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ABSTRACT

Recent genome-wide analyses have elucidated
the extent of alternative splicing (AS) in mammals,
often focusing on comparisons of splice isoforms
between differentiated tissues. However, regulated
splicing changes are likely to be important in bio-
logical transitions such as cellular differentiation,
or response to environmental stimuli. To assess
the extent and significance of AS in myogenesis,
we used splicing-sensitive microarray analysis
of differentiating C2C12 myoblasts. We identified
95 AS events that undergo robust splicing transi-
tions during C2C12 differentiation. More than half
of the splicing transitions are conserved during dif-
ferentiation of avian myoblasts, suggesting the
products and timing of transitions are functionally
significant. The majority of splicing transitions
during C2C12 differentiation fall into four temporal
patterns and were dependent on the myogenic
program, suggesting that they are integral compo-
nents of myogenic differentiation. Computational
analyses revealed enrichment of many sequence
motifs within the upstream and downstream
intronic regions near the alternatively spliced
regions corresponding to binding sites of splicing
regulators. Western analyses demonstrated that
several splicing regulators undergo dynamic
changes in nuclear abundance during differenti-
ation. These findings show that within a develop-
mental context, AS is a highly regulated and
conserved process, suggesting a major role for AS
regulation in myogenic differentiation.

INTRODUCTION

Current estimates are that �95% of multi-exon genes in
humans are subject to alternative splicing (AS), greatly
expanding the transcriptome (1). AS also serves a crucial
regulatory role by altering the function, localization and
expression level of gene products, often in response to the
activities of key signaling pathways (2–5). Misregulation
of AS is implicated in the pathogenic mechanisms of
several diseases (6–9). Splicing regulatory proteins are
subject to multiple levels of regulation during develop-
ment (10–12) and AS regulation has been shown to
occur during a number of developmental processes
including heart development (13), neurogenesis (14–16)
and T-cell differentiation (17). Despite increased recogni-
tion of the prevalence of AS and its relevance to develop-
ment, tissue identity and disease, little is known about the
mechanisms that regulate natural splicing transitions. In
addition, the broad biological relevance of the extensive
transcript diversity generated by AS continues to be
debated (18–21).
Recent efforts to examine splicing on a global scale using

high-throughput techniques such as splicing sensitive
microarrays (22,23) and deep sequencing (1,24,25) have
focused primarily on comparing splicing patterns in adult
tissues or examining events affected by depletion of trans
acting factors. Other studies have used purely computa-
tional approaches to ascertain the global impact of AS
(20,26), often relying on EST databases, which are
heavily biased towards transcripts derived from brain
and cancer tissues (27,28). By restricting global AS
analyses to adult tissues, temporally regulated aspects of
AS biology are overlooked. Analysis of global AS transi-
tions during key biological transitions such as development
provides an experimental system in which to identify the
regulatory mechanisms and biological relevance of AS.
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AS is enriched in skeletal muscle (22), as are several
splicing factors, such as the FOX and Muscleblind-like
(MBNL) families (29,30), suggesting that myogenesis is
accompanied by high levels of AS regulation. The
C2C12 mouse myoblast cell line is a subclone of a cell
line derived from adult muscle satellite cells (31,32). The
cells are committed to the myogenic pathway and are
highly proliferative when maintained in high serum/low
confluence conditions. Exposing confluent C2C12 cells
to low serum conditions induces differentiation. Cultures
up-regulate the myogenic transcription factor myogenin
within 24 h, exit the cell cycle within 36 h and myoblasts
fuse within 72 h to form multinucleated myotubes that
exhibit morphological and biochemical similarities to
immature skeletal muscle tissue (Figure 1A) (33,34).
Our goal was to utilize myogenic differentiation as a

model system to study developmentally-associated AS
regulation. We specifically set out to define networks of
AS transitions that occur during myogenic differentiation
and to identify cis-acting elements and trans-acting factors
that control these regulatory networks. Using splicing sen-
sitive microarrays we identified �100 alternatively spliced
regions that undergo robust splicing transitions during
C2C12 differentiation. Most of the strongly regulated
splicing transitions tested are conserved during differenti-
ation of mammalian and avian myoblasts and are depend-
ent on the myogenic program. Computational analysis
identified multiple sequence motifs that are significantly
enriched and conserved within the intronic regions sur-
rounding the regulated alternative regions. Many of
these motifs were significantly associated with specific
temporal subsets of splicing transitions. The identified
motifs included binding sites for known splicing regulators
such as FOX, CELF, hnRNP L, TIA and PTB. A large
number of novel sequence motifs were also enriched near
regulated regions. Furthermore, many of the splicing regu-
lators with enriched and conserved binding motifs exhibit
changes in nuclear abundance during C2C12 differenti-
ation, either due to apparent nuclear/cytoplasmic transi-
tions (MBNL2 and MBNL3) or changes in total
steady-state levels (MBNL1, CUGBP1 and CUGBP2,
PTB, FOX1 and hnRNP C), while other splicing regula-
tors exhibit relatively constant nuclear steady-state levels
(FOX2). These results reveal regulatory networks
controlling natural splicing transitions that are likely to
be directly relevant to physiological changes associated
with muscle differentiation.

MATERIALS AND METHODS

Cell culture

C2C12 myoblasts (ATCC) were maintained in
high-glucose DMEM, supplemented with 10% FBS, 1%
penicillin/streptomycin and 1% L-glutamine (all
Invitrogen). C2C12 cells were differentiated at �95% con-
fluence by adding differentiation media containing
high-glucose DMEM, supplemented with 2% horse
serum (Invitrogen), 1% penicillin/streptomycin and 1%
L-glutamine. Low-passage (<10 passages) cells were used
for all experiments. QM7 cells (ATCC) (35) were

maintained in Earle’s M199 basal medium, supplemented
with 10% fetal calf serum, 10% Tryptose phosphate
broth (both Difco), 1% penicillin/streptomycin and 1%
L-glutamine. QM7 cells were differentiated at �95% con-
fluence in Earle’s M199 basal medium, 0.01% fetal calf
serum, 1% penicillin/streptomycin and 1% L-glutamine.
QM7 cells were allowed to differentiate for 96 h, at
which point large numbers of myotubes were visible. All
cell lines were maintained in a humidified, 37�C incubator
with 5% CO2.

BDM treatment

A 5M stock solution of 2,3, butanedione monoxime
(BDM; Sigma) dissolved in DMSO was added to C2C12
differentiation media to a final concentration of 15 mM,
(or an equal volume of DMSO; vehicle control). The
treated media was then added to �95% confluent
C2C12 cells (Hour 0 of differentiation). Fresh treated dif-
ferentiation media was added to cultures every two days.
C2C12 cells were allowed to differentiate for up to 120 h.
RNA and whole-cell protein lysate were collected as
described below at �24, 0, 24, 72 and 120 relative to dif-
ferentiation induction.

Splicing sensitive microarray, RNA preparation
and hybridization

Splicing arrays were designed and RNA isolation and hy-
bridization performed as previously described (13).
Briefly, the array design included probes to 10 111 genes
expressed in muscle or heart. Optimized 60-nt probes were
designed to monitor each exon, and 36-nt probes were
centered across each exon–exon junction (36). Exons
<60 nt were monitored by using shorter probes attached
to T-stilts. In total, 248 316 oligonucleotide probes,
including 110 367 exon and 93 382 junction probes were
synthesized on a six-array set. Total RNA for splicing
microarray analysis was prepared from C2C12 cultures
at �24 and 120 h relative to differentiation induction
using RNeasy kits (Qiagen), and the RNA quality was
assessed spectrophotometrically (Agilent) at the micro-
array core facility at Baylor College of Medicine. Cy dye
labeling, hybridization and array analysis was performed
as described earlier (13).

RT–PCR validation and quantification of
splicing transitions

For RT–PCR assays, total RNA was extracted using
TRIzol (Invitrogen). RT–PCR primers were designed
complementary to constitutive exonic regions flanking
the predicted alternative regions. One-Step RT–PCR reac-
tions were performed using specific primers on 0.5 mg of
total RNA samples isolated from C2C12 or QM7 cells at
various time points throughout differentiation. After
gene-specific reverse transcription at 42�C for 35min, the
resulting cDNA was subjected to 18–25 cycles of 95�C for
45 s, 57�C for 45 s and 72�C for 60 s, then separated using
PAGE, followed by ethidium bromide staining, imaging
and molecular weight-corrected quantification using the
Kodak Gel logic 2200 and Molecular Imaging Software.
Alternative region percent inclusion was quantified by
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adjusting band intensity for length of the PCR product,
dividing the intensity the band including the regulated al-
ternative region by the total product [inclusion band/(in-
clusion + exclusion band) �100]. All bands of interest
were gel-isolated, amplified and confirmed by sequencing.

Gene ontology analysis

Gene ontology (GO) analysis was performed using
PANTHER according to the instructions provided at
www.pantherdb.org/. Validated splicing transitions from
C2C12 or QM7 data sets were analyzed against a reference

Figure 1. Characterization of validated splicing transitions associated with C2C12 myoblast differentiation. (A) Phase-contrast micrographs showing
a time course of C2C12 differentiation. (B) The number of splicing events (out of 117 total validated events) that undergo splicing transitions of �20
percentage points. (C) Summary of the different types of validated splicing transitions included within the data set of 117 splicing transitions. (D) GO
analysis for significantly (P� 0.05) enriched molecular functions in validated splicing transitions of �20 percentage points.
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list (10 111 genes on the microarray) for significant enrich-
ment of molecular function terms, calculated using
binomial testing with Bonferroni correction for multiple
testing as described earlier (37) Only processes with a sig-
nificant (P� 0.05) enrichment were discussed in this
article.

Computational analysis of motif enrichment
and conservation

Significantly enriched pentameric motifs within flanking
introns of AS regions undergoing splicing transitions
�10% across all time points were detected according to
a GC-content controlled first-order Markov model. The
intronic regions analyzed consist of the first and last 250 nt
of the upstream and downstream introns, relative to the
regulated alternative region, excluding the first 9 and last
30 nt of the intron which contain the conserved 50 and 30

splice sites, respectively. Sequences were binned according
to their G+C content into 10 groups. Expected pentamer
frequency was calculated for each pentamer by using the
first-order Markov model in introns of each GC group
respectively. Pentamer enrichment was then evaluated by
comparing the occurrence frequency of each pentamer to
the overall expected frequency calculated by summing up
the expected counts of all G+C groups. A P-value was
calculated by using the binomial distribution. All results
were subjected to false discovery rate filter (Benjamini–
Hochberg, FDR< 0.05). Significantly conserved penta-
meric motifs among splicing transitions changing �10%
across all time points were identified within the above
intronic regions using alignments to seven other mamma-
lian genomes that have at least 5� sequence coverage in
the UCSC 28-way multi-genome alignment. A conserva-
tion rate (CR) was calculated as the fraction of aligned
and conserved motif occurrences. The significance of the
CR for each pentamer was evaluated by comparing to 10
other pentamers with similar expected CR, according to a
first-order Markov model. P-values were obtained using
binomial distribution, and subjected to a false discovery
rate filter (Benjamini–Hochberg, FDR< 0.05).

Motif regression analysis

Regression analysis was performed on motifs determined
to be significantly enriched or conserved, discovered using
introns flanking events which change �10% across all
time points, events which increase �10% across all time
points, and events which decrease �10% across all times
points. The percent of alternative region inclusion at
each time point (i) of a C2C12 differentiation time
course (�24, 0, 12, 24, 72 and 120 h relative to differenti-
ation induction) was compared to every other time point
(j), to obtain different vectors of splicing changes (yij),
where the length of the vector was proportional to the
number of splicing events within the validated data set.
For each of the above mentioned intronic regions (r)
flanking each regulated splicing event, the density of
motifs (xr) was regressed against each vector of splicing
changes (yij=A xr+b). Significant correlations (P< 0.05)
were noted and plotted in a heat map format
(Supplementary Figure S1) in which colors denote �log10

(P-value) for P-values <0.05, with darker colors represent
increasing significance. Red shades denote a positive
coefficient (A), where presence of the motif is associated
with an increase in alternative region inclusion
(�Time2 � �Time1 > 0), and blue shades denote a negative
coefficient (A), where presence of the motif is associated
with an increase in alternative region skipping
(�Time2 � �Time1 < 0).

Clustering analysis

Affinity propagation analysis was performed to identify
similar clusters of splicing transitions, (38) using a
matrix of all pair wise comparisons between all splicing
events. To obtain the similarity matrix, the Pearson cor-
relation coefficients was computed between the raw inclu-
sion levels of regulated alternative regions for each pair of
splicing events across time points �24, 0, 12, 24, 48, 72
and 120 of C2C12 differentiation. Various affinity propa-
gation preference levels were tested; preference values of
0.25–0.5 yielded the same number of clusters, and these
clusters are shown in Figure 6 and Supplementary
Table S5. Clustering graphs illustrate splicing profiles of
a cluster of splicing events across time points; the y-axis
represents inclusion levels at various time points,
normalized so that means and SDs are uniform. Each
cluster contains an ‘exemplar’ (shown in red) which best
‘exemplifies’ the cluster, according to the affinity propaga-
tion algorithm. Splicing profiles of the other events in each
cluster are plotted in various shades of gray, where darker
gray represents a larger maximum difference in inclusion
level across all time points. Motif enrichment and conser-
vation analysis was performed for the events within each
cluster in a manner identical as that described earlier.

Nuclear, cytoplasmic and whole-cell protein extraction

Nuclear and cytoplasmic protein fractions were prepared
from C2C12 cells by washing cells three times in ice cold
PBS, scraping in fractionation buffer [10mM HEPES
(pH 7.5), 10mM MgCl2, 5mM KCl, 0.1mM EDTA,
0.1% Triton X-100, 0.2mM PMSF, 1mM DTT,
1� Complete Protease Inhibitor Mixture (Roche)] and
passing cells through a 27 gauge needle 10 times. The re-
sulting lysate was then centrifuged at 600g for 15min at
4�C to pellet nuclei. The cytoplasmic fraction was acetone
precipitated overnight and resuspended in lysis buffer
[10mM HEPES (pH 7.5), 0.32M sucrose, 1% SDS,
5mM MG132 and 5mM EDTA with protease inhibitors].
The nuclear pellet was washed two times in fractionation
buffer, and then resuspended in lysis buffer. Both nuclear
and cytoplasmic fractions were sonicated and total protein
was quantified using the BCA assay (Pierce). All samples
were stored at �80�C.

Western blot analysis

Thirty micrograms of nuclear, cytoplasmic or total protein
was fractionated on a 10% Tris–glycine SDS–PAGE gels
and transferred onto PVDF membranes (Immobilon). The
protein loading and transfer quality were confirmed by
Ponceau S red staining (Sigma). Membranes were
blocked in TBST with 5% non-fat milk, then incubated
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with the primary antibody overnight at 4�C, washed in
TBST, incubated with the appropriate secondary
HRP-conjugated antibody at room temperature for 2 h,
washed in TBST and visualized using an HRP chemilu-
minescence system (Pierce). The following primary
antibodies were used: monoclonal anti-CUGBP1
antibody (1:1000; 3B1; Upstate), monoclonal anti-
CUGBP2 [1:500; 1H2 (39) conjugated with HRP], poly-
clonal anti-MBNL1 [1:1000 (40)], monoclonal
anti-MBNL2 (1:1000; and monoclonal anti-MBNL3
(1:1000; both generously provided by Glenn E. Morris)
(41), monoclonal anti-FOX-1 [1:500; generated in-house
(13)] polyclonal anti-FOX-2 [1:120 000; generated
in-house (13)], monoclonal anti-PTB (1:1000; R164; gen-
erously provided by Doug Black), monoclonal anti-
Myogenin (1:500; F5D Abcam), monoclonal
anti-hnRNP L (1:50 000; 4D11; Abcam), monoclonal
anti-hnRNP C (1:10 000; Sigma), polyclonal Anti-p27
(1:500; sc-518; Santa Cruz) monoclonal anti-TBP
(1:1000; ab818; Abcam), and monoclonal anti-GAPDH
(1:10 000; Biogenesis). Secondary antibodies used were
HRP-conjugated goat anti-rabbit (1:50 000; Calbiochem)
and HRP-conjugated sheep anti-mouse (1:5000; Jackson).

RESULTS

Skeletal muscle differentiation is associated with a large
number of AS transitions

AS transitions during C2C12 differentiation were
identified using a previously described custom splicing
sensitive microarray (13) as well as from the literature
focusing on exons found to be preferentially included
in adult mouse skeletal muscle tissue (23,42). Overall,
117 splicing transitions were identified, 66 of which were
detected using splicing-sensitive microarrays, and the re-
maining events were found by performing EST
comparisons and through the literature. All events were
validated by RT–PCR using total RNA collected from
C2C12 cells 24 h before differentiation induction (�24 h)
and 5 days post differentiation induction (120 h). The
identities of the predominant (�10% of total) RT–PCR
products were confirmed by sequencing. To define the
kinetics of splicing transitions, validated events were
further analyzed by RT–PCR in a series of time course
experiments, using total RNA collected at �24, 0, 12, 24,
72 and 120 h relative to differentiation induction
(Supplementary Table S1). AS is expressed as the
percent of mRNA that includes the variable region and
splicing transitions are expressed as the change of percent
of mRNAs containing the variable region between time
points; thus an event that changes from 20 to 50% inclu-
sion is a 30% point change. At least two biological repli-
cates were performed for all time points of all events
analyzed in the time course. In addition, all events were
tested in at least two additional biological replicates at the
�24 and 120 time points. The magnitude of most splicing
transitions was highly consistent between biological
replicates.

Of the 117 validated splicing events, 95 exhibited strong
transitions of �20 percentage points with 49 of these

exhibiting a change of 40 percentage points or more
(Figure 1B and Supplementary Table S1). Sixteen events
changed between 10 and 20 percentage points and six
events displayed changes <10 percentage points. Of the
95 strong events, the average alternative region length
was 96 nt, with a SD of 49 nt. A total of 69 of the
95 strong events (73%) showed increased inclusion
during differentiation, and the remaining 26 (27%)
showed increased skipping. Among all 117 validated tran-
sitions, there were 100 cassette exons (85%), including 16
multiple cassette exons, 8 mutually exclusive exons (7%)
and 9 alternative 30 or 50 splice sites (7%) (Figure 1C).
Ninety-six of these 117 events (82%) are predicted to
retain the reading frame. In addition, 38 of the 117
events (32%) underwent an average fold change �2.0 in
gene expression.
To assess the biological roles of the transcripts under-

going AS transitions during C2C12 myoblast differenti-
ation, we performed comparative GO analysis (37,43).
The 95 strong events were compared against a reference
set of �10 000 transcripts expressed in mouse striated
muscle. Genes expressing transcripts undergoing
AS transitions were significantly enriched for GO
molecular function terms relating to cytoskeletal, actin
binding, cell junction and nucleotide kinase molecular
functions (Figure 1D), as well as a significant
(P=0.021) over-representation in integrin signaling
pathway components, consistent with other muscle
specific splicing data sets (23,42). Overall, this data set
represents a large cohort of validated, robustly regulated
splicing transitions that occur in several temporally
coordinated patterns (see below) during myogenic
differentiation.

AS transitions associated with muscle differentiation are
conserved in mammalian and avian cultures

To asses the biological relevance of the splicing transitions
during muscle differentiation, we examined their conser-
vation between the murine C2C12 line and the
quail myoblast cell line QM7 (35). From a set of 77
strongly regulated alternative exons from the validated
data set, we identified 48 orthologous exons in the pub-
lished chicken genome (build 2.1). A total of 38 (79%) of
these were detected by RT–PCR (Figure 2A and
Supplementary Table S2) of which 22 (57%) were
regulated similarly to mouse, three (8%) were oppositely
regulated and 13 (34%) were alternatively spliced but
showed little or no regulation during QM7 differentiation
(Figure 2B). We used GO analysis to define the molecular
functions of the 25 genes containing exons regulated in
both quail and mouse and found that 7 (30%) were
within transcripts encoding RNA-binding proteins, a stat-
istically significant enrichment (P=1.39� 10�4), while 6
(24%) were within transcripts encoding cytoskeletal com-
ponents. The high level of conservation of regulated
AS transitions in avian and mammalian muscle differen-
tiation strongly suggest that AS regulation plays a bio-
logically significant role and that RNA-binding proteins
are conserved targets of splicing regulation.
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The majority of regulated splicing transitions in C2C12
are dependent on the myogenic differentiation program

Myogenic differentiation in culture is induced by a com-
bination of reduced growth factors and high cell density
and is preceded by cell-cycle exit (33,44,45). To determine
whether AS regulation is an integrated component of the
myogenic program or simply a result of growth factor
withdrawal and cell-cycle exit, we used 2,3, butanedione
monoxime (BDM) to induce cell-cycle exit and simultan-
eously block myogenic differentiation (46). As expected,
C2C12 cultures treated with 15 mM BDM failed to
undergo morphological changes associated with differen-
tiation, including cell alignment and formation of
myotubes (Figure 3A). In addition, BDM-treated
cultures showed no increase in cell number over time
(data not shown), exhibited upregulated expression of
the cell-cycle inhibitor p27, and failed to upregulate ex-
pression of the myogenic transcription factor myogenin

(Figure 3B). We examined 21 splicing events that
undergo strong (�20 percentage points) differentiation-
induced splicing transitions in cells treated at time 0 with
BDM compared to cells treated with the DMSO vehicle
alone. The majority of these events (13) showed little or no
change (<25% of that seen in control cells) (representative
events are shown in Figure 3Ci and 3Cii). Of particular
interest are the several splicing transitions that occur pre-
dominantly between �24 and 0 h of differentiation. These
events are initiated much earlier than the appearance of
transcriptional markers of myogenesis or overt morpho-
logical changes indicative of differentiation. Most of these
events revert toward the level of inclusion observed at
�24 h when BDM is added at time 0, suggesting depend-
ence on the myogenic differentiation program despite the
transition initiating before addition of differentiation
media (Figure 3Cii). Four events showed a moderate
degree of regulation in the presence of BDM (>25% but

Figure 2. Most AS events common to mouse and quail myoblasts undergo conserved transitions during differentiation. (A) Representative RT–PCR
results for seven splicing transitions conserved between C2C12 (mouse) and QM7 (quail) myoblast differentiation. Undifferentiated (U) and
differentiated (D) cultures are indicated. The percentage alternative exon inclusion (% inclusion) is indicated in undifferentiated and differentiated
C2C12 and QM7 cells. (B) Summary of splicing transitions conservation between C2C12 and QM7 cells. See Supplementary Table S2 for a full list of
all events tested between C2C12 and QM7 cells.
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<75% of that seen in control) (Figure 3Ciii) and four
events showed comparable levels of regulation in both
BDM treated and control conditions (Figure 3Civ).
Similar results were obtained using C2C12 suspension
cultures which, similar to BDM treatment, uncouples
cell-cycle exit from differentiation (47) (data not shown).

We conclude that the majority of AS transitions
identified are dependent upon and integrated into the
myogenic differentiation program. Interestingly, this
analysis also identified splicing transitions that are

induced by cell-cycle withdrawal independent of the
myogenic program, suggesting separate networks of
regulated AS transitions controlled by distinct signaling
mechanisms during myogenic differentiation.

Cis-regulatory elements associated with myogenic
splicing transitions

To identify cis-acting regulatory elements associated with
the validated splicing transitions in our data set, we first

Figure 3. Most splicing transitions are dependent upon myogenic differentiation. (A) Phase-contrast micrograph of vehicle (DMSO) and BDM
(15 mM) treated C2C12 cells 120 h following induction of differentiation. (B) Western blots of whole cell lysate from DMSO or BDM treated C2C12
cells. Myogenin staining was used to measure myogenic differentiation progression and p27 staining was used to assess cell-cycle exit. ‘Asterisk’
indicates �60 kDa non-specific band detected by p27 antibody. (C) Four groups each depicting four representative examples of splicing transitions
distinguished based on myogenic differentiation dependence. BDM (dashed lines) or DMSO vehicle (solid lines) was added to media at Hour 0.
Group i exhibited a complete block of splicing transitions following addition of BDM. Group ii exhibited partial reversion of splicing transitions to
undifferentiated (�24 h) state upon treatment with BDM. Group iii continued to undergo splicing transitions after BDM treatment, but at a reduced
level compared to DMSO. Group iv events were not affected by addition of BDM. Splicing events depicted (in the order: black, green, red, orange)
are as follows: Group i: Dtna_78,93; Atp2b1_87; Lrrfip2_93,102; Anxa7_66. Group ii: Dguok_100; 4632411B12R Rik_78; Mpp6_42; Azi2_47. Group
iii: Capzb_113; Art3_30; Akap13_54; Bin1_45. Group iv: R3hdm_42; 5830434P21Rik_82; 5230400G24Rik_60; Pkp4_129.
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examined the introns flanking all alternatively spliced
regions that undergo transitions of �10 percentage
points for enrichment of pentanucleotide motifs relative
to a first-order Markov background model (13). We
analyzed the first and last 250 nt of the upstream and
downstream introns relative to the regulated alternative
region. To avoid the inclusion of sequence motifs
associated with constitutive splicing, the first 9 and last
30 nt of the intron which contain the conserved 5’ and 30

splice sites, respectively were excluded from the analysis.
We identified several significantly enriched motifs
(P< 0.05 after Bonferroni correction, italics indicates cor-
rected P< 0.0001 in Figure 4), including recognition se-
quences for FOX, CELF, PTB and hnRNP L splicing
factors of which CELF and hnRNP L sites were most
enriched (P< 1.13� 10�13 after Bonferroni correction)
(Figure 4 upper panel and Supplementary Table S3).
Additionally, several motifs not associated with known
RNA-binding proteins were identified.
A second analysis was performed to identify motifs

within the flanking introns of regulated alternative
regions that were conserved between mouse and seven
other mammalian species. This analysis identified several
of the same motifs including FOX, PTB and the
NA(A>C)TAAY (STAR) motif (Figure 4 lower panel
and Supplementary Table S4) previously found to be
associated with skeletal muscle specific AS in adult tissue
(23,42). FOX motifs within the first 250-nt downstream of
the alternative region were both significantly enriched
(P=1.25� 10�6) and conserved (P� 5.25� 10�9). Based
on the significance values, frequency of binding sites, and
combined enrichment and conservation, we conclude that
FOX, CELF, PTB, STAR and hnRNP L splicing regula-
tors are particularly strong candidates for proteins that
regulate different or overlapping subsets of splicing tran-
sitions during myogenic differentiation.

To identify enriched motifs that correlate with specific
temporal splicing patterns, we performed regression
analysis using the time course data regressed against
enriched motifs within different intronic regions.
Different enriched motifs were identified within specific
intronic regions that strongly correlated with temporal
splicing patterns (Figure 5 and Supplementary
Figure S1). FOX motifs downstream from regulated alter-
native regions strongly correlated with continuous
increased inclusion of variably spliced regions during dif-
ferentiation, while upstream FOX motifs were correlated
with an early decrease. For PTB, motifs located upstream
of the variably spliced region correlated with continuous
inclusion and downstream motifs correlated with late ex-
clusion. Upstream hnRNP-L motifs correlated with an
early increase in variably spliced region inclusion, while
upstream STAR motifs correlated with an early decrease
in inclusion. Overall, these data suggest different position-
and time-dependent effects for several known splicing
regulators and identified novel motifs associated with
specific location and time-dependent effects.

Coordinated waves of splicing transitions occur
throughout myogenic differentiation

To determine whether splicing transitions show different
coordinated temporal patterns during myogenic differen-
tiation, we examined the inclusion levels of 117 validated
events at seven to nine time points from 24 h before, until
120 h after addition of differentiation media
(Supplementary Table S1). Clusters of splicing events
that share similar temporal patterns of regulation were
identified by subjecting the time course data set to
affinity propagation analysis, in which the behaviors of
splicing events are compared to identify distinct clusters
that share a common pattern of regulation with a set of
‘exemplar’ events (38). Four major clusters of �10 events
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Figure 4. Motif enrichment and conservation in intronic regions flanking regulated variable regions. Pentameric motifs that are significantly enriched
(upper panel) within the flanking intronic sequences of exons exhibiting AS changes during C2C12 differentiation or conserved (lower panel) among
seven other mammalian species. Motifs were identified using a first-order Markov background model (corrected P< 0.05, motifs in italics indicate
corrected P< 0.0001). Intronic regions analyzed included the first and last 250 nt of the upstream and downstream introns, excluding the first 9 nt and
last 30 nt of the introns. Motifs matching the recognition sequences of known splicing regulators are indicted. Only motifs with significance
P< 0.05 (standard text) or P< 0.0001 (italic text) are shown in the figure. For a complete list of all enriched and conserved motifs, see
Supplementary Tables S3 and S4, respectively.
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(comprising 102 out of the 111 with �10 point change
events that were analyzed by affinity propagation) were
defined based on the timing of maximal transition and
are named based on the exemplar event that best repre-
sents the behavior of the cluster (Figure 6). Among the
four major clusters, there were 82 events that showed
increasing alternative region inclusion and 20 events that
showed increased skipping (Figure 6A). The ALS2CR2e8
cluster (10 events) exhibits an extremely early increase in
alternative region inclusion between �24 and 12 h relative
to induction of differentiation, the DTNA cluster
(30 events) exhibits an early (12–24 h) increase in inclu-
sion, while the KIF1B cluster (42 events) underwent a
late increase in alternative region inclusion between
24 and 72 h. The PHKA1 cluster (20 events) exhibited
early/continuous increased skipping. For a full list of
events and their assigned cluster see Supplementary
Table S5. In addition, two minor clusters consisting of
�8 events each (9 total) are shown in Supplementary
Figure S2.

To identify cis-regulatory elements associated with
specific splicing clusters, the four largest clusters were
analyzed for motif enrichment and conservation
(Figure 6B and Supplementary Tables S6 and S7). This
analysis provides an independent assessment of motifs
associated with temporal patterns that can be compared
to the regression analysis presented in Figure 5. TIA and
hnRNP-L motifs were significantly enriched within the
upstream intronic regions of events in the KIF1B
cluster, while CELF, FOX and hnRNP-L motifs were sig-
nificantly enriched in the DTNA (early increase) cluster.
Interestingly, hnRNP-L motifs were identified in the late
as well as the early cluster suggesting the potential involve-
ment in different temporal events as components of

combinatorial regulation (see Discussion). Conservation
analysis of different clusters identified significantly
conserved FOX motifs within the proximal downstream
intronic regions of both the KIF1B (late increase) and
DTNA (early increase) clusters. These data, in addition
to the regression analysis described earlier, strongly
suggest a role for FOX, CELF and hnRNP L proteins
in the regulation of AS transitions during myogenic dif-
ferentiation that is specific with regard to binding site
location and timing of activity.

Several splicing factors undergo different temporal
transitions during myogenic differentiation

We performed western blot analysis on nuclear and cyto-
plasmic fractions during a time course of C2C12 differen-
tiation to assess the steady-state nuclear abundance of
splicing regulators during muscle differentiation
(Figure 7). Of particular interest were those regulators
for which binding sites were enriched near the variably
spliced region. The protein expression levels of CELF,
FOX, hnRNP L and MBNL family members were
examined during C2C12 differentiation. All western
blots shown in Figure 7 contain 30 mg of nuclear and cyto-
plasmic extracts prepared from the same differentiation
time course. Except CUGBP1 which shows small
differences, the results are representative of what was
observed in at least two independent cultures (data not
shown). TATA-Binding Protein (TBP) and GAPDH
were used to determine the purity of nuclear and cytoplas-
mic fractions, respectively. Myogenin was used as an early
marker of differentiation. It is difficult to find proteins
that show constant steady-state levels during C2C12 dif-
ferentiation, therefore, Ponceau S red staining was used to
confirm even loading.

Figure 5. Regression analysis identified enriched motifs associated with temporal splicing transitions. Regression analysis was used to identify
correlations between enriched motifs and specific temporal patterns of splicing transitions. The enrichment of each motif within the various
intronic regions was regressed against the magnitude of each splicing transition (% of total change) at �24, 0, 12, 24, 48, 72 and 120 h relative
to differentiation induction. Green denotes positive correlations (motif associated with increased inclusion of alternative region during differenti-
ation); red denotes inverse correlations (decreased inclusion of alternative region during differentiation). Early (before 24 h), late (after 24 h) and
continuous refers to period in the differentiation time course to which a given motif is most strongly correlated. For a full display of all regression
analysis heatmap data see Supplementary Figure S1.
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We found that several splicing regulators undergo
dramatic changes in nuclear steady-state levels that correl-
ate with different temporal clusters of splicing transitions.
Factors showing early transitions (within the first 24 h)
include all three MBNL family members and hnRNP C.
MBNL1 shows a particularly dramatic increase of a

doublet at �42 kDa between 0 and 24 h as well as a
weaker �32 kDa band that decreases during differenti-
ation. Both MBNL2 and MBNL3 undergo changes in
nuclear abundance as well as nuclear and cytoplasmic dis-
tribution early in differentiation, with nuclear protein first
detectable at 12 h. Five proteins (hnRNP L, CUGBP1,
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Figure 6. Clusters of splicing transitions with similar temporal patterns exhibit enrichment of specific motifs. Splicing transitions that share similar
temporal patterns were grouped together in clusters using affinity propagation analysis. Each cluster contains a single ‘exemplar’ event (red), which
typifies the temporal behavior of that cluster. The remaining events in each cluster are plotted in various shades of gray, where darker gray represents
a larger maximum difference in inclusion level across all time points. (A) Four major clusters (n � 10) representing 102 out of 111 events analyzed by
affinity propagation analysis. A total of six clusters were identified in all; the two remaining contain �8 events and are shown in Supplementary
Figure S2. (B) Motif enrichment and conservation analysis identical to that described in Figure 4A was performed on the four clusters shown in
Figure 5A. Significantly enriched (corrected P< 0.05, italics indicate corrected P < 0.0001) motifs are shown. Motifs matching the recognition
sequences of known splicing regulators are indicted. For a list of all cluster-specific enriched motifs, see Supplementary Table S5. For a full list of all
cluster specific enrichment and conservation date see Supplementary Tables S6 and S7, respectively.
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CUGBP2, FOX1 and PTB) showed modulation of
nuclear abundance >24 h following induction of differen-
tiation. Nuclear levels of CUGBP1 and CUGBP2 pro-
teins shown a respective slight decrease and increase
during C2C12 differentiation. FOX1 levels increased
modestly, while FOX2 protein levels remained constant
throughout differentiation and PTB decreases during
differentiation.

Overall, changes in nuclear levels of some proteins
correlated well with the preceding analyses associating
known binding motifs with specific temporal patterns.
Motifs associated with hnRNP L and PTB correlated pre-
dominantly with late changes, which is consistent with the
late changes in protein expression. It is important to note
that regulated splicing is likely to involve combinatorial
control such that expression levels of individual proteins
might be involved in but not solely determinative of
splicing patterns (see Discussion). We conclude that
several of the splicing regulators identified through
enriched/conserved binding motifs and that undergo

changes in nuclear abundance are likely to play important
roles in regulating myogenic splicing transitions.

DISCUSSION

Although there is ample evidence for extensive regulation
of AS in metazoans, there are conflicting views as to the
extent of its biological significance (18–21). By amassing a
large validated data set of AS transitions that occur in
response to myogenic differentiation, we characterized
global splicing regulation directly and in a biologically
relevant context. We found nearly 100 splicing transitions
that were robustly regulated during differentiation, most
AS events detected in both mouse and quail myoblasts
underwent conserved transitions during differentiation,
were dependent on the myogenic program, and can be
grouped into four temporal patterns, demonstrating
coordinated regulation. In addition, AS transitions
initiate prior to the appearance of the earliest transcrip-
tional markers of differentiation, indicative of links to

Figure 7. Western blot analysis shows dynamic regulation of candidate splicing factors during C2C12 differentiation. Steady-state nuclear and
cytoplasmic protein levels of MBNL, CELF, FOX, PTB, hnRNP C and hnRNP L splicing regulators during C2C12 differentiation. TBP and
GAPDH serve as nuclear and cytoplasmic markers, respectively. Ponceau S staining serves as a loading control.
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myogenic differentiation program within proliferating
myoblasts. These findings strongly support a biologically
significant role for AS as an integral component of
myogenic differentiation. This conclusion is further
supported by results from mRNA-Seq analysis
published while this manuscript was in revision,
demonstrating extensive splicing changes during C2C12
differentiation (48).
We found that more than half of the splicing transitions

detectable in the QM7 quail cell line were conserved with
mouse. This high level of conservation is particularly
striking given the 300 million years of evolution that sep-
arates mammals and birds and the fact that not only is AS
conserved, but also a regulated transition of splicing
patterns during a shared developmental process.
Genome-wide analysis using EST and full-length cDNA
databases have detected low levels of AS conservation
across species (21,49–51). However, here we find that a
high proportion of splicing transitions in myogenic differ-
entiation are conserved, consistent with previous results
(13). Previously, we identified a conserved network of
splicing transitions that occur during postnatal murine
heart development (13). It is interesting to note that 49
out of 78 (62.8%) of the splicing transitions that occur
during postnatal heart development are regulated during
C2C12 differentiation. Additionally, in both systems
splicing transitions occurred in tightly grouped temporal
waves, suggesting that the splicing regulatory programs in
myoblast differentiation and heart development at least
partially overlap. GO analysis of the regulated transcripts
in C2C12 showed a strong enrichment in molecular
function terms relating to muscle development and
function, even when compared against a muscle specific
background (Figure 1D), consistent with other muscle
splicing data sets (23,42). Additionally, several of the
regulated AS transitions we observed during C2C12 dif-
ferentiation have already been experimentally shown to be
important for normal muscle function (52–56), further
supporting the view that AS regulation is affecting
processes that are biologically significant to muscle. A
substantial subset of alternative exons that have been pre-
viously shown to be enriched in human (42) and mouse
(23) muscle were found to undergo transitions in exon
inclusion during C2C12 differentiation. Specifically, of
the 56 muscle-enriched human exons described by
Das et al., 21 (37.5%) were orthologous to exons we
observed to undergo splicing transitions during C2C12
differentiation. Consistent with our results, this study
identified enrichment of Fox and CELF-binding sites
within 200-nt downstream of muscle enriched exons.
Sugnet et al. reported 28 exons enriched in adult mouse
skeletal muscle. Of these 28 exons, 12 (42.9%) were found
to undergo regulated splicing transitions during C2C12
differentiation. However, it should be noted that both of
these studies examined adult tissues, thus it is likely that
many of the events they identified were excluded from our
study because they do not undergo regulated changes in
the level of alternative exon inclusion during C2C12 dif-
ferentiation (despite being enriched in adult muscle). It is
also important to note that we did not attempt to exhaust-
ively identify all exons that undergo changes in inclusion

levels during C2C12 differentiation, but instead our goal
was to identify a large set of robust splicing transitions
which we could then use for computational and molecular
analysis, and it is likely that many splicing transitions that
occur during C2C12 differentiation were not detected in
our study.

To determine whether the splicing transitions are
specific to the myogenic differentiation pathway or are a
general response to cell-cycle withdrawal, we included
BDM in the differentiation medium which allows induc-
tion of cell-cycle arrest but prevents progression of the
differentiation program (46). The results indicated that
most of the splicing transitions tested are dependent on
induction of the myogenic program and cannot be induced
through serum deprivation, cellular confluence and/or
cell-cycle exit alone. Time course experiments showed
that �10 splicing transitions occur largely before the
addition of differentiation media (Hour 0), suggesting
that these events are regulated by signals associated with
increasing cell density or cell-cycle exit. It is particularly
interesting that for the majority of the early events tested,
the transition initiated in proliferative cells was reversed
when myogenic differentiation was blocked by using
BDM treatment (Figure 3Cii). These results indicate the
presence of a signaling mechanism that links early
differentiation-dependent splicing transitions with compo-
nents of the myogenic program that initiate as
proliferating myoblasts become confluent.

Two independent computational analyses to identify
motifs associated with specific temporal patterns showed
that specific sequence motifs are associated with distinct
temporal splicing transition patterns. Both analyses
identified hnRNP-L motifs (ACACA) within the
proximal upstream intronic region of alternative regions
as strongly associated with an early increase in alternative
region inclusion (Figures 5 and 6B). FOX-binding motifs
were also identified in both analyses as strongly associated
with increased inclusion when located within the proximal
downstream intronic region of alternative regions. Such
concordance of two independent computational analyses
is strongly supports a position-dependent role for these
two proteins in AS regulation.

Computational analysis demonstrated that motifs
associated with known regulators of AS, including the
FOX, CELF, PTB, MBNL and hnRNP-L families of
splicing regulators, are enriched within the intronic
regions surrounding the variably spliced regions that
undergo regulation during differentiation. Many of these
enriched binding motifs are also conserved with regard to
sequence and relative location among eight mammalian
species. Regression analysis predicted that FOX-binding
upstream from alternative regions promotes skipping, and
downstream promotes inclusion, which is in agreement
with experimental evidence from other groups (57–59).
While FOX-binding sites are highly enriched near
differentiation-induced splicing events, steady-state
nuclear FOX2 levels remain relatively constant, while
FOX1 levels modestly increase very early in C2C12 differ-
entiation but remain constant thereafter (Figure 5A).
Regression analysis showed that FOX sites are most
enriched in early AS changes, suggesting that the early
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increase in FOX1 steady-state levels could account for
early AS transitions observed. However, the FOX2 tran-
script contains two exons which undergo regulated
splicing changes of >20 percentage points during C2C12
differentiation, which could alter its activity independent
of its steady-state levels, leading to another mechanism for
the regulation of FOX activity. This possibility is sup-
ported by reports that show AS in the FOX1 and FOX2
transcripts result in alterations in splicing regulatory
activity (11,60).

MBNL family members show dynamic regulation in
steady-state nuclear protein levels early in myogenic dif-
ferentiation. Considering the large proportion of validated
splicing transitions that show dramatic changes within the
first 24 h of differentiation, these data indicate that MBNL
family members are likely contributors to developmentally
regulated myogenic AS. While MBNL-binding motifs
were detected in our computational analysis, the high
stringency of the analysis combined with the relatively
high variability of MBNL-binding motifs likely led to
their under-representation. Nevertheless, MBNL-binding
motifs were still found to be significantly enriched (cor-
rected P=9.55� 10�6) in the downstream distal intronic
regions of regulated alternative region. Furthermore, the
well characterized role that MBNL family members play
in the pathogenesis of myotonic dystrophy suggest they
are important for normal muscle development (29,61).
Overall, these data demonstrate that AS during
myogenic differentiation is highly conserved, extensively
regulated and suggests that splicing regulation is
influenced by multiple regulatory factors associated with
distinct temporal clusters of splicing transitions.
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