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Second Order Expansion of t-statistic in Autoregressive Models

by Anna Mikusheva ^

MIT, Department of Economics

Abstract

The purpose of this paper is to receive a second order expansion of the t-statistic in

AR(1) model in local to unity asjnnptotic approach. I show that Hansen's (1998) method for

confidence set construction achieves a second order improvement in local to unity asymptotic

approach compared with Stock's (1991) and Andrews' (1993) methods.

Key Words: autoregressive process, confidence set, local to unity asymptotics, uniform

convergence

1 Introduction

The paper deals with inferences about the persistence parameter (AR coefficient) p

in AR(1) models. The classical Wald confidence interval typically has low coverage in

finite samples, especially if the true value of p is close to unity as it happens for most

of macroeconomic time series. Wald type interval is based on classical asymptotic

theory , that is, the setup when \p\ < 1 is considered to be fixed and the sample

size n converges to infinity. The classical asymptotic laws (CLT and Law of Large

Numbers) do not hold uniformly over the interval p € (0, 1), rather the convergence

becomes slower as p approaches 1, and the both laws do not hold for p = 1. An

alternative asymptotic approach, local to unity asymptotics, considers sequences of

models with p„ = 1 + c/n as n goes to infinity. According to Mikusheva (2007) and

Andrews and Guggenberger (2007a,b) local to unity asymptotics leads to uniform

inferences on p, whereas classical asymptotics does not.

There are at least three methods that can be used to construct asymptotically

correct confidence set for p: method based on the local to unity asymptotic approach
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(Stock (1991)), parametric grid bootstrap (Andrews (1993)) and non-parametric grid

bootstrap (Hansen (1999)). The validity of the methods was proved in Mikusheva

(2007).

This paper compares three methods on a ground of accuracy of asymptotic ap-

proximation they provide. All three methods are asymptotically first order correct,

that is, the coverage of the confidence sets uniformly converges to the confidence level

as the sample size increases. The question I address is the speed of the convergence. It

is well known that Hansen's grid bootstrap achieves a second order refinement in clas-

sical asymptotic approach, whereas the two other methods (Andrews' and Stock's) do

not. I address the same question in local to unity asymptotic approach. My answer is

that the non-parametric grid bootstrap (Hansen's method) achieves the second order

refinement, that is, the speed of coverage probability convergence is o(n~^/^), whereas

the other two methods in general guarantee only Oiyn'^/"^) speed of convergence in lo-

cal to unity asymptotic approach. To compare the three method I find an asymptotic

expansion of the t-statistic around its limit in local to unity asymptotics.

A second-order distributional expansion is an approximation of the unknown dis-

tribution function of the statistic of interest (t-statistic in our case) by some other

function up to the order of o(n~^/^). One example of a second order distributional

expansion is the first two terms of well-known Edgeworth expansion.

There are several differences between the expansion obtained in this paper and

Edgeworth expansion. First of all, Edgeworth expansion is an expansion around

normal distribution. In our case we expand the t-statistic around its local to unity

asymptotic limit, which is a non-normal distribution. Secondly, it is known that

the first two terms of Edgeworth expansion do not constitute a distribution function

themselves. In particular, it can be non-monotonic and not changing from to 1. One

special feature of my expansion is that it approximates the distribution function of the

t-statistic by a cumulative distribution function (cdf), that can be easily simulated.

And finally, opposed to the Edgeworth' expansion which came from expanding

characteristic function, my expansion comes from stochastic embedding and strong

approximation principle. The same idea was used in a very inspirational work by





Park (2003a). He obtained a second order expansion of the Dickey-Fuller t-statistic

for testing a unit root. The expansion I obtain is "probabilistic" one. That is, I

construct a random variable on the same probability space as the t-statistic in such a

way that the difference between the constructed variable and the t-statistic is of the

order o{n~^/'^) in probability. I also show that under additional moment assumptions

it leads to a second order "distributional" expansion.

The distributional expansion allows me to show that Hansen's grid bootstrap

achieves the second order improvement in local to unity setting compared to An-

drews' method and the local to unity asymptotic distribution. The intuition for non-

parametric grid bootstrap improvement is the classical one - Hansen's grid bootstrap

uses the information about the distribution of error terms.

The paper contributes to the literature on bootstrapping autoregressive processes

and closes the discussion on making inferences on persistence in AR(1) model. Here

some of the known results on bootstrap of AR models: Bose(1988) showed in classical

asymptotics that the usual bootstrap provides the second order improvement com-

pared to the OLS asymptotic distribution. However, Basawa et al(1991) showed the

usual bootstrap fails (has asymptotically wrong size) if the true process has a unit

root. Their result can be easily generalized to local to unity sequences. Park (2003b)

showed that the usual bootstrap achieves higher accuracy than the asymptotic nor-

mal approximation of the t-statistic for weakly integrated sequences (for sequences

with AR coefficient converging to the unit root with a speed slower than 1/n). The

intuition behind Park's result is that the ordinary bootstrap uses the information

about closeness of the AR coefficient to the unit root. His expansion is non-standard

and the reason of bootstrap improvement is also not usual (usually bootstrap achieves

higher efficiency due to usage information about the distribution of error term).

1 get many ideas from a paper by Park (2003a), where he proves the second

order improvement of bootstrapped tests for the unit root. He found an asymptotic

expansion of t-statistic for the unit root in terms of functionals of Brownian motion.

My expansions for local to unity sequences will bear the similar idea to his.

The rest of the paper is organized in the following way. Section 2 introduces nota-





tions. Section 3 obtains a probabilistic embedding of error terms and a probabilistic

expansion of the t-statistic. Section 4 shows that the probabilistic expansion from the

previous section leads to a distributional expansion. Section 5 establishes a similar

expansion for a bootstrapped statistic and obtains the main result of the essay. All

proofs are left to the Appendix.

2 Notations and preliminary results

Let us have a process

y3 = PVj-i + ^v J = 'i-,-,n (1)

We assume that yo = 0. Error terms Sj are iid with mean zero, unit variance and finite

absolute moment of order r. The procedure of testing and constructing confidence

sets is based on the t-statistics. Let

,, s E^iivj - pyj-i)yj-i
t{y,p,n)^

^^JEU yU

be the t-statistic for testing the true value of the parameter p using the sample {yj}"=i.

The classical asymptotic approach states that for every fixed \p\ < 1 as n increases

to infinity we have

t{y,p,n)^N{0,l).

According to local to unity asymptotic approach if /0„ = 1 + c/n, C >

J^ Jc{x)dw{x)
t{y,Pn,n)

ylo Jc{x)d2

where Jc(x) — J^ e'^^^~^''dw{s) is an Ornstein- Ulenbeck process, w{-) is a standard

Brownian motion.

As it was shown in Mikusheva(2007) the classical asymptotic approximation is not

uniform. In particular, if Za is the a-quantile of standard normal distribution, then

lim inf Pp{za/2 < t{y,p,n) < zi-q/2} < 1 - a.
n-»oo|p|<l





As a result, the usual OLS confidence set would have a poor coverage in finite samples

if we allow p to be arbitrary close to the unit root.

A local to unity asymptotic approach on the contrary is uniform (Mikusheva(2007),

Theorem 2). Namely,

lim sup sup \Pp{t{y, p, n) < x} - F^ Jx)\ =
"^'^/9e[o,i] ^

where Fl^ix) = P{j; Mt)dw{t)/yJJ^ J^{t)dt < x} with c = nlogip).

The use of local to unity asymptotic in order to construct a confidence set was

suggested by Stock (1991). It can be implemented as a "grid" procedure. One need

to test a set of hypothesis Hq : p = po (in practice the testing could be performed

over a fine grid of values of po). A test compares t-statistic t{y,po,n) with critical

values which are quantiles of the distribution of F^p^{x). The acceptance set is an

asymptotic confidence set.

Two alternatives to the procedure above are Andrews' parametric grid bootstrap

and Hansen's non-parametric grid bootstrap. The method differ in the choice of

critical values. In particular, in Andrews' grid bootstrap critical values are taken as

quantiles of finite sample distribution of the t-statistic in a model with normal errors:

F^p^{x) = Pp^{t{z, po,n) < x}. Here Zt is AR(1) process with the AR coefficient po

and normal errors. In Hansen's grid bootstrap we use quantiles of F*p{x) the finite

sample distribution of the t-statistic for a bootstrapped model with the null imposed.

More accurately, let y^ — Poyl-i + ^t , where e^ are sampled from the residuals of the

initial OLS regression, then F^p^{x) — Ppg{t{y*,po,n) < x}.

Previously, Mikusheva (2007) proved that all three methods are uniformly asymp-

totically correct. My goal is to explore the second order properties of the methods in

local to unity asymptotic approach. I will show that Hansen's bootstrap provides the

second order improvement in local to unity asymptotic approach. That is, I consider

a sequence of models p = pn = exp{c/n} as n increases to infinity (this sequence of

models is called "nearly integrated" process). The goal is to obtain the second order

expansion of i(y, p„,n) along this sequence of models. The next section would be

devoted to probabilistic expansion.





3 Stochastic embedding.

Assumptions A. Assume that error terms £j are i.i.d. with mean zero, variance

a^ — 1 and £'|ej|'' < oo for some r > 2.

According to Skorokhod embedding scheme, there exists a Brownian motion w and

a sequence of iid variables r^ on an extended probabiUty space such that the sequence

of error terms have the same distribution as a sequence of stopped Brownian motion:

It also known that Etj — a^ = 1,E\tj\^^^ < KrE\ej\'^, where K,. is an absolute

constant. We define T„j — ^ ^11=1 "^i- Let us consider a sequence of random vectors

^j = (a'^'^) and Bnit) = ^J2f^\v, = {wnit),Vnit),Un{t)). Park(2003a)

proved that B„ —>'^ B = {w,V,U), where i? is a Brownian motion with covariance

matrix S given by

^
1 ^3/30-3 ^^/^3

>

S= i^^/3a^ K/a" {fi4-3a^ + 3K)/12a* (3)

^
^i3/(T^ (//4 - 3^4 + 3K)/12a4 {f^^-a^)/a*

^

Here Ee] = a^ = 1, Ee^^ = //g, Ee^^ = IJ4, E{tj - a^-f = k.

Park(2003a)also proved that 5„ and B can be defined on the same probability

space in such a way that B„ —^''^ B. Let N{t) — w{l + t) — w{l), M{t) be aBrownian

motion independent on w.

Theorem 1 Let pn = 1 + cjn^c < 0. Assume that Sj satisfy set of assumptions A

with r > 8, then one has the following probabilistic expansions:

(a)

-^ - Jc(T„,,.) = -^ r "
e'^C^/"-) Je(5)dy(s) + o,{n-"^)

iVy,-_i£fc= / Mx)dw{x) + n-'/'Ul)M{V)+

+1=1-cj j e'^^'-'^Us)dV{s)dw{t) + Ul)N{V) + ]^M\V) + ]^u\+o,{^)





\Y.yl= I Jl{^)dx-^ f Mx) re'^'-'^Jc{s)dV{s)dx-
IT- Jo yi^ Jo Jo

s/n Jq

1 ,o 1
Jl{x)dV{x) + -j=Jl{l)V + op(^)

(d)

'^ ' Jo V^ Jo Jo

^ / Mx)dV{x) + ^M1)V + Op{^)

(e)

t{y, p„, n) = t^ + n-'/^f + n-^'^g + o^{n-^'^)

here t^ = /J Mx)dw{x)/^J^ J^{x)dx, f = J,{1)M{V)/^JJ^ J^ix)dx,

^ ^ Tites (~^^o' Ioe'=^'-^^Ms)dV{s)dw{t) + Jc{l)N{V) + '^MHV) + \U

+t\/r^',, (2c lo Mx) lo e'^^^-^U,{s)dV{s)dx + J^ Ux)dV{x) - Ul)V

The expansions from Theorem 1 are probabihstic. Namely, we approximate a ran-

dom variable t{y,pn,n), whose distribution is unknown, by another random variable

^n (whose distribution is known or could be simulated) with accuracy o{n~^^'^) in

probability: P{\£,n — t{y,pn,n)\ > en~^^^} -^ 0. Probabilistic expansions are not of

interest by themselves (since they are abstract constructions) , rather they are building

blocks in getting distributional expansions described in the next section.

The random variables on the right-hand side are functionals of several Brownian

motions B{t) = {w{t), V{t), U{t)) and M{t). The covariance matrix of B{t) depends

only on some characteristics {a'^
, ^3 , ^4 , k) of the distribution function of Sj , namely on

the first four moments of Sj and some characterization of non-normality k (parameters

are defined above). M{t) is independent of B{t). As a result the distribution of the

approximating variable depends only on ip = {a^,iJ.3, ji^, k, c). The distribution of the

approximating variable can be easily simulated.

Remark 1 // one has an exact unit root (c = 0), then the expansion is exactly equal

to the expansion obtained by Park(2003a).





Remark 2 If Ej are normally distributed, then V{t) = and w{-) is independent of

U(-). It implies that t = f^ + -K=—j==^ + Op(n~^/^), where U is independent on

w. So, according to this probabilistic expansion Stock's and Andrews' methods are the

same up to an independent summand of order Op{n~^^^). I show in the next section

that they are the same distributionally up to the order of o{n~^/'^).

4 Distributional expansion

For making inferences we need asjrmptotic theory to approximate the unknown dis-

tribution of the t-statistic t{y,n,pn)- In the previous section we estabhshed a prob-

abihstic approximation. In particular, we found a sequence of random variables ^„

with known distribution depending on a vector of parameters ip (the distribution can

be simulated if V' is known) such that t{y,n,pn) = ^n + Op{n~^^'^) for pn — 1 + c/n.

That is,

lim Pp„
<^

\t{y, n, p„) - ^„| > ^= I = for all e > 0.

The goal of this section is to get a distributional expansion. By distributional

expansion of the second order I mean a sequence of real-value functions G„(-) such

that

P {t{y, n, Pn) <x} = G„(x) + o(n-i/2). (4)

In general, (?«(•) is not required to be a cdf of any random variable.

An example of a distributional expansion is the second order Edgeworth expansion.

Initially, Edgeworth expansion was stated as an approximation to the distribution of

normalized sums of random variables. Nowadays, Edgeworth type expansions have

been obtained for many statistics having normal limiting distribution. Traditionally

Edgeworth type expansions are obtained from expansions of characteristic functions.

It is also known that usually, in Edgeworth expansions function G„ is not a cdf of

any random variable. In particular, G„ is not monotonic in many applications.

In our setup Edgeworth expansion does not exist since the limiting distribution

is not normal. In this section I show that under some moment conditions our proba-





bilistic expansion corresponds to a distributional expansion. Namely,

sup |P,„ {t{y,n,pn) < x} - P{^„ < x}| = o{T-^'^).
X

here ^n = f^ + n~^/^f + rT^/'^g from part(e) of Theorem 1. That is, in our case

Gn{x) = P {^n < x} is a cdf. It depends on a parameter vector ip.

Definition 1 (Park(2003a)) A random variable X has a distributional order o{T~°-)

ifp{\x\ >T-^] <r-"

Theorem 2 Let all assumptions of Theorem 1 hold, then all Op{T~^^'^) terms in state-

ments (a)-(e) of Theorem 1 are of distributional order o{T~^^'^).

Corollary 1 // error terms are i.i.d. with mean zero and 8 finite moments, the

following distributional expansion holds:

sup \P{t{y, pn,n)<x}- P{f + n-"^f + n-^'^g <x}\= o{n-^'^)
X

One can notice there is no "unique" distributional expansion even if we require

that Gn is a cdf. This surprising fact is explained in the note below.

Remark 3 Let Gn{x) = P{^n < x} be a cdf and assume that rj has normal distribu-

tion and is independent of a- algebra A. Let i^„ and F be measurable with respect to A.

If Gn satisfies the distributional approximation (4), then Gn{x) = P{^n + FA^rj < x}

would also satisfy it. That is, the additional term (which is of probabilistic order

of Op{n~^/'^)) has distributional impact of order o{n~^f'^). This point was made by

Park(2003a). The idea is that the characteristic function for ^„ + F-j^r) conditional

on A is equal to e''^" up to the order 0{n~^).

It might seem strange that the probabilistic expansion of ^ yj-i£j has term of

order Op{n~^^'^). This term has distributional impact of order 0(n~^/^). The idea of

the statement is totally parallel to the note above. Indeed, M{V) is distributionally

^(1) VWl^ where M(l) ~ N{0, 1) and is independent of B{-) = {w, V, U).





Remark 4 Combining Notes 2 and 3 one get the following. If error terms are nor-

mally distributed then we have a distributional equivalence

P{t{z, n, p) <x} = P{f <x} + oin"^/'^).

That is the difference between quantiles constructed in Stock's and Andrews' methods

is of the order o{n~^^'^). The two methods achieve the same accuracy up to the second

order.

5 Bootstrapped expansion

5.1 Embedding for bootstrapped statistic

In section 4 we got that the distribution oft-statistic t{y, n, p„) could be approximated

by a sequence of functions Gn{x) = P{t'^+:^^f+ -y^g}, where / and g are functionals

of Brownian motions B{-) (covariance structure is described in (3), it depends on

cr^,
fj.3, fi4, K, c) and M (independent of B).

The bootstrapped statistic has totally the same form, since it uses the "true

value" (not estimator) of p(or c). The only difference between the initial distribution of

t-statistic and the grid bootstrapped distribution of t-statistic is different distribution

of error term.

P{t{y*,n,p)<x}^G:{x) + o{n-'/^),

where G;(x) = Pji'^ + Jjjf* + ^5*} with /* and g* are functionals of 5*,M(the

same functionals, covariance structure of B* depends on a'^\fL3,'p,4,K)

The next subsection states that the parameter vector (a^,/23,/24, k) converge al-

most surely to (a^,/X3,/i4, k) at a speed of Op(n~^/^), which would be enough to say

that the second order terms in expansions of initial and grid bootstrapped statistics

coincide up to the order of o(n"^/^).

Theorem 3 Let us have an AR(1) process (1) with yo = and error terms satisfying

Assumptions A with r > 1. Assume that p„ = 1 + c/n,c < 0. Let us consider for

10





every n a process y* — PnVj-i + ^jil/o — 0; where e* are i.i.d. sample from centered

and normalized residuals from the initial regression. Then

sup|P{i(y,n,/9„) < x} - P*{t{y*,n,pn) < x\y}\ = o{n-^^'^) a.s.

X

Theorem 3 states that Hansen's grid bootstrap provides the second order improve-

ment compared with Andrews' and Stock's methods in local to unity asymptotic ap-

proach. The intuition for that is the usual one. The second order term depends on

the parameters of the distribution of error terms. Those parameters are well approx-

imated by the sampled analogues. The non-parametric grid bootstrap uses sampled

residuals whose parameters are very close to the population values. As a result, the re-

finement is achieved. The only parameter (on which the limiting expansion depends)

that could not be well estimated is local to unity parameter c. The grid bootstrap

procedure uses the "true" value of c.

Theorem 3 is a statement obtained in local to unity asymptotic approach. The

statement that Hansen's grid bootstrap achieves a second order refinement in the

classical asymptotics is an easy one. It could be obtained from Edgeworth expansion

along the lines suggested in Bose (1988). As a result, we should advise applied

researchers to chose Hansen's grid bootstrap over Andrews' and Stock's methods.

5.2 Convergence of parameters

This subsection is a part of the proof of Theorem 3 from the previous subsection. Here

we show that the parameter vector tp = (cr^, ^3, /i4, k) could be well approximated by

a sample analog (moments of residuals) V' = (5'^,/^3,M4)^)•

Lemma 1 Let error terms Sj satisfy the set Assumptions A. Then there is a Sko-

rokhod's embedding for which

The convergence of the third and forth sample moments of residuals to their

population analogues with a speed of 0(n~^/^) is the usual statement. For that we

need to require enough moments of error term, 8 moments should be enough.

11





One parameter, «, as was discussed above is not intrinsic (it depends on a way the

Skorokhod embedding was realized). The fact that k,
—>p Et^ with speed 0{n''^^'^)

is non-trivial mainly because most of known constructions are not explicit and the

dependence of moments of r on distribution of e is not evident. By messy calculation

I got that in the initial Skorokhod construction published in Skorokhod's book(1965)

Et"^ = |£'^'*. That would imply the speed of convergence we need.

6 Appendix. Proofs of results

We use the following results from Park (2003a):

Lemma 2 (Park (2003a), Lemma 3.5(a))

Ifr>8, then

(a)

-j^ Y^ sj = w{l) + n-'/^M{V) + n-'^^N{V) + Op{n-'/^),

where V — V{1)-

About convergence of stochastic integrals:

Lemma 3 (Kurtz and Protter) For each n, let (X„,y„) be an !F^- adapted process

with sample paths in Skorokhod space D and let Yn be JF" semimartingale. Suppose

that Yn = Mn + An + Zn, whcre Mn is a local T^ martingale, An is J-^ adapted finite

variation process and Zn is constant except for finitely many discontinuities. Let Nn{t)

denotes the number of discontinuities of process Zn on interval [0, t] . Suppose that

Nn is stochastically bounded for each t > 0. Suppose that for each a > there exist

stopping times {r"} such that P{r^ < a} < l/ce and sup„£'[[M„]jAra +Tt/\T^{An) <

oo.

If [Xn, Yn, Zn) —^'^ {X, Y, Z) in the Skorokhod topology, then Y is a semimartingale

with respect to a filtration to which X and Y are adapted and {Xn,Yn, J XndYn) —^'^

{X,Y, J XdY) in the Skorokhod topology. If {Xn,Yn, Zn) -^ {X,Y,Z) in probability,

then convergence in probability holds in the conclusion.

12





Proof of Theorem 1

(a)

k

V^ .7=1

.c^ _ pC(T„,fc-T„,j)

j=l
)
{w {Tn,j) - W (Tnj-i)) +

/ ' n,

+

= I e^e^/"-^) J,(5)dF(s) + ^i,„ + R2,n + R3,n,
n Jo

where we have the following lines of reasoning:

j=i

V" j=l

fe fe

--^ 5Z ^'^ IZ (14(i) _ y„(^ _ 1)) (^ (T„,,.) _ u, (T„,,_i)) + ^i,„ =
^"^

i=i ^=.+1

k i-l

V'^ i=l j=l

= --^V e'^'^ (K(i) - K(i - 1)) y,_i + i?i,T =

c
fkjn

X _ gCCr^.k-Tn,.

n
l.-'n.fe -'nj,

\W {Tn,j) ~w{Tn,j-l)\ <

13





k / 7
• \ 2

< ^ c^e'^^ i (T„,fc - T„j)
j

\w (r„j) - w (T„,j_i)| = i?i,„

i?2,„ = -^E ^'"^ ^^n{i) - K^(^ - 1)) y^-l '^ f ^ e'^''/"~''>Ms)dV (s)
V'lT' ~^ y/n Jo

'' rTn,j

(b)

where we used statement (a). In the next theorem we would need to estimate the

distributional impact of the Op term, so, I keep track of them

^ V V^ J \/n ^/n Jo Jo

n

V^f^^Jo y/n VnJo Jo

So

fl rt

n̂ tr; ,._i v" v" 7o Jo
fc=i fc=i

Now

y2jc{Tn,k-l)^- I J{s)dwS^ f
^'^

Ms)dw{s)-f2 f
"'

{Jc{s)-MTn,k-l))dw{s)

tt ^ Jo Ji t^iK.-.

By definition of 0-U process J{s) — w{s) + cj^ J{t)dt:

n „T 1. « /-T

n »Xn it

+^Z1 / (5(s) - B(7;,fe-i))du;(s)

fe=l JTn,k-l

w{s) - w{Tn,k-i))dw{s)+

14





where j5(s) = /; Jc{t)dt. Let Re,n - ELi ff^^tJBis) - B{Tn,k-i))dw{s). By defi-

nition /j,"'*" {w{s) - w{Tn,k-i))dw{s) — ^+ "''''2"'""
' ^^ ^ result

" nT I. 1

fc=l •''^n,k-l
2^^

Now the last. We know that d{J^{x)) = 2Jcdw + 2cJ^dx + &, so

/Tn,n 1 pTnn 1

J,(5)d«;(5) = - (J,2(7;„) - J,2(l)) -
J

[cJlix) + -)dx =

1 . ,...,2 1 .- / .0,.- 1
Je(l) {Jc{Tnn) ~ Jc{l)) + '^ (MTnn) -MW - -^V lcJ^{l) + -]+ R^,r^

= Je(l) (U;(r„„) - u;(l)) + I {wiTnn) ' w{l)f - -^V + Rs,n =
z 2y/n

= n-i/V,(l)M(F) + n-1/2 ('jc(l)iV(V^) + ^M2(1/) - ^v\ + Rs,n + Op{n-'/').

Here the last equality is due to statement (a) of Lemma 2. The definition of error

terms is

/Tnn
{Jl{x) - Jl{l))dx-

/Tnn
( Jc(x) - Jc{l))dx - i?7,n + cJc{l)R%,n-

As a result,

-y^yk-iek= I Jc{x)dw{x)+n-"U,{l)M{V)+

+-^ (-cj j e'^'-'U,{s)dV{s)dw{t) + Jc{l)N{V) + '^M\V) + ^t/) + Op(-^)

(c) Using the statement of part (a)

= iE (-;!/""'"""-"^.W^V-M + o,
(-1;))

(27,(T„.) +0, (-L)) =

= -^ / Jc{x) r e'^''-'^Ms)dV{s)dx + R9n + 0pin-'^"-),
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where

1 l^

here

1 / 1 " /"^

i?9,„ = -^ -V Bi{k/n) - / B^{x)di

^Vt[ Jo

Bi(x) = -cJ,(x) / e'^(^-^)Je(5)dy(5).

Jo

As a result,

'2
•"
— 2c

/-i

Now,

i
Y, Jc(Tn,k-l) -

j^
Jl{x)dx = J2 JciTn,k-l) (^

" (Tnk - Tn,k-l)^ -

-E /
"^

{J^it)-JUTn,k-i))dt+ f
^^

Jl{t)dt.

Let us consider each term separately:

where

i?io,n = --^ (E Jl{Tr,,k-i){Vn{kln) - 14(fc - 1/n)) - y J2(x)dy(x)^ .

-Y.I
^'

(Jc (^) - Jl{TnM-i))dt = i?ii,„ = Op(n-i/2^

Ji v^
Summing up:

^E?^'^ fjci^)dx-^ f Ux) r e'^^^-^^Us)dV[s)dx-
J^ — Jo v"- Jo Jo

VnJo

1 ,o...,, , 1

(d) Using the statement of part (a)
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c '' '•^

Jo Jo

As a result,

fl i-x

n

Now,

"^ V^ Jo Jo

^ J2 Jo{Tn,k-l) - j Jc{x)dx = Y, Jc{Tn,k-l) Q - {Tnk " T„,fc_i) j
-

- 5] /
"'

(-^^(^^ - Jc{Tn,k-l))dt + /
""

Je(t)di

•^T^,fc-i Jl

Let me consider each term separately

J2 Jc{Tn,k-l) Q - {Tnk - T„,fc-l) j
= --^ / ^c(x)ciF(x) + i?i2,„,

where

^i2,n = --^ f5^ Je(r„,fe_i)(K(Vn) - Vn{k - 1/n)) - /" J,{x)dV{x)\ .

" Zl /
"'

^-^^(^^ " Jc{Tn,k-l))dt = i?13.„.

Jc{t)dt = Mi)v + /?8,„.

Summary

-^ [ J^{x)dV{x) + ^J,{l)V + Op{^)

Part (e) follows from (a)-(d) and Taylor expansion.

Now we need to check that for all i we have Ri^n = Op{n~^/'^). Statements for

-^2,71, Rs.ni-Rio.n and i?i2,n follows from Lemma 3 on convergence of stochastic inte-

grals. Prom convergence of non-stochastic integrals we have i?9,„ = Op{n~^/'^).

Terms i?ii,„ and i?i3,„ have a structure of Yllz=i Cfc.ni where ^k,n are i.i.d. across k

and distributionally equal to ^i^k ~ Jq C{t)dt for dC{t) = Ci{t)dt + C2{t)dw{t) with

Ci G Li,C2 G 1/2. Then E^i^n = ^ilo Jo CiC^t^O ^ consi • n~^, and

rr/n nt pu

E^l„ ^E{ E cl{s)dsdudt) < const n'^.
Jo Jo Jo
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As a result, both terms are Op(l). We can also notice that Chebyshev's inequality

imphes that they are distributionally o(n~^/^).

Terms i?3_„ and iJg.n also have a structure of ^^^^ ^k,n, where ^k,n are i.i.d. across

A;. Here ^i,„ ~ J^ C{t)dw{t) with dC{i) = Cidt. It is easy to see that £'^i,„ = and

E^l^ < const n~^. It implies that terms are probabilistically and distributionally

o(n-i/2).

Terms i?7_„ and i?8,n have form of Jj
""^ {D{s) — D{l))ds where dD{s) = didw+d2dt.

It's easy to see that they are Op{n~^^'^). D

Lemma 4 (Park(2003a)) If r > 4 then we might choose B„ and B such that

P
I
sup \Bn{t) - B{t)\ >c\ < n^-'"/4C-"/2(l + a-')K{l + E\ej\')

lo<i<l J

/or any C > n-i/2+2A

Proof of Theorem 2. We need to check that all terms R^^n used in the proof of

Theorem 1 is distributionally of order o(n~^/^).

In the proof of Theorem 1 we aheady showed that terms -Rs^n, R6,m Rn,n and

Ri3^n are distributionally o(n~-'/^).

Terms i?2,n, -Rs.m -^lo.n and Ri2,n have a form of stochastic integrals -^ J^ ^{t)d{V{t)-

Vn{t)) or -^ Jg ^{t)d{w{t) — Wnit))- Their distributional order would depend on the

quadratic variations which have forms of supo<j<i \Vn{t) — V{t)\- and supo<j<;^ \wn{t) —

w{t)\'^. The order of the last expressions is determined by Lemma 4.

Terms i?7,„ and/?8,n have form of
|

/j^""(i:)(s)-£)(l))ds| < supo<t<i \D{t)\-\Tnn-l\

which is distributionally o"^/^.

Proof of Lemma 1.

First, I show that for Skorokhod's construction presented in Skorokhod's book

(1965) we have Et^ = §£^^1

Let Tafi is the smallest root of the equation {w{t) — a){w{t) — 6) = 0. Then

„ w sinh 6v2A — sinh aV 2A ,^,£^g-Ara,f, ^ ^

(5)
sinh(6 — a)v2A

and

dX''

(-1)'=— ^e-^-.^^^ = £;<,. (6)
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In the construction from Skorokhod's book (1965) the stopping time is defined as

r = iniiiwit) - e){w{t) - G{£))} = t,,g(s),

where s is independent of w and the function G is defined by JZ. ydF{y) = 0, F{x) =

P{e < x}. Then 'w{t) has the same distribution as e.

We can notice that

The last could be calculated using equation (6) for moments of Ta^ and the explicit

formula for the characteristic function (5). We also use the following two facts:

G{G{x)) = X and G{x)dF{G{x)) = xdF{x). By tedious but straightforward calcula-

tions one can obtain the formula Et^ — \E^^.

Since Ee^ < oo by using Chebyshev's inequality one can get the statement of the

lemma.

Proof of Theorem 3. Theorem 2 states the distributional expansions for the

t-statistic and its grid bootstrapped analog

sup \P{t{y, n, p) < x} - Gn{x)\ = oirT^I''), (7)
X

here Gn{x) = P{t'^+ :^^f+ A^g} , where / and g are functional of Brownian motions

B{-). The covariance structure of B is described in (3), it depends on cr^, jj.^, ^4, k, c.

Brownian motion M is independent of B. It could be seen from the proof of Theorem

2 that the term o{n~^^^) in equation (7) is bounded by a constant depending on the

eights moment of the approximated error term fxg times n~^/^~'' for some 5 > 0.

For almost any realization of an infinite sequence of error terms (ei, ..., e„, ...) and

its finite subsequence of the length n we would have

sup \P{t{y*,n,p) <x}- G;(x)| < Const{Jls)n-'/^-\
X

here G* (x) = Plf^ + ^r??/* + ;^5*} where /* and g* are the same functionals of

B*,M*. The covariance structure of B* depends on ct^,/X3,/24,k Since r > 8, then

Const{Ji^)n~^/'^~^ = o{n~^/'^) a.s. As a result,

sup\P{t{y*,n,p)<x}-Glix)\ = o{n-'/^) a.s., '

(8)
X
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Combining equations (7) and (8) with Lemma 1 one obtains the statement of

Theorem 3.
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