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Abstract

This paper introduces Denotational Proof Languages (DPLs). DPLs are languages for presenting, discovering,
and checking formal proofs. In particular, in this paper we discus type-a DPLs—a simple class of DPLs
for which termination is guaranteed and proof checking can be performed in time linear in the size of the
proof. Type-a DPLs allow for lucid proof presentation and for efficient proof checking, but not for proof
search. Type-w DPLs allow for search as well as simple presentation and checking, but termination is no
longer guaranteed and proof checking may diverge. We do not study type-w DPLs here.

We start by listing some common characteristics of DPLs. We then illustrate with a particularly simple
example: a toy type-a DPL called PAR, for deducing parities. We present the abstract syntax of PAR,
followed by two different kinds of formal semantics: evaluation and denotational. We then relate the two
semantics and show how proof checking becomes tantamount to evaluation. We proceed to develop the proof
theory of PAR, formulating and studying certain key notions such as observational equivalence that pervade
all DPLs.

We then present N'DLy, a type-a DPL for classical zero-order natural deduction. Our presentation of
NDLy mirrors that of PAR, showing how every basic concept that was introduced in PAR resurfaces in
NDLy. We present sample proofs of several well-known tautologies of propositional logic that demonstrate
our thesis that DPL proofs are readable, writable, and concise. Next we contrast DPLs to typed logics based
on the Curry-Howard isomorphism, and discuss the distinction between pure and augmented DPLs. Finally
we consider the issue of implementing DPLs, presenting an implementation of PAR in SML and one in Athena,
and end with some concluding remarks.

1.1 Introduction

DPLs are languages for presenting, discovering, and checking formal proofs [2]. In particular, in this
paper we discuss type-o DPLs—a simple class of DPLs for which termination is guaranteed and proof
checking can be performed in time linear in the size of the proof on average. Type-a DPLs allow for
lucid proof presentation and efficient proof checking, but not for proof search. Type-w DPLs allow
for search as well as simple presentation and checking, but termination is no longer guaranteed and
proof checking may diverge. Type-w DPLs will be discussed elsewhere.

Technically, a DPL can be viewed as a A¢ system [2], and the distinction between type-a and
type-w DPLs can be made formally precise in that setting. The A¢@-calculus is an abstract calculus
that can be viewed as a general unifying framework for DPLs, much as the A-calculus can be viewed
as a general unifying framework for functional programming languages.! However, in this paper we
will be more concrete; we will attempt to convey the main intuitions behind type-a DPLs informally,
by way of examples. Most of our results will be stated without proof. The omitted proofs are usually
straightforward structural inductions; those that are more involved can be found elsewhere [2].

We begin by listing some characteristics that are common to all DPLs, both type-a and type-w.
These features will be illustrated shortly in our two sample DPLs.

e A DPL has at least two syntactic categories: propositions P and proofs D. Proofs are intended
to establish propositions. Both are generated by domain-specific grammars:
P
D
By “domain-specific” we mean that the exact specification of the above grammars may vary
from DPL to DPL.

IThe A¢-calculus originally appeared under the name “Ap-calculus” in “Denotational Proof Languages” [2]; the u
operator was subsequently changed to ¢ to avoid confusion with Parigot’s Ap-calculus [9].
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e Proofs denote propositions. More operationally: proofs produce (or derive) propositions.

e Proofs are evaluated. Evaluating a proof D will either produce a proposition P, which is viewed
as the conclusion of D, or else it will fail, indicating that the proof is unsound. Thus the slogan

Evaluation = Proof checking.

e A proof is evaluated with respect to a given assumption base. An assumption base is a set of
propositions that we take for granted (as “premises”) for the purposes of a proof. A proof may
succeed with respect to some assumption bases and fail with respect to others.

e A DPL always provides a composition (or “cut”) mechanism that allows us to join two proofs
so that the conclusion of the first proof becomes available as a lemma inside the second proof.

DPLs have been formulated for propositional logic, for first-order predicate logic with equality, for
polymorphic multi-sorted first-order logic, for higher-order logic, for sequent logics, unification logics,
equational logics, Hindley-Milner type systems, Hoare-Floyd logics, and for several intuitionist, modal,
and temporal logics. Many of these have been implemented, and implementations are freely available.

Finally, a note on terminology: some authors draw a distinction between “proof” and “deduction”,
often using “proof” to refer to a deduction from the empty set of premises. In this paper we will use
the two terms interchangeably.

1.2 A simple example

We will now formulate PAR, a simple type-ae DPL for inferring the parity of a natural number.

Abstract syntax
The propositions of PAR are generated by the following abstract grammar:

P ::= Even(n) | Odd(n)

where n ranges over the natural numbers. Thus Odd(0), Even(24), and Even(103) are sample propo-
sitions.
Deductions are generated by the following simple grammar:

D ::= Prim-Rule Py,...,P, | D1; D2 (1.1)

where
Prim-Rule ::= zero-even | even-next | odd-next.

The rule zero-even is nullary (takes no arguments), while even-next and odd-next are unary.
We will write Prop[PAR] and Ded[PAR] for the sets of all propositions and deductions of PAR,
respectively. When it is clear that we are talking about PAR, we will simply write Prop and Ded.

A deduction of the form Prim-Rule Py,...,P,, n > 0, is called a primitive rule application, or
simply a “rule application”.? We say that Pi,..., P, are the arguments supplied to Prim-Rule. A
deduction of the form Dq; D5 is called a composition.

Compositions are complex proofs, meaning that they are recursively composed from smaller compo-
nent proofs. Rule applications, on the other hand, are atomic proofs; they have no internal structure.

2In type-w DPLs the term “method” is used instead of “rule”.
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[ZeroEven]
B+ zero-even ~ Even(0)
[EvenNext]
BU{0dd(n)} F even-next Odd(n)~ Even(n + 1)
[OddNext]
BU{Even(n)} F odd-next Even(n)~> Odd(n + 1)
ﬁ}—D1’\/>P1 ﬁU{P1}|—D2’\'>P2 [Comp]
BEDi; Dy~ Py

Figure 1.1: Formal evaluation semantics of PAR.

This distinction is reflected in the definition of SZ(D), the size of a given D:

SZ(Prim-Rule Py,...,P,) =1
SZ(D1; Da) = SZ(D1) + SZ(D3)

A deduction D will be called well-formed iff every application of zero-even in D has zero arguments,
every application of odd-next has exactly one proposition of the form Fven(n) as its argument, and
every application of even-next has exactly one proposition of the form Odd(n) as an argument. It
is trivial to check that a proof is well-formed. Unless we explicitly say otherwise, in what follows we
will only be concerned with well-formed proofs.

Finally, we stipulate that the composition operator associates to the right, so that Di; Ds; D3
stands for Dy; (Da; Ds3).

Evaluation semantics

The formal semantics of PAR are given in the style of Kahn [7] by the five rules shown in Figure 1.1.
These rules establish judgments of the form 5+ D ~» P, where (3 is an assumption base. An assump-
tion base ( is a finite set of propositions, say {Even(45), Odd(97)}. Intuitively, the elements of an
assumption base are premises—propositions that are taken to hold for the purposes of a proof. In
particular, a judgment of the form fF D~ P states that “With respect to the assumption base f3,
proof D derives the proposition P”; or “Relative to 3, D produces P”; or “D evaluates to P in the
context of 57; etc. We write AB[PAR] for the set of all assumption bases of PAR (or simply AB
when PAR is tacitly understood).
Here is an informal explanation of the rules of Figure 1.1:

1. The axiom [ZeroEven] can be used to derive the proposition Fven(0) in any assumption base
(. This postulates that 0 is even.

2. [EvenNext] captures the following rule: if we know that n is odd, then we may conclude
that n + 1 is even. More precisely, [EvenNext] says that if the assumption base contains the
proposition Odd(n), then applying the rule even-next to Odd(n) will produce the conclusion



Even(n + 1). For example, if the assumption base contains Odd(5), then the primitive applica-
tion even-next Odd(5) will result in Even(6). So, for instance,

{0dd(5)} F even-next Odd(5) ~ Even(6). (1.2)

Likewise,
{Fven(873), 0dd(5), 0dd(99)} - even-next Odd(5) ~ Fven(6). (1.3)

Both 1.2 and 1.3 are instances of [EvenNext], and thus hold by virtue of it.
3. Similarly, [OddNext] says that if we know n to be even, i.e., if Fven(n) is in the assumption

base, then we may conclude that n + 1 is odd. Thus, for example, [OddNext] ensures that the
following judgment holds:

{Fven(46) - odd-next Even(46)~ Odd(47).

4. Finally, [Comp] allows for proof composition. The rule is better read backwards: to evaluate
Dq; D5 in some assumption base 3, we first evaluate Dy in (3, getting some conclusion P; from
it, and then we evaluate Dy in U {P;}, i.e., in § augmented with P;. Thus the result of Dy
serves as a lemma within Ds. The result of Dy is the result of the entire composition.

As an example, let

zero-even;
D = odd-next Even(0);
even-next Odd(1).

The following derivation shows that () = D ~» Even(2):

1. 0+ zero-even~» Even(0) [ZeroEven|
2. {Even(0)} F odd-next Even(0)~ Odd(1) [OddNext]
3. {Even(0), Odd(1)} F even-next Odd(1)~ Even(2) [EvenNext]
4. {Even(0)} - odd-next Even(0); even-next Odd(1)~» Even(2) 2, 3, [Comp]

5. 0+ zero-even;odd-next Fven(0); even-next Odd(1) ~ Even(2) 1, 4, [Comp]

The following is an important result. It can be proved directly by induction on D, but it also follows
from Theorem 1.6 below.

Theorem 1.1 (Conclusion Uniqueness) If 8, - D~ Py and 85+ D ~> Py then Py = Ps.

Denotational semantics: a PAR interpreter

For a denotational semantics for PAR, let error be an object that is distinct from all propositions.
We define a meaning function

M : Ded — AB — Prop U {error}

that takes a deduction D followed by an assumption base 5 and produces an element of Prop U{error}
that is regarded as “the meaning” of D with respect to 8. The definition of M[D] is driven by the



structure of D. We use the notation e; 7 — eg, e3 to mean “if e; then es else e3”.

M(zero-even] 5 = Even(0)
Meven-next Odd(n)] § = 0Odd(n) € 7 — Even(n+ 1), error
MJodd-next Even(n)] 5 = FEven(n)€ 7 — Odd(n+ 1), error
M[Dy; D] 3 = (M[D4] B) = error? — error, M[D3] U (M[D1] B)
or, equivalently,
M[zero-even] = A\[j.Even(0)

M{[even-next Odd(n)] = Ap3.0dd(n) € 3?7 — Even(n+ 1), error
M[odd-next Even(n)] = ApB.Even(n) € 3? — Odd(n+ 1), error

M[D1;Ds]] = AB.(M[D1] B) = error? — error, M[Ds] U (M[D1] 5)

The latter formulation emphasizes more directly that the meaning of a proof is a function over
assumption bases, a key characteristic of DPLs.

The above equations can be readily transcribed into an algorithm that takes a deduction D and
an assumption base 3 and either produces a proposition P or else generates an error. In fact we can
look at M itself as an interpreter for PAR. In that light, it is easy to see that M always terminates.
Furthermore, assuming that looking up a proposition in an assumption base takes constant time
on average (e.g., by implementing assumption bases as hash tables), M terminates in O(SZ(D))
time in the average case. The worst-case complexity is O(n - logn), where n = SZ(D), achieved by
implementing assumption bases as balanced trees, which guarantees logarithmic look-up time in the
worst case. We refer to the process of obtaining M[D] 3 as evaluating D in 3.

Theorem 1.2 Evaluating a deduction D in a given assumption base takes O(n) time on average, and
O(n -logn) time in the worst case, where n is the size of D.

The following result relates the denotational semantics to the evaluation semantics of Figure 1.1.
If we view M as an interpreter for PAR, the theorem below becomes a correctness result for the
interpreter: it tells us that M will produce a result P for a given D and f iff the judgment g+ D ~» P
holds according to the evaluation semantics.

Theorem 1.3 (Coincidence of the two semantics) For all D, 3, and P:
BFD~ P iff M[D]B=P.
Hence, by termination, M[D] 3 = error iff there is no P such that 5+ D~ P.

Metatheory

We will call a proposition of the form Ewven(n) (Odd(n)) true iff n is even (odd). A proposition
that is not true will be called false. Further, we will say that a proposition P follows from a set of
propositions 3, written § |= P, iff P is true whenever every element of (3 is true. So, for instance, we

vacuously have {Odd(0)} = Fven(1) by virtue of the fact that Odd(0) is false. Note that () = P iff P
is true. We have:

Theorem 1.4 (Soundness) If 3+ D~ P then = P. In particular, if 0 = D~ P then P is true.

Theorem 1.5 (Completeness) If P is true then there is a D such that 5+ D~ P for all (3.



Basic proof theory

We define C(D), the conclusion of a proof D, as follows:

C(zero-even) = FEwven(0)
C(even-next Odd(n)) = FEven(n+1)
C(odd-next Fven(n)) = Odd(n+1)

C(D1; D2) C(D2)

This definition can be used as a recursive algorithm for computing C(D). Computing C(D) is
quite different—much easier—than evaluating D in a given 3. For example, if D is of the form
Dq; Ds; ... Dog; D1gg, we can completely ignore the first ninety-nine deductions and simply compute
C(D100), since, by definition, C(D) = C(D100). The catch, of course, is that D might fail to establish
its conclusion (in a given assumption base); evaluation is the only way to find out. However, it
is easy to show that if BF D~» P then P = C(D). Hence, in terms of the interpreter M, either
M[D] g = error or M[D] 3 = C(D), for any D and . Loosely paraphrased: a proof succeeds iff it
produces its purported conclusion.

Theorem 1.6 If 3+ D ~» P then P = C(D). Therefore, by Theorem 1.3, either M[D] g = C(D) or
else M[D] 8 = error.

Next, we define a function FA : Ded — P (Prop), where P, (Prop) denotes the set of all finite
subsets of Prop. We call the elements of FA(D) the free assumptions of D. Intuitively, a free
assumption of D is a proposition that D uses without proof. It is a “premise” of D—a necessary
assumption that D takes for granted. The main result of this section is that D can be successfully
evaluated only in an assumption base that contains its free assumptions. In particular, we define:

FA(zero-even) = ()
FA(even-next Odd(n)) = {0dd(n)}
FA(odd-next Even(n)) = {Even(n)}
FA(Dq; D2) FA(D1) U (FA(D2) — {C(D1)})

Theorem 1.7 S+ D~ P iff FA(D) C (8. Accordingly, M[D] 8 = error iff there is a P such that
P e FA(D) and P & (3.

The above result suggests an alternative way of evaluating a proof D in a given 8: compute FA(D)
and check whether each of its elements appears in 3. If so, output C(D); otherwise, output error.

Corollary 1.8 If FA(D) =0 then 8+ D~ C(D) for all j3.

Next, let us say that two proofs Dy and D5 are observationally equivalent with respect to an
assumption base (3, written D ~g Dy, whenever

BF Dy~ P iff BF Dy~ P (1.4)
for all P. For instance, for 5, = { Even(4), Odd(5)} we have
odd-next Even(4); even-next Odd(5) ~5, even-next Odd(5).

These two proofs are observationally equivalent in (3, because both of them yield the conclusion
Even(6) when we evaluate them in 3. Likewise, we have

even-next 0dd(35) ~5 odd-next Even(56)

because both of these claims will produce error when we evaluate them in 3. We clearly have:



Theorem 1.9 Dy =3 Dy iff M[D1] 5 = M[D:] 5.

Thus Dy and D5 are observationally equivalent in a given ( iff when we evaluate them in 8 we obtain
the same result: either the same proposition, or an error in both cases. It follows that the relation
~g is decidable.

If we have Dy ~g D, for all 3 then we write D; ~ Dy and say that D, and D, are observationally
equivalent. The reader will verify that ~ is an equivalence relation.

Theorem 1.10 If Dy = D} and Dy ~ D then Dy; Dy ~ D'; Dj.
Theorem 1.11 (Dl, Dg), D3 % Dl, (DQ, Dg)

Proof: Take D; = even-next 0dd(5), Dy = zero-even, D3 = odd-next Even(6), and consider
any (3 that contains Odd(5) but not Even(6). [ |

At first glance it might appear that ~ is undecidable, as it is defined by quantifying over all
assumption bases. However, the following result shows that two proofs are observationally equivalent
iff they have the same conclusion and the same free assumptions. Since both of these are computable,
it follows that ~ is decidable:

Theorem 1.12 Dy = D iff C(D1) = C(D2) and FA(D;) = FA(D2).
For instance, for Dy, Dy and D3 as defined in the proof of Theorem 1.11, we have
C(Dl; (DQ; D3)) = C((Dl; Dg); D3) = Odd(?)

but
FA(Dy; (D2; D3)) = {0dd(5)} # {0dd(5), Even(6)} = FA((Dy; D2); D3)

and this is why the two compositions are not observationally equivalent.

1.3 A DPL for classical propositional logic

In this section we will formulate and study N'DLg, a type-a DPL for classical zero-order natural
deduction. (Since this paper presents no risk of confusion, we will often write N'DL instead of

NDLy.)

Abstract syntax

We will use the letters P, @, R, ..., to designate arbitrary propositions. Propositions are built from
the following abstract grammar:

P:=A|true|false | -P|PAQ|PVQ|P=Q|P<Q

where A ranges over a countable set of atomic propositions (“atoms”) which we need not specify
in detail. The letters A, B, and C' will be used as typical atoms. We stipulate that the connective
— has the highest precedence, followed by A and V (both of which have equal precedence and associate
to the right), followed by = and < (where, again, both = and < have equal precedence and are
right-associative). Thus, for instance, 7A V B A C' = B stands for [(—A) V (B A C)] = B. We will not



Prim-Rule == claim (reiteration)
| modus-ponens (=-introduction)
| modus-tollens (—-introduction)
|  double-negation (—~elimination)
|  both (A-introduction)
| left-and (A-elimination)
| right-and (A-elimination)
| left-either (V -introduction)
| right-either (V -introduction)
|  constructive-dilemma (V -elimination)
|  equivalence (& -introduction)
| left-iff (¢ -elimination)
| right-iff (& -elimination)
|  true-intro (true-introduction)
| absurd (false-introduction)
! (

false-elim

false-elimination)

Figure 1.2: Primitive inference rules

rely too much on these conventions, however; parsing ambiguities will be resolved mostly by using
parentheses and brackets.
The proofs (or “deductions”) of N'DL have the following abstract syntax:

D ::= Prim-Rule Py,...,P, | D1; Dy | assume P in D (1.5)

where Prim-Rule ranges over a collection of primitive inference rules such as modus ponens. The
decision of exactly which rules to choose as primitives has important ramifications for the metatheory
of the language (it affects soundness and completeness, in particular), but has little bearing on the
abstract syntax of the language or on the core semantic framework. This is similar to the distinction
between the core syntax and semantics of the A-calculus, on the one hand, and the §-reduction rules
for the constants, on the other. For instance, if we take as a primitive rule one that derives P A @ from
P, we will clearly have an unsound language; and if we leave out certain rules such as <-elimination,
then we will have an incomplete language. The rules shown in Figure 1.2 allow for a sound and
complete natural deduction system. As before, we will write Prop[N'DLy] and Ded[N'DLy] for the
sets of all propositions and all deductions, respectively, or simply Prop and Ded when N'DLg is
understood.

The reader will notice one omission from Figure 1.2: an introduction rule for =. This has tra-
ditionally been the most troublesome spot for classical deduction systems. As we will see shortly, in
NDL conditionals are introduced via the language construct assume, in a manner that avoids most
of the usual problems.

As before, a proof will be called a rule application if it is of the form Prim-Rule Pi,..., P,, and
a composition if it is of the form Dq; Ds. Deductions of the form assume P in D will be called
hypothetical or conditional. In a hypothetical deduction of the above form, P and D are called
the hypothesis and the body of the deduction, respectively. The body represents the scope of the
corresponding hypothesis. Compositions and hypothetical proofs are called complex, because they
have recursive structure; while rule applications are atomic proofs. The following equations define



ﬁ"le\»P1 ﬁU{P1}}_D2’\»P2 [Comp]
ﬁ}_Dl;DQ’\-’)PQ
pU{P}FD~Q [Assume]
B Fassume P in D~ P=Q

Figure 1.3: Evaluation semantics for complex N'DL proofs..

SZ(D), the size of D, by structural recursion:
SZ(Prim-Rule Py,...,P,) = 1

SZ(assume P in D) = SZ(D)+1

Grammar 1.5 specifies the abstract syntax of proofs; it cannot serve as a concrete syntax because
it is ambiguous. For instance, it is not clear whether

assume P A Q in true; left-and P A Q

is a hypothetical deduction with the composition true; left-and P A @ as its body, or a composition
consisting of a hypothetical deduction followed by an application of left-and. We will use begin-
end pairs or parentheses to remove any such ambiguity. Finally, as before, we stipulate that the
composition operator ; associates to the right.

Evaluation semantics

The evaluation semantics of N'DL are given by a collection of rules, shown in Figure 1.3 and Figure 1.4,
that establish judgments of the form g+ D ~» P, where, just as in PAR, 3 is an assumption base,
i.e., a finite set of propositions (where the definition of proposition, of course, is now different). A
judgment of this form should be read just as in PAR: “In the context of 3, D produces the conclusion
P”.

The evaluation rules are partitioned into two groups: those dealing with complex proofs, shown
in Figure 1.3; and those dealing with atomic proofs, i.e., with rule applications, shown in Figure 1.4.
Our first result about this semantics is the analogue of Theorem 1.1 for PAR. This can also be proved
directly, or as an immediate corollary of Theorem 1.16 or Theorem 1.19 below.

Theorem 1.13 (Conclusion Uniqueness) If §; F D~ Py and 85+ D ~> Py then P, = Ps.

We end this section by introducing some useful syntax sugar. Although we listed modus-tollens
as an introduction rule for negation, in practice negations in N'DL are usually introduced via deduc-
tions of the form

suppose-absurd P in D (1.6)

that perform reasoning by contradiction. A proof of the form 1.6 seeks to establish the negation
of P by deriving a contradiction. Thus, operationally, the evaluation of 1.6 in an assumption base
[ proceeds as follows: we add the hypothesis P to  and evaluate the body D in the augmented



BU{P}t claim P~ P
BU{P =Q,P}+ modus-ponens P =Q, P~ Q
BU{P=Q,~Q}F modus-tollens P = Q, —-Q ~ —P
B U {——P} F double-negation -—P ~» P
BsuU {Pl,PQ} Fboth P, Py~ Py A\ Ps
BsuU {P1 A PQ} Fleft-and P; A Py~ Py
BsuU {Pl A PQ} Fright-and P1 A Po~ P»
BU {Pl} - left-either Py, Po~ P V P>
BU{P>} Fright-either P, Po~ P1 V P>
BU{P1V Py, Pi = Q, P, = Q} F constructive-dilemma P, V P>, P} = Q, P = Q~ Q
BU{P1 = Py, Py = P} - equivalence P| = P>, P, = P ~ P| < P
BU{P & Po} +left-iff Py < Py~ Py = P»
BU {P1 <:>P2} Fright-iff Py < Py~ Po = P;
[ true-intro~» true
BU{P,—~P} I absurd P, =P ~> false
(B F false-elim ~» —false

Figure 1.4: Evaluation axioms for rule applications.

assumption base. If and when D produces a contradiction (the proposition false), we output the
negation —P. This is justified because P led us to a contradiction—hence we must have —P.% More
formally, the semantics of 1.6 are given by the following rule:

BU{P}F D~ false
(0 F suppose-absurd P in D ~» =P

(1.7)

However, we do not take proofs of the form 1.6 as primitive because their intended behavior is
expressible in terms of assume, primitive inference rules, and composition. In particular, 1.6 is
defined as an abbreviation for the deduction

assume P in D;
false-elim;
modus-tollens P =-false, —false

It is readily shown that this desugaring results in the intended semantics 1.7:

Theorem 1.14 If U {P} F D~ false then I suppose-absurd P in D ~» —P.

Denotational semantics: an interpreter for N'DL

For a denotational semantics for NDL, we again introduce an element error distinct from all propo-
sitions. We define a meaning function

M : Ded — AB — Prop U {error}

3Note that if P was not necessary in deriving the contradiction then 3 must have already been inconsistent, in which
case P follows vacuously, since every proposition follows from an inconsistent assumption base. Hence, in either case,
=P follows logically from g.
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M[Dy; D2] = AB.(M[D1] B) = error? — error, M[D2] U (M[D1] )

M{[assume P in D] = Ap.(M[D]pU{P}) = error? — error, P = (M[D] fU{P})
M][claim P] = XB.P € p? — P, error
M[both P,Q] = XB.{P,Q}C 37— PAQ, error
M]left-and PAQ] = AB.PAQE€ES? — P, error

Figure 1.5: Alternative denotational semantics for N'DL.

(where AB = P (Prop)) as follows:

M[P] B = P e pU{true,~false}? — P, error
M{[assume P in D] 3 = (M[D]BU{P}) = error? — error, P = (M[D] BU{P})
M[D1; Do) B = (M[D1] B) = error? — error, M[D2] 3U (M[D1] 3).

The equations for rule applications are given by a case analysis of the rule. We illustrate with
the equations for modus-ponens, left-and, and both; the rest can be similarly translated from
Figure 1.4.

M[modus-ponens P=Q,P]| 5 = {P=Q,P}Cp37—Q, error
M]left-and PAQ] B = PAQE€EB?— P, error
M[both P,Q] 3 = {P,Q}CpB?—PAQ, error

Equivalently, we can choose to emphasize that the denotation of a proof is a function over assumption
bases by recasting the above equations in the form shown in Figure 1.5.

As in the case of PAR, we can view M as an interpreter for NDL. It takes a deduction D and
an assumption base § and produces “the meaning” of D with respect to 3: either a proposition P,
which we regard as the conclusion of D, or the token error. In that light, we can see that M always
terminates promptly:

Theorem 1.15 Computing M[D] S, i.e., evaluating D in 3, requires O(n) time in the average case
and O(n -logn) time in the worst case, where n is the size of D.

The following result relates the interpreter M to the evaluation semantics; it is the analogue of
the PAR Theorem 1.3.

Theorem 1.16 (Coincidence of the two semantics) For all D, 3, and P:
BFD~ P iff M[D]3=P.

Hence, by termination, M[D] B = error iff there is no P such that f+ D~ P.
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Examples

In this section we present N'DL proofs of some well-known tautologies of propositional logic. The
reader is invited to read the first few of these and tackle the rest on his own.

Proof:
assume P in

suppose-absurd =P in
absurd P,—-P

(P=Q)=[Q=R) = (=R

Proof:
assume P = in
assume @ = R in
assume P in
begin
modus-ponens P = Q, P;
modus-ponens @ = R, Q
end

[[P=(@Q=R]=[Q=(P=R)]

Proof:
assume P = (Q = R) in
assume ( in
assume P in

begin
modus-ponens P = (Q = R), P;
modus-ponens @ = R, Q

end

[[P=(Q=R)]=[(PAQ) =R||

Proof:
assume P = (Q = R) in
assume P A Q in

begin
left-and P A Q;
modus-ponens P = (Q = R), P;
right-and P A Q;
modus-ponens Q = R, Q

end

12



[[(PAQ)=R]=[P=(Q=R)|

Proof:
assume (PAQ) =R in
assume P in
assume ( in

begin
both P, Q;
modus-ponens (PAQ)=R,PAQ

end

(P=Q)=(-Q=-P)]

Proof:
assume P =@ in
assume —Q in
modus-tollens P = Q, -Q;

|(-Q=-P)=(P=Q)]

Proof:
assume —Q) = —P in
assume P in
begin
suppose-absurd —( in
begin
modus-ponens —Q = =P, =Q);
absurd P,—-P
end;
double-negation ——(Q
end

[(PVQ) = (@VP)]

Proof:
assume PV Q@ in
begin
assume P in
right-either Q, P;
assume ( in
left-either Q, P;
constructive-dilemma PV Q,P=QV P,Q=QV P
end

13



(-PVQ) = (P=Q)|

Proof:
assume —P V@ in
assume P in
begin
suppose-absurd —(@ in
begin
assume —P in
absurd P, —P;
assume ( in
absurd Q, ~Q;
constructive-dilemma - P V @, —~P = false, (Q = false
end;
double-negation ——(Q
end

~(PVQ) =(-PA-Q)|

Proof:
assume —(PV Q) in
begin
suppose-absurd P in
begin
left-either P, Q;
absurd PV Q,—~(PV Q)
end;
suppose-absurd @ in
begin
right-either P, Q);
absurd PV Q,—(PV Q)
end;
both =P, —Q
end

|(-PV-Q)=~(PrQ)|

Proof:
assume =PV —Q in
suppose-absurd P A @ in
begin

left-and P A Q;

right-and P A Q;

assume —P in
absurd P, —P;

assume - in

absurd Q,—Q;

14



constructive-dilemma —P V =Q, - P = false, ~() = false
end

|(-PA-Q)=~(PVQ)|

Proof:
assume =P A =Q in
begin
left-and —P A —Q;
right-and —P A —Q);
assume P in
absurd P, —P;
assume ( in
absurd Q,—Q;
suppose-absurd PV @ in
constructive-dilemma PV @, P = false, (Q = false
end

‘P@[P/\(P\/Q)]‘

Proof:
assume P in
begin
left-either P, Q;
both P,PV Q
end;
assume P A (P V Q) in
left-and P A (P V Q);
equivalence P=[PA(PVQ),[PA(PVQ)]=P

[[(PAQV(PA-Q]=(P=0Q)]

Proof:
assume (PAQ)V (=P A—=Q) in
begin
assume P A Q in
begin
left-and P A Q;
right-and P A Q;
assume P in
claim Q;
assume ( in
claim P;
equivalence P = Q,Q = P
end;
assume =P A —Q in
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begin
left-and =P A —Q;
right-and - P A -Q);
assume P in
begin
suppose-absurd —(@ in
absurd P,—P;
double-negation ——Q
end;
assume ( in
begin
suppose-absurd —P in
absurd Q,Q;
double-negation ——P
end;
equivalence P=Q,Q = P
end;
constructive-dilemma (PAQ)V (-PA-Q),(PANQ)= (P<Q),
(P A-Q) = (P < Q);
end

Metatheory

We will view the set of all propositions as the free term algebra formed by the five propositional
constructors over the set of atoms, treating the latter as variables. Any Boolean algebra B, say
the one with carrier {0, 1}, can be seen as a {true, false, =, A, V, =, < }-algebra with respect to the
expected realizations (AB(x,y) = min{z,y}, VB(x,y) = max{z,y}, false® = 0, etc.). Now by an
interpretation 7 we will mean a function from the set of atoms to {0,1}. We will write 7 for the
unique homomorphic extension of Z to the set of all propositions. Since 7 is completely determined
by Z, we may, for most purposes, conflate the two.

If Z(P) = 1 (Z(P) = 0) we say that T satisfies (falsifies) P, or that it is a model of it. This is
written as Z = P. If 7 |= P for every P € ® then we write Z = ® and say that Z satisfies (or is a
model of) ®. We write ®; = P, to indicate that every model of ®; is also a model of ®,. If this is
the case we say that the elements of @5 are logical consequences of (or are “logically implied by”) the
propositions in ®;. A single proposition P may appear in place of either ®; or ®5 as an abbreviation
for the singleton {P}.

We are now ready to state the soundness and completeness theorems for N'DL (proofs of these
results can be found elsewhere [2]).

Theorem 1.17 (Soundness) If 3+ D~ P then = P.
Theorem 1.18 (Completeness) If 5 |= P then there is a D such that f+ D~ P.

Basic proof theory

We will say that a proof is well-formed iff every rule application in it has one of the forms shown in
Figure 1.4. Thus, loosely put, a deduction is well-formed iff the right number and kind of arguments
are supplied to every application of a primitive rule, so that, for instance, there are no applications
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FA(Dy;D2) = FA(D1)U (FA(D2) — {C(D1)}) (1.8)

FA(assume P in D) = FA(D)—{P} (1.9)
FA(left-either P, P,) = {Pi} (1.10)
FA(right-either P, P,) = {P:} (1.11)
FA(Prim-Rule Pi,...,P,) = {P1,...,P,} (1.12)

Figure 1.6: Definition of FA(D) for NDL (Prim-Rule ¢ {left-either, right-either} in 1.12).

such as modus-ponens A A B, B or left-and true. Clearly, checking a deduction to make sure that
it is well-formed is a trivial matter, and from now on we will take well-formedness for granted. The
conclusion of a deduction D, denoted C(D), is defined by structural recursion. For complex D,

C(Dl;Dg) = C(DQ)
C(assume P in D) = P=C(C(D)

while for atomic rule applications we have:

C(claim P) = P C(right-either P,Q) = PVQ
C(modus-ponens P=Q,P) = Q Cled PAVPL,PI=Q,P=Q) = Q
C(modus-tollens P=Q,—Q) = -—P C(equivalence P=Q,Q=P) = P<Q
C(double-negation ——P) = P Clleft-iff P& Q) = P=Q
C(both P,Q) = PAQ Clright-<iff P&Q) = Q=P
C(left-and PAQ) = P C(true-intro) = true
C(right-and PAQ) = Q C(absurd P,—~P) = false
C(left-either P,Q) = PVQ C(false-elim) = —false

(writing c¢d as an abbreviation for constructive-dilemma). Note that the defining equation for
compositions is the same as in PAR. Also, just as in PAR, the above equations can be used as a
straightforward recursive algorithm for computing C(D). The next result is the analogue of Theo-
rem 1.6:

Theorem 1.19 If 5+ D~» P then P = C(D). Hence, by Theorem 1.16, either M[D] 3 = C(D) or
else M[D] 8 = error.

Figure 1.6 defines FA(D), the set of free assumptions of a proof D. The intuitive meaning of
FA(D) is the same as in PAR: the elements of FA(D) are propositions that D uses as premises. In
the present setting, note in particular the case of hypothetical deductions assume P in D: the free
assumptions here are those of the body D minus the hypothesis P.

The computation of FA(D) is not trivial, meaning that it cannot proceed in a local manner down
the abstract syntax tree of D using only a fixed amount of memory: a variable amount of state must
be maintained in order to deal with clauses 1.9 and 1.8. The latter clause, in particular, is especially
computation-intensive because it also calls for the computation of C(D1). The reader should reflect on
what would be involved in computing, for instance, FA(D) for a D of the form Dy;--- ; D1go. In fact
the next result shows that the task of evaluating D in a given [ can be reduced to the computation
of FA(D). It is the analogue of Theorem 1.7 in PAR.

Theorem 1.20 S+ D~ P iff FA(D) C 3. Accordingly, M[D] 8 = error iff there is a P such that
P e FA(D) and P & (5.
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As Theorem 1.7 did in the case of PAR, the above result captures the sense in which evaluation in
NDL can be reduced to the computation of FA: to compute M[D] 3, for any given D and 3, simply
compute FA(D) and C(D): if FA(D) C 3, output C(D); otherwise output error. Intuitively, this
reduction is the reason why the computation of FA(D) cannot be much easier than the evaluation of
D.

As before, we will say that two proofs Dy and Dy are observationally equivalent with respect to an
assumption base (3, written D ~g D5, whenever

BFDi~ P iff BFDy~ P (1.13)
for all P. For instance,
D, = left-either A, B and D, = right-either A, B

are observationally equivalent with respect to any assumption base that either contains both A and
B or neither of them.

Theorem 1.21 Dy ~g D iff M[D1] 6 = M[D:] 5.

Thus Dy and D5 are observationally equivalent in a given [ iff when we evaluate them in 3 we obtain
the same result: either the same proposition, or an error in both cases. It follows that ~g is decidable.

If we have D =3 D5 for all 5 then we write Dy ~ Dy and say that D; and D, are observationally
equivalent. For a simple example, we have

left-iff A A ~ right-if A< A

as well as
left-and A A B; right-and A A B;
right-and AA B; = left-and A A B;
both B, A both B, A

Again, & is an equivalence relation. We can also show again that composition is not associative:
Theorem 1.22 Dl; (DQ, Dg) % (Dl, Dg), Dg.

Proof: Take D, = double-negation ——A, Dy = true, D3 = A, and consider any 3 that contains
——=A but not A. ]

We note, however, that composition is idempotent (i.e., D ~ D; D) and that associativity does hold
in the case of claims:

claim Pj; (claim Ps;claim P3) &~ (claim P;; claim P);claim Ps.

Commutativity fails in all cases. A certain kind of distributivity holds between the constructor
assume and the composition operator (as well as between suppose-absurd and composition), in
the following sense:

Theorem 1.23 assume P in (D;; Dy) ~ Dy;assume P in Dy whenever P ¢ FA(Dy).

This result forms the basis for a “hoisting” transformation in the theory of N'DL optimization. We
also note that ~ is compatible with the abstract syntax constructors of N'DL, a result that is analogous
to Theorem 1.10 in the case of PAR.
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Theorem 1.24 If D =~ D' then
assume P in D ~assume P in D’.
In addition, if Dy ~ D' and Dy = D) then Dy; Dy = D'; D).

Finally, we derive decidable necessary and sufficient conditions for observational equivalence, as in
Theorem 1.12:

Theorem 1.25 Dy ~ D5 iff C(D1) = C(D2) and FA(D,) = FA(D2).

1.4 Contrast with Curry-Howard systems

The reader will notice a similarity between [Assume], our evaluation rule for hypothetical deductions,
and the typing rule for abstractions in the simply typed A-calculus:
Blx—olFE:T
OFAXx:0.E:0—T

where [ in this context is a type environment, i.e., a finite function from variables to types (and
B[z — o] is the extension of § with the binding x +— o). Likewise, the reader will notice a similarity
between [Comp], our rule for compositions, and the customary typing rule for let expressions:

BFE 7 Bla— m|FEy:m
ShHlet x = Fy in Fy : 1

Indeed, it is straightforward to pinpoint the correspondence between N'DL and the simply typed
A-calculus:

e Deductions correspond to terms, in accordance with the “proofs-as-programs” motto [6, 4, 10].
In particular, assumes correspond to As and compositions correspond to lets.

Propositions correspond to types: e.g., A= B corresponds to A— B, A\ B corresponds to
A x B, etc.

Assumption bases correspond to type environments.

Evaluation in N'DL corresponds to type checking in the A-calculus.

Observational equivalence corresponds to type cohabitation in the A-calculus.
e Optimization via proof transformation in N'DL corresponds to normalization in the A-calculus.

The correspondence extends to results: conclusion uniqueness in DPLs corresponds to type uniqueness
theorems in type systems, and so on.

However, in the case of DPLs this correspondence is only a similarity, not an isomorphism. This is
so even in the particularly simple case of N'DL. The reason is that N'DL has no variables, and hence
infinitely many distinct terms of the typed A-calculus collapse to the same DPL proof, destroying the
bijection. For instance, consider the two terms

Ax: A Xy A.x (1.14)
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and
Ar: Ay Ay (1.15)

These are two distinct terms (they are not alphabetically equivalent), and under the Curry-Howard
isomorphism they represent two distinct proofs of A = A = A. To see why, one should keep in mind
Heyting’s constructive interpretation of conditionals [4]. In 1.14, we are given a proof = of A, then
we are given another proof y of it, and we finally decide to use the first proof, which might well have
significant computational differences from the second one (e.g., one might be much more efficient
than the other). By contrast, in 1.15 we are given a proof of A, then another proof of it, and finally
we decide to use the second proof, disregarding the first. But in mathematical practice these two
proofs would—and usually should—Dbe conflated, because one postulates propositions, not proofs of
propositions. The customary mode of hypothetical reasoning is

“Assume that A holds. Then ---A---.”

not
“Assume we have a proof IT of A. Then ---1I---.”

Clearly, to assume that something is true is not the same as to assume that we have a proof of it.
Constructivists will argue against such a distinction, but regardless of whether or not the distinction
is philosophically justified, it is certainly common in mathematical practice.

DPLs reflect mathematical practice more closely. Both 1.14 and 1.15 get conflated to the single
deduction

assume A in
assume A in (1.16)
claim A

By “common mathematical practice” we mean that if we ask a random mathematician or computer
scientist to prove the tautology A = A = A, the odds are that we will receive something like 1.16 as
an answer, not 1.14 or 1.15.

The difference is not accidental. It reflects a deep divergence between DPLs and Curry-Howard
systems on a foundational issue: constructivism. In a DPL one only cares about truth, or more
narrowly, about what is in the assumption base. On the other hand, logical frameworks [5, 3] based
on the Curry-Howard isomorphism put the focus on proofs of propositions rather than on propositions
per se. This is due to the constructive bent of these systems, which dictates that a proposition should
not be supposed to hold unless we have a proof for it. There are types, but more importantly, there
are variables that have those types, and those variables range over proofs. A DPL such as N'DL
stops at types—there are no variables. Another way to see this is to consider the difference between
assumption bases and type environments: an assumption base is simply a set of propositions (types),
whereas a type environment is a set of pairs of variables and types. Pushing the correspondence,
when we write in N'DL

assume false A true in
left-and false A true

it is as if we are saying, in the A-calculus,

Aint x bool. left (int A bool)
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which is nonsensical. In a way, type-a DPLs such as N'DL compute with types, i.e., with constants.
There are no variables, and hence there is no meaningful notion of abstraction.

By avoiding the explicit manipulation of proofs, DPLs are more parsimonious: an inference rule R
is applied directly to propositions Py, ..., P,, not to proofs of propositions Py, ..., P,; a hypothetical
deduction assumes simply that we are given a hypothesis P, not that we are given a proof of P; and so
on. Shaving away all the talk about proofs results in shorter and cleaner deductions. Curry-Howard
systems have more populated ontologies because they explicitly posit proof entities. But for most
practical purposes, the fact that both Az : A.Ay: A.z and Ax: A. Ay : A.y would exist and be
considered distinct proofs of A = A = A amounts to unnecessary multiplication of entities.

Another important difference lies in the representation of syntactic categories such as propositions,
proofs, etc. Curry-Howard systems typically rely on higher-order abstract syntax for representing such
objects. While this has some advantages (most notably, alphabetically identical expressions at the
object level are represented by alphabetically identical expressions at the meta level, and object-level
syntactic operations such as substitution become reduced to S-reduction at the meta level), it also has
serious drawbacks: higher-order expressions are less readable and writable, they are considerably larger
on account of the extra abstractions and the explicit presence of type information, and complicate
issues such as matching, unification, and reasoning by structural induction. A more detailed discussion
of these issues, along with relevant examples, can be found elsewhere [2].

1.5 Pure and augmented DPLs

Observe that the grammar of N'DL proofs (1.5) is a proper extension of the corresponding grammar
of PAR (1.1): the first two productions, rule applications and compositions, are the same in both
languages. DPLs in which deductions are generated by grammar 1.1, i.e., in which every deduction is
either a rule application or a composition, are called pure. DPLs such as N'DL that feature additional
syntactic forms for proofs, over and above rule applications and compositions, are called augmented.
Formally, these correspond to pure and augmented A¢ systems [2], respectively.

Many logics are sufficiently simple so that every proof can be depicted as a tree, where leaves
correspond to premises and internal nodes correspond to rule applications, with the node at the root
producing the ultimate conclusion. Pure DPLs capture precisely that class of logics, albeit with greater
compactness and clarity than trees owing to the use of assumption bases and the cut (whereas trees,
being acyclic, duplicate a lot of structure; see Chapter 7 of “Denotational Proof Languages” [2]). Most
sophisticated logics, however, fall outside this category because they employ inference mechanisms
such as hypothetical and parametric reasoning that cannot be captured by simple inference rules that
just take a number of propositions as premises and return another proposition as the conclusion.

Such logics need to be formalized as augmented DPLs, with special proof forms that capture
those modes of inference that are difficult or impossible to model with simple inference rules. Loosely
speaking, special forms are needed whenever the mere presence of some premise (Q in the assumption
base is not sufficient to warrantee the desired conclusion, and additional constraints on how that
premise was derived need to be imposed. In a sense, such modes of reasoning can only be captured
by “higher-order” inference rules whose premises are not simple propositions but rather evaluation
judgments themselves. In DPLs this is typically handled by introducing a recursive special form
“kwd --- in D", flagged by some keyword token kwd and having an arbitrary deduction D as its
body, where D is intended to produce the premise in question, ). Then when we come to state
the formal semantics of this form, we impose the necessary caveats on how @ should be derived by
appropriately constraining the recursive evaluation of the body D. Take hypothetical reasoning as
an example. If we want to establish a conditional P = @ in some (, knowing that P or ) or any

21



combination thereof is in § will not help much. What we need to know is that @ is derivable from
0 and the hypothesis P. Therefore, hypothetical reasoning cannot be captured by a simple inference
rule and we are led to introduce the form “assume P in D”, which can derive the desired conclusion
P =@ in some [ only provided that the judgment 5 U {P} F D~ @ holds.

As another example, consider the necessitation rule of modal logic: in order to infer 0P we need to
know not just that P is in the assumption base, but rather that P is a tautology, i.e., derivable from
the empty assumption base. So in a DPL formulation of modal logic we typically model necessitation
inferences with a special form “nec D”, whose semantics are succinctly stated as follows:

0D~ P
G +nec D~ OP

As a final example, consider the parametric reasoning of universal generalization rules in predicate
logic, where in order to infer the conclusion (V)P we need to know not simply that P is in the
assumption base, but rather that it is derivable from an assumption base that does not contain any
free occurrences of . We thus introduce a special form “generalize-over = in D” with the following
semantics:

BFD~ P

0 F generalize-over = in D~ (V)P
provided z ¢ FV (/)

In general, the syntactic specification of DPL deductions via recursive abstract grammars D ::=
-+ D+ in tandem with their inductive evaluation semantics based on assumption-base judgments
make it easy to introduce such recursive syntax forms and to specify their semantics perspicuously.

1.6 Implementing DPLs

There are two choices for implementing a DPL L. One is to implement it directly from scratch. The
other is to leverage an existing implementation of a sufficiently rich type-w DPL L’ and implement
L within L’. In this section we illustrate both alternatives by offering two implementations of PAR,
one from scratch and one in Athena, a powerful type-w DPL.

Implementing a DPL from scratch

Implementing a type-a DPL from scratch is less difficult than it sounds. A complete implementation
of the abstract syntax and semantics of PAR appears in Figure 1.7 in less than one page of SML
code. Typically, the following components must be built:

1. An abstract syntax module that models the grammatic structure of propositions and proofs by
appropriate data structures.

2. A parser that takes text input and builds an abstract syntax tree. (This of course presupposes
that we have settled on a concrete syntax choice.)

3. A module that implements assumption bases. As an abstract data type, assumption bases are
collections of propositions which, at a minimum, must support look-ups and insertions. They
can be implemented with varying degrees of efficiency as simple lists, balanced search trees, etc;
and they can be parameterized over propositions for reusability. In the interest of simplicity,
our implementation here is rather naive: it uses simple lists.
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(* ABSTRACT SYNTAX *)

structure AbSyntax =
struct

datatype prop = even of int | odd of int;

fun propToString(even(n)) = "Even(" Int.toString(n)~")"
| propToString(odd(n)) = "0dd(""Int.toString(n)~")";

datatype rule = zeroEven | oddNext | evenNext;

datatype proof = ruleApp of rule * prop list | comp of proof * proof;
end;

(* ASSUMPTION BASES *)

structure AssumBase =
struct

type assum_base = AbSyntax.prop list;

val empty_ab = [];

fun member (P,L:assum_base) = List.exists (fn Q => Q = P) L;
val insert = op::;

end;

(* SEMANTICS *)

structure Semantics =
struct

exception Error of string;
structure A = AbSyntax;

fun eval (A.ruleApp (A.zeroEven,[])) ab = A.even(0)
eval (A.ruleApp (A.oddNext, [premise as A.even(n)])) ab =
if AssumBase.member (premise,ab) then A.odd(n+1)
else raise Error("Invalid application of odd-next")
eval (A.ruleApp(A.evenNext, [premise as A.odd(n)])) ab =
if AssumBase.member (premise,ab) then A.even(n+1)
else raise Error("Invalid application of even-next")
eval (A.ruleApp _) _ = raise Error("Ill-formed deduction")
eval (A.comp(D1,D2)) ab = eval D2 (AssumBase.insert(eval D1 ab,ab));

Figure 1.7: SML implementation of PAR.

4. A module that implements the evaluation semantics of the DPL. This is the module responsible
for implementing the DPL interpreter, i.e., the proof checker: a procedure that will take the
abstract syntax tree of a proof and an assumption base and will either produce a proposition,
validating the proof, or generate an error, rejecting the proof.

The SML structures in Figure 1.7 implement all of the aforementioned modules for PAR, except
for the parser. With automated tools such as Lex and Yacc (or in our case, ML-Lex and ML-Yacc),
building lexers and parsers is quite straightforward. For PAR, appropriate ML-Lex and ML-Yacc files
could be put together in less than one page of combined code. In total, our entire implementation of
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(structure Nat
zero
(succ Nat))

(declare Even (-> (Nat) Boolean))
(declare 0dd (-> (Nat) Boolean))

(primitive-method (zero-even)
(Even zero))

(primitive-method (odd-next P)
(match P
((Even n) (check ((holds? P) (0dd (succ n)))))))

(primitive-method (even-next P)
(match P
((0dd n) (check ((holds? P) (Even (succ n)))))))

Figure 1.8: Athena implementation of PAR.

the language would be roughly two pages of code. (Of course the code would grow if we decided to
add more bells and whistles, e.g., positional error checking.) N'DL can likewise be implemented in
no more than 2-3 pages of code.

Implementing a DPL in another DPL

A pure type-a DPL L, i.e., one in which every proof is a rule application or a composition, can be
expediently implemented in a DPL such as Athena. Specifically:

1.

The propositions of L are represented by Athena propositions, by introducing appropriate pred-
icate symbols (a predicate symbol in Athena is just a function symbol whose range is Boolean).

Each primitive inference rule of L is modelled by an Athena primitive-method.

The deductions of L are represented by Athena deductions. In particular, rule applications
in L become primitive method applications in Athena, and compositions in L become Athena
compositions.

In the case of PAR this process is illustrated in Figure 1.8.

1.

First, we must represent the propositions of PAR; we must be able to make assertions such as
Even(14) and Odd(85) in Athena. To that end, we introduce two relation symbols Even and
0dd, each of which is predicated of a natural number. Now we can write down propositions such
as (Even zero), (0dd (succ zero)), and so on.

. Second, we must model the inference rules of PAR. Accordingly, we introduce a nullary primi-

tive method zero-even and two unary primitive methods even-next and odd-next. The zero-even
method simply outputs the conclusion (Even zero) whenever it is called, regardless of the con-
tents of the assumption base. The odd-next method takes a proposition P of the form (Even n)
and checks to ensure that P is in the current assumption base # (an error occurs if the given P

4The Athena construct (check ((Ep E{) -+« (BEn EL))) is similar to Scheme’s cond. Each E; is evaluated in turn
until some E; produces true, and then the result of E; becomes the result of the whole check. It is an error if no E;
evaluates to true. Further, the top-level function holds? takes a proposition P and returns true or false depending
on whether or not P is in the current assumption base.
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is not of the form (Even n)). If the premise (Even n) holds, then the conclusion (0dd (succ n))
is returned; otherwise an error occurs (by the semantics of check, since we do not list any other
alternatives). Finally, even-next captures the even-next rule in a similar manner.

We can now map PAR proofs into Athena proofs. An application such as even-next Odd(1)
becomes a method application (!'even-next (0dd (succ zero))); while a PAR composition turns into
an Athena composition using dbegin or dlet—or perhaps even just a nested method application. For
instance, here is the Athena counterpart of the PAR proof of Even(2) given in page 4:

(dbegin
('zero-even)
('odd-next (Even zero))
('even-next (0dd (succ zero))))

The point here is that we do not have to choose a concrete syntax for deductions—we simply use
Athena’s syntax. Thus we do not have to write any code for lexical analysis and parsing. More impor-
tantly, we do not have to implement assumption bases, or take care of the semantics of compositions,
or even implement a proof interpreter at all, because we get all that from Athena for free. We do not
even have to handle error checking!

In addition, we can take advantage of Athena’s versatility in structuring proofs and present our
deductions in whatever style better suits our needs or taste. For instance, instead of using dbegin for
composition, we can use dlet, which offers naming as well composition:

(dlet ((PO (!'zero-even))
(P1 ('odd-next P0)))
(leven-next P1))

For enhanced readability, we may use conclusion-annotated style:

(dlet ((PO ((Even zero) BY (!zero-even)))
(P1 ((0dd (succ zero)) BY (!odd-next P0))))
((Even (succ (succ zero))) BY (!even-next P1)))

Or if we want compactness, we can express the whole proof with just one nested method call:
('even-next ('odd-next (!zero-even))).

The semantics of Athena ensure that the assumption base is properly threaded in every case.

A second alternative for an Athena implementation is to model the inference rules of L not by
introducing new primitive Athena methods, but rather by postulating axioms. Theorems could then
be derived using Athena’s own primitive methods, namely, the customary introduction and elimination
rules of first-order logic: universal instantiation, modus ponens, and so forth.

That amounts to casting L as a first-order theory. Take PAR as an example. After defining Nat
and declaring the relation symbols Even and 0dd, we can model the three rules of PAR by the following
axioms:

(define zero-even-axiom (Even zero))

(define even-next-axiom
(forall 7n
(if (0dd 7n)
(Even (succ 7n)))))
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(define odd-next-axiom
(forall 7n
(if (Even 7n)
(0dd (succ 7n)))))

(assert zero-even-axiom even-next-axiom odd-next-axiom)

The effect of the last assertion is to add the three axioms to the top-level assumption base. We
can now derive the above theorem (Even (succ (succ zero))) with classical first-order reasoning:

(dlet ((PO (!claim zero-even-axiom))
(P1 ('mp (!luspec odd-next-axiom zero) P0)))
(!mp ('uspec even-next-axiom (succ zero)) P1))

In fact with this approach we can use Athena to implement not just pure DPLs, but any logic
L that can be formulated as a multi-sorted first-order theory. Conditionals P =@ in L will be
introduced by Athena’s assume construct, universal quantifications (Vx : S) P will be introduced by
Athena’s pick-any construct, and so on. A great many logics can be formulated as multi-sorted first-
order theories,” so this makes Athena an expressive logical framework. And, because Athena is a
type-w DPL, it offers proof methods as well, which means that it can be used not only for writing
proofs down and checking them, but also for theorem proving—discovering proofs via search. The
advantage of writing a theorem prover as an Athena method rather than as a conventional algorithm
is that it is guaranteed to produce sound results, by virtue of the semantics of methods. Moreover,
evaluating any method call can automatically produce a certificate [1]: an expanded proof that uses
nothing but primitive methods. This greatly minimizes our trusted base, since we no longer have to
trust the proof search; all we have to trust is our primitive methods.

1.7 Conclusions

This paper introduced type-aw DPLs. We discussed some general characteristics of DPLs and illus-
trated with two concrete examples, PAR and N'DL. We demonstrated that type-a DPLs allow for
readable, writable, and compact proofs that can be checked very efficiently. We introduced several
special syntactic forms for proofs, such as compositions and hypothetical deductions, and showed how
the abstraction of assumption bases allows us to give intuitive evaluation semantics to these syntactic
constructs, in such a way that evaluation becomes tantamount to proof checking. Assumption-base
semantics were also seen to facilitate the rigorous analysis of DPL proofs.

We have briefly contrasted DPLs with typed logical frameworks, and we have seen that the Curry-
Howard isomorphism does not apply to DPLs: there is no isomorphism between a typed A-calculus and
a type-a DPL because such DPLs do not have variables. This disparity can be traced to a foundational
difference on the issue of constructivism. In a sense, the main denotable values of a typed Curry-
Howard logic are proofs of propositions (e.g., the variables of interest range over proofs), whereas
in a DPL the denotable values are simply propositions. By doing away with the layer of explicit
proof manipulation, DPLs allow for shorter, cleaner, and more efficient deductions. We also argued
that readability and writability are enhanced by the fact that DPLs use first-order representations of
syntactic categories such as propositions and proofs, whereas Curry-Howard systems typically rely on
higher-order abstract syntax, which tends to be notationally cluttered and unintuitive.

5Peano arithmetic with induction, the theory of lists, vector spaces, partial orders and lattices, groups, programming
language semantics, ZF set theory, the logics used for proof-carrying code [8], etc.
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Differences with Curry-Howard frameworks become even more magnified in the setting of type-w
DPLs. Type-w DPLs integrate computation and deduction. A DPL of this kind is essentially a pro-
gramming language and a deduction language rolled into one. Although the two can be seamlessly
intertwined, computations and deductions are syntactically distinct and have different assumption-
base semantics. Type-w DPLs allow for proof abstraction via methods. Methods are to deductions
what procedures are to computations. They can be used to conveniently formulate derived infer-
ence rules, as well as arbitrarily sophisticated proof-search tactics. Soundness is guaranteed by the
fundamental theorem of the A¢-calculus [2], which ensures that if and when a deduction returns a
proposition, that proposition is derivable solely by virtue of the primitive rules and the propositions
in the assumption base. Type-w DPLs retain the advantages of type-ae DPLs for proof presentation
and checking, while offering powerful theorem-proving capabilities in addition.

For instance, in the implementation of PAR in Athena, we cannot only write down type-« proofs
such as those in page 25, but we can also implement a proof method, call it infer-parity, that takes
an arbitrary number n and proves a theorem of the form (Even m) or (0dd n):

(define (infer-parity n)
(dmatch n
(zero (!zero-even))
((succ k) (dlet ((P (!infer-parity k)))
(dmatch P
((Even _) (!'odd-next P))
((0dd _) ('even-next P)))))))

This method will deduce the parity of any given number n, using nothing but the three primitive
methods zero-even, odd-next, and even-next.

The versatile proof-search mechanisms afforded by type-w DPLs make them ideal vehicles for cer-
tified computation [1], whereby a computation does not only produce a result r, but also a correctness
certificate, which is a formal proof that r is correct.

We have also discussed implementation techniques for DPLs. We illustrated how to implement a
type-ae DPL from scratch by offering a sample implementation of PAR in SML. We also presented
ways of implementing such a DPL within a more powerful DPL that has already been implemented,
and illustrated that approach by expressing PAR in Athena. Specifically, we considered two distinct
ways of implementing a DPL L in Athena: by casting the inference rules of L as primitive methods of
Athena, a technique that is readily applicable to pure DPLs; and by formulating L as a multi-sorted
first-order Athena theory, a technique that is applicable to a wide variety of first-order DPLs.
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