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Sunnnary

We show that an important class of multi-stage decision problems,

of which conventional search theory is a special case, can be formulated

and constructively solved within a unified framework. The optimal

strategy is an elementary reservation price rule, allowing an intuitive

economic interpretation and permitting problems to be solved in polynomial

rather than exponential time. Computationally efficient algorithms

are presented which can be used to numerically calculate reservation

prices in real situations. We investigate the qualitative properties

of an optimal policy, analyze how they depend on various underlying

economic features of the problem, and note what they imply about optimal

decisions in different contexts.

Introduction '

A broad class of dynamic allocation models can be roughly described

as follows. A decision maker has some number of activities, projects,

or opportunities from among which he chooses one for further development

.

Depending upon the project selected some reward is received and the state

of that project is possibly altered, while the other projects remain

intact in their previous condition. The basic problem is to choose

opportunities at each decision time to maximize expected present dis-

counted value. While complete characterization will have to await the

Introduction of formal notation, suffice it here to note that there are

many useful applications.
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Although the basic philosophy of this paper argues that such

models are best viewed as multi-stage generalizations of search

problems, we adhere to an existing nomenclature in the statistics

literature which has classified several examples as so-called "bandit

processes" by analogy with the multi-armed bandit problem.

This paper has several objectives. After presenting a discrete-

state framework for formulating bandit processes, we show that a

rather impressive variety of dynamic allocation problems from seemingly

unrelated areas of economics, statistics, and operations research can

be cast in that form. Then we prove the existence of a general,

constructive method for solving bandit processes.

The solution, which by all reckoning should be complicated to

state and very difficult to solve, can in fact be characterized by an

elementary rule familiar to economists. Each stage of a project is

assigned a reservation price — a critical number analogous to an inter-

nal rate of return, depending only on the project and its stage,

independent of all other projects, and possessing a simple, intuitive

economic interpretation. The optimal rule is to proceed next with that

activity, project, or opportunity having the highest reservation price.

1

In previous versions of this paper, before the work of Gittens and

others in the statistics literature was brought to our attention, we

called our model a "multi-stage search process". We still prefer

this description, but of course it would now be confusing to persist

with our own terminology.
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Slnce knowing reservation prices is tantamount to solving a

bandit process, we can understand the basic qualitative features of

an optimal policy by analyzing the main factors determining a project's

reservation price — like profitability, uncertainty, information,

learning, flexibility, degree of increasing and decreasing returns, etc.

In the context of various models, we try to explain why reservation

prices differ between projects and how a reservation price is likely

to change as a project is developed.

Not only can reservation prices be used to characterize the form

of an optimal policy, but they allow any bandit process to be solved

in polynomial rather than exponential time. We show that the theory

of discrete state reservation prices is essentially constructive.

Reservation prices satisfy dynamic programming equations of a form that

allow them to be numerically calculated by iterative alogorithms with

known and powerful convergence properties. This should make it

computationally feasible to actually solve real world problems of a

surprisingly large size.

The history of the problem is complicated to trace because a

great many examples of bandit process have been effectively treated

without real awareness of the underlying connection between them or

2
of the existence of a unified theory. To Gittens and some other

statisticians belongs the credit for formulating the first truly

2

Some of these examples will be presented in a later section.
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general mathematical statement of the model, while primary emphasis

has been on solving problems in statistical design akin to the multi-

3
armed bandit problem. It seems fair to say that only quite recently

have people started to become aware of the full range of problems

covered by this kind of theory.

To the economist, bandit processes are important because they

form an elegant and operational theory which nicely captures the role

of infomnation gathering in dynamic resource allocation. Within

economics this role has been played largely by search models, of which

bandit processes are a powerful generalization.

The Model

There are N opportunities or projects, indexed n = 1,2,...,N.

At any decision time exactly one project of the N must be selected

for further development. Let project n be in state i. If project

n is chosen, (expected) reward R is collected and project n makes a

transition from state i to state j with probability P. .• Every other

project remains locked in its previous state. A discount factor B.

4
is applied to future returns.

3
See Gittens [1979], Whittle [1980], and the references cited therein.

The essential results of the present paper were independently stated,

proved, and written in an earlier version before we became aware of

Gittens' pioneering work. So far as we know, the connection between
search theory and bandit processes has not been treated anywhere in

the literature, and it is primarily this aspect which is most important

in economic applications. The search theory — reservation price
approach to bandit processes is also, in our opinion, the most intuitively

appealing way to understand the dynamic programming conditions and to

prove the basic theorem.

4A superscript on a variable indexes the project and does not mean raising

the variable to that exponent.
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Thus, if project n is selected, the system as a whole moves

from state

N
S = X- i(m) (1)m=i

to state

S - >i(n)< + >j< (2)

with probability P.., where the notation S - >i(n)< + >j< means a

state identical to S except that project n is in state j instead of

i(n).

The problem of selecting a project to maximize expected present

discounted value can be posed in dynamic programming format. Let H'(S)

represent the expected present discounted value of following an optimal

policy from this time on when the state of the system is S.

For each S, the state valuation functions T must satisfy the

fundamental recursive relation

^-CS) = max {r" + 6"ZP^. 'i'(S - >i(n)< + >j<)} (3)
l<n<N 1 1 iJ

In principle the state valuation functions {¥(5)} might be

recursively built up by iterative backwards induction on the stages

of each project, using equation (3). In most actual cases the

computation would be a brute force task of horrendous proportions

because the "curse of dimensionality" is likely to be so strong.

At any state S, the optimal project to select, n*(S), is that

alternative which maximizes the right hand side of (3) . If two or more

policies tie, it makes no difference how the tie is broken. Note

that although an optimal strategy is implicitly contained in equation (3)

,
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the form of that strategy is nothing more than a complete enumeration

of what to do in all possible situations, with no visible economic

or other interpretation.

In the solution of the standard search model, a reservation price

equal to its certainty equivalent is assigned to each box. The reserva-

tion price of a closed box is that hypothetical cutoff value of a

deterministic fallback reward which would make it just equal to the

expected net gain of opening the box and having the certain reward to

fall back upon. In an optimal policy, that box with highest reservation

price is opened next.

The contribution of the present paper is to show that essentially

the same idea works for multi-stage search problems. A project in any

stage is assigned a reservation price, calculated in an analogous manner

to the standard search model. The reservation price of a project-stage

determines its ordinal ranking, telling when to fund this project-stage

relative to other project stages. Thus, all the advantages of a simple

rate of return criterion apply in the context of search with accumulated

information.

Examples

We exhibit some examples of bandit processes from three broad

application areas.

See Weitzman [1979], Lippman and McCall [1976].
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(1) Search

Simple box search Is the prototype problem of the present paper.

It will become apparent why we have chosen this model as our primary

conceptual antecedent when we examine the solution equations for the

general bandit process.

Suppose there is a collection of closed boxes, not necessarily

identical. Each box contains a potential reward sampled from a

probability distribution. At some cost, and after an appropriately

discounted waiting interval, a box can be opened and its contents made

known.

At each decision node, the decision maker must decide whether

or not to open a box. If search is terminated, the maximum reward

thus far uncovered is collected. If search is continued, the decision

make must select the next box to be opened, pay at that time the fee

for opening it, and wait for the outcome. Then will come the next

decision node. The object is to find a strategy which maximizes

expected present discounted value.

Suppose that box n contains a potential reward Y. with

probability q. for 1=1,2,... It costs C to open box n and learn its

contents, which become known after a time lag reflected by the discount

factor B .

6

See Weitzman [1979], Lippman and McCall [1976], and the references cited

therein.
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Simple box search can be posed as a bandit process using the

following notation. In state o the box is closed and P^ = q?,

R = -C , 6 = 3 . If the box is opened and in state i > 1, we say

it is in an absorbing state with p" = 1, R? = y", b" = 0.
ii 1 i i

Further specialized cases of simple box search, like locating

an object, or the gold mining problem, are a fortiori examples of bandit

7
processes.

(2) Scheduling

The so-called "resource pool problem" is the simplest case of a

g
non-trivial deterministic bandit process. It highlights the pure

scheduling or fitting aspect of a bandit process in its most direct

form, free of search, learning, or other features.

At each instant of time a depletable resource can be drawn from

any one of a number of pools. The cost of removing an extra unit from

a pool depends on how much has already been taken out of it. What

policy supplies a fixed flow of the resource at minimum present discounted

cost?

If i units have been drawn from pool n, it costs C to extract the

next unit. Then P, .,, = 1, R^ = -C^ , 6. = a defines a resource pool
1,1+1 i i i

, , , ,

.

„. , . _n < _n
problem as a bandit process. The non-decreasing cost case C. = C -

is the familiar situation where a myopic marginalist rule is optimal.

See Kadane and Simon [1977], Kadane [1969], and the reference cited

therein.

8
See Weitzman [1975].
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In the more interesting case, the resource pool problem confronts the

issue of evaluating situations with a range of decreasing costs.

Obviously uncertainty can be introduced into a resource pool

problem without disturbing its status as a bandit process (although

it will typically be somewhat harder to solve). Just as one example,

suppose that pool n costs a fixed overhead charge of K to open up and

has constant marginal cost C thereafter, but reserves are uncertain.

A similarly structured problem is the task of scheduling a number of

jobs to be carried out by a single machine when the jobs differ in value,

and completion times are random variables.

Actually, with a judicious interpretation of "resource pool", a

bandit process formulation is sufficiently general to include as special

cases many of the standard operations research models for such problems

as equipment durability selection and replacement, inventory, maintenance,

and production scheduling, or capacity expansion. In such situations

there are typically several classes of pools, each of which contains

an infinite number of identical members. For equipment problems a

"resource pool" is a certain piece of equipment and the "amount extracted"

is the length of time it has been in service. With scheduling,

inventory, and expansion problems, a pool is a certain strategy-schedule

(like ordering inventory, or building capacity) which goes up to some

expiration or regeneration point (after which costs are interpreted as
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being infinite) ; the "amount extracted" is the length of time the given

strategy-schedule has been carried out.

(3) Learning (or Information Gathering )

The following numerical example conveys the flavor of multi-stage

learning as a generalization of search.

Suppose the research department of a large organization has been

assigned the task of developing some new product. Two independent

technologies are being considered, both of which are uncertain.

Because they both produce the same product, no more than one technology

would actually be used even if both were successfully developed.

For each technology, research goes through two stages. First,

a preliminary feasibility study is made. If the outcome of the

feasibility study is unfavorable, the technology has no chance of success.

If the feasibility study is favorable, the technology may be successful, '

but this can only be determined after mounting a full scale R&D

effort.

Table 1 summarizes the relevant information.

TABLE 1

Project

Probability of Success
Estimated Before
Feasibility Study

Cost of Feasibility
Study

Probability of Passing
Feasibility Study

Cost of Full Sclea R&D

.5

.8

21

B

.4

.5

24
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For which technology — A or B — should a feasibility study be

ordered? We discuss the answer in the applications section.

General multi-stage problems of this sort can be written as

bandit processes. The corresponding bandit process is typically a

unidirectional branching tree with terminal absorbing states;

if P , . > 0, then either j > i or j = i and P,^ = 1. In the previous
ij " " li

example, the terminal absorbing states offer as reward either some

large unspecified constant (success), or zero (failure). Rewards in

a transition state are the negative of development costs at that

stage.

In previous work, we have modeled a research, development or

exploration project where the potential reward, which can only be collected

after all development work has been completed, is viewed as a sum of

9
independent random variables across component development stages.

As additional research money is paid to develop another stage, the

"contribution" of that stage to the final reward becomes known. Hence,

the distribution of final rewards is continually shifting as the contri-

bution of each stage turns out better or worse than expected; and the

distribution narrows with development because less uncertainty remains

to be resolved. Research costs are paid both to move the project towards

completion and to find out more information about potential rewards.

If the decision maker has paid all development costs leading up to the

final stage, development uncertainty has been eliminated and the

9
See Roberts and Weitzman [1979]. The model is solved and analyzed

by continuous time methods.
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reward can be collected. At any stage the project can be abandoned

and, viewed ex post , the previously sunk development costs have nothing

to show. A collection of such projects is an example of a bandit

process.

Perhaps the most classic model of learning is the multi-armed

bandit problem which served Gittens and his co-workers as a prototype

1 10
example. At any stage the decision maker has an estimate of the

distribution of success probabilities for each arm, which in our

language is the state of the arm. When an arm is played, some reward

is expected and depending on what is actually received, the estimate

(or state) is updated in Bayesian fashion. The multi-armed bandit

problem embodies a classical trade-off between taking high expected

rewards now and acquiring information which may be valuable later.

It should be obvious that many economic aspects of "learning by

doing" can be modeled as a bandit process.

The Basic Theorem

Consider the following functional equation:

V^(Z) = max { Z, r" + 6" E P° v"(Z)} Vi (4)

Under very weak conditions, (4) will have a unique solution for each Z.

10

See Gittens [1979], Whittle [1980], and the references cited therein.

For applications to economics, see Rothschild [1974] and the references

he cites.
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V (Z) possesses an important economic interpretation. Consider

the artificial bandit process where one of the projects is n in state i

and the other is a fallback lump sum reward Z which can be collected at

any time, whereupon the entire process must be discontinued. V (Z)

is the expected present discounted value of being in state i of project

n and following an optimal stopping rule when the consolation prize is

Z. The difference V.(Z) - Z might be called the "option value" of being

in i(n).

A fixed point of V (Z) which will play an indispensable role is

z"

defined to satisfy

Z" = V"(Z") = r" + b" E P':^. V'^CZ"). (5)111 iiijji
It is not hard to prove existence and uniqueness of Z . It is also

not difficult to show that

V?(Z) = Z for Z 2 z^

v"(Z) > Z for Z < zj

Now Z. has two important interpretations and one truly extra-

ordinary property.

An interesting interpretation is that Z represents that value of

the fallback position which would make a decision maker just indifferent

between continuing project n at stage i and abandoning it in favor of

taking the fallback reward immediately. In economist's terminology,

Z. is a reservation price.
1 "^
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An equally valuable way of comprehending Z Is to note that it

represents the expected present discounted value of an optimal policy

for a bandit process consisting of an infinite number of projects, all

of type n in state i. This interpretation follows from the fact that

Z so defined must satisfy (5).

The extraordinary property is that Z. contains all relevant infor-

mation about project n in state i for any bandit process of which it is

a member. The optimal rule is to proceed next with that project-state

having the highest reservation price. This unusual feature can lead

to striking results and powerful characterizations of an optimal policy.

Note that Z. does not at all represent the value of project n in any

traditional economic sense; there is a crucial distinction between the

marginal value of a project and the order in which it should be under-

taken.

Adopting the notation

V^^=V^(Z^). (6)

a standard contraction mapping argument shows that the system of

equations

V" = r" + B" I P".V". (7)
ii 1 i ij Ji

V'?. = max {V"., r" + B"! Z p" v" } (8)
Ji 11 J J Jk ki

has a unique solution if < B. < 1.
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The following theorem is the basic result of this paper.

N
Theorem: The optimal policy in state S = X i(n)

n=l

Is to select the project n* for which

n* n
Z = max Z

, (9)
n

where

z" = v""
i(n) ,i(n)

Proof of the Basic Theorem

Henceforth we suppress the cumbersome notation iCn) where its

use is superfluous. Unless otherwise noted, project n is in state i(n).

Throughout the proof it will be convenient to work with an

equivalent undiscounted problem where 1-0. is now interpreted as the

probability that, if project n in state i is chosen, everything stops

and the entire process ends (with zero reward) . Transition probabilities

are then

q". = 3^ P"..

The two formulations are mathematically identical, but the inter-

pretation of the equivalent undiscounted problem is easier.

Let G.(Z) be the probability that Z will eventually fall to or

below Z if project n is continued forever starting from state i. More

formally,

G?(Z) =1 if Z? < Z

g"(z) = zq^.g'^cz) if Z? > Z
i xj J 1



-16-

An Interesting relation which we will not use directly is

dvJ(Z) n,,,—± = G. (Z) a.e. *

dZ i

At any stage let A(Z) be a "continuation set" of projects whose

reservation prices are greater than Z. More formally,

z" > Z <-» n E A.

Define the function

W(Z)

to be the maximum expected present discounted value of a bandit-like

process played under the following conditions:

stopping rule : retire the process and collect Z if and only

if A is empty.

«

selection restriction: the next project to be selected must '

belong to A. i

It Is not difficult to prove that W(Z) is a continuous function.

Analogously, define

W"(Z)

to be the value of an optimal policy under the above rules with the

overriding contraint, only initially operative, that project n must-

be selected first. Then

W(Z) = Z if A is empty

W(Z) = max w"(Z) ^, .

otherwise.
neA
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Note that when Z = -oo. In effect there are no restrictions and

W(-°°) Is the value of an optimal policy in the original problem. The

theorem will be proved if we can show that

W(-oo) = wl(-°o),

where without loss of generality the projects are so ordered that

™1 „n
Z = max Z .

n

Lemma 1

:

dW N n,^,—- = II. G (Z) a.e.
dZ n=l

Proof : In whatever order they are used, projects are abandoned

if and only if their reservation prices fall to Z or below. The

abandoning of each project is an independent stochastic event. The

probability that the entire process is retired and Z is collected is

therefore

I G^Z)
n=l

In the problem as we have formulated it, there are essentially

a finite number of reservation prices. Suppose Z 4 1. for all i and n.

Define

Z = max Z

.

- Z\<Z ^

T. . r,n
Z = min Z .

.

z':^>z
^

1
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Let X and Y be any two points in the interval (Z,Z). Then

A(X) = A(Y) and g"(X) = g"(Y) under all possible states of the system.

Consider a policy identical to the optimal policy for X, except

that Y is collected instead of X. This policy is feasible for Y,

hence

w(Y) > w(x) + (Y-x) n. g"(x).

By a symmetric argument,

W(X) > W(Y) + (X-Y) ii, G°(Y).
n=l

N .n

Thus, the function W is linear in the interval (Z,Z) and

piecewise linear in (-°°
, °°) . Except for (a finite number of) policy

N ^
switch points, the slope of W(Z) is given by H G (Z)

.

Lemma 2 ;

dW ^ dW"*"

dZ dZ

for almost all Z < Z .

Proof: That

f'= n, G^z)
dZ n=l

for Z < Z follows by the same logic as Lemma 1.

Lemma 3:

wcz-"-) - "/(z-"-).

Proof: Follows from the relevant definitions,

Theorem:

W(-oo) = w-^(-«)

Proof: Follows from Lemmas 2 and 3.
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Corr.putation

For project n, we need to calculate {V..} only for that state i(n)

currcntlv occupied. Once V.. is determined, further calculations for

project n are unnecessary until and unless project n is actually selected.

The equations (7), (8) are decomposable by project n and by originating

state i, so that the calculations of {V..} with j varying, i and n

fixed, can be done independently of other i and n. Without loss of

generality, therefore, we suppress Indices i, n and show how to calculate

the solution to the system

V. = R. + B. I P. .V. - (10)
1 1 1 13 1 - "

V, = max{V., R. + 6. I P., V } vj^^i (11)

where

V. = V?.
1 11

V. = v".

The system of equations (10) , (11) is of a classical form familiar

from input-output theory with variable techniques, or Markov chain theory

with alternative policies. Two basic solution methods are commonly

available.

Perhaps the easiest algorithm is successive approximations. The

^'^See, e.g., Weitzman [1967] or Howard, [1960]
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Iterations

V^(t+1) = R^ + B^ZP V.(t) (12)

V,(t+1) = max{V. (t), R. + 6.ZP.,V (t)} J ,« i (13)

converge to the solution of (10), (11) from any initial V (0) , {V.(0)}.

Problems of inimense dimensions could be calculated because the

principal effective constraint on (12) , (13) is not computation, but

storage size.

Furthermore, after project n has been selected and has moved from

state i to state k, the previously calculated {V..} are natural starting

values for {V., (0)}, the initial approximations for {V., } under the new
jk "'^

jk

state k.

An alternative approach is policy iteration. Starting with a prescribed

policy in each state j / i of choosing either to continue or to stop,

we calculate the solution to the (now linear) set of value equations to

which (10), (11) reduces. These are used to select a new policy on the

basis of value maximization, which defines another step of the iteration.

The advantage of this approach is finite, speedy convergence. The dis-

advantage, considerable in large problems, is that a matrix must

be inverted at each iteration.

More exotic approaches, like fixed point algorithms, could in

principle be employed.
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Whatever metliods are used to solve (10), (11), we note the

computational superiority of the reservation price approach over

traditional dynamic programming. If there are N projects, each with

2
I states, there are at most NI numbers to be calculated by the

present approach. By the traditional backwards recursion dynamic

Nprogramming approach of equation (3) , there are at most I numbers to

be determined. If I = N=10, this is a difference between computing

one thousand numbers and ten billion numbers!

Applications

(1) Search

Studj'ing simple box search is a very useful way to understand the

basic features of bandit process solutions because the equation defining

the reservation price of a simple box

Z = -C + B^q. max{Z,Y.} (lA)

is a miniature version of the bandit process reservation price equations

(10), (11).

From (14) , the reservation price of a box is completely insensitive

to the probability distribution of rewards at the lower end of the tail.

Any rearrangement of the probability mass located below Z leaves Z unaltered.

It is important to understand this feature. Considering that a box could

be opened at any time, the only rationale for opening it now is the

possibility of drawing a relatively high reward. That is why the lower

end of its reward distribution is irrelevant to the order in which box i
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should be sampled even though It may well influence the value of an

optimal policy.

On the other hand, as rewards become more dispersed at the upper

end of the distribution, the reservation price increases. Other things

being equal, it is optimal to sample first from distributions which

are more spread out or riskier in hopes of striking it rich early.

This is a major conclusion. Low-probability high-payoff

situations should be prime candidates for early investigation even

though they may have a smaller chance of ending up as the source

ultimately yielding the maximum reward when search ends.

The standard comparative statics exercises performed on (lA) yield

anticipated results. Reservation price decreases with greater search

cost, increased search time, or a higher interest rate. Moving the

probability mass of rewards to the right makes Z larger. Thus although ^

there is no necessary connection between the mean reward and the reserva-

tion price, there is a well-defined sense in which higher rewards increase

the reservation price. Similarly, performing a mean preserving spread

on the distribution function makes Z bigger. In this sense a riskier

distribution of rewards implies a higher reservation price.

(2) Scheduling

The reservation prices of the deterministic resource pool problem

^^^
I ^n t-i

n 1 E .C a
Z? = - T^ inf t=i t

f
.

i 1-a T^i ~T TIT^ ^-"-^^

E ct

t^i

12
See Weitzman [1976].

In the present context a means a multiplied by itself t-i times.
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The reservation price of a pool is (a negative multiple of)

the minimum equivalent stationary cost per barrel of oil from that

source, which we might call the implicit cost of the pool.

Converting arbitrary cost streams to stationary equivalents for

the purpose of finding the cheapest alternative is an old economist's

trick. The optimality of the max Z rule can in a sense be Interpreted

as justifying this heuristic procedure under certain conditions.

Note that the implicit cost of a pool reduces to its marginal cost

for the special case of nondecreasing costs.

At the opposite extreme, with decreasing costs over the entire

range, the infimum in (15) is obtained for T = °=. Once an infinite

capacity non-increasing cost source is opened up, in an optimal policy

it should operate forever.

To illustrate the typical form of an optimal policy for exploiting

depletable natural resources, consider the following simple example.

Suppose there are but two resource pools. Each pool has an initial

range of decreasing costs, followed by a final section of increasing

costs. Let the pools be ordered so that the first has lower implicit

cost than the second. The optimal strategy will be to initially exploit

the pool with the lowest implicit cost, pool number one. This will be

done until the marginal cost of extracting one more unit (in the increasing

cost range) becomes greater than the implicit cost of the second pool.

At that time pool two will start being exploited, and it will be the

exclusive source until its marginal cost in the increasing cost range

becomes greater than the marginal cost of pool one. Then pool one or

two will alternately be exploited, depending on which is currently the

cheaper source at the margin.
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Reservation prices for stochastic resource pool problems are often

easy to calculate and typically are interpretable as a probabilistic

version of (15). For example, if it costs a fixed overhead charge of

k" to open pool n and a variable cost C per unit extracted thereafter,

but reserves are a random variable T, then

, k" + C'' F 5 a^
7n 1_ i^n
o" 1-0. E^at

t=o

before the pool is opened (state i=o) . For i>l.

i 1-a

after the pool is opened. With the above specification, once a pool is

tapped in an optimal policy it is run until dry.

Note that for a situation where all pools are the same and there is

an unlimited collection of them, the optimal policy will be cyclic or

recursive. The same conclusion holds if there are several classes of

pools, each class containing an infinite number of identical pools

(because in an optimal strategy only pools from one class will be

tapped). This is why so many of the standard operations research models

with stationary probability distributions (for example, equipment

durability selection and replacement, inventory, maintenance, and

production scheduling, or capacity expansion) end up having a repetitive

solution which may be universally characterized as follows. At each

decision node, choose the strategy element with lowest expected

equivalent stationary cost.
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(3) l.oni-nin ['.

In simple box search v;e cbserved thnt if rewards are more spread

out, or in other words the probability distribution collapses more

completely when drawing a sample from it, the reservation price is

increased. This principle generalizes.

The possibility of learning increases the reservation price of a

project by a premium reflecting how rapidly the probability spread

of rewards narrows as more steps of the project are undertaken. This

is a crucial feature of information gathering processes.

The learning effect is quite pivotal in the numerical R&D example.

Before the feasibility study, project A with probability .8 has a .625

chance of success and with probability .2 has a chance of success;

likewise project B with probability .5 has a .8 chance of success

and with probability .5 has a chance of success. Viewed as a binomial

event, the pre-feasibility variance of A is (.5) (.5) = .25, and of

B is (.4) (.6) = .24. The expected post-feasibility variance of A is

(.8) (.625) (.375) = .19, and of B is (.5) (.8) (.2) = .08. On average,

the feasibility study reduces the variance of A by only .06 compared

with .16 for B. The learning or information effect is strong enough to

favor starting with B, which is an inferior project to A in all other

respects. If in the first stage (feasibility study) the cost is C
,

and the probability of success is P^ , and in the second stage (full

scale R&D) the cost is C and the probability of success conditional

upon passing stage 1 is ?», then Z = -(C^+P^C^)/P P.. The reader can

R A
verify Z >Z .
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With the multl-amied bandit problem, there is a comparable learning

effect favoring arms with more diffuse priors. Mean preserving spreads

of bandit arm priors increase the reservation price. On average, the

reservation price of an arm is expected to decline over time, as the

probability distribution for the arm contracts after sampling. There

will of course be instances when the decision maker should sample a

high-variance, low-mean arm even though he knows he is likely to abandon

it in favor of a low-variance, high-mean arm.

From the analysis of theoretical models, new insights are possible

into the properties of the R&D search process as a whole. Examination

of how reservation prices tend to change with the development of a line

of research allow one to describe the way in which research can be ex-

pected to proceed.

To take an example, it is possible to infer from the Roberts/Weitzman

analysis of a single research project that the reservation price can be

expected to fall over time when the uncertainty about ultimate rewards

is high in comparison to the costs required to complete the research

project. If a planner is facing a situation with several projects of

this type, he can expect the optimal selection rule to involve considerable

switching and reswitching betv;een projects. The real world implication

is that in such situations it may be optimal to pursue a parallel research

effort with more than one project being developed at the same time. By

contrast, when the uncertainty about ultimate rewards is low relative to

R&D costs, the reservation price of a project can be expected to rise
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because as more stages are developed, total remaining costs to comple-

tion are lowered, without much gain In Information. In a situation

with several projects of this type, the optimal selection rule will

tend to go with one "best" project from beginning to end.

(4) A Composite Example

Most bandit processes exhibit features common to more than one

"pure case". Consider, for example, the following stylized mining

problem which illustrates nicely the interacting of search, scheduling,

and learning.

A company seeks to extract a natural resource at a fixed pre-

determined flow rate from any one at a time of a number of different

potential mine locations.

For notational convenience we drop the superscript referring to

mine location.

If a given location contains ore, it contains enough to last for

T years at the fixed extraction rate, where T is a random variable with

a known distribution. The initial overhead cost of opening the mine

would be K, and the operating cost would be C per year.

By paying a (relatively inexpensive) testing cost of C^ , the company

can perform a geological survey which, with probability 1-P-, . will rule

the site out as altogether implausible. If the survey is favorable,

by paying a (relatively expensive) cost of C., the company can do a test

drilling which will strike ore with probability p„.

The interest rate is r. What is the next site to explore?
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Applying the formula for Z , we can derive

C^+ Pj C2 + p^P2 (K + (C/r) (1-E e"^"^ ) )

o
" "

Pj^p^d-Ee-rT)

With C^ = C = 0, this is a pure scheduling problem; with C = 0,

C^ > 0, a search aspect is tacked on, with C > 0, C > 0, a learning

stage is added.

Without a first learning stage, the value of Z would be

C2 + P^P2(K+ (C/r)(l-Ee~^^ ) )

p^p^d-Ee-rT)

Thus, provided C < (1-p )C„, adding the possibility of a geological

survey makes it more likely a decision maker will want to investigate

a site, even though it increases overall cost i^ the site contains ore.

The strength of this effect increases as p^ is smaller. Holding

other things constant, including the overall probability that the site

contains ore P,P^j a decrease in p^ means an increase in p . The less

likely is the geological survey to be successful, the more discriminating

power does it have, and the more desirable is it to investigate the site

now because the relatively expensive test drilling is less likely to be

in vain. ^

(5) Irreversible Investment and The Option Value of Flexibility

The following stylized example shows the value of flexibility in

determining reservation prices.

13
For background, see Henry [197A] and the references cited there.
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Suppose that an irreplaceable asset (a forest, say) can be put to

some number of alternative uses. When used for a given purpose, the

annual (imputed) income of the forest follows a random walk from current

2
value s , with zero drift and annual variance o . (For notational

convenience we drop the superscript referencing use option) . An

2
irreversible usage could be represented by o =0. The policy question

is which usage to favor at the current time.

In our terminology, s is the state of a usage and U(s;Z) is the

expected present discounted value of an optimal policy if the only

alternative to the proposed usage is irreversibly cutting down the

forest for a present discounted reward of Z. Let Z(s) be the reservation

price of the usage under consideration. If r is the instantaneous

interest rate, for Z < Z(s) there is a sufficiently small 6t such that

U(s;Z) = s5t + (l-r6t)EU(s + Xa/6t;Z)

where X is a random variable taking on the values +1 and -1 each with

probability h,.

Employing Taylor series approximations and passing to the limit

14
yields the differential equation.

2

^U - rU + s =
2 ss

for Z > Z(s)

14
The general technique being used is explained in greater detail in

Roberts and Weitzman [1979]. Here we are more concerned with presenting

and interpreting a new result than deriving it rigorously.
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At Z = Z(s) we have the condition

U(s;Z(s)) = Z(s).

Also, for sufficiently small 6t,

Z(s) = s 6 t + (1- rSt) [h^ (s + a/6t;Z(s)) + h Z(s)],

which yields, passing to the limit after a Taylor expansion,

U (s;Z(s)) = 0.
s

The differential equation, along with the boundary conditions,

can be explicitly solved to yield the formula

1 / . a

r
Z(s) = ^ (s +-^)

The reservation price Z(s) is the sum of the "certainty equivalent"

s^

r

plus the "option value"

a

r/2r~

The option value of a given flexible usage measures its incremental

worth over the hypothetical irreversible alternative of receiving its

current certainty equivalent income forever. The option value is directly

proportional to a, which parameterizes the uncertainty in the difference

between the flexible and irreversible options.
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To give some idea of the orders of magnitude involved, suppose

s = $1 million, o = $100thousand , r = 5%. Then the certainty equivalent

is $20 million, whereas the reservation price is $26.4 million. The

option value, here 32% of the certainty equivalent, can easily be a non-

negligable component of cost-benefit analysis.
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