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Abstract

This paper considers instrumental variable regression with a single endogenous vari-

able and the potential presence of weak instruments. I construct confidence sets for

the coefficient on the single endogenous regressor by inverting tests robust to weak

instruments. I suggest a numerically simple algorithm for finding the Conditional

Likelihood Ratio (CLR) confidence sets. The full descriptions of possible forms of the

CLR, Anderson- Rubin (AR) and Lagrange Multiplier (LM) confidence sets are given.

I show that the CLR confidence sets has nearly shortest expected arc length among

similar symmetric invariant confidence sets in a circular model. I also prove that the

CLR confidence set is asymptotically valid in a model with non-normal errors.
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1 Introduction

The paper considers confidence sets for the coefficient /3 on the single endogenous

regressor in an instrumental variable (IV) regression. A confidence set provides in-

formation about a range of parameter values compatible with the data. A good

confidence set should adequately describe sampling uncertainty observed in the data.

In particular, a confidence set should be large, possibly infinite (in a case of infinite

parameter space) , if the data contains very little or no information about a parame-

ter. In many empirically relevant situations the correlation between the instruments

and the endogenous regressor is almost indistinguishable from zero (so called weak

instrument case), and little or no information about j3 can be extracted. A confidence

set with correct coverage probability in the case of arbitrary weak instruments must

have an infinite length with positive probability (Gleser and Hwang (1987), Dufour

(1997)). Most empirical applications use the conventional Wald confidence interval,

which is always finite. As a result, the Wald confidence interval has a low coverage

probability (Nelson and Startz (1990)) and should not be used when instruments are

weak (Dufour (1997)).

To construct a confidence set robust towards weak instruments one can invert

a test which has a correct size even when instruments are weak (Lehmann (1986)).

Namely, a confidence set of correct size can be constructed as a set of /3 for which

the hypothesis Ho : (3 — 0o is accepted. The idea of inverting robust tests in the

context of IV regression was first proposed by Anderson and Rubin (1949) and has

recently been used by many authors, among them Moreira (2002), Stock, Wright and

Yogo (2002), Dufour, Khalaf and Kichian (2005). The class of tests robust to weak

identification includes but is not limited to the Anderson and Rubin (1949) (AR) test,

the Lagrange multiplier (LM) test proposed by Kleibergen (2002) and Moreira (2002),

and the Conditional Likelihood Ratio (CLR) test suggested by Moreira (2003).

The paper has three main goals. The first one is to compare the CLR, AR, and

LM confidence sets using accuracy and length as criteria of desirability. The second

goal is to provide a practitioner with simple and fast algorithms for obtaining these

confidence sets; currently fast inversion algorithm exists for the AR but not CLR or

LM. The last but not the least one is to prove that the confidence sets mentioned

above have asymptotically correct coverage; this entails a non-trivial extension of

point-wise validity arguments in the literature to uniform validity.

Accuracy of a confidence set is defined as the probability of excluding false values

of the parameter of interest. A uniformly most accurate (UMA) confidence set max-

imizes for each false value the probability of not including it. A UMA confidence set

corresponds to a uniformly most powerful (UMP) test and vice versa. Practitioners

are usually more interested in another criterion, the expected length. According to

Pratt's (1961) theorem, the expected length of a confidence set equals the integral

over false values of the probability each false value is included. If the expected length

is finite, then a UMA confidence set is of the shortest expected length.

Andrews, Moreira and Stock (2006) show that the CLR test is nearly UMP in the

class of two-sided similar tests invariant with respect to orthogonal transformations of

instruments. It gives one a hope that a confidence set corresponding to the CLR test





could possess some optimality properties with respect to length. There are, however,

two obstacles in applying Pratt's theorem directly. First, the expected length of a

confidence set with correct coverage in the case of weak instruments must be infinite.

Second, the CLR does not maximize power at every point, rather it nearly maximizes

the average power at two points lying on different sides of the true value. The locations

of the points depend on each other, but they are not symmetric, at least in the native

(standard) parametrization of the IV model.

The reasons stated above prevent establishing "length optimality" of the CLR
confidence set in the native parametrization. However, when I introduce spheri-

cal coordinates and consider a circular version of the simultaneous equation model

suggested by Hillier (1990) and Chamberlain (2005), the CLR sets get some near

optimality properties. In the spherical coordinates I am interested in a parameter 4>

on a one-dimensional unit circle. A parameter (\> is in one-to-one correspondence with

the coefficient (3 on the endogenous regressor. Inferences on
<fi
can be easily translated

to inferences on (3 and vice versa. This circular model has two nice features. First,

the length of the parameter space for
<fi

is finite, which makes every confidence set

for cj) finite (a confidence interval of length Pi for (j> corresponds to a confidence set

for (3 equal to the whole line). Second, a circular model possesses additional symme-
try and invariance. In particular, as shown by Andrews, Moreira and Stock (2006)

the 2-sidedness condition corresponds to a symmetry on the circle. I show that the

CLR confidence set has nearly minimal arc length among symmetric similar invariant

confidence sets in a simultaneous equation model formulated in spherical coordinates.

I use simulations to examine the distribution of the lengths of the CLR, AR, and

LM confidence sets for (3 in linear coordinates. I also compute their expected lengths

over a fixed finite interval. I find that the distribution of the length of the CLR
confidence set is first order stochastically dominated by the distribution of the length

of the LM confidence set. It is, therefore, not advisable to use the LM confidence set

in practice.

If one compares the length of the CLR and AR sets over a fixed finite interval,

then the CLR confidence set is usually shorter. The distributions of length of the AR
and CLR confidence sets, however, do not dominate one another in a stochastic sense.

The reason is that the AR confidence set can be empty with non-zero probability.

In other words, the distribution of length of the AR confidence set has a mass point

at zero. This peculiarity of the AR confidence set can be quite confusing for applied

researchers, since empty interval does not allow making any inferences in practical

settings.

The paper also addresses the practical problem of inverting the CLR, LM and AR
tests. One way of inverting a test is to perform grid testing, namely, to perform a

series of tests H : (3 = (3 , where /3 belongs to a fine grid. This procedure, however,

is numerically cumbersome. Due to the simple form of the AR and LM tests, it is

relatively easy to invert them by solving polynomial inequalities (this is known for the

AR, but apparently not for the LM). The problem of inverting the CLR test is more

difficult, since both the LR statistic and a critical value are cumbersome functions of

the tested value. I find a numerically very fast way to invert the CLR test without

using a grid search. I also characterize all possible forms of the CLR confidence region.





The third main result of the paper is a proof of asymptotic validity of the CLR
confidence set. Moreira (2003) showed that if the reduced form errors are normally

distributed with zero mean and known covariance matrix, then the CLR test is sim-

ilar, and the CLR confidence set has exact coverage. Andrews, Moreira and Stock

(2006) showed that without these assumptions a feasible version of the CLR test has

asymptotically correct rejection rates both in weak instrument asymptotics and in

strong instrument (classical) asymptotics. I complete their argument by proving that

a feasible version of the CLR has asymptotically correct coverage uniformly over the

whole parameter space (including nuisance parameters).

The paper is organized as follows. Section 2 contains a brief overview of the model

and definitions of the CLR, AR, and LM tests. Section 3 defines the circular model

and establishes its relation to the linear model. It also discusses a correspondence be-

tween properties of tests and properties of confidence sets. Section 4 gives algorithms

for inverting the CLR, AR and LM tests. Section 5 provides the results of simulations

comparing the length of the CLR, AR, and LM confidence sets. Section 6 contains a

proof of a theorem about a uniform asymptotic coverage of the CLR confidence set.

2 The model and notation.

In this section I introduce notation and give a brief overview of the tests used in

this paper for confidence set construction. I keep the same notation as in Andrews,

Moreira and Stock (2006) for the simultaneous equations model in linear coordinates

and try to stay close to notations of Chamberlain (2005) for the model written in

spherical coordinates (the circular model).

Let me start with a model containing structural and reduced form equations with

a single endogenous regressor:

yi = y2 (3 + A71 + u; (1)

y2 = Zix + Xi + v2 . (2)

Vectors y\ and y2 are nxl endogenous variables, X is n x p matrix of exogenous

regressors, Z is n x k matrix of instrumental variables, is the coefficient of interest.

To make linear and circular models equivalent I assume that j3 € R[J{oo}. There

are also some additional unknown parameters 71, £ € W and n € Mfc
. Without loss

of generality I assume that Z'X — 0. The n x 2 matrix of errors [u, v2 ] consists of

independent identically distributed (i.i.d.) rows, and each row is normally distributed

with mean zero and a non-singular covariance matrix.

I also consider a system of two reduced form equations obtained by substituting

equation (2) into equation (1):

y1 = Zn/3 + Xj + vi;

y2 = Z-K + XE. + v2 ,

where

7 = 7i + £P\ vi=u + 0V2-





The reduced form errors are assumed to be i.i.d. normal with zero mean and covari-

ance matrix Q. I assume Q, to be known. The last two assumptions will be relaxed

in Section 6.

Let me introduce the following sufficient statistics for a set of coefficients ((3, n):

c = (n-i/a $ (z'zy^z') ( yi \ = (& V

The simultaneous equations model written in linear coordinates is reduced to the

following equation:

C~7V((Q- 1/2a)®((^^) 1/M,/2fc ), (3)

where a = ('/?, 1)'.

I also consider the model written in spherical coordinates (circular model) . Follow-

ing Chamberlain (2005), let Sl — {x G W+1
: \\x\\ = 1} be an z-dimensional sphere in

W+1
. Two elements x\ and Xi G S 1 are equivalent if xi = X2 or X\ = —X2- Let S+ be

the space of equivalence classes. Let us have vectors <j> = f2
_1

/2 a/||f2
_1

/ 2 a|| G S\, and

u = {Z'Zy/27r/\\{Z'Zy/2
n\\ G 5fc

" 1 and a real number p = ||Q- 1/2
a|| • \\{Z'Z) 1'2 -k\\.

Then the circular model is given by equation

C,~N{p<j>®u,I2k ). (4)

There is one-to-one correspondence between (3 G R|J{oo} and 4> G S\. As a

result, all inferences about
<f>
can be translated into inferences about (3 and vice versa.

Let D(0 = (Ci,&) and A(C) = D'(QD{Q. I also consider a matrix Q(C,P) =
J'A(QJ, properties of which are discussed in Andrews, Moreira and Stock (2006).

Here J n^H n~ l /2 a
,
,..,..,, .

is 2 x 2 matrix, and b = (1,-/3)'. I should note that

J —
[(f)-

1
, cp], where

(f)

1 stands for a vector orthogonal to </»: fi'cf)

1
- = 0.

This paper considers three tests: the Anderson - Rubin (1949) AR test, the LM
test proposed by Kleibergen (2002) and Moreira (2002), and Moreira's (2003) CLR
test. I define them below for a linear model. Reformulation for a circular model is

obvious.

The AR test rejects the null H : f3
— /3o if the statistic

AR(p )
= Q"(C.ft)

K

exceeds the (1 — a)- quantile of a \
2 distribution with k degrees of freedom.

The LM test accepts the null if the statistic

is less than the (1 — a)- quantile of a x
2 distribution with 1 degree of freedom.

The CLR test is based on the conditional approach proposed by Moreira (2003).

He suggested a whole class of tests using critical values that are functions of the data.

The CLR test uses the LR statistic:

LR=±[Qn Q--,
\ '.<7u ',''.-

:''
! Q, (J.-.

()-;,





and critical value ma (Q22 ) which is a function of Q22 . For every a the critical value

function ma (q22) is chosen in such a way that the conditional probability of the LR
statistic exceeding ma (q22 )

given that Q22 = q.12 equals a:

P {LR > ma (q22 )\Q22 = fe} = &

The CLR test accepts the null H : (3 = ,8 if LR{(3G ) < ma {Q22 ((3 ))

.

3 Relation between properties of a test and prop-

erties of a confidence set.

Let C be a random variable satisfying a linear model (3) (or a circular model (4)). I

intend to construct a confidence set for parameter (3 (for parameter 4>) which is only

a part of parameter vector 9 = (/?, n) (8 = (<j),u},p)). This section describes how the

properties of tests are translated into properties of the corresponding confidence sets.

Definition 1 A set C(Q is a confidence set for (3 at confidence level 1 — a if for all

values of (3 and n

PpAP € C(Q} >l-a. (5)

According to Lehmann (1986, p.90), there is a one-to-one correspondence between

testing a series of hypotheses of the form H : (3 = (3 and constructing confidence

sets for (3. In particular, if C(() is a confidence set at confidence level 1 — a, then

a test, accepting H : (3 = (3q if and only if (3q € C(C), is an a-level test. And, vice

versa, if Ag is an acceptance region for testing /3 , then C(£) = {/3 : £ 6 Ap } is a

confidence set.

A confidence set is similar if statement (5) holds with equality. Similar tests

correspond to similar confidence sets and vice versa.

3.1 Power vs. accuracy and expected length.

Applied researchers prefer to have a confidence set (at a given confidence level) which

is accurate and short. Accuracy of a confidence set is the ability to not cover false

values of the parameter of interest. A uniformly most accurate (UMA) confidence set

maximizes for each false value the probability of not including it. A UMA confidence

set corresponds to a uniformly most powerful (UMP) test and vice versa.

Practitioners are usually more interested in another criterion, the expected length.

According to Pratt's theorem (1961), the expected length of a confidence set (if it

is finite) equals the integral over false values of the probability each false value is

included. In fact, the statement is more general: "length" can be treated as a length

with respect to any measure (the integrals must be taken over the same measure).

Namely,

E^ [ fx(d{3) = H P0OAP e C(()Md(3),
J0eC(Q J-00





for any measure [i as long as both sides of the equality are finite. As a consequence,

a UMA set has the shortest expected length as long as the expected length is finite.

Andrews, Moreira and Stock (2006) show that the CLR test is nearly a UMP test

in a class of two-sided invariant similar tests. The invariance here is an invariance

with respect to orthogonal transformations Ok of instruments, defined below. It gives

one a hope that the CLR confidence set might possess some optimality properties with

respect to the length. There are, however, two obstacles in applying Pratt's theorem

directly. First, a confidence set with correct coverage in the case of weak instruments

must be infinite with positive probability. As a result, the expected length of such

an interval is infinite. Second, the CLR does not maximize power at every point;

rather, it nearly maximizes the average power at two points lying on different sides

of the true value. The location of the points depend on each other but they are not

symmetric in the linear sense. I prove that once I reformulate the model in spherical

coordinates, then the CLR confidence set for parameter
(f>

will have nearly shortest

expected arc length.

3.2 Invariance with respect to Ok-

In this subsection I consider the invariance property with respect to orthogonal trans-

formations of instruments suggested by Andrews, Moreira and Stock (2006).

Let me consider a group of orthogonal transformations Ok on the sample space:

Ok — \9f 9f{C) — I p/- )
= {h ® F)£; F is k x k orthogonal matrix > .

The corresponding group of transformations on the parameter space of a linear model

is:

0[ = {g
l

F : gfF (J3,ir) = (0, (Z'Z)- l '2F(Z'Z)
1/2

tt); F is k x k orthogonal matrix}.

For a circular model (the model written in spherical coordinates), the corresponding

group of transformations on the parameter space is:

01 = {g
c

F : g
c

F {4>, w, p) = ((f),
Fuj, p); F is k x k orthogonal matrix}.

That is, the parameter of interest /3 (or <j>) does not change under the orthogonal

transformations of instruments. A confidence set C(() for [5 (for
(f>)

is invariant with

respect to the group of transformations Ok if C(Q = C(gF(Q) for all gp € Ok-

Invariant tests correspond to invariant confidence sets. Following the argument of

Andrews, Moreira and Stock(2006), one can conclude that confidence sets (linear and

circular) invariant with respect to Ok can depend on £ only through statistics A(Q).

That is, for any O^-invariant confidence set C(Q there is a function / such that:

C(Q = {(f)o : F((f) ,A(O) > 0} = {(f)Q : /Oo,Q(C,<fc>)) > 0}.

If we restrict our attention to decision rules that are invariant with respect to

Ok, then the risks for invariant loss functions (for example, rejection rates and power

for tests; coverage probability, accuracy, and expected length for sets) depend on

(/3, A = 7r
'z

fc

'
Z7r

) in a linear model and on ((f), p) in a circular model.





3.3 Two-sided tests and symmetry in a circular model.

Andrews, Moreira and Stock (2006) discuss different ways of constructing 2-sided

power envelope. One approach is to maximize the average power at two alternatives

on different sides of the null by choosing these alternatives in such a way that the

maximizer is an asymptotically efficient (AE) test under strong instruments asymp-

totics. Let me consider some value of the null /3 and an alternative (/?*, A*). Then
there is another alternative (/^J, A|) on the other side of (3 such that a test maximiz-

ing average power at these two points is AE (formula for (/3|, AJj) is given in Andrews,

Moreira and Stock (2006)).

In general, there is no linear symmetry between alternatives: (5* — (5q / 0o — $>•

However, one can observe that the way of imposing two-sidedness stated above gives

symmetry of alternatives in a circular model. Namely, let (4>*,p*) correspond to

(/3*,X*) and (4>l,pl) correspond to (Pl,\\). Then p* = p*
2 and </>* is symmetric (on

the circle) to ^\ with respect to 0o! that is, (j)' (j)* =
<fi' 4>2 and (4>q)'4>* — —{(t>o)'<t>2-

Another equivalent way of imposing the 2-sidedness is imposing a sign-invariance

condition. This condition is specific to the null value
<f>

. Let a vector \Q\ —

(Qn,\Qn\-,Q22) contain the absolute values of elements of Q. A group of trans-

formations on the parameter space consists of two transformations: cp* i—> <f>\ and

<f>*
t—> 4>*. The corresponding group of transformations on the sample space contains

two transformations of a statistic S — D(Q4)q\ S h-> —S and S >—> S. The null

hypothesis H :

<f>
=

(f>o is invariant to the group of sign transformations. An O fc
-

invariant test for testing Hq : 4> = cf>o is invariant to the group of sign transformations

if it depends on \Q{(,4>o)\ only I call a confidence set C(Q symmetric if

C(C) = {&:/(0o,|Q(C,6>)l)>O}.

By applying Pratt's theorem to the result of Andrews, Moreira and Stock (2006),

I conclude that the CLR confidence set has nearly uniformly shortest expected arc

length among similar symmetric Ofc-invariant confidence sets for 4>.

Lemma 1 Let K(/3
;
/3*, A*) be a two-sided power envelope for invariant similar tests

described in section 4 of Andrews, Moreira and Stock (2006), that is,

K(/3 ;(3*, X*) = max (E .,x*$(Q(Po)) + E . x̂ (Q(0o ))) ,

where $ is a class of similar tests invariant with respect to Ok
Let ip(/3o, |Q(/3o)|) be a similar test for testing Hq : /? = /3 (or equivalently for

testing H : cj> = cfio) invariant with respect to Ok such that for some e > we have

{E .
tX.<p(j3o, |Q(A0|) + Ep-x<p(Po, \QWo)\)) > K{(3Q -(5\\*)-e, for all f3 ,(3*,\*.

Let Cp be a confidence set for <fi
corresponding to tp. Then for all similar symmetric

Ok - invariant confidence sets C(Q for 4>, we have the following statement about the

expected arc length:

E^p (arc length C(Q) > E^,
tP
(arc length C^(C)) — ePi,

where Pi = 3.1416...





3.4 Invariance with respect to O2.

Another type of invariance was introduced in Chamberlain (2005) - invariance with

respect to rotations of vector (2/1,2/2)'- This type of invariance is quite cumbersome

in a linear model, but is very natural in spherical coordinates.

Let me consider a group of transformations on the sample space:

O2 = {GF GF{Q = {F ® 7
fc )C; F is 2x2 orthogonal matrix} .

The corresponding group of transformations in the parameter space of a circular

model is a group of rotations of vector
(ft:

0\ = {GC

F : GF (<fi,uj,p) = (F(ft,uj,p);F is 2 x 2 orthogonal matrix}.

The confidence set CC
(Q for

(ft
in a circular model (4) is invariant with respect to

the group of transformations O2 if Cc
(<?f(C)) = F(CC

(Q) for all gF 6 O2. By an

orthogonal transformation of a set F(C) =
{(ft : F-V € C} I mean the corresponding

rotation of the set over the unit circle.

Lemma 2 A confidence set C(Q for (ft
in a circular model (4) is invariant with

respect to group O2 x Ok if and only if there exists a function f such that

C(O = {<ft:f(Q(t,<ft))>0}.

Corollary 1 Confidence sets obtained by inverting the CLR, AR, and LM tests are

invariant with respect to 2 x Ok-

Corollary 2 The expected arc length of confidence sets for eft obtained by inverting

the CLR, AR, and LM tests depend only on p and k.

4 Algorithms for constructing CLR, AR and LM
confidence sets.

In this section I describe an easy way to invert the CLR, AR, and LM tests and find

an analytical description of the three confidence sets. I should note that the general

description of the AR test as well as the algorithm for finding it are well known. The

descriptions of the other two sets as well as algorithms for finding them are new.

4.1 Confidence sets based on the CLR test.

This section describes an algorithm for constructing a confidence set for the coefficient

on the single endogenous regressor (3 by inverting the CLR test.

One way to invert the CLR test is to perform a series of tests Ho : /3 = @o over

a fine grid of (3 using the CLR testing procedure. However, such an algorithm is

numerically cumbersome. The main difficulty with finding an analytically tractable

way of inverting the CLR test is that both the test statistic(LR) and the critical value





function ma (Q t ) depend not only on the data, but on the null value of the parameter

/3 . In both cases the dependence on P is quite complicated. I transform both sides

to make the dependence simpler.

Moreira (2003) suggested finding the critical value function ma (q22 ) by simula-

tions. The main problem with this approach is that for an acceptable accuracy one

needs a large number of simulations, which requires a lot of time and produces a

heavy computational burden. Andrews, Moreira and Stock (2005) suggested another

way of implementing the CLR test by computing the conditional p-value of the test.

Let us define a p-value function p(m;q22 ) by the following conditional expectation:

p(m;q22 )
= P{LR > m\Q22 = to}-

Then the CLR test accepts the hypothesis H : (3 — (3 at a significance level if

p(LR(P );Q22 (P ))>a.

Andrews, Moreira and Stock (2005) wrote the function p{m;q22 ) as an integral of an

analytic function and suggested a numerical way of computing it. Their procedure

achieves high accuracy and takes almost no time.

Let M(Po) = maxeval(Q(Po)) be the maximal eigenvalue of the matrix Q(Po),

then
1M = - ( Qn + Q22 + ^/(Qn + Q22 )

2 - A(QnQ22 - Qj2 ]

As a result, the LR statistic can be written as

LR(/3 ) = M(t,p )-Q22(C,P ).

Recall that Q((,Po) = J'A(()J. Since J'J = I2 , M = maxeval{Q((,P )) = maxeval(A(Q)

does not depend on the null value p . That is, LR(P ) = M(Q — Q22 (C,Po)-

The confidence set based on the CLR test is a set

C%LR (() = {Po : M(C) - g22 (C,A)) < ma (Q22 (C, A,))} =

= {P : M(C) < Q22 (C, Po) + ma (Q22 (C, Po))} ,

where ma (q22 ) is the critical value function for the CLR test.

Lemma 3 For any a 6 (0, 1), the function f(q22 ) — q22 + ma (q22 ) is strictly increas-

ing. There exists a strictly increasing inverse function /
-1

.

It follows from Lemma 3 that the CLR confidence set is

CCLR
(() = {P :Q22 (C,P )>C(O},

where C(Q = /
_1 (M) depends on the data only, but not on the null value po- Since

the problem of finding the CLR confidence set can be reduced to solving an ordinary

quadratic inequality:

a' (Q- 1/2A{C)n~ 1/2 - CfT 1

) a > 0.





Theorem 1 Assume that we have model (1) and (2) written in linear coordinates.

Then the CLR confidence region C^LR(Q can have one of three possible forms:

1) a finite interval C^LR(Q = {x\,X2);

2) a union of two infinite intervals C^LR (() — (— oo,Xi) U (x2 ,+oo);

3) the whole line C^LR(Q = (-oo,+oo).

The form of the interval might seem to be a little bit strange. However, one should

keep in mind that the interval with correct coverage under the weak instrument

assumptions should be infinite with positive probability. For a model written in

spherical coordinates one has:

CZLR(O = {0o:cp'o (A(O-C)ct>o >O}.

The second case described in the theorem corresponds to the arc containing point
"-1/

ia=, where e2 = (0,1)'.

More on technical implementation. I suggest a numerically simple way of

finding the inverse function of /. Let C = f~
1 (M), that is, ma (C) + C = M, or

fna{C) = M — C. It is easy to see that finding C for any given M is equivalent to

solving an equation p(M — C;C) — a, where p(m; 922) is the CLR p-value function

suggested by Andrews, Moreira and Stock (2005). We now have:

Lemma 4 For any fixed M > the function 1(C) = p(M — C; C) is monotonic in C
forO<C < M.

Since 1(C) is monotonic, and C belongs to an interval [0, M], I can find C such that

1(C) = a by binary search algorithm. Given that the calculation of p(m; q-zi) is fast,

finding C with any reasonable accuracy will be fast as well.

Mikusheva and Poi (2006) describe a Stata software program implementing the

suggested procedure.

4.2 AR confidence set.

The results of this subsection are not new; I just summarize them for the sake of

completeness. The idea of inverting the AR test goes back to Anderson and Rubin

(1949).

Finding the AR set is the easiest task of the three. According to definition, the

AR confidence set is a set C£R (C) = {Po ' Qn((,Po) < ^Xa,/J> that could be found

by solving a quadratic inequality.

Lemma 5 Assume that we have model (1) and (2). Then the AR confidence region

C£R(Q can have one of four possible forms:

1) a finite interval C£R(Q — (^1,^2);

2) a union of two infinite intervals C£R(Q = (—00, x{) U (x2 , +00);

3) the whole line C£R (() = (-00, +00);

4) an empty set C*R(Q = 0.
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4.3 The LM confidence set.

Inverting the LM test is a much easier task than inverting the CLR test, because the

LM statistic is a relatively simple function of /3 , and critical values are fixed. Finding

the LM region is equivalent to solving an inequality of the fourth power, which always

has a solution in radicals due to Cardano's formula. Solving an arbitrary polynomial

inequality of the fourth order can be cumbersome. I find a way to rewrite the LM
statistic in a way allowing to solve two quadratic inequalities instead. The new
formula also allows us to notice new peculiarities of the LM test.

Let N = mineval(Q) be the minimal eigenvalue of the matrix Q. The value of N
depends on the data only, but not on the null value tested. As shown before

\ (Qu - Q22 + \j{Qn + Q22)
2 - 4(QnQ22 - Qh)) =M- Q22 . (6)

Similarly,

\ \Qu - Q22 - \j{Qu + Q22)
2 - 4(QnQ22 - Q2

12 y\ =N- Q22 . (7)

By multiplying (6) and (7) I obtain:

Q2
12 (Po) = -(M - Q 22(Po))(N - Q22 (A>)).

As a result, the LM statistic has the following form:

LM{Po) =
QM)

'

The LM confidence region is a set

rLM(n ( R
(M(Q - Q22 (C,/3o))(iV(C) - Q22(C, A))) „ .,2 \Ca (c) -r- q^m <Xi-;:

Obtaining the LM confidence set can be done in two steps. As the first step, one

solves for the values of Q22 (C> A)) satisfying the inequality above, which is an ordinary

quadratic inequality with respect to Q22 . Then, one finds the LM confidence set for

(3 by solving inequalities of the form {/3 : <222 (C/3o) < Si} U {Po Q22(C,Po) > s2 }.

Theorem 2 Assume that we have model (1) and (2) with k > 1. Then the LM
confidence region C^M {Q can have one of three possible forms:

1) a union of two finite intervals C^M (() — (x\,x2 ) U (£3,24);

2) a union of two infinite intervals and one finite interval

Ca
M
(0 = (-00, xi) U {x2 ,x3 ) U (x4 , +00);

3) the whole line C%M {() = (-00, +00).

The LM confidence sets for /3 in general correspond to two arcs on the circle in polar

coordinates. Case 2) takes place when one of the arcs covers the point 4>
n- 1 /'-

g2
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4.4 Comparison of the CLR, AR and LM confidence sets.

There are several observations one can make based on the descriptions of the CLR,
AR, and LM confidence sets.

First, all three confidence sets can be infinite, and even equal to the whole line.

A good confidence set is supposed to correctly describe the measure of uncertainty

about the parameter contained in the data. Infinite confidence sets appear mainly

when instruments are weak. In these cases we have little or no information about

the parameter of interest, which is correctly pointed out by confidence sets. The
confidence sets might be infinite but not equal to the whole line (two rays - for AR
and the CLR, or an interval and two rays for the LM). One should interpret them as

cases with a very limited information where, nevertheless, one can reject some values

of the parameter.

Second, the LM confidence set has a more complicated structure than the AR
and CLR sets. In general, the LM set corresponds to two arcs on the unit circle,

whereas the AR and CLR correspond to one arc. It makes the LM sets more difficult

to explain in practice. See more on this point in the next subsection.

My third observation is that the AR confidence set is empty with non-zero prob-

ability. This is due to the fact that the AR test rejects the null not only when fi

seems to be different from the true value of the parameter, but also when the ex-

clusion restrictions for the IV model seem to be unreliable. The case when the AR
confidence set is empty means that the data rejects the model. It is not a prob-

lem from a theoretical point of view since false rejections happen in less than 5% of

cases (significance level). However, receiving an empty confidence set can be quite

confusing for empirical researchers.

Fourth, there is no strict order among the length of intervals valid in all real-

izations. Despite the fact that the CLR test possesses better power properties than

the AR test, one cannot claim that an interval produced by the CLR test is always

shorter than one produced by the AR test. More than that, it is possible that AR
set is empty while the CLR set is the whole line. It could happen, if N > xla->

and the difference between two eigenvalues of the matrix Q is small, in particular, if

f~\M) < N.

4.5 Point estimates.

Dufour and al. (2005) suggested to use as an estimator the value of /3q which maxi-

mizes the p-value. By analogy, one can try to find a value of 0o maximizing the p-value

of the AR and LM tests and the conditional p-value of the CLR test. The suggested

estimates are the limit of corresponding confidence sets when the confidence level

decreases. A part of the following lemma was known; in particular, Moreira (2002,

2003) noted that the LIML always belongs to the LM and CLR confidence sets, and

the LM statistics has two zeros.

Lemma 6 Assume that we have model (1) and (2) with iid error terms (uj,^) that

have normal distribution with zero mean and non-singular covariance matrix. Let
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Pliml be the Limited Information Likelihood Maximum (LIML) estimator of p. Let

us also introduce a statistic (3, such that (3 — argming Q22(C,Po)- Then

1) Pliml is the maximizer of both the p-value for AR test and the conditional

p-value for the CLR test. Maximum of the p-value for the LM test is achieved at two

points Pliml and j3:

Pliml = argmaxP{x! > AR((,P )} = axgmaxp{LR{(,P ); Q22(C,A)));
00 0o

{Pliml, P} = axgmaxP{X? > LM((,p )}.
00

2) P is the minimizer of both the p-value for AR test and the conditional p-value

for the CLR test

P = argm\nP{xt > 9ll£lM
} = axgminp(Li?(C, ft); Q22 (C,A,));

Po k 0o

The p-value of the LM testjreaches maximum at two points: at the LIML and p.

It is interesting to notice, that P is the point where the conditional p-value of the CLR
test achieves its minimum! As a result, P^ca,n hardly be considered as an appropriate

point estimate. The non-desirable point p and its small neighborhood always belong

to the LM confidence set (remember, that the LM set corresponds to two arcs in a

circular model). This observation can be treated as an argument against using the

LM test in practice.

5 Simulations.

According to Andrews, Moreira and Stock (2006), the CLR test is nearly optimal in

the class of two-sided similar tests that are invariant to orthogonal transformations.

It has higher power than the AR and LM tests for a wide range of parameters. A more

powerfull test tends to produce a shorter confidence set. As I showed in Section 3, the

CLR confidence set has nearly shortest expected arc length among similar symmetric

Ok - invariant confidence sets. In this section I assess how big the difference between

the expected arc length of the three confidence sets is. I also compare lengths of

different confidence sets in linear coordinates.

I start with comparing the expected arc length of the CLR, AR and LM confidence

sets. As it was shown in Section 3, all three confidence sets are O2 x Ok - invariant.

As a result, their expected lengths depend only on the number of instruments k and a

parameter p, which characterizes the strength of instruments. I compute the expected

length using simulations for k = 2, 3, 5, 10 and for p ranging from 0.5 to 10 with a

step 0.5. All results are based on 1000 simulations. The results of simulations are

given in Figure 1 . One can see that the expected arc length of the CLR set is always

smaller than that of the AR confidence set, as follows from Section 3. The difference

between the expected arc lengths of the CLR and AR confidence sets, however, is

relatively small. Both sets significantly outperform the LM confidence set when the

number of instruments is big.
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Although the CLR has the nearly shortest arc length, only few practitioners value

this property; instead, most prefer to have a short confidence set in linear coordinates.

That is why I compare the linear length of confidence sets. One of the problems,

though, is that valid confidence sets are infinite with a positive probability, and as a

result, the expected length is infinite. I do two types of experiments: 1) I simulate

the distribution of confidence set length for different tests in a linear model; 2) I find

the average linear length of sets over a fixed bounded interval; that is, the expected

length of the intersection of a confidence set with a fixed interval.

I check whether the distributions of the length of the AR and LM confidence sets

first order stochastically dominate the distribution of the CLR confidence set. By
applying a linear transformation to model (1) and (2) one can always assume that

the true value of ft equals zero and Q — I

J

. The distributions of lengths of

the CLR, AR and LM confidence sets depend on the number of instruments k, the

strength of instruments A (= ^n''Z'Zn) and the correlation between errors r.

As a basic case I use the same setup (k — 5, A = 8, r = 0) as in Andrews,

Moreira and Stock (2006). I also compute the results for k — 2, 3, 5, 10; A = 1, 2, 4, 8;

r = 0, 0.2, 0.5, 0.95. Coverage probability for all sets is 95%. Representative results

are reported in Figures 2-4 and Tables 1-3.

Several conclusions can be made. First, the distribution of length of the LM
confidence set first order dominates the one of the CLR confidence set. The result

is robust over the range of parameters I checked. It shows the relative inaccuracy of

the LM confidence set. Based on the simulation results, I recommend not to use the

LM confidence sets in practice.

Second, one cannot say that the distribution of length of the AR confidence set

first order dominates that of the CLR confidence set. The reverse order does not

hold either. The lack of ordering can be partially explained by the fact that the

distribution of the length of the AR confidence set has a mass point at zero due to

"false" rejection of the model. Furthermore, the cdfs for the length of the AR and

the CLR sets cross. Crossing of the cdfs occurs before the cdfs reach the 10% level.

Another way to compare the length of different confidence sets is to compute

the expected length of intersection of confidence sets with a fixed finite interval. It

corresponds to a situation when a practitioner can restrict the parameter space to be a

fixed finite interval. The expected length would depend on k, p, (3q and the interval. I

performed simulations for (3 = and symmetric intervals [-1,1], [-3,3], [-5,5], [-10,10],

[-100,100] and [-500,500]. The results are in Figure 5. As the interval length becomes

bigger (a researcher puts weaker restrictions on the parameter space) the expected

lengths of the CLR and AR sets become closer to each other. For large intervals the

LM set performs poorly. When a practitioner has really good prior information and

can restrict the parameter space to a small interval, the CLR performs better than

the two other sets.

To summarize, in many setups the CLR confidence set looks more attractive in

terms of the length. The LM confidence set possesses some unfavorable properties

(such as always including (5) and tends to be longer. I would not recommend to use

the LM confidence sets in practice.
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6 Asymptotic validity

In previous sections I assumed that the reduced form errors [^1,^2] are i.i.d. normal

with zero mean and known covariance matrix Q. Then the CLR, AR and LM testing

procedures and confidence sets are exact; that is

inf P/30)7r { hypothesis H : (3 — /3q is accepted} = 1 — a,
00,T

when any of the three tests is used.

The assumption of normality can be taken away and the matrix Q (if unknown)

can be replaced with an estimator of Q at a cost of obtaining asymptotically valid

rather than exactly valid tests and confidence sets. Andrews, Moreira, and Stock

(2006) showed that the tests have asymptotically correct coverage under weak instru-

ment asymptotics and strong instrument asymptotics. A weak instrument asymptotic

statement has the following form:

lim inf Pg 7!=c/nx/z{ hypothesis H : (3 — /3 is accepted} = 1 — a,
n—»oo 0o

for all non-stochastic C. A strong instrument asymptotic statement is:

lim inf Pp ^{ hypothesis H : f3
=

f3 is accepted} — 1 — a,
n—>oo 0o

for all values of n.

I should note that the asymptotic behaviors characterized by these two asymp-

totic approaches are extremely different. The two statements above, however, do not

guarantee the asymptotic validity of a test or a confidence set. Here by an asymptot-

ically valid test I mean a test having asymptotically correct size uniformly over all

values of n:

lim inf Pq ^{ hypothesis H : (3 = j3 is accepted} = 1 — a.
71—'OO /3o,7T

Some suggestions on how to prove asymptotic validity were stated by Moreira(2003).

I use an approach different from the one suggested by Moreira (2003). I prove asymp-

totic validity of the CLR test (confidence set) by using a strong approximation prin-

ciple. The idea of the proof is to put some sample statistics with normal errors and

with non-normal errors on a common probability space in such a way that they are

almost surely close to each other.

I impose the following assumptions: 1) A^vec(Z'v) —

>

d
JV(0, $); 2) \Z'Z -^>p D\

3)E(V
i
'Vi \Z) = Q\ 4) $ = Q <g) D. The assumptions are analogous to those used by

Andrews, Moreira, and Stock (2006).

I use the Representation Theorem from Pollard (1984, chapter IV.3):

Lemma 7 Let {Pn } be a sequence of probability measures on a metric space weakly

converging to a probability measure P. Let P concentrate on a separable set of com-

pletely regular points. Then there exist random elements Xn and X , where Pn =
C(Xn ), and P — C(X), such that Xn —> X almost surely.
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6.1 r2 is known.

For a moment let me assume that Q is known. Let me consider the following statistics,

properties of which are discussed in Moreira (2003):

s = {z'z)- 1/2z'Yb {b' nb )- l/2 -

T = (Z'Z)-1/2Z'yn- 1
oo(aifi-

1
ao)"

1/2
>

where 60 = (1, —Po)', &o = (Po, 1)', Y — [j/i : 2/2]- The CLR test can be performed by

calculating the LR statistic

LR(S, T) = - (S'S - T'T + y/{S'S + T'T) 2 - 4(S'ST'T - (S'T) 2

)) ,

and comparing the conditional p-value function P(S, T) with a:

P(S, T) = p(m = LR(S, T);q22 = T'T).

I will track the dependence of the statistics on n explicitly. Under the null one has:

S(n) = {Z'Z)- 1/2Z'vb {b' Qbo)-
1/2 = S;

T(n) = (Z'Z) 1/2
7r(a[

)

Q- 1
ao)

1/2 + {Z'Z)-ll2Z'vQr1aQ {a' Qr
l
aQ

)- 1l2
.

According to the Representation Theorem, there exist random variables on a

common probability space such that (Z'Z)~ 1 ^2Z'v —> £ = [£x : £2] cls-, where

vec{^) ~ 7V(0, Vt® Ik)- Let me define a pair of variables

(S*(7r),T*(7r)) = (^o(6[)Q6o)-
1/2 ,(Z'Z) 1 / 2 7r(a[

)

Q- 1
a

)

1 /2 + en-
1
a (^fi- 1

a )- 1 /2
).

Then

sup (|S*(tt) - 5(tt)| + |t*(7r) - r(7r)|) = \((Z'Z)^2
Z'v - OM*W~ 1/2

|
+

7T

+ |((Z'Z)- 1/2Z't;-Ofi"
1
ao(aon"

1

ao)
_1/2HO a.s. (8)

Let e — [e\ : £2} be 2 x n normal random variables. Assume that they are i.i.d.

across rows with each row having a bivariate normal distribution with mean zero and

covariance matrix Q. Let me define statistics in a model with normal errors:

SN (n) = (Z'Zr^2
Z'£b (b' nb )- 1/2

;

TN (ir) = {Z'Z) x l2 ir{a'Q
Q,- x

a yl2 + (Z'Z)- 1 /2Z'£Q- 1
a (a^- 1

a )- 1/2
.

Then the pair of variables (SN (n),TN (n)) is distributionally equivalent to the pair

(S*(tt),T*(tt)). Since the CLR test is exact under normality assumptions:

P{P{Sn (tt),T
n

(tt)) > a} = 1 - a for all n,

the analogous statement for (S*(7r),T*(ir)) is true:

P{P(S*{n), T*(tt)) > a} = 1 - a for all n. (9)

Now I note that the conditional p-value function is Lipschitz's function with re-

spect to S and T.
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Lemma 8 The function P(S,T) is Lipshitz's function with respect to S and T. In

particular, there exists a constant C such that for all (5, T) and (S, T)

\P(S,T) - P{S,f)\ < C (||T - f
||
+ ||S - S\\\ .

Combining together equations (8), (9) and Lemma 8, I end up with the following

theorem about the asymptotic validity of the CLR confidence set:

Theorem 3 If assumptions l)-4) are satisfied then the CLR test is asymptotically

valid:

lim inf Pn {P(S(n),T(ir)) > a} = 1 - a.
n—*oc TV

6.2 Q is unknown.

I showed how to construct a strong approximation when the covariance matrix of

reduced form errors Q is known. When Q is unknown, one can substitute for it with

an estimate Qn = (n — k — p)
_1W, where V — Y — PZY — P\Y- Andrews, Moreira,

and Stock (2006) show that Qn is a consistent estimate of fi, and the convergence

holds uniformly with respect to n. The feasible versions of the statistics are:

5(tt) = (Z'Z)- 1/2Z'Yb (b' hb )- 1/2 = (Z'Z)- 1/2Z'Vb {b' Qb )- 1/2
,

and

T(tt) - (Z/Z)- 1/2Z'yfi- 1a (a' Q-1a )-1/2

= (Z'Z) 1 /2 7r(a[
)

n- 1
ao)

1/2 + (Z'Z)- 1 /2Z'vQ- 1 a (a[
)

Q- 1
ao)-

1/2
.

Let (S*(ir),T*(ir)) be defined as before. Then

sup (|S*(tt) - 5S(n)\ + \T*(n) - 5T{n)\) -» a.s.,

where 8 = a/ ?a ,

a°
- One can note that 5 —

> 1 a.s., and the convergence holds
V a il~ L ao

uniformly with respect to n. From the Lipshitz property I have:

svLv\P(S*(ir),T*(ir)) - P(6S(ir),6T(Tr))\ -» a.s.,

which implies

sup|p(5*(7r),r*(7r))-p(5(7r),T(7r))H0 a.s.
K

I conclude that the CLR test is asymptotically correct.
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Appendix A.

Proof of Lemma 1. For every symmetric c\-invariant similar test if, its power

at points ((f)*, p*) and (4>2,P*) is the same (since power is an invariant risk function):

E*-,p-£(IQ(C,<fc>)|) = E^p.f{\Q{^,cp )\) < K(cf> ;<t>*,p*).
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For a similar symmetric Ofc-invariant set C(£), C(Q = {4> : f(4>o, \Q((, <f>o)\) > 0}.

As a result,

E^arc length C(Q) = £
,p / /{/(<fo, |Q(C,^o)|) > 0}dfo -
Jo

= / ^,p (l-^o,|Q(C,0o)|))#o> / (l-K(<j> ;<j>,p))d<l>o.

Jo Jo

For the test p we have

/•Pi

E^p {arc length C^Q) = / £^,p (1 - <^(0O , IQ(C^o)D) #o <
Jo

<
/ (l-K(4> ;ct>,p) + e)dcl> .

Jo

Proof of Lemma 2. Any Ok - invariant confidence set can be written as C(£) =

{0o : /(0OiQ(C)0o)) > 0}- The statement of the lemma follows from two facts: 1)

Q{Gf(C), F<f>o) = Q{(, 4>o) for all orthogonal 2x2 matrices F; 2) for any <f>o, </) € S

\

there exists an orthogonal 2x2 matrix F such that cf> = Fcj).

Proof of Lemma 3. From Andrews, Moreira and Stock (2005) it is known that

p(m; q22 ) = 1 - 2 /' PU < «22 + ™. W - s^-^ds, =
Jo I 1 + Q22S2/m J

= 1 ~ Fxl\ T~—^T~ )
9{s2)ds2 ,

Jo " \^- + <l22si/mJ

where F
xl

{x) = P {x\ < x] ,g{x) = 2K4 {1 - x2 )^-^'2
.

Let fx2(x) be a derivative of F
x2(x). Let us also denote h(m; q22 ) — i+

2*+
sym —

mm+
+m

s
i

'-i

then the implicit function theorem implies that:

dm{q22 ) _ dp(m;q22 ) dp(m;q22 ) _ JJ fxj (h(m; q22 )) g{s 2 )

dH™^2) ds 2

dq22 dq22 dm £ f^ {h{m;q22)) g{s2f_M^lds^

d(m(q22 ) + q22 ) Jo fjj (h(m;g22 )) g(s2 ) (~
d-^ + §M^1

)
<**

^22
ft fx, {h{m- q22 )) 9{s2

)^m^l ds2

Now, we notice that

dh(m;q22 ) {m + q22s 2 )
- sj(m + q22 ) m2

(l - s
= m

2~\

9g22 (m + q22S
2
)

2 (m + q22sl)
2 '

dh(m;q22 ) _ (2m + q22 ){m + 922^2) ~ ra(<?22 + ra) _ m2 + 2q22ms2
1 + g^s2

3m (m + fesi)
2 ("i + q22s

2
)
2
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dh{m\q22 ) dh(m;q22 )
_m? + 2q22ms\ + q\2s\

- m2
(l - s|) _ m2

s\ + 2q22ms\ + q\2s\

dq2 2 dm (m + q22s\)
2 (m + q22sl)

2

So we have that ^™2 > and -^gfi + ^fep) > Q gince ^ (
^(m; fe))^

is also always positive, it follows that f'{q22 ) > 0.

Proof of Theorem 1. We know that the confidence set is a set of values /3 such

that the vector a = (/3 ,
1)' satisfies the following inequality:

a' (n~ 1/2A(o^~ 1/2 - en- 1

) a > 0.

Let

A = n- 1/2A{()Q- 1/2 - CQ- 1 = (ahJ ), D = -Adet(A).

Let £ 1>2 =
~ 2

°2a
There are 4 different cases depending on the signs of D and an :

1. If an < and D < the confidence set is empty.

2. If an < and D > then the confidence set is an interval [xi,^].

3. If an > and D < then the confidence set is the whole line (— oo, oo).

4. If an > and D > then the confidence set is a union of two intervals (— oo, x2 ]

and [xi,oo).

Moreira (2002) stated that a CLR interval always contains the LIML point es-

timate, and as a result, is never empty. All other cases 2-4 could be observed in

practice.

Proof of Lemma 4.

m=M-C, q22=C

f//£« = f dp{m;q22 ) _ dp(m;q22 )
\

\ dq22 dm J

( f
1

f fur w i \ ( 9h(m;q22 ) ,

dh(m;q22 )\ \= ^ fxl (h(m;q22 )) 9 (s 2){
^-— +—^-) ds2

)

We already proved that the last expression is always positive.

Proof of Lemma 5. Let us denote

m=M—C, qil—C

r = y'z{z'z)- 1 z'y - kXk
,
an =

(7w ).

The value of (5q belongs to the confidence set if and only if b = (1, — /3 )' satisfies an

inequality &'
or& < 0. Let D2 — det(T). Let Xi j2

= bl2^\^ - There are 4 cases:

1. If 722 > and D2 < then the confidence set is empty.

2. If 722 > and D2 > then the confidence set is an interval [xi, x2 }.

3. If 722 < and D2 < then the confidence set is the full line.

4. If 722 < and D2 > then the confidence set is a union of two intervals

(—oo,x2 ] U [xi,oo).
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Proof of Theorem 2. As the first step we solve for the values of (322(A))

satisfying the inequality

(M - Q22 ((3 ))(N - Q22 ((3 )) 2

Q22 (/3o)
Xl,Q '

We have an ordinary quadratic inequality with respect to Q22- If Di = (M + N —

Xia)
2 — 4MiV < 0, then there are no restrictions placed on Q22 , and the confidence

region for ft is the whole line (—00, 00).

lfD 1
= (M + N- xla)

2 - 4MN > 0, then QT € [N, M] \ (s1; s2 ), where s h2 =
M+N-xl,aTVDl

2

As the second step we solve for the confidence set of /? . The confidence set is a

union of two non-intersecting confidence sets: {/3 : Qt(Po) < Si}u{/3o : Qt{Po) > s 2 }.

Let us denote

A 1 = Q-^AiQQ- 1 /2 - s.Q- 1 = (a*,-),

A2 = n- 1/2A(On~ l/2 - s2
Q-' = (a?,.)-

The confidence set contains /3 if and only if a' Aia < or a' A2a > 0. Since

Si,s 2 & (AT, M), the quadratic equations a' Aia = and a'A2a = have two zeros

each. Also note that since si < S2, then a\
x
> a\v As a result, we have 3 different

cases:

1. If a\
x
> and a\

x
> 0, then the confidence set is a union of two infinite intervals

and one finite interval.

2. If a\
x
> and a\

x
< 0, then the confidence set is a union of two finite intervals.

3. If a\
x
< and a2

1
< 0, then the confidence set is a union of two infinite intervals

and one finite interval.

Proof of Lemma 6. First, we note that according to Lemma 4 we have

argmax0op{LR{Poy,Q22 (f3o )) = argmax0op(M-Q22 ((3o);Q22 {Po)) = argmax0oQ22 ((3o )

It is easy to see that

argmax0oP{xt > QniPo)} = argmin0oQn(f3o )-

As a second step we prove that

(/? = argmax0oQ22 {Po)) & (P = argmin0oQu (/3o ))

and

{(5 = argmin0oQ22 ((3o )) <& (/3 = argmax0oQn (f3o ))

.

Let x = &/%, y = n-^ao. Then Qn (/3 )
= ^, Q22 = ^, and x'y = 0;

that is, x and y are orthogonal to each other. Because the matrix A(() is posi-

tively definite, it has two eigenvectors that are orthogonal to each other. If /?o
=
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argmaXf3 Q22 (Po), then x is the eigenvector of A{Q corresponding to the largest eigen-

value. Then y is the eigenvector of A(Q corresponding to the smallest eigenvalue,

and Po — argminfoQuiPo)- The second statement has a similar proof.

Since Pliml = argmax0
o Q22(Po), we have that Pliml maximizes the p-value of

the AR test and the conditional p-value of the CLR. Prom the definition of P, we can

see that it minimizes the p-value of the AR test and the conditional p-value of the

CLR.

It is easy to notice that the LM statistic takes the value of in two cases when

Q22(Po) — M and when (322(A)) = N. But we know that M — ma,X/3 Q22(Po) and

N = minft, Q22(Po), that is,

Argmax0oP{x\ > LM(P )} = {Pliml, P}-

Proof of Lemma 8. I check that supt<i

dP(s,t)

ds
< 00 and supt .

Let h{s2 )
=
^g±f)_

= rojgg, where m = LR{S,T). Then

dP(s,t)

dt
< CO.

dp{m(S,T);T'T)

fJo2K fxl (h(s2))(l-s
2x(fc-3)/2 / dh dm .

{dm--^
]dS2 -

OS I '

Note that h(s2) > m for all «2- Also note that

> i (S'S - T'T + (S'S + T'T) - 2y/(S'ST'T-(S'T) 2
)] > S'S.m

The pdf of a xt distribution has an exponential decay, and the term J^ • ^ is a

polynomial with respect to 5 and T. As a result,
dP(s,t)

ds
as s —> 00, and we can

bound it above for S'S > C\ = const. Let us consider S'S < C\. It is easy to check

that
ds

const as t — 00. So we can choose C2 such that
dP(s,t)

ds
is bounded

dP(s,t)

ds
is a continuous function of s and t, it is

'his proves the first statement. The proof

if S'S < Ci and T'T > C2 . Since

bounded on the set S'S < C\,T'T < 62-

of the second one is totally analogous.

Proof of Theorem 3. From statement (8) and Lemma 8 we have that

sup|P(5*(7r),T*(7r))-P(5(7r),T(7r))| ^0 a.s.

Since pairs (S*(tt),T*(tt)) and (SN (n),TN (7r)) have the same distribution, it follows

that:

sup Pv {P(S(n),T(n)) < a} < P„ {P(SN (n),TN (n)) < a + e} +
7T

+ supPT {|P(5*(7r),T*(7r)) -P(5(7r),T(7r))| < e} <
7T

^a + e + P^ jsup |P(5(vr), T(tt)) - P(5(tt), T(tt))| < ej — a + e

The last line relies on the fact that the method is exact for a model with normal

errors.
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Appendix B.

Figure 1. The expected arc length of the CLR, AR, and LM confidence sets for

fc = 2,3,5,10.

Mean arc length of confidence sets, k=2 Mean arc length of confidence sets, k=3
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Figure 2. Distribution of the length of the CLR, AR, and LM confidence sets

for k = 5,r = 0, A = 1,2,4,8.
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Table 1. Probability of having an empty or unbounded confidence set for the

CLR, AR, and LM tests, k = 5, r = 0, A = 1, 2, 4, 8.

k=5, r=0 A=l A=2 A=4 A=8

P{CAH = 0} 0.006 0.007 0.023 0.026

P{lenghth(CAR ) = 00} 0.64 0.37 0.05

P{lenghth(CLM ) = 00} 0.83 0.71 0.58 0.44

P{lenghth{CCLR ) = 00} 0.65 0.39 0.065
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Figure 3. Distribution of the length of the CLR, AR, and LM confidence sets

for A = 8,r = 0,fc = 2,3,5, 10.
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Table 2. Probability of having an empty or unbounded confidence set for the

CLR, AR, and LM tests. A = 8, r = 0, k = 2, 3, 5, 10.

A=8, r=0 k=2 k=3 k=5 k=10

P{CAH = 0}

P{lenghth{CAR ) = 00}

P{lenghth{CLM ) = 00}

P{lenghth{CCLR )
= 00}

0.007

0.048

0.35

0.056

0.018

0.40

0.008

0.026

0.44

0.033

0.48
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Figure 4. Distribution of the length of the CLR, AR, and LM confidence sets

for A = 8, k = 5, r = 0, 0.2, 0.5, 0.95.
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Table 3. Probability of having an empty or unbounded confidence set for the

CLR, AR, and LM tests. A = 8, k = 5, r = 0, 0.2, 0.5, 0.95.

k=5, A=8 r=0 r=0.2 r=0.5 r=0.95

p{CAK = 0}

P{lenghth(CAR ) = 00}

P{lenghth(CLM ) = 00}

P{lenghth{CCLR ) = 00}

0.026

0.44

0.014

0.23

0.035 0.023
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Figure 5. The expected length of intersection of the CLR, AR, and LM confidence

sets with fixed finite intervals for k = 5,/3q — 0.
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