington 134 11 1.37 0.17 1.19

Kenny Perry 358 12 1.36 -0.28 1.65

Darren Clarke 107 13 1.35 0.45 0.90

Robert Allenby 303 14 1.32 -0.34 1.66

Scott Verplank 316 15 1.31 0.06 1.24

Jay Haas 149 16 1.27 0.38 0.89

Luke Donald 255 17 1.23 -0.06 1.29

Stephen Ames 304 18 1.22 0.36 0.86

Anthony Kim 117 19 1.22 0.01 1.21

Zach Johnson 313 20 1.14 0.37 0.78
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player adjustment terms, we are able to determine player-specific putts-to-go expectations for each putt 

taken.  For instance, from 9 ft. on the 10th hole of Quail Hollow, Tiger Wood’s expected putts-to-go is 

1.54 whereas Vijay Singh’s expected putts-to-go is 1.59.  This baseline explicitly controls for the 

difficulty of the green and the quality of the putter, unlike the expected putts-to-go for the field described 

in Section 3.1.  Next, by aggregating the putts gained relative to these player-specific baselines, we can 

calculate player-specific putts gained per putt for each situation. 

We illustrate this approach by analyzing two situational putting breakdowns: putting performance on 

putts for birdie as compared to putts for par, and putting performance on the 4th round of play.  The 

benefit of our approach is that once player-specific putts gained have been calculated for each putt taken, 

new situational analyses require only aggregating these values.  Thus, our approach makes it easy to test 

new hypotheses without having to train additional models.  Additionally, this approach allows us to 

calculate the impact of situational effects on the golfer’s total score based on the difference between the 

putts gained per putt, with the standard deviations determining the significance. 

Pope and Schweitzer (2009) have demonstrated that there is a significant difference in putting 

performance between par and birdie putts.  The conclusion of the paper is that difference in behavior 

between birdie and par putts costs golfers on the order of 1 putt per tournament.  In Table 14, we estimate 

the putts gained per putt on putts for birdie as well as putts for par, resulting in a difference of 0.014 putts 

gained per putt.  On average, golfers make 11.3 putts for birdie per round, thus this difference 

corresponds to a loss of 0.64 strokes per tournament, which is similar to the magnitude estimated by Pope 

and Schweitzer. 
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Table 14: Comparison of putts gained per putt on par and birdie putts. 

An alternative hypothesis also investigated is that this difference is instead due to the difference between 

first putts and follow-on putts.  This line of reasoning suggests that first putts are more difficult because 

the golfer has no information about the break of the green and because the golfer has less control over the 

secondary characteristics of the putt.  For instance, if a 10-foot first putt is the result of a 100-yard 

approach shot, the golfer has less control over the exact location on the green.  A 10-foot second putt, on 

the other hand, is likely to be from a more desirable location, for instance, downhill of the hole, since it is 

the result of a more controllable shot (i.e. the first putt).  To test this hypothesis, we perform a similar 

analysis as above, this time splitting the data into first putts and subsequent putts.  The results are listed in 

Table 15. 

 

Table 15: Comparison of putts gained per putt on first putt and follow-on putts. 

Although there is a significant difference in putts gained per putt for both cases (Table 14 and Table 15), 

the larger difference in the second case suggests that this may be the more significant effect.  To tease out 

these two correlated effects, we perform an OLS regression to predict putts gained with an intercept term 

as well as indicators for first putts and birdie putts as independent variables, restricting the data to only 

putts for par or birdie.  Table 16 summarizes the fitted parameters of this regression.  Based on these 

parameters, the estimated difference between birdie and par putts is 0.0054 putts gained per putt or 

Putt Count
Putts Gained Per 

Putt

Putts Gained Per 

Putt Deviation

For Birdie 756,643 -0.00741 0.00023

For Par 914,652 0.00673 0.00014

Difference 0.01414 0.00027

Putt Count
Putts Gained Per 

Putt

Putts Gained Per 

Putt Deviation

First Putt 1,182,012 -0.00561 0.00018

Follow-on Putts 752,185 0.01216 0.00010

Difference 0.01777 0.00021
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approximately 0.2425 strokes per tournament.  This supports the conclusion that professional golfers 

behave differently with respect to putting for birdie or par, but suggests that the magnitude of the effect is 

much smaller than previously estimated. 

 

Table 16: Fitted parameter of OLS regression to analyze impact of first putts and birdie putts. 

Next, we consider putting performance on the 4th round of play: Sunday, the last day of a tournament.  In 

particular, we are interested in determining whether putting performance suffers due to psychological 

pressure.  To that end, in Table 17 we first compare player-specific putts gained per putt in the 3rd round 

versus the 4th round.  The results indicate that the difference is insignificant as compared to the deviations 

of either the 3rd or 4th round estimates.  Still, the lack of a significant difference does not exclude the 

possibility of psychological factors since many players in the 4th round are out of contention by the time 

the round begins. 

 

Table 17: Comparison of putts gained per putt on putts in the 3rd round and 4th round of play. 

Thus, we next restrict our focus to the players that are in contention.  We say a golfer is in contention if he 

ends the 3rd round of play within 6 strokes of the leader.  This corresponds to approximately 10 golfers 

per tournament.  Using this definition, in Table 18 we divide 4th round putting performance by comparing 

players in contention against those who are out of contention.  Under this segmentation of the data, we 

find that players who are in contention tend to mildly underperform those who are out of contention, but 

Estimate Standard Error t-value p-value

(Intercept) 0.0130 0.0005 28.7350 < 2E-16

First Putt Indicator -0.0154 0.0007 -22.3420 < 2E-16

Birdie Putt Indicator -0.0054 0.0007 -8.1850 2.71E-16

Putt Count
Putts Gained Per 

Putt

Putts Gained Per 

Putt Deviation

3rd Round 359,079 0.00237 0.00027

4th Round 353,979 0.00246 0.00027

Difference 0.00009 0.00038
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the magnitude of this effect is smaller than the deviation of the in contention putts gained per putt 

estimate.  Note that even if this difference was statistically more significant, it would correspond to a loss 

of just 0.07 strokes per tournament.  Thus, it seems that, at least in aggregate, professional golfers are 

relatively immune to the pressures associated with the 4th round of play. 

 

Table 18: Comparison of putts gained per putt during the 4th round when the player is in or out of contention. 

Along a similar vein, we can use this approach to evaluate the 4th round play of individual golfers.  For 

instance, a common perception is that one of Tiger Wood’s strengths is his ability to close out the final 

round.  At least with regards to putting, this is easy to test using our model.  In Table 19, we break down 

Tiger’s putts gained per putt by round of play.  These results suggest that Tiger’s best round of putting is 

in fact the 2nd round, and that his 4th round performance is very close to his player-specific expectation, 

namely 0.69 strokes better than the field. 

 

Table 19: Comparison of Tiger Wood's putts gained per putt on each round of play. 

Note that the purpose of these analyses is not to make unassailable claims, but rather to illustrate the 

simplicity of performing these tests using the model we have developed.  As should be apparent, there are 

many other questions of a similar nature that would benefit from the application of our approach.  At a 

Putt Count
Putts Gained Per 

Putt

Putts Gained Per 

Putt Deviation

In Contention 46,918 0.00194 0.00073

Out of Contention 307,061 0.00254 0.00029

Difference 0.00060 0.00079

Putt Count
Putts Gained Per 

Putt

Putts Gained Per 

Putt Deviation

1st Round 1,614 0.00036 0.00386

2nd Round 1,589 0.00847 0.00395

3rd Round 1,654 -0.00293 0.00375

4th Round 1,671 -0.00022 0.00380
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minimum, this approach provides a method for quickly evaluating which questions would benefit from 

further investigation. 

4 Conclusion 

In this paper, we analyze putting performance on the PGA TOUR.  Our analysis builds off of two 

generalized linear models that describe the process of putting: a logistic regression to predict the 

probability of making the putt, and a gamma regression to predict the distribution of distance-to-go when 

the putt misses.  Each of these models fits the empirical data exceedingly well.  Additionally, we develop 

a Markov chain modeling approach that utilizes these fitted regressions to derive an estimated distribution 

of putts-to-go.  The success of this model is made possible by the ability of our gamma regression to 

accurately predict not only the mean, but also the distribution of distance-to-go. 

We adjust our models to control for green difficulty and player skill level simultaneously.  A unified 

approach is necessary in order to separate green difficulty from each tournament’s quality of field.  

Considering all of these adjustments at once vastly increases the computational burden associated with 

training the model.  Thus, we develop an algorithm that allows these models to be trained with reduced 

memory requirements and improved performance. 

These efforts allow us to develop an enhanced putting performance metric, putts gained per round, and 

demonstrate its benefits over Putting Average, the most commonly reported putting statistic.  Due to its 

lack of bias, ease of interpretation, and computational tractability we believe that the PGA TOUR should 

add putts gained per round to its set of reported statistics.  Although this metric is derived using complex 

mathematical machinery, calculating putts gained per round requires nothing more than the plot of 

expected putts-to-go for each hole and the distance of each putt taken.  We hope that improved 

performance metrics such as this will help the PGA TOUR develop a diehard statistical following much 

like other popular sports.  Combined with off-green strokes gained per round, our analysis of putting 
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performance suggests that there are multiple ways to succeed in professional golf.  Unfortunately for the 

competition, Tiger Woods excels at all of them, making him very difficult to catch. 
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