
Digitally Augmented Sketch-planning

By

Kenneth Goulding

Bachelor of Architectural Studies
University of Cape Town

Cape Town, South Africa (1998)

Submitted to the Department of Urban Studies and Planning in partial fulfill-
ment of the requirements for the degree of

Master in City Planning
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2002

@ 2002 Kenneth Goulding, All Rights Reserved

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author
Department of Urban Studies and Planning

May, 2002

Certified by

/7/

Accepted by

OF TECHNOLOGY

LIBRARIES

Profe)' Josph Ferreira Jr.
Department of Urban Studies and Planning

Thesis Supervisor

Professor Dennis Frenchman
Chair, MCP Committee

Department of Urban Studies and Planning

9C

Abstract

Digitally Augmented Sketch-planning
by

Kenneth R. Goulding

Submitted to the Department of Urban Studies and Planning on May 16, 2002 in Partial Fulfillment of
the Requirements for the Degree of Master in City Planning.

ABSTRACT

While many aspects of the planning profession have changed radically in light of recent technological
advances, the practice of sketching plans has remained largely unaffected. There may be good reasons for
eschewing computers in the design arena such as that their use may detract from the liberty of the design
thinking process. This thesis suggests that this reluctance may be overcome by changing the practice from
one of emulation with digital tools to one of "augmentation".

In addressing a perceived need to bring computation to the design table a solution called the "digitally
augmented sketch planning environment" (DASPE) has been developed. Making use of video projection,
DASPE augments the design space with digital visualization and analysis tools and allows planners to
sketch using either conventional media or a pen stylus on a digitizing table. Plans can be sketched in the
conventional manner, then "hardened" into three dimensional computer models without the need to leave
the design space.

Thesis Supervisor: Joseph Ferreira Jr..

Title: Professor of Urban Planning and Operations Research.

Contents
2 Abstract
4 List of Figures
5 Introduction

Planners need tools to help them think 5
Introducing DASPE 6
Introduction to terms used: 8

9 The substance of digital graphics
Components 11

14 Related Work
CAD 14
GIS 14
Communication 15
3D design software 15
3D visioning systems 16
Texturing and Rendering 18
Digitally augmented workspaces 20
Tangible Interfaces 20
Sketching in 3D 22
Sketch-based interfaces 22
A Question of Progress 23

25 Design Principles
1: Match the level of input to the level of design thinking 25
2: Facilitate effective communication and maintain its intent 26
3: Add a dimension without adding complexity 28
4: The computer as butler - pervasive computing 29

30 What it means to "Digitally Augment"
33 Integration with Maya
34 DASPE

Description 34
Maya Commands Used 35

40 DASPE Tools
Construction Tools: 40
Landscape tools: 49
Visualization: 52

56 Use Case - Design for the Big Dig Corridor
66 Reflections
69 Future Work
72 Conclusion
73 References
75 Appendix A: MEL Scripts
98 Acknowledgements

List of Figures
6 Figure 1: The projector mounted in the ceiling shines through the custom ceiling tile.
6 Figure 2: The environment created with two projectors and a digitizing table.
6 Figure 3: Running a MEL script to create a human figure.
7 Figure 4: Conventional and digital media.
7 Figure 5: Drawing on the table; viewing on the table and wall.
7 Figure 6: Splitting the layout across two computer screens.
10 Figure 7: Method for circle recognition.
11 Figure 8: Three ways to represent a curve.
12 Figure 9: NURBS sphere triangulated and shaded
18 Figure 10: Using corners and edges to intelligently texture 3D vector objects
19 Figure 11: "A hidden-line plot file given the wobbly line treatment..."
20 Figure 12: Sketchy Rendering Example: The white wolf shows submissive body language.
31 Figure 13: A gestural sketching survey with a summary of the results.
35 Figure 14: Curves of varying degrees
36 Figure 15: Automation for drawing large curvilinear shapes (land-use, grass and water)
37 Figure 16: Automation for extrusions along lines (used in hedges, concrete and roads)
37 Figure 17: Bevelling a block to create different roof styles
40 Figure 18: The process for drawing building footprints.
41 Figure 19: Flow diagram for the Building Sketch Tool.
42 Figure 20: The logic used to figure out whether turning is clockwise or counter-clockwise.
43 Figure 21: Texture mapping for different land-use typologies.
44 Figure 22: Methods for setting orthogonal building orientation.
45 Figure 23: Using the Concrete Pen for paths, walls and a massing study
46 Figure 24: Cutting roads away from a paving surface to represent curbs.
47 Figure 25: Lamps and parking meters.
48 Figure 26: Different lamp styles.
48 Figure 27: The resulting roads in plan and perspective.
49 Figure 28: Making a hill with Maya's "sculpt polygons" tool
50 Figure 29: Hedges extruded to different heights.
50 Figure 30: Layering solution for representing roads, sidewalks, grass and water
51 Figure 31: Different styles of trees.
52 Figure 32: The different spatial quality when people do or don't populate the same space.
52 Figure 30: Tool options for the People Tool
54 Figure 33: Studying shadows with the solar analysis tools
55 Figure 34: The sun first becomes visible at a new point of interest.
56 Figure 35: Big Dig Corridor 'Use Case' (29 illustrations) (pp 56-65)
69 Figure 36: A proposed tool to automate FAR calculations.
69 Figure 37: Allocating square footage to buildings.
71 Figure 38: An Augmented Reality Interface for Collaborative Computing.
77 Figure 39: Menu created for edit mode of Building Sketch Tool.
78 Figure 40: Menu created for sketch mode of Building Sketch Tool.

Introduction

Planners need tools to help them think
Modem designers often reflect upon the history of design with a touch of nostalgia and a great deal of

respect. We are amazed at how technically advanced and yet ecologically sensitive old solutions to design
problems seem to be. However, this should not be surprising when one considers how much time has been
put into such solutions. In most cases, many generations were able to give thought to the same design
problem, to test it and to modify it. Importantly, the problems and the technologies available to solve them
remained the same.

Today we are faced with rapidly evolving technologies that change the way we build and use cities.
There is little time for any new technology to become "tried and tested" before we discover another.
The design demands of implementing any such new technologies should therefore be immense, and one
would expect the task of the city planner to be an impossible one. He or she cannot hope to give the same
amount of consideration to a design problem as could be given when cities and technologies evolved
more slowly. "This problem can be traced back to the institutional problem of the separation of the plan-
ning, architectural, and engineering professions where design at the human scale, no longer having a
single, powerful patron, fell between the cracks." (Miller 1988)

As a result, planning efforts will often fail in many respects (even if they succeed in others) simply be-
cause not enough thought can be given to all the necessary aspects of the design. In addition, constraints
on time and budget compound this already challenging task. One approach to this problem is to abstract
the design process (often through use of analogy) so that the task becomes manageable. In addition the
planner may employ powerful tools to help with providing quality information, visualizing the implica-
tions of decisions, and communicating the logic behind them to other planners, the clients or the public.
Such tools have, as yet, done little to enable the planner to provide design at the human scale.

A number of tools exist that are capable of assisting the planning process. However such tools are sel-
dom "pure" planning tools. Planning is a close enough cousin of architecture and engineering for planners
to use tools that were designed for those purposes. This tendency is compounded by the need for planners
to share drawings with these professions. Furthermore, the planning profession's relatively small user-
base does not encourage the creation of specific tools for planners when others will suffice.

Ultimately the use of such tools does little to improve the efficiency of the planning process. In fact it
often introduces new inefficiencies associated with producing drawings to be compatible with architects
and engineers. The production quality of a planner's output may be much improved (in the sense that the
drawings look more professional) but much subtle information that exists in hand-sketches may be lost
in the process. As a result many planners still like to produce drawings by hand, and the decision to use
computers is often based on competition with other firms in terms of what the clients expect to see.

In this context, the computer is seldom used as a design tool, and is not associated with the design
process so much as with a drawing production process. This paper looks at the need to develop computer-
based tools that more closely identify with the design needs of the planner. Hopefully, by providing new
tools that assist design thinking, visualization and communication, planners may begin to confront the
super-human task of designing the city at a human scale.

Introducina DASPE
"The planner... sees and understands only those things for which he or she can

provide expression." (Rowe, 1985)

The digitally augmented sketch planning environment (DASPE) developed for this thesis creates a con-
text in which planners may sketch their ideas using both conventional and digital media. Combining the
computer's visualization and analysis tools with the freedom to draw with pencil on paper establishes and
environment conducive to expressing and understanding design concepts.

Making DASPE

The environment is created using a ceiling mounted video projector that
projects onto a large Calcomp (Drawing Board II) digitizing table below.
The projector and digitizer are calibrated to ensure that input and display
are collocated. This is done by simply projecting the image of the com-
puter screen onto the table, then mapping the whole surface of the digitiz-
ing table to the whole screen. Once this is done one only has to zoom the
projection and shift the table until the projection fills the active part of the
digitizing surface exactly. Input and display will then occur in the same
place so that the digitizer may effectively be used as a large touch-screen.
A wireless pen stylus (from Calcomp) is used to sketch on the surface of
the digitizer. The stylus is pressure-sensitive and senses variable degrees of
pressure applied to its tip.

-a

Figure 1: The projector
mounted in the ceiling shines
through the custom ceiling
tile (figure 2B:5).

Figure 2: These images
show the environment
created with two projectors
(one in the ceiling (1), the
other on the wall (2)). The
Calcomp digitizing table
has been removed from its
original stand and made
to lie horizontally as a flat
table (3).

Designers and other
participants may sketch
on the table and view the
results of their creations on
the wall opposite the main
sketcher (4).

Figure 3: Running a MEL script to
create a human figure.

The Software

The software component for DASPE has been created in a program called
Maya (from Alias Wavefront). Maya is a 3D modelling and animation pack-
age used to create animated motion pictures (such as Shrek or Toy Story). It
was chosen for this interface as it comes with a powerful scripting language
called MEL (for Maya embedded language). This allows the interface to be
customized and new tools to be made so that a working prototype for a 3D
software environment can be created in far less time than would otherwise
be feasible. The image to the left shows a simple MEL script being used to
create a representation of a person by moving the vertices of a cylinder.

Conventional and Digital Media

DASPE encourages conventional drawing
media to be used alongside the digital media
on the table surface. At any point during the
design process sketchers may switch from
one medium to another or use a combination
of both.

In Design Thinking, Rowe (1985) describes
the design process for architects and planners
as one consisting of many stages and incor-
porating a variety of design heuristics. This
process is not linear and may require many Figure 4: Above: table sur-
iterations. It is unlikely that any particular face without projection and
tool, medium, or perspective will serve the two pens - a marker used
designer's needs in all iterations and he or r sketching on the trace
she may struggle for inspiration. Providing "inking" with digital lines.
a number of media along with the ability of Above right: using a crayon
computer graphics to easily shift between to sketch an alternative on
scales helps to create an environment in rule aong wiht pen s
which the designer can maintain forward lus to input a straight line.
momentum - or step back and reflect as the
need may arise.

Vertical and Horizontal
Projecting onto the wall is desirable for two reasons: A) it is more

visible to a larger number of people and therefore necessary for larger
presentations and B) it provides the correct orientation of the perspective
and elevation views to all present.

The projector in the ceiling is used to project the plan view and tool-bars
onto the table (see image B below). Ideally (if a suitable video card ca-
pable of splitting the display across two screens were available), a second
screen would display the elevation and perspective views on the wall (see
A below) freeing up a larger workspace in plan. Currently the same view
is projected on the table and on the wall.

Figure 5: Drawing on the table;
viewing on the table and wall.

Figure 6: These images show how the layout is
designed to be split across two computer screens (A
for the wall, B for the table).

I

Introduction to terms used:
This is an attempt to clarify the distinctions made between certain similar terms as they are used in this

thesis.

Modelling: The term "modelling" will be used to describe either the simulation of real-world processes
in a computer "model" or the creation of geometry that represents a physical "model". The terms "com-
puter modelling" or "scenario modelling" are used to describe the former process while "geometric mod-
elling" or "3D modelling" describe the latter. DASPE does not make use of "scenario modelling," and the
term is used mainly in the discussion of related work.

Sketching: The term "sketch" is used to mean either a loose way of drawing lines with a pen (or pencil)
or a more abstract notion of creating a rough scenario in such a manner as to allow decisions to be readily
changed. The latter does not necessarily require lines to be drawn (neither with a pen nor any other input
device) and may instead make use of a number of points specified by a mouse pointer for input. "Sketch-
ing" on computers in this fashion is often frowned upon as being clumsy, restrictive and lacking in expres-
siveness, but may be desirable for such uses as scenario modelling or automating repetitive tasks. Indeed
the term may be broadly used anywhere that the common theme is one of transience or impermanence.

Users, Sketchers and Designers: The term "sketcher," is preferred to "user" in most cases. A "user"
is one who makes use of computer software; most software developers will discuss their software as it
pertains to a user. However the term "user" also carries connotations of identity for those involved with
computers in terms of being considered a computer "user" or a "non-user." In making the distinction
between DASPE's approach of allowing "non-users" to sketch with the interface, the term "sketcher" is
preferred in referring to all users of the interface. Sketchers may be both designers or non-designers. The
term "designer" is often used to distinguish a certain class of sketcher.

3D: The term "3D" is used to describe software and hardware that make use of three dimensional rep-
resentations of objects and scenes. Characteristic of these 3D applications is the ability to dynamically
change one's view so that the three dimensionality of such objects can be appreciated. This is necessary
because the view is seldom actually seen with "depth perception" or "in stereo" as both eyes view exactly
the same information on a flat plane (3D software most often makes use of two dimensional perspectives
when showing its 3D info). The term will be used here to refer to such 3D software and its associated
components. The term "three dimensional" on the other hand will be used to refer to truly three dimen-
sional environments such as the physical environment which 3D software is used to emulate.

Conventional Media: This term will be used to refer to media such as paper, pens, pencils, markers,
crayons, trace-paper and other paraphernalia commonly used in creating sketches and drawings. Such
media may be used alongside "digital augmentation" with digital media in the DASPE system.

Digital Augmentation: This term is used in this thesis to refer to the addition of digital media to the
existing physical environment using a projector. The use of the word "augment" in this fashion comes
from the "Augmented Reality" (or AR) tradition. AR systems seek to "augment" existing "realities" with
digital information rather than to entirely replace the existing environment (as is the practice with Virtual
Reality (or VR) systems).

The substance of digital graphics
It would seem to make sense that a sketch planning interface should make use of "sketching" as its chief

input, but the nature of computation and digital graphics has not been conducive to allowing this. Indeed
there are a number of reasons why the interfaces that planners use are so far removed from what might be
seen as ideal from the user's perspective.

1. The amount of computation required to implement a natural interface, or any interface that puts user
comfort above computer efficiency is invariably greater than an interface that focusses instead on using
each cycle of the processor most efficiently to achieve the task at hand. Since any period of unrespon-
siveness from the computer may be deemed discomforting to the user, it could be argued that efficiency
is paramount to user comfort. Only recently have processor speeds increased to the point where we can
make use of more complex computation without a noticeable delay. Perhaps the most noteworthy amongst
such improvements has been in the speed of 3D graphics rendering. 3D graphics is an inherently proces-
sor intensive task and these improvements have brought previously intolerable graphics computations
into the realm of feasibility. The demand for better 3D graphics in personal computers has been derived
largely from the 3D computer gaming industry, although many innovations have also been made by the
US Department of Defense (McCracken,1997).

2. Gestural interfaces are inherently difficult to implement from a programming perspective. This is
largely due to difference in interpretation between what the computer "sees" and what the user sees. Pro-
gramming is generally difficult to implement in any situation where there are "grey areas" or ambiguity.
Since software development decisions have typically been made by computer programmers, that which is
easiest to program often has most often won out over that which makes the most "common sense."

3. The "user base" for planning software is not great and planning is not sufficiently dissimilar to archi-
tecture and engineering that it requires its own software.

4. Computer software is more likely to be accepted if it adds to an existing process without upsetting
the status quo. A software package may offer the promise of easier production or new computations that
can inform the planning process, but developers have wisely avoided the temptation to replace existing
processes such as sketch planning.

5. We are good at learning new tools: people can learn by experimentation and, by observing the results
of an operation, may become quite comfortable with using nonsensical gestures to communicate with the
computer. For example, one thinks nothing of drawing a straight line (a radius, diameter or "bounding
box" diagonal) to signal the computer to produce a circle. This is because the feedback provided shows a
circle and not a line so this can begin to seem normal. The development of gestural interfaces has there-
fore not been essential in enabling drawing to be done on a computer.

6. Despite all the advances in technology, human cognition remains far superior to electronic computa-
tion at such processes as visual pattern recognition. It is therefore difficult to make the computer behave
as a useful and seemingly intelligent entity where pattern recognition is involved. Computers have sensi-
bly been employed in the realm of unambiguous and repetitive tasks that they may do far more accurately
and efficiently than humans. However, since computer interfaces must involve communication between
humans and computers, and since their use has extended beyond simple, unfuzzy graphics tasks, it will
often be frustrating for the user if the computer does not attempt some "common sensical" computations
so that it behaves as a seemingly intelligent and trustworthy entity.

There therefore exist rifts between what is computationally efficient, what is easy to implement in code,
and what is simplest and most natural for the user. Occasionally, one will encounter a method that just
happens to fulfil all three requirements at once. An example of this is the movement of the "Curiosity
Camera" in DASPE from one position to another. This is programmed by continually halving the distance
from the desired position until it is close enough to stop. This is extremely simple to compute, requires

no extra variables in the programming and has a pleasant motion that starts quickly as though pushed and
decelerates towards the point of interest as though it is coming to a halt. However, for the majority of
implementations, one has to choose between that which is easy to compute, easy to program, or easy for
the user. In order to illustrate this, it may be helpful to look at the requirements for drawing a two dimen-
sional circle in a gestural sketch interface.

By way of background for this discussion, it will be necessary to clarify the distinction between vector
and raster graphics. Raster or "bitmap" graphics are comprised of a grid of "pixels." Certain color infor-
mation is stored for each pixel so that an image may be represented by the grid. Raster graphics make use
of the same kind of logic as is used to display graphics to the user on the screen. Drawing in raster-based
applications (such as earlier versions of Adobe PhotoShop) tends to allow more free-form drawing, but
does not lend itself to accurate drawing or tweaking. Vector graphics (sometimes also known as "object
oriented" graphics) represent "graphical objects, such as lines, arcs, circles, and rectangles, with mathe-
matical formulas." (Lycos Tech Glossary) The objects used in vector graphics may contain a variety of at-
tributes that specify how they are to be represented. Other attributes may contain additional hidden infor-
mation such as GIS data. Vector objects are described in terms of a number of standard "primitives" (such
as ellipses, rectangles, lines, curves and points) from which all graphic representations will be made.

A "2D" circle is the simplest vector object that can be represented by computer graphics in terms of
the number of variables used to describe it. Any circle may be stored simply as three variables: its x
and y positions in the Cartesian plane and its radius (or r). By comparison, a line requires four variables
(xl,yl,x2,y2) while a square must require at least a specified rotation. In addition a point is effectively
simpler than a circle (it contains only x and y), but is not "renderable" except as a circle or a more com-
plex shape. This concept may seem strange to anyone who has had to draw circles with a pen and pa-
per where it is necessary to use a tool such as circle stencil or a pair of compasses in order to achieve a
consistent shape. Indeed, when drawing by hand most other shapes are easier to produce than an accurate
circle.

Drawing a circle freehand is an interesting process: it is indeed very difficult to draw a continuous line
a certain distance from a center point and ensure that it is smooth and regular. Many sketchers will draw
circles iteratively, starting with a rough circle and then refining it with each new stroke drawn. The later
strokes are often made firmer than the earlier ones so that a circular shape is most evident to the eye
and the rougher lines may be ignored. However, while the human eye may immediately recognize this
sketched form as a circle, it is not as easy for a computer to be made to do so. Indeed the implementation
of a "common sense" interface must accommodate many such situations in which the "eye" may assume
something to be obvious, but the computer may be entirely fooled unless recognition for that particular
pattern has been encoded.

For DASPE's circle recognition algorithm, I have employed Lew Hopkins method for determining a
circle (Hopkins, 2002) : it is a series of sketched points that, when
divided into six equal segments can form a "Jewish" star that has

S6 roughly equal sides (see figure 1). This works very well when one
considers how simple it is to implement computationally - but only
provided that the user finishes the circle near its start point. Many
users may however draw the multiple iterative rings described above,
or simply end the circle a little further around the circumference than
the point where it started. The Hopkins algorithm will try to divide
the line into six even parts, but unless the line is a single circular form
with a start-point near its end point, it will not be recognized as a cir-
cle. In order to accommodate all the human conceptions of something
as simple as a circle, one may need to add further logic. Perhaps the

3 4circle algorithm should watch to see when the circle can first be con-
sidered closed, mark this point and later run the algorithm looking at

Fre7:tod fthe sketched curve only up until this point. However, while this mayrecognition

ensure that all circles are recognized as circles, there is a danger that other shapes may be "recognized"
as circles too. For example a square will most often also meet the requirements of Hopkins' algorithm.
An interface that automatically converts a square into a circle will be annoying and is unlikely to earn
the user's trust and confidence. In DASPE this problem is overcome (for the most part) by checking two
things. Firstly there is an algorithm that looks for corners. Unfortunately in reality any curve drawn with a
stylus will have small kinks and since the smoothing algorithm does not successfully straighten these out,
the corner-finding algorithm will often find corners in a circle! Therefore it is also desirable to check the
average change for all angles that aren't considered part of a corner. After the corners have been removed
from a square, most other points will be straight in relation to each other. A circle on the other hand will
run up a far higher average change in angle between points, and can thus be recognized once a tolerance
is determined (through numerous trials) to separate circles and squares. However, even so, the computer
can still get confused between circles and squares or by lines that aren't supposed to represent either prim-
itive exactly. The variability between drawn strokes that to the human eye may appear unambiguous is too
large to always ensure correct interpretation.

So, rather than draw a circle in the fashion all people know by common sense it is far simpler compu-
tationally and less ambiguous to draw a circle by specifying first its center point and then dragging away
from that point to set its radius. Furthermore, since most computer graphics packages rely on mouse in-
put, it would be less accurate and slower to draw circles in the conventional fashion. It is however neces-
sary to provide a specific tool for drawing circles since a circle is really being input by drawing a line with
the mouse. In addition, it may at times be desirable to draw a circle by dragging from its edge, and many
computer programs draw circles or ellipses to fill a "bounding box". In each case, a new tool state must be
specified for each input since the mouse drag used to specify the circle looks only at two points - the start
and end of the drag operation.

Indeed, for almost all drawing tools used in conventional CAD or graphics programs, input takes the
form of a single click, series of clicks, or the start and end of a drag operation. All other intent is speci-
fied by tool selection or through keyboard input. Rarely does the software "care" what happens during the
drag operation.

A gestural interface on the other hand must rely almost entirely on what happens during that drag - not
just on the positions of all the points plotted during the drag, but also on their order and sometimes also
on the speed at which they were drawn.

Consider the popular gestural interface used on the Palm handhelds. The letters of the alphabet and a
number of other commands and symbols are all represented by the points along a drag operation. In this
case an extremely difficult problem of character recognition has been greatly simplified by the require-
ment of a compromise between what is easy for the computer and what is easy for the user. The computer
requires that the user learn a fixed way of drawing each character. Note however that "fixed" here refers
to the human perspective and a great deal of computation must still be conducted in order to decipher
those lines that are all the same thing to the human eye. This has proved to be a happy and very popular
compromise: a compact and natural input device for the user; a reliable and unambiguous set of patterns
for the computer.

Components
Lines and Curves

Circles alone would obviously not be the most efficient way to represent any two dimensional draw-
ing. Curves and lines on the other hand may be
used to represent almost any shape, especially if
they may be drawn as multiple lines and curves
used to enclose "fills." Curves and lines are both
represented by a number of points along the line or Cardinal
curve. These points are known as control vertices Figure 8: three ways to represent a curve

(or CVs). Curves are stored in the same way as lines but for a few extra control vertices used to determine
their curvature. B-spline and cardinal curves make use of one extra CV for each segment. This influ-
ences the curvature of the line either strongly (for cardinal curves) or more loosely (for B-splines). Bezier
curves use two control nodes or "handles" to describe the curve. These handles and CVs may be used to
represent any possible curve - often with fewer points than one would imagine. Many graphics programs
make use of sophisticated algorithms to represent a drawn stroke with such vector curves and some even
allow the accuracy of the representation to be tightened or loosened to create smoother curves or curves
that follow the drawn line very closely. Some programs such as Macromedia Flash will also attempt to
interpret whether or not a sketched line is intended to be straight, or whether it should result in a circle, a
square, a rectangle or some other regular shape. This may also be turned off in order to draw curves that
would otherwise be wrongly interpreted.

Triangles

In the same way that curves may be used to outline
any two dimensional form, triangles can be used to
represent any 3D geometry. In truth, triangles may
not perfectly represent a rounded object such as a
sphere, however they may be used to approximate
its form to varying degrees of accuracy. The main
reason triangles are valued for representing 3D
geometry is that a triangle's points will always lie in
the same plane No other shape shares this property,
and it allows the triangle in question to be rendered
with the appropriate amount of light for the plane
in which it lies. Seen together, all the triangles will
appear to represent a solid, shaded entity such as the
shaded spheres on the right in figure 9.

Polygons

Polygons are similar to triangles, but, as their name
would suggest, may consist of more than three sides.
Polygons are ultimately "triangulated" in order to
form triangles. This ensures that all faces of the
object then lie in a single plane so that they may be
rendered. Some software packages will take a differ-
ent approach and will prevent the creation of "non-
planar" polygons. In such a case there is no need for Figure 9: NURBS sphere triangulated and shaded
triangulation.

NURBS

NURBS stands for Non-Uniform Rational B-Spline. "[NURBS] surfaces are webs of interconnected
curves" (from Maya Documentation). In order to be rendered, NURBS surfaces must also be triangulated
in a processor intensive process. There is a trade-off between using more triangles for increased accuracy
and greater smoothness and the time it takes to create more triangles (through tesselation) and to render
them. Figure 9 shows a NURBS sphere that is represented with a web of lines on the left. Before it can be
shown as shaded (on the right) it must first be "tessellated" into a number of triangular facets.

Rendering

The term "rendering" refers to the process of generating a "bitmap" or "raster" image from the 3D vec-
tor geometry. It is most often used to refer to the final output of the 3D modelling software, but is also
used here to refer to any representation of 3D geometry on the screen. Vector geometry cannot after all be
seen unless it is "rendered" to form a bitmap image such as can be displayed on a screen. In figure 3, both

spheres would be considered rendered by this definition: the NURBS sphere as a wireframe; the shaded
polygonal sphere as both a flat shade and a wireframe together. Note that if one were to "render" this
scene as the term is used in Maya, both spheres would be shown identically by default.

Rendering Speed

Rendering is a processor intensive task. Even though processor speeds are becoming increasingly
impressive, 3D rendering remains an area in which one may very quickly observe a slow-down in sys-
tem performance. DASPE relies on real-time rendering in the model viewer within Maya. This model
viewer uses many of the "hardware rendering" techniques available on many modem video cards which
ensures that an incredibly large number of polygons may be rendered without any apparent slow-down
(this means all those polygons are being rendered at least 30 times every second). However, slow-down
may become apparent when the polygon count becomes sufficiently high, when lights are to be rendered
or especially when "depth map" shadows are projected. The main solution to speed problems is therefore
to reduce the number of polygons (or more specifically, triangles) used wherever possible and also to turn
off more processor intensive tasks such as lighting and shadows when animating the scene.

Texture maps

The term "texture map" refers to a bitmap or raster "texture" that is "mapped" onto 3D geometry. A tex-
ture is generally an image that is repeated a number of times in order to entirely cover the 3D object. For
example, an image containing horizontal and vertical lines may form a texture for a building. In DASPE
such images repeat once for every storey of the building and a number of times horizontally so that the
entire building is covered. Since one is applying a two dimensional texture onto a 3D geometry, a variety
of "projections" may be used in order to determine the 3D orientation for the texture maps used. DASPE
makes use of "cylindrical projection" for the buildings.

Maya allows texture maps to be rendered using the processing power of the graphics card. "Hardware
rendering" in this way is extremely fast and ensures that, in terms of speed, texture mapping is far prefer-
able to representing the same information with 3D geometry.

Tweaking

One of the main advantages of using vector graphics is that it is easy to make changes to a drawing by
tweaking a number of variables. For example, all line weights may be increased, or all textures changed
for the selected objects. In addition, since all objects are represented with control vertices, their form may
be altered at any point. Such small changes are known as "tweaks."

Related Work
"We shape our tools and they in turn shape us" (McLuhan, 1967)

The role of the city planner is ever-changing. This has never been more true than it is now in light of
the availability of new tools that both expedite existing processes and enable new ones that could never
before have been feasible. It will be curious to watch how the planning profession takes on new roles in
light of the new tools available. Here follows a discussion of a number of innovations that have changed
the face of planning in recent years and some that are only beginning to make their presence felt. Such a
discussion is important to establish an understanding of the technological environment in which DASPE
is designed to exist.

CAD
Most planners make use of "industry standard" drawing tools such as MicroStation and AutoCAD.

These form a small part of the broader CADD (Computer Aided Drawing and Design) field. It is a highly
innovative field, and has revolutionized the design process for many industries. However since most of
these innovations assume a product - and most often a physical 3D product, few of them are well suited
to planning. Furthermore CAD drawings tend to become too rigid, too quickly. Even though they may be
easily modified, it is often easier to start a drawing from scratch. CAD, with its promise of efficiency and
ease of modification discourages this practice.

Many newer innovations inspired by the CAD industry may do more to improve the planner's task.
Sketch interfaces such as SKETCH and ErgoDesk (discussed below) as well as speech control interfaces
that simplify the input of commands are some examples. Some CSCW (Computer Supported Cooperative
Work) applications developed for the CAD industry may also be useful to planners although the benefits
are unlikely to be as great as for other practices.

GIS
GIS is an innovation so useful to planners, that many people consider it to be a planning application

first and foremost. Geographic Information Systems were, however, initially developed for the purpose of
cartography and the practice of linking graphic elements to an attribute database is so powerful that GIS is
now employed for a broad variety of purposes.

With the right data, GIS can allow planners to make informed decisions from remote locations and with
limited time where previously they would have to visit a site, solicit information at great expense or sim-
ply guess. It should be possible to have all the information necessary for decision making literally at one's
fingertips. However since GIS was not designed for planning, and the information available has been
gathered for a variety of purposes, it is often necessary to process the information before it can be used to
assist design decisions.

Despite this requirement, it is clear that no planning support tool would be complete without a GIS
component to it. However, while I will demonstrate the use of GIS in DASPE, it will not be the focus of
this thesis and will often be employed as "vapor-ware." I have made this decision because I am confident
that high quality work is being done in the GIS field to equip planners with the tools they need. It is the
integration of these tools into a form more useful to planners in the design phase of their work that has
been lacking.

Of particular interest to this thesis is the work by Raj Singh in using GIS in the sketch planning process.
This work will be considered in more detail later, however it is worth noting here that such uses of GIS
may be still more useful when incorporated into an interface such as DASPE. This may be done in an
iterative process incorporating traditional sketch planning techniques and the deployment of such GIS
based tools as Singh's.

Another initiative of interest is the MIT City Scanning Project. Seth Teller's effort to create realistic 3D
models of the city using photography and image-mapping techniques may prove an invaluable resource
for planners. These models will provide a previously unavailable opportunity to visualize the city and
the effect of one's interventions on the experience "on the ground". Intriguingly the technique of draping
bitmaps over buildings to achieve a simplified, but convincing representation of reality is similar to that
which I propose in DASPE as a "false-reality" used to "fill in the gaps".

Communication
Portfolio Wall (Alias WaveFront 2001) is a system that, like DASPE, uses Maya and a large screen with

collocated input. However, the portfolio wall is not used for design - it is called "digital asset management
software." Its purpose is to bring a number of designers or clients up to speed on the progress of a design
- essentially replacing the pre-digital bulletin boards that served the same purpose. Users may interact
with the touch screen and view any of a selection of models from different perspectives by gesturing with
a finger. They may also attach notes to a model by writing on the screen.

As with DASPE, Portfolio Wall serves as a forum for sharing ideas and apparently aims to create
shared-understanding. The wall may be used for group discussions about a project, but one of its main ob-
jectives is that of remote collaboration. It therefore differs from DASPE which aims primarily to generate
discussion between people in the same room.

A CSCW system capitalizes upon the convenience and efficiency of computers in organizing and facili-
tating the sharing of work documents and drawings. It is becoming increasingly important when using
such impersonal systems to encourage individuals to come together and share their ideas in a physical
environment in order to ensure that shared-understanding exists. (Schrage 2000) Although DASPE is not
demonstrated as part of a greater CSCW system, it could easily be incorporated into one, and would be
the natural place for people to come together over a prototype.

3D design software
Most 3D CAD packages are primarily two dimensional drawing tools onto which a third dimension has

been added. More recently, some packages have emphasized 3D design as their focus. Perhaps the most
popular product in this niche, ArchiCAD (from Graphisoft) has been developed with the intention of
streamlining the architectural drawing process through the use of intelligent functions that can draw walls
complete with height information and "specs" from a simple line. Doors and windows may be added to
the wall with the minimum amount of user input. While demonstrations of this sort of intelligent, dedicat-
ed software never fail to impress those who have "wasted" many hours drawing the equivalent manually,
many architects complain that its intelligent functions limit the freedom of the architect to design more
interesting structures than the functions allow. Overcoming this (if it is possible at all) may often result in
frustration and inefficiency such that many of the gains of the intelligent software are negated.

Some architectural firms (particularly those who design more complex structures) therefore opt to use
less "intelligent," less dedicated applications that give them more freedom to explore their creativity with
a full array of 3D modelling tools. Such packages are far more difficult to learn, and are not closely tied
into CAD systems so that few of the efficiencies possible in integrated solutions such as ArchiCAD are
appreciated. However since they use software that was primarily designed for 3D animation (such as 3D
Studio and Maya), this allows for the creation of photo-realistic 3D fly-throughs and other animations that
set new standards for visual communication to clients.

It should also be noted that the freedom to design in 3D without the worries of maintaining a CAD
drawing simultaneously allow for far more exploration and experimentation with architectural design.
However it has been beyond the scope of most architects to learn these software packages. In addition,
it is debatable whether or not the ability to create realistic and complex 3D models with computer tools
(even once mastered) is as useful as traditional media in terms of thinking through a design. As a result,
there is generally a division of labor between those who do the design and those who create 3D models of

it for visual communication. This amounts to a separation of thinking and production. It is not necessarily
the most desirable situation, but has been the most practical given the options available.

In the particular case of Urban Planning there appear to be no dedicated tools that streamline the process
of urban design as ArchiCAD has sought to do with architectural design. However planning firms have
responded to the growing demand for visual communication by using 3D animation software, and spend
needlessly large amounts of time in order to market their designs with these tools. This thesis will seek to
create tools that streamline the planning process in the same fashion as ArchiCAD (and others) has done
for architecture. However, at the same time it seeks to address the issue of flexibility that is manifest in an
over-simplified program such as ArchiCAD by using an application (Maya) that allows those who have
mastered 3D modelling tools to use them as their expertise will allow.

3D visioning systems
"Urban simulations; that is computer generated simulations of the built
environment, are an
effective means of improving the public's participation in the planning process".
(Bulmer, 2001)

The above is Bulmer's hypothesis in a paper submitted to the online planning journal. He makes a con-
vincing argument for the potential of 3D graphics and visualization for communicating planning concepts
to clients and the public. "Simulation" is used to refer both to the creation of 3D models for visualizing
urban environments and to the use of computer models for scenario modelling. Both may be used to
improve the quality of knowledge transfer. As Schiffer (1996) purports "information technology (IT) can
help people to comprehend information, thereby delivering knowledge."

In order to capitalize on this potential, a number of commercial 3D visioning systems for cities have
recently been made available to planners. These discussed here were recently presented at the American
Planning Association Conference (2002). They are mostly focussed on representing existing conditions
from information in a database, but may also be used for design visualization by modifying the data used.
For DASPE these packages may provide an invaluable resource in terms of creating 3D context from GIS
data.

SiteBuilder 3D from MultiGen-Paradigm (www.multigen.com) uses database information to automati-
cally generate photoreal 3D environments. This may take the form of terrain data, point data for objects
such as trees and lamps and polygonal data for objects such as buildings. The program is marketed as
an extension to ESRI's ArcView. Models of buildings may make use of simple extrusions with generic
texture maps, or predefined building shapes (used mainly for houses). The package also includes software
for creating more complex 3D objects and applying texture maps created from photographs of the existing
buildings.

CommunityViz (www.communityviz.com) markets MultiGen's software along with a "Scenario Con-
structor" application that allows the user to consider visually the impacts of decisions made. In this case
the visualization may extend beyond a representation of the physical to representations of more abstract
data such as the results of a suitability analysis.

VantagePoint (www.vantagepointtechnologies.com) take a similar approach although they do not pro-
vide scenario analysis tools, and concentrate mainly on visualization. Their package, called Perspective,
allows some design to be done in a perspective view: for example, one may place a certain style of tree
at a certain point by selecting it from a menu then indicating its desired position in the view-port. Their
focus, however, seems to be on collection of data into large, comprehensive databases that include models
for every building in the region of interest to as high a degree of detail as is available. The database may
also contain temporal data so that various models may be stored to record the changes in a building over
time.

All these programs make use of very similar 3D data-representation and visualization techniques. Many
are similar to those used in DASPE, but there are also some differences.

Point data.

Most of the objects represented by point data are modelled either as a cross-form or as a head-on texture
map that always points toward the user and can never be seen edge-on. The cross method has long been
used by the makers of physical models where a simple 2D profile of an object such as a tree is cut out of
card or balsa-wood and combined with a second profile placed at 90 degrees. This ensures that the 2D
profile can never be seen edge-on without seeing the second profile face-on. The head-on method works
by continually rotating an object to face the camera although obviously this happens only in the horizontal
plane and it does not also rotate vertically to face a camera above it. This therefore works best for smaller
objects seen at eye level.

DASPE does not make use of the cross method, but instead uses Maya's modelling tools to create sim-
ple three dimensional models of trees, lamps and other objects. SiteBuilder and Perspective make use of
true 3D models only for more complex objects that are externally generated and accessed through librar-
ies. It should be noted that 3D models are not stored only as point data and may therefore have a specified
rotation so that, for example, street lamps may lean out over a street.

Polygonal Forest Objects

In SiteBuilder, trees may also be specified as polygons that represent a wooded area. Large clusters of
trees are often perceived as an edge to a space and it would be inefficient to represent them as individual
trees so large bodies of trees are instead represented as a single forest object mapped with a multiple tree
texture. This successfully describes the tree-body as an edge and represents its texture. It should be noted
that if the user is allowed to fly over the top of such a forest, it may appear odd.

DASPE deals with trees as either individual objects or as lines of trees. The scale of visualization for
which DASPE is designed does not require the sketching of trees in such large bodies as cannot be repre-
sented individually, however such techniques would be ideal for showing context around a site. There is
no tool for creating such tree bodies in DASPE. It is assumed that packages such as Multigen's would be
used to create existing site conditions from GIS data for use as a base model.

Ortho Photos and Terrain

Terrain is represented in both SiteBuilder and Perspective as a triangulated mesh onto which an ortho
photo has been draped. This is a common practice and works well for representing landscape. Cars and
other three dimensional objects, may however appear squashed onto the pavement as they are not repre-
sented by the geometry of the mesh. Furthermore, while buildings may be included in the terrain model
and the ortho photo accurately aligned such that each building is draped with the appropriate texture, there
are a number of problems associated with representing buildings this way. The most obvious is that the
facades are not represented, and appear as vertical streaks of whatever color happens to map to that edge.
This is because the ortho photo is "projected" from above. What's more, the perspective on an ortho photo
is such that the roofs of tall buildings will have shifted out of alignment with the base. In ortho photos it is
the base and not the roof that represents the actual location of a building. Therefore, the ortho-photo will
often appear to be out of alignment because the roof will appear to spill off the edges of a building extru-
sion. As a result this technique is undesirable for models that are viewed from the ground level. However
despite these shortcomings, the method is quite remarkable at realistically representing the context when
seen more broadly.

More detailed models

Areas that are intended to be viewed from the ground require more detail. This may be achieved in 3
ways: by creating all the building's components from 3D geometry, by applying a generic texture map (as
in DASPE), or by using actual photographs of the building in question and mapping these onto a basic 3D

geometry. The latter method is desirable in most cases since fairly realistic context may be quickly gener-
ated while keeping the polygon count low. MetaCreations' Canoma (www.canoma.com) was ideal for
quickly creating context from oblique aerial photographs. It is a great pity that this product is no longer
available at the time of writing, however a more expensive and more complex alternative called Photo-
Modeller (http://www.photomodeler.com) could probably be used in the same way.

MultiGen provides an application called "Model Builder" that allows textures to be mapped to models
such that they may be used in its visualizations. They have some fine demonstrations of its use, however,
this is very labor intensive and one would be unlikely to see its use in generating context for an individual
planning project. VantagePoint's solution to create comprehensive databases for an entire town may prove
a more useful resource. These models may be provided by the architects who designed the building (as
required by the town), they may be commissioned by the town, or they may be built for the planner either
in-house or as a service rendered by the company. However such an eclectic database may consist of
models that are ill-suited for use as context and are unlikely to look coherent. But there may certainly be
solutions to the problem (such as providing rough texture-mapped models as well as detailed models) and
it is encouraging that there is a perceived market for products that can provide 3D context for use by plan-
ners. DASPE is poised to capitalize on such tools.

Texturing and Rendering
DASPE makes use of very basic texturing methods to achieve a sense of scale and offer a suggestion of

what may be possible when creating automatic representation of generic building types. The results do not
satisfactorily represent buildings realistically, however recent 3D graphics research suggests a number of
ways to improve both texturing and rendering. One solution discussed here looks at a method for intel-
ligently rendering a 3D form based on its vector information rather than simply projecting textures at it.
An alternative solution may be not so much to automate the construction of a building from a sketch as to
present the sketch in a style more appropriate to the level of thought put into it.

Julie Dorsey's work on Cellular Texturing for Architectural Components (Dorsey 2001) may also
provide insights into how best to texture map an entire building with a far better degree of realism. While
it would be unnecessary (and undesirable) to achieve the level of detail that Dorsey's work allows, the
same ordering of texturing operations that starts with corners, then makes edges and finally fills in sur-
faces would ensure that texture maps do not flow around corners. In addition, edges of buildings could be
differentiated with a different material to achieve a more interesting and realistic appearance (figure 10
shows how recognizing corners and edges allows Dorsey's software to intelligently render the stone-work
pattern based on a certain logic for stone-work). As well as respecting corners and edges, it may also be
desirable to have a center of interest node that could be moved around the perimeter of the building. Early
experiments with this technique suggest that it could be implemented fairly easily in Maya by creating a
"curve on surface" through "projecting" a curve onto the building facade. When moved, this curve will
run around the sides of the
building only. The center of Fi ure 10: usin corners and ed es to intelli enti texture 3D vector obects
interest would specify the lo-
cation of the building's main
entrance and may also invoke
a different facade representa-
tion at that point. It is beyond
the scope of this thesis, but
the potential of a cellular
based texturing system for
creating different building ty-
pographies holds a great deal
of promise for the success of
this first solution.

In the second solution, the goal would be to produce a live 3D rendering that looks and feels like a loose
perspective sketch. This solution would rely on the ability of the human eye to interpret loose lines and
their intent, and would avoid the fact that it may be bothered by any imperfections exposed in an attempt
to render photorealistically.

A number of people have realized that photorealistic rendering of 3D models is not always the most ap-
propriate manner in which to present them. Non-photorealistic Rendering (NPR) is becoming an increas-
ingly popular alternative. Not only does it simplify the rendering process and increase its efficiency, but it
also allows the model to presented in a fashion that looks "sketchy." While it would be difficult to dis-
credit the power of photoreal images in communicating a proposal to clients and the public, such images
require a great deal of time and attention to produce and such quality is difficult to generate automatically.
Automatic renderings that attempt to be photoreal tend to appear "tacky," but perhaps more detrimentally,
they appear to be further resolved than they really are. It is difficult to look at a building that is rendered
with shading and a texture map and think of it as "just a sketch."

In realizing the importance of representing "sketch" models as sketches (or even rendering more com-
plete models in a fashion that appears more natural and engaging) Richens and Schofield (1995) came up
with an architectural rendering system that would employ NPR rendering techniques. This would be done
in an interface that allowed the user to provide their own input through painting. The resulting program,
called Piranesi, "is a hybrid between a conventional paint program, and a renderer of three-dimensional
images. The interface is similar to a paint program, but the pixel planes on which it works are extended
to include a z-buffer, which defines the distance to each pixel in the scene, and a material buffer, which
defines the layer or material from which that pixel was generated." ([Online] Martin Centre CADLAB,
2002) This product has been very successful and is marketed by manufacturers of 3D software such as
Microstation or SketchUp as a solution for presenting the sterile 3D photoreal output of such applications
in a more interesting and engaging fashion.

Obviously Piranesi cannot be used to solve
DASPE's rendering dilemma as it is designed for
painting a single static view, however some of the
NPR methods used may be applied in real-time too.
Indeed some NPR methods can be extremely simple
and require little more than a degeneration of the im-
age from "hard" computer drawn lines to something
that appears more spontaneous. Figure 11 shows how
simply "wobbling" the lines of a vector drawing can
produce a sketch-like effect.

Such degenerations are computationally very easy
and this effect could certainly be achieved in a real-
time rendering, but requires randomization and may
produce undesirable motion in the lines. There are,
however, other NPR methods that do work well when
animated.

Figure 11: "a hidden-line plot file given the wobbly
line treatment using simulated charcoal effect."

source: http://www.arct.cam.ac.uk/research/cadab/irender/gallery/
wigglylinejpeg

A particularly effective demonstration of this has been employed in the AlphaWolf project at the MIT
Media Lab's Synthetic Characters Group (Tomlinson and Downie 2002). Marc Downie has rendered
the wolves with loose sketchy lines that easily convey wolves and their body language without trying
to represent them in a photorealistic manner. The static screenshots of these sketchy wolves look quite
"sketchy" (see figure 12), but one can tell they're not hand drawn and they don't match up to a real hand-
drawn sketch by an artist. However when the wolves move about or the camera flies around them in 3D,
the effect is quite remarkable. It is hoped that rendering buildings and landscape in a similar fashion for
DASPE could be just as effective - particularly for the leashed camera (see page 53) and other moving
views.

Figure 12: The white wolf shows submissive body language. This sketchy rendering is used to display 3D ge-
ometry and updates as the characters or cameras move.

source: http://web.media.mit.edu/-badger/alphaWolf/images/submitBig.gif

Digitally augmented workspaces
Many people find the "digital workspace" provided by desktop computers to be restrictive due to the

size-constraints of the screen and the separation of input and display. The metaphor of the desktop is
provided for its familiarity, but the experience of the two is not closely aligned. A digitally augmented
workspace goes beyond the metaphorical and takes the physical environment as its starting point. This is
then added to by digital inputs and displays. The digital desk that Wellner dreamed up at the Media Lab
as long ago as 1992 inspired a number of initiatives to digitally augment our work space. The utopian
"vaporware" video (Wellner 1992) produced by Wellner appears comical to today's audience in its quaint
technoromanticism. However, like any good vaporware demo, it has broadened the way we think about
interacting with computers in our day to day life. DASPE shares a number of technical initiatives with the
DigitalDesk. Most notably, it uses projection to illuminate a physical surface, which, but for the illumina-
tion and a sensing device, can be used as a normal workspace.

Tangible Interfaces
The MIT Media Lab's Tangible Media Group headed by Hiroshi Ishii has made ground-breaking use

of physical, tangible interfaces for urban design. They have made an effort to bridge the gap between
the experiences of working with tangible models and working with computer tools. Two projects are of
particular relevance to this thesis:

URP -The Urban Planning Workbench:

The "URP" interface (Underkoffler et al, 1999) tracks the position of physical models on a table surface
and can be used to project virtual shadows for any time of day and year, conduct basic wind studies, and
visualize traffic flows.

The interface has been heralded as a great success and continues to be improved. However a funda-
mental problem exists in that the physical models are simply "handles" for digital models. If you make a

change to the physical model, you have to make changes separately to the digital model, and vice versa.
Efforts to address this issue with "stackables" have been disbanded, and in any case, it is debatable how
much design freedom they would allow. As things stand with this interface, one is required to build a
computer model to match a physical one or vice versa. The result is that only placement of buildings can
be looked at using the "tangible" advantages of this interface. Placement is often not the most important
solution to either wind or shadow problems.

Shadow-projection is perhaps the most useful analysis function provided by this interface. The wind and
traffic simulations are more simplistic and better for visualization and communication rather than actual
analysis. Note also that unlike Maya's depth-mapped shadows, all shadows in URP are currently projected
as though they fall on the ground - they do not respect the 3D geometry where they fall.

However despite such limitations, URP has proved to be an exceptionally popular means of providing
accessible visualization of complex planning information and to facilitate discussion around the table. Ac-
cording to Dennis Frenchman (personal communication, April 26, 2002) , the limitations imposed on the
design freedom of buildings may in fact be considered advantages in situations where lay people use URP
to express their ideas. The action of grasping and moving buildings is more basic even than sketching and
the results of one's simple actions may be immediately appreciated despite the complexity of the calcula-
tion involved. As a result participants may become involved in the discussion at a far more advanced level
than is usually possible and the quality of dialogue is much improved.

DASPE does not achieve the same level of "tangibility" in its interface, however it deals with objects on
a table in a comparable fashion - at least in the sense that it projects a digital representation of 3D objects.
In a similar way to moving URP's physical objects, DASPE's objects (be they trees, buildings, lamps or
other representations) may be dragged along the table surface with the stylus. It's certainly not the same
experience as moving a tangible mass, but has the same advantages in terms of immediately seeing the
results of complex computation in an accessible fashion.

Illuminating Clay - A 3D Tangible Interface for Landscape Analysis:

The Illuminating Clay project (Ratti et al, 2002) overcomes the digital / physical disparity inherent in
the URP interface by continually scanning the surface of the physical object in three dimensions. This al-
lows the user to modify the physical object, and see how those changes affect an algorithm such as slope,
drainage, or contours. The interface can also be used to compare the existing physical model to one saved
in memory. This allows the user to track changes made to a landscape, and even calculate the expected
costs of such a cut and fill operation.

The scanning method used by this interface lends itself well to landscape analysis because landscapes
seldom contain any significant occlusions. If a model of a building were scanned, its roof would be the
only part digitized and all details occluded under the roof would go unseen by the scanner and hence
unexpressed in the 3D model. For the purposes of planning, this may not be a serious problem (unless
the goal is realistic visualization). A larger problem is that of adding vector information to objects in this
interface.

The scanner produces purely raster information, so a building and a higher piece of ground are presented
and understood in the same way. Without having vector information for the elements in the interface one
is unable to associate any information with buildings. It may be conceivable, however to add a vector
tracking component in the future so that buildings (and their attributes) could be tracked. Combining this
with the ability to scan their size and basic shape in real-time could be extremely powerful.

There is little doubt that such a tool is extremely promising and breaks new ground in adding computer
processing to model-making. However the technology for doing this remains prohibitively expensive
despite currently being coarse (200 by 200 pixels) and slow (one scan per second and about a 0.3 second
delay before the results are displayed). It is thus unlikely to be used by urban planners in the professional
arena until the troublesome elements of cost, speed and resolution can be resolved.

Something intangible about tangible interfaces

While the goal in developing these interfaces has been to explore the potential of tangible interfaces, the
recent disbandment of URP's tracking technology has disabled the tangible component of this interface.
However, despite this, people are still drawn to it which shows that it is not "tangibility" alone that is at-
tractive. Furthermore, such table interfaces featuring projection from above appear to be greatly success-
ful at engaging people and generating discussion during meetings - even when they are not actually being
used. According to Frenchman the fact that these table interfaces appear to be alive and dynamic gets
people to engage with the subject matter with far more intrigue than is usual.

However, other areas of planning require a more liberated type of input than is possible by moving
blocks or manipulating clay with one's hands. Indeed, these interfaces do not pretend that they could
replace the process of sketching plans for design thinking. Sometimes in using them I have felt the com-
pulsion to just be able to sketch something and get it out onto paper. So, while such interface as URP and
the Illuminating Clay will undoubtedly occupy a very important niche, it seems the ideal combination for
many designers would be to augment sketching with 3D modelling capabilities.

Sketching in 3D
While most CAD packages make the most of the computer's ability to draw accurately, others have real-

ized that this can be restrictive and is not conducive to designing. One 3D package makes this its focus:
SketchUp (from @last Software) is aimed at architects and enables them to sketch shapes using a mouse
or stylus and then perform basic 3D operations on them. For example drawing a chimney on top of a roof-
plane would simply require drawing a circle on the roof, selecting the enclosed "fill" and pulling it up to
the desired height using the "push-pull" tool. This is all done in a perspective view. This can often be mis-
leading as there are no depth cues other than perspective cues. Therefore attempting to move something
in the y direction by a few inches may actually be interpreted as a movement in the z direction by a few
hundred feet. One only discovers what has been done when one rotates the view. This is not a criticism of
the software, but a general problem with 3D design from a single viewpoint. This package does a reason-
able job of overcoming it and the user can learn how to avoid it. Indeed a number of new skills need to
be learned in order to understand how to construct something three-dimensional using sketched lines, but
the new skills are easily conceptualized and mastered. Unfortunately this package is let down by its poor
compatibility and very basic rendering quality.

Sketch-based interfaces

"Perhaps the best testament to the effectiveness of the pencil and paper interface
is that very few people even consider it a user interface." (Zeleznik et al 1996)

In addition, using a pencil in sketching a simple sketch can often convey more three-dimensional infor-
mation than making a 3D model using a high-powered CAD application. How do we meet the challenge
of "[blending] the essence of pencil sketching interfaces with the power of computer model representa-
tions." (Zeleznik et al 1996)

D-board:

Another vendor who has recognized the desire of architects and other designers to retain their traditional
design interface is Nemetschek. "We're giving you back your pencil" is the claim made to market their
D-board product (Nemetschek, 2002). The D-board makes use of a "pressure-sensitive flat monitor" that
is similar to Wacom's Cintiq range (and employs the same technology). The user may draw directly onto
the screen with a pressure-sensitive stylus that senses 512 levels of pressure. This is a satisfactory way of
inputting sketched information into a software package as it is relatively natural, although the slight paral-
lax error that exists and the slippery nature of the glass screen detract from this experience more than the
makers would admit. It is nevertheless the best interface currently available for computer-sketching.

Nemetschek sell the D-board as an integrated software and hardware solution. The software aims to
provide the user with tools that make the most of the interface - such as natural-media illustration tools.
They also claim to have integrated the interface into their line of CAD applications (the "Allplan" range),
however I have no way of evaluating the success of this integration. None of the Allplan online communi-
ties I approached responded to a request for details of D-board use, so I can only assume that it has not
made a great impact. Most likely this is because of its high price-tag.

Smartboard:

The Smartboard was developed by Lew Hopkins of the Department of Urban and Regional Planning,
University of Illinois at Urbana-Champaign (Hopkins et al, 2002). It too collocates input and display, but
does so on a larger scale by means of a projector and a sensing screen from SMART technologies. The in-
terface is designed to be used from any side and therefore avoids the use of conventional WIMP elements
that demand orientation to be fixed. Instead, the system makes use of gestural interpretation. The software
will distinguish between the kinds of lines that are drawn and will infer certain properties based on what
it finds. The interface is designed for use in planning with the objective of getting people to discuss and
communicate ideas around a horizontally oriented display surface. Unfortunately the technology used is
not ideal for horizontal orientation since it picks up any pressure applied to its surface as an input. This
may be particularly disruptive when using a gestural interface like the one proposed.

Sketch and ErgoDesk:

Robert Zeleznik of Brown University has taken sketch interfaces to a new level with his Sketch and Er-
godesk applications (Zeleznik et al, 1996, 1998). Like the Smartboard, and the popular PalmPilot, Sketch
makes use of gestures made with a stylus. In Zeleznik's words, "by utilizing gestural interaction, Sketch's
interface literally "disappears," enabling users to focus upon their modeling task through an unobscured
display of the 3D model." Zelezniks interface requires more sophistication than the Smartboard in that it
is used to model in 3D. In this sense it is similar in its objectives to the SketchUp software. To facilitate
the extra complication of an added dimension, Zeleznik has had to incorporate many more gestures into
his interface. The costs of this addition are that "Sketch users must at least memorize all operations, and
to be efficient, must develop sufficient skill so that most gestures are subconsciously encoded in muscle
memory." Furthermore, the more gestures that are available to the user, the more complex they must nec-
essarily be. However some innovations such as context-sensitive gestural recognition and the mapping of
more complex gestures to more seldom used commands helps simplify the problem of uniquely identify-
ing a large number of gestures.

Unlike Hopkins' system, Sketch does not rely on gestures alone, but also makes use of more convention-
al, visual GUI elements where appropriate. This is made possible by limiting operation of the interface to
one end of the board only. Another interesting innovation in this interface is the use of the non-dominant
hand for manipulating objects.

ErgoDesk is a later interface that takes many of the ideas behind Sketch further and employs far more
sophisticated virtual-reality innovations. It is designed for "3D modeling with 2D gesture lines (as in
Sketch), non-dominant hand camera control, stereoscopic model examination in 3D (using an "object-in-
hand" metaphor), stereoscopic model annotation in 3D, toolglasses and magic lens interaction"

While the primary input of this interface remains sketching in the familiar two dimensions, a number of
initiatives have been made to create sketch interfaces using 3D input devices as their primary sketch tools
(such as 3D mice or the haptic-feedback stylus known as the PHANToM). Such devices offer an entirely
different experience to the user and require the development of a number of new skills. They are unlikely
to be employed in a largely two dimensional field such as planning owing to the ease-of-use costs implicit
in adding another input dimension.

A Question of Progress

"In the name of 'progress', our official culture is striving to force the new media
to do the work of the old." (McLuhan 1967)

Many of the examples cited here are of "cutting edge" interface research, but re-considering existing
technologies and bringing them together in new ways can often be revealing and may have as its direct
goal the resolution of a particular aspect or task. This is possible simply because this is the departure-
point for the problem solving process instead of its being in a new research discovery that needs to find a
use. Many of the problems faced by planners may have digital solutions, however we should not consider
digital solutions superior purely because they are novel and 'progressive.' HCI research has certainly
been driven by the desire to improve the lives of people, but there is a disjuncture between what we want
in the interest of progress and what really improves our lives.

Furthermore, whenever one is involved in the development of new technology, it is difficult to not get
excited by the prospect of adding one component or another and to get caught up in the techno-romance
inherent in technical innovation. In the context of DASPE, having the technology take a back seat and
letting design sketching and design thinking be the main focus is difficult because it feels like a "cop-out"
- as though you're not being loyal to the current technological paradigm. However shifting the focus off
technological innovation can allow focus on the real problem to be maintained - if you're not caught at
the cutting edge, you don't have to change focus every time a new innovation occurs.

In designing an interface such as DASPE, it has been difficult to remain focussed on the goal of improv-
ing the design process of urban planners. It is too easy to become enchanted with a new innovation or
clever design solution. I have tried to counteract this tendency by coming up with four design principles
that would be used to guide all design decisions. They are presented here in order of priority.

Design Principles
1: Match the level of input to the level of design thinking

"the hand moves, the mind becomes engaged, and vice versa" (Rowe 1985)

Urban planning occupies an interesting niche in the computer-aided design field. Unlike architecture
and engineering whose tools it has shared, it is a more general practice in that many aspects of the design
remain unspecified. The use of conventional CAD interfaces for planning often involves a great dispar-
ity between the amount of thought given to the plan and the amount of work necessary to input it into the
computer.

For example, while an architect must give consideration to the facade of a building and its details and
must indicate these decisions to the CAD software, the planner will most often give no thought to this.
However, when dealing with computer drawing software, it is often necessary for the planner to input
such information in order to communicate their ideas with the appropriate degree of realism.

This thesis will explore how the computer can be used to achieve a degree of false-realism. Since so
much in a proposal or master plan is out of the planner's aesthetic control, the computer can be used to
"fill in the gaps" as architects and developers will ultimately do.

At the other end of the scale, it is possible for the computer to go too far. It may be undesirable for the
computer perform too much "intelligent" computation and automate processes that do require design
thought and input. For example, one could write an algorithm to calculate the layout of a parking-lot from
a roughly sketched form. This would be a useful tool at the point where the planner thinks of that form
as just an area of parking. However, it is quite likely that he or she will want to consider that parking lot
in more detail later. As soon as the designer is ready to move to the next level of thinking, the interface
should allow it to happen.

Sketching as a thinking tool:

"Whence did the wond'rous mystic art arise,
of painting SPEECH and speaking to the eyes.
That we by tracing magic lines are taught,
How to embody and to colour THOUGHT?"
(McLuhan 1967)

I believe McLuhan was reflecting on text as a medium in this short rhyme, but it reads with equal rel-
evance if one considers sketching to be the topic.

Technically a sketch plan should allow for little more to be expressed than basic forms and relationships
between elements. Such sketches are highly abstract, simplified and expressly two-dimensional. How-
ever with experience one may learn to use this technically limited medium to explore all the complexities
implicit in the design decisions being made.

As with written language, there are far greater depths to the lines drawn than may be immediately appar-
ent. And, like any other language, sketch-planning cannot be fully appreciated without experience of its
syntactical conventions.

Such conventions may be implied by the basic principle of a scaled down view from above, or they may
be derived synthetically. For example, a double-dotted line with long segments between has come to de-

pict a site boundary although this graphic depiction has no relationship to reality. Still other conventions,
such as contour lines, may combine arbitrary rules (such as a horizontal cut-line every two feet) with a
depiction of reality.

Backed by this broader language of plan-drawing, a sketch-plan may stand alone as a document that de-
scribes reality in an abstracted form. However, for a designer, the process of drawing a sketch-plan is an
exploration of far more than can ever be described by the plan alone. Indeed, a sketch-plan is essentially
little more than a forum used to explore one's design thinking and help it materialize.

Experience with sketch-planning may allow both the sketcher and external observers to understand what
is implied by lines drawn on the plan, and since each line is drawn while thinking about a certain design
decision, observers may begin to appreciate what the designer was concerned with.

Of course, not all design-sketching is used to materialize a plan in the mind or generate new ideas. Often
it is used merely as a tool to communicate it to others. Indeed it is common practice to separate those
plans that are used to think and those that are used to communicate.

Computer-aided drawing tools have been used mostly as a tool for the communication process rather
than the thinking process. In fact, it may be more accurate to say that they have been used for the pur-
poses of drawing production with the distant goal of communicating design thinking. Computer drawing
tools have been designed so as to make the drawing production process more efficient. The down-side to
this (even when one improves the interface to be more natural) is that one needs to constantly think about
how best to construct a drawing. Less efficient methods of drawing (such as pen on paper) create a mun-
dane task that may allow more freedom to think through a design problem.

After much debate about the topic of whether or not the computer can actually be used for design think-
ing, computer-design has carved out a very significant niche for itself in the design process. While the
computer may not be as useful for thinking about two-dimensional relationships on a plan, the visualiza-
tion capabilities of 3D software necessitate its use in thinking about complex three-dimensional design
problems. However, since such design problems are rarely encountered in the planning field, there is very
little use of such tools by planners for design-thinking.

Planners therefore rely on traditional media to sketch out their ideas, and the computer does little to as-
sist their thinking. Freehand sketching provides a great amount of freedom, but there comes a point when
one begins to feel restricted in one of two ways: either by lack of accuracy (mostly limited by a fixed
scale) or by difficulty in visualization.

It is true that planners can become experienced in using sketch plans to visualize their designs as three-
dimensional entities. Perhaps then, there is no need to make something three dimensional (be it a virtual
or physical model) in order to think about the experience of a place at the "human scale". But in reality,
how much guessing is done about the meaning of the sketch? To what extent is the planner actually com-
posing the plan as an aesthetically pleasing graphic in itself. There is certainly some correlation between
plan aesthetics and the quality of the experience provided on the ground, but to what extent is it real and
how much are we fooling ourselves? Most importantly, we should consider whether designers would
make different design decisions if their tools allowed them to view the implications of their sketches as
they would be felt on the ground.

2: Facilitate effective communication and maintain its intent
Sketching as a communications tool:

"I came to believe that the comfort and ease with which humans could express
their graphical ideas were more important than the machines ability to render
them as synthetic photographs." (Negroponte 1995, p10 4)

Drawing for communication:

A good planning interface should allow ideas to be communicated as efficiently as possible without

compromising the subtleties of what is intended. Communication is the essence of the planning task. Plan-
ners don't produce anything tangible. So, in effect their product is communication. This product may be

tangibly expressed in various media - drawings, models and (more recently) video being the most popular.

One could make that statement about a number of professions - law, architecture, even engineering.
However, in these professions the documents produced communicate very specific instructions to those
who use them. Planning documents seldom reach the same level of specificity - and even if they do, it is

understood that the planner is a "generalist" and that even specific instructions may be interpreted merely
as guidelines.

Often the planner will have little control over the end-result and what gets communicated is not a set
of instructions for the creation of a physical environment, but a vision of what it should be - most impor-
tantly it is about ensuring that a large number of people share this vision.

"Shared understanding" is critical to any task in which a number of entities play a part (Schrage 2000).
This becomes increasingly important the further down the line the communication gets. If the builders
understand the role a certain tree plays in a scheme, they may be happy to put in the effort on-site to build
around it. Similarly, "getting the public on-board" (in other words getting people to share in the vision) is
essential to the success of most plans.

"Within a generation, the singly largest use of 'new information technology'

in planning will no longer be in an exclusively professional context such as in

preparing development plans or in development control. It will be in educating

the wider community in planning matters and in engaging the community through

planning information and participation in the design process."
(Smith, 2001, cited Bullmer 2001 p.16)

Unfortunately the current practice of producing extensive hard-copy master-plans has not been condu-
cive to promoting this shared understanding to all interested parties. There is however a growing trend
to create marketing documents (and recently videos) that get people to "buy into" a master plan. While
working at Sasaki Associates, I looked at how master plans could be made accessible to the public in
a manner that made the actual content more engaging instead of simply marketing it. Using interactive
media, a master-plan was presented online in an accessible fashion. An earlier project used the internet as

a public-feedback forum - also in the interests of promoting shared-understanding.

Sketching for shared-understanding

"it takes shared space to create shared understanding." (Schrage 2000)

Sketch-plans are seldom presented to the public or other non-planners. This may be because they look
untidy and lack the aesthetic appeal of cleaner drawings, but it is also because the observers are not
familiar with the language used and cannot visualize what is implied. Other forms of sketching - such as

perspectives (that effectively communicate the "vision" from an experiential perspective) - are common
however.

"In-house" communications exploit the common language of sketch-planning to generate shared-un-
derstanding between planners and others who know the language. The advantages of sketching are that

design thinking and communication may often occur simultaneously. Indeed an interesting dynamic is

created when planners sharing the same space will break communications to think through a plan in a

sketch and then resume discussion in order to present their respective plans. If all goes well, a single plan
(often a compromise) will be decided on and accepted as the current "prototype." Once the sketches are
all considered, one sketch can be taken further in 3D to make use of the visualization and analysis tools.
This will allow the shared plan to be considered from a different perspective (quite literally) and will most
likely generate new discussions. Indeed the verbal dialogue that surrounds the process of sketching is
essential to the communication of ideas and the generation of shared understanding. The sketch may be
more useful as a forum for discussion than as a product in itself. (Schrage 2000)

Communicating vision

It is often not specific ideas for a scheme that the designer needs to communicate, but the vision that
determines those ideas. The importance of communicating a vision for a scheme does not go unappreci-
ated and firms will spend much of their presentation effort in communicating their vision. It is generally
accepted that the vision should tend towards the utopian and matters little that the project will never live
up to that vision. Utopian romanticism is, after all, one of the forces at work in making improvements to
our living environments. In a sense, planners are simply partaking in this tradition. It should also be noted
that once "sold" on a vision, the public will be more partial to accepting the "logic" presented to them.

This is important to this thesis since much of the effort made is to visualize ideas. This is quite different
from presenting a vision. When one presents a vision, one has the vision (often literally a visual image) in
one's head and sketches (or paints in watercolor as the tradition would have it) in a manner befitting the
utopian tradition. While this is a successful communications tool, it is often divorced from the real ideas
that are explored in the design. This interface is more impartial in that it does not communicate a vision so
much as it enables the user to compare schemes in a visually accessible fashion without the pretence and
bias associated with most 3D visualizations.

3: Add a dimension without adding complexity
"The ability to visualize potential modifications to the urban fabric and
experience these changes in their actual context allows planners and designers to
evaluate alternatives rapidly, in more detail, and for lower cost than through more
traditional analysis. It also makes the results of planning process visible, allowing
the public to view the proposed changes to their environment in a realistic
fashion."
(Jepson 2001, cited Bullmer 2001 p.16)

The addition of a third dimension to this drawing interface gives it great potential as a visualization tool.
What's more, it can encourage designers to consider their design implications at different scales. While a
number of "heuristics" will always be available to the designer (Rowe 1987, p85), anthropometric design
(that is design for the human scale) can be given a fighting chance by this interface. 3D software allows
the designer to make the bridge between one scale of design and another. Therefore one can draw a city
block at a broad scale in plan and immediately see the impact of its massing from the level of the street.
Indeed Rowe suggests that any single design heuristic is unlikely to provide all the necessary information
for the design process and frequent switching between heuristics is common practice (1987, p10 7).

The temptation to further allow drawing and not only visualization to be conducted in the 3D view is
great. Indeed drawing 3D objects in perspective view in a computer interface can be extremely impres-
sive. Maya allows objects to be drawn in the 3D window by choosing either a "live" object upon which
to draw or placing a drawing plane object in the scene. Moving and scaling objects may be done with 3D
handles that ensure that one always knows in what direction one is moving an object.

For those who have not tried drawing in the perspective view of a 3D graphics program, it might be
worth describing the chief problem that the interface must overcome. This is that the sketcher looks at a

two dimensional representation of a 3D scene and has no real depth cues other than those indicated by
perpective lines and the diminishing of objects of known scale. Often an attempt to move or draw some-
thing in one direction in 3D space will instead move it in another direction. Maya provides separate "han-
dles" for each dimension in order to ensure that it is always obvious what the user is intending. Unfortu-
nately this requires a number of new concepts and skills to be developed. SketchUp takes an approach
that is easier to learn but more susceptible to error: it tries to guess the plane for the stroke according to
where some axes have been set. It will also provide feedback to the user about the direction of the stroke
according to the plane. This too is easier for the user only after coming to terms with some new concepts.

For DASPE's tools the 3D view can be used to draw on the horizontal plane only. This is essentially the
same as drawing in plan, and avoids the confusion mentioned above. But this approach is discouraged
for a few reasons. One is that drawing in perspective (with or without stereo vision) may be confusing in
terms of the relationships between objects in all directions. Objects going into the perspective will look
closer together than objects with the same spacing across the perspective. So, for example, it is very diffi-
cult to draw a circle on the floor when looking in perspective. Whats more, this effect changes depending
on the focal length of the camera used. I also felt that if users were encouraged to draw in 3D they might
expect to be able to sketch in perspective in the same direct way as sketching on a piece of paper (after
all they are encouraged to do so in the plan view). Research into "projective drawing" (Tolba et al, 1999)
suggests that users could draw into the perspective in such a fashion, but it would be difficult to imple-
ment in software such as Maya and also requires some new skills to be learned.

By focussing on the plan alone, one can greatly simplify the task and reduce the need to learn confusing
concepts about 3D computer graphics. This is important if one wants to let people feel comfortable using
the software in a public arena. In addition by drawing in plan but seeing the effects in 3D, one becomes
very aware of the relationship between the two and the implications of decisions made in plan on the 3D
world.

4: The computer as butler - pervasive computing
In a world of increasing complexity, it is necessary to filter the inputs one encounters on a day to day

basis. (Milgram, 1967) Digital enthusiasts such as Negroponte insist that "digital butlers" would be able
to perform this task with the necessary intelligence (Negroponte, 1995). I find this vision steeped in the
sentiments of the technoromanticist tradition (Coyne,1999), but the concept is intriguing: the computer
becomes an entity that takes a background, but ever-present informative role. Interruptions are timeous,
courteous and select.

This thesis embodies the spirit of the "pervasive computing" revolution. The idea that rather than
work with computers, we do the work we'd like and the computers are simply present, helping as need
be. However, the full expectations of this revolution are not fulfilled here. In pervasive computing, the
computer would be aware of all the pencil-sketching going on in the room and would be able to assist that
process intelligently. One would not need to work with an interface as such at all. However the separation
of interface and the pencil-sketching as input (even if display is concurrent) acts as the first filter to tell
the butler whether or not it's assistance is wanted.

This design principle is the most ambitious given the constraints imposed by the current software and
the operating system - particularly with regards to interruptions. However, I have included it as a principle
that will be beneficial to strive towards even if the ideal is not met. In DASPE the sense that the computer
can be present when needed, but is otherwise standing by, waiting to be called could be described as
"butleresque." Having the interface serve the user in this way can do much to improve the "relationship"
between the designer and the computer.

What it means to "Digitally Augment"
Augmenting instead of emulating

This computer interface takes an unusual stance in presenting itself as something you can have at hand
and choose to use or not use. Most often when a new tool is invented for a physical process, it comple-
ments many of the existing tools instead of replacing all of them. With the computer it has been difficult
to incorporate existing drawing tools into the new medium for drawing. Instead these are emulated.

To use the computer to complement sketch-planning rather than replace and emulate it is sadly a novel
approach although it's precisely what would have happened when French-curves were invented - or any
other physical drawing tool. In this interface, if one chooses to make use of the digital augmentation, one
does so because of a desire for it to be there and not because one has to choose between using it complete-
ly or not at all. One is not forced to define oneself either as a "user" or to resign oneself to being consid-
ered a technophobic "non-user."

Using tools digitally

What does it mean to use tools digitally? While augmentation of sketching tools with computer tools in
this interface may be preferable to replacing and emulating physical tools, the computer tools used will be
subject to the usual constraints and conditions of computer tools. Perhaps the main problem with com-
puter tools is that they are abstract entities with no physical suggestion of their use. The popular solution
has been to tie them into a physical analogy. This is used to determine both the name of the tool and the
icon used to depict its function.

Such analogies are very useful in the initial stages of getting to know the software. Experimenting with
such tools (or following hints and instructions) may then give a clearer conception of how they really
function. As with learning physical tools it is sensible to learn to use it as it was intended to be used. Once
mastered it may be applied in unintended creative ways. With physical tools, however, creative uses may
be imagined simply by looking at the tool. One could pick up a hammer (never having seen one before)
and use the back end as a chisel. In the digital realm, there is little about a tool to suggest its real nature or
the creative ways it may be used in conjunction with other tools. The icon and associated analogy repre-
sents what the tool is intended to be used for, but not all it can be used for.

There is often a right way to use a tool that must be followed in order to work best within the software,
but this does not necessarily restrict freedom of design any more than the requirement that one use the
front end of a pencil for drawing and the back end for erasing. However allowing creative use of tools
in conjunction with each other presents a serious challenge for software developers since debugging and
testing requires that any possible combinations be tested against each other in order to eliminate bugs. It
is therefore much easier to build software if you limit the number of ways in which a tool can be used,
even if this detracts from the potential of the application. Hence computer interfaces usually present a
myriad of tools that are unrelated to each other and which each perform a simple, solitary function. It is
intriguing, however that some tools which perform complex computation may be framed as something
that is easy to grasp conceptually. In addition, such tools may allow many variations to be explored and
provide the user with the ability to design creatively in ways not necessarily paralleled in the physical
world. Many commonly used tools in 3D graphics packages such as "boolean operations", "extrusions"
and "lofting" fall into this category.

Gestures

The ability to interpret gestures drawn with a pen stylus can enable the creation of a far more natural
and "casual" interface than is otherwise possible. A small survey was conducted in order try to establish
whether there were any consistent patterns in gestural sketching. Such patterns would make it possible to
take some short-cuts in the implementation of gestural sketching. In conducting this small survey (of 12
participants) it was not always easy to elicit sketched information from participants without giving too

much away about what might be expected. In some cases this resulted in confusion and the observations
were not always useful. For example exercises 7 and 8 on the survey sheet (figure 13) were not useful
in communicating that the gesture was to "screw" in or out, but it was felt that using the word "screw"
would make too obvious a connection to the convention of using clockwise and counter-clockwise rota-
tion to drive screws in or out. In hindsight it may have been better to test this assumption instead of trying
to see whether sketchers would also follow the convention when drawing spirals.

1. check: 2. cross: Use one of the gestures 1-5 to 6. 7. spiral out:
do you use Flash? select each of the following

] / 1 /objects. Base your choice on I shade
what feels most natural to meet PC 6 checks
their demands. Please use a ME UP 3 circles

left- right- different gesture for each. 2 boxes 5 7
handed handed

3- shade: 4- box: 5.circle: E l crosses 8. spiral in:
are you a designer? do you use AutoCAD? gender 12 2 shades 1 shade

i 9 YES NO 2 checks [a]
E ES N S NO 5 circles
C23 boxes 5 7

9. 5 lines: 2 10.
sketch this 4 lines: 0 complete this 1__ 1
shape in the 3 lines: 1 shape by closing
space to its right 2 lines: 3 the gaps

1 line: 6

Figure 13: the survey with a summary of the results: note that the answers to the questions themselves were
not important (and are not reflected here). What was important was the manner in which each sketched gesture
was made. The numbers reflect the number of sketchers who made that gesture out of a total of 12 surveyed.

The most significant discovery from this survey was the manner in which the users drew boxes (5) and
the building footprint (9). Initially it was hoped the Building Sketch Tool would be used by drawing each
line for the footprint individually, but after the significant preference was discovered for drawing such
shapes as single lines without lifting the pen or drawing them with two such lines, it was decided that it
would be necessary to write a script that would recognize corners in a line and divide it into straight and
curved segments. This script is included in Appendix A.

Other decisions based on this survey were the decision to recognize only those crosses (2) made as two
separate strokes and to ignore those made as a single line. In addition shades (3) are recognized as a single
stroke who's drag-points are densely packed together. Separate strokes (as used by only one user) for a
shade will not be registered. All users drew circles counter-clockwise and most ended their circle a little
way down the line from the start point (as opposed to before or at the start point). The circle recognition
algorithm was therefore altered so that a circle would still be recognized if the end-point was near the
beginning of the line and not just if the sketcher finished it near the start point as was formerly the case.

While exercise 10 showed that most sketchers like to extend lines at corners with a single bent line, it
was decided that the current method of extending lines individually and as straight lines would be suf-
ficient. A better algorithm may be developed for completing corners in the future. Exercise 6 was difficult
to explain (even though much verbal direction was given in addition to the written instructions). Most
users showed no particular preference and were not convinced about their choices. The only exception to
this was in using the cross gesture to delete objects.

Scale

One of the most obvious complications of digitally-augmenting sketch plans is that sketches on paper
have a fixed scale while drawings on the computer have a variable scale. While it is no problem to fix the
scale of a computer drawing to match a hand-drawing, the experience of drawing with the computer at

a fixed scale will be inherently different from the common CAD experience in which scale is constantly
adjusted in order to draw accurately.

The ability to zoom in or zoom out easily is seen as an enormous advantage of computer drawing soft-
ware. Historically, low quality displays of limited size and processors incapable of "anti-aliasing on the
fly" have made the ability to zoom an absolute necessity in order to see what one is drawing. However
advances in display technology, processor speed and anti-aliasing techniques have brought us to the point
where we realistically work with computers at a single scale. This is important to enabling sketching with
conventional media at fixed scales.

Allowing this to happen in an interface that uses a computer alongside conventional sketching has an in-
teresting spin-off in that moving between scales becomes a simple matter. This allows one to combine the
advantages of working at a fixed scale with the ability to quickly move to a new scale once one is ready to
give greater thought and work in greater detail.

Inherent Problems with Digital Media

One of the reasons for choosing to augment sketching rather than replace, emulate and improve upon it
using a digital medium is that there are a number of problems associated with being digital for which we
may never find solutions in furthering technological progress.

Using digital media encourages certain behaviors that are not conducive to design freedom and thinking:

1. A sense of final product creation (a computer drawing or model) rather than design as the focus.

2. A sense of continuity and impermanence - computer drawings can be endlessly modified and one may
feel a compulsion to perfect them.

3. The perceived need to refine one's methods to the most efficient possible and the sense that because
you can be using better tools (lines, rectangles, extrudes) you should. Thinking about this during the de-
sign process rather than just thinking about the design may be detrimental to its quality.

Digital displays are designed to be dynamic and we expect to see their image change. It may be desir-
able at times to have a single consistent image on the screen for the duration of a meeting. Computer
media may be ill-suited for such a use owing to an associated sense of impermanence. Sometimes the
transient nature of digital displays can be undesirable.

Current limitations that may be solved technologically:

1. The decreasing, but ever present disjunction between the actions of the pen tip and the resultant lines.

2. The physical constraints of the interface in terms of size and fixed orientation.

Iterative methods with various media

When combining various media into a single interface, it makes sense to use each for its own strengths.
It may be necessary to do this at different stages in an iterative process in which the media are used
alternately and build upon each other. In my undergraduate architectural studies, I developed a method
in which I would first sketch a plan, then scan this and use a 3D package to explore the relationships of
basic three dimensional forms. In order to give further design consideration to those elements, I would
print out a number of perspective views and sketch into them. Exploring those same sketch concepts in
the 3D software would have been prohibitively complicated and frustrating. Even though the method was
cumbersome in comparison to that proposed by this interface where input and output are collocated, it
used the strengths of both sketching and 3D modelling software where they were most appropriate in the
design process.

Integration with Maya
Flexibility versus Simplicity:

When designing tools for an interface there is a trade-off between their flexibility and their ease of
learning. This is best demonstrated by "dedicated" software such as ArchiCAD where more sophisticated
modelling capabilities are intentionally sacrificed in the interests of serving the majority of uses with the
most simplicity and greatest efficiency. There should really be no limit to what one can design in a 3D
software application. However imposing such limits on freedom makes such packages more manageable
for the user - and, importantly, far less intimidating.

"Intuitive design" has come to mean design for skill-sets already developed. This means that people
should need to do the minimal amount of learning possible in order to master the interface. This is admit-
tedly a sensible approach, but one that has become cliched and is practiced too religiously. Mastery of
more difficult tools can be a rewarding learning experience, and enable far more complex and powerful
interactions with the computer. Much mastery may be self-taught - but this takes confidence and inter-
faces that encourage it are usually not "user-friendly." An interface such as Maya's is far too intimidating
for most computer users to learn without assistance.

Taming Maya:

Ideally an interface should achieve a balance between flexibility and simplicity. It should offer all the
depth and complexity you could hope to master, but also allow a layer of simple "top-level" use. This is
especially useful if a number of individuals are involved with the same design process (each may work to
his or her strengths at different levels in the software).

Maya (from Alias Wavefront) is a very powerful program in terms of its broad array of 3D modelling
tools that can be used to create just about any 3D geometry one can imagine. The interface provided,
however, reflects this breadth and is so complex as to be unusable before learning a number of new con-

cepts and gaining a lot of experience with the tools provided. Maya is acknowledged to be one of the most
difficult software packages to learn, however it is also designed with the intention of being customized
and simplified for a specific "work-flow." A C-based scripting language called MEL (for Maya Embedded
Language) is provided so that programmers can create custom tools for designers to use at a higher level
without the need to learn the program in its entirety.

Generally, the down-side to this method is that users may become too comfortable in the top-level with
which they are familiar, will not explore the software at a deeper level and may work in a needlessly inef-
ficient manner. However, from my perspective, the use of those deeper layers is not so much that of ef-

ficiency as providing the tools to complete the design as needed when the top-level fails to provide all the
necessary tools. At the top-level are dedicated tools to be used for those specific functions for which they
are designed. If there are gaps left by those tools, they may be adequately filled by more sophisticated
tools at a deeper level or new top-level tools may be written.

DASPE

Description
DASPE stands for the Digitally Augmented Sketch Planning Environment. The acronym is used to refer

to both the software and hardware used to create an environment in which planners may sketch in the
conventional fashion, while having this process "augmented" with digital information and digital tools.
The software component of DASPE is created by adapting Maya using MEL. The hardware consists of a
digitizing table and roof-mounted video projector. By projecting the image of the screen onto the digitizer
one may create the illusion of a large touch-screen. The experience is similar to using a very large version
of Wacom's LCD-backed graphics tablets (such as the Cintiq) although the quality of the DASPE display
is not as high (individual pixels can be seen) and the collocation calibration of the stylus and the display is
more prone to "getting out of sync".

It is quite feasible that future renditions of this environment will make use of a large LCD-backed
graphics tablet, however using projection has its own advantages. With information projected from above,
layers of paper, trace-paper and other paraphernalia used in producing sketch-plans may be placed on the
table without obscuring the digital display. This allows the sketcher to draw on the table in the conven-
tional fashion without worrying about the table surface and indeed giving little thought to the presence
of the computer until it is needed. Information can then be projected onto the surface in order to inform
the sketch process. Layers may be turned off or on in considering different types of data such as land-use
zoning plans, topography or vegetation coverage. (Note that producing such layers from GIS data is not
facilitated within Maya, although it may be possible to do so by creating a plug-in that allows shape-files
to be displayed).

Sketching on paper and later "digitizing" sketched information into a software package is a common
practice. There are a number of reasons why it is desirable to move the plan from "hard-copy" to "soft-
copy." In my own experience, this has been done to improve upon the drawing in terms of accuracy and
final production quality, although increasingly plans are being traced into software packages to make use
of their computer modelling and visualization capabilities.

In the same physical space, DASPE both provides information to inform the sketch-planning process
and allows the plan to be sketched directly into the computer for further visualization and analysis. Both
processes happen on the same table without moving the drawing. Instead one simply changes one's draw-
ing device from a pen that draws with ink to one that draws with digital lines. Therefore, once the planner
has sketched out a scenario, the pen stylus may be used to "solidify" it and input it into the computer. It is
hoped that this will not be a "dumb" process and that the sketcher will be making decisions important to
refining their sketch as this next stage is explored. For example a decision may be made on how far apart
the trees should be that were originally sketched as a rough squiggle. Furthermore, some objects such as
buildings may be solidified in plan to have straight lines or made to conform to an orthogonal grid (with
"ortho snap"). In addition, thought must be given to the vertical component of the buildings being drawn.
Other processes such as drawing roads, concrete and hedges make use of automation from a center-line,
and still others such as drawing water or grass may be thought of simply as a quick way to render an area
by tracing its outline. The point here is that the process of moving the drawing from a rough sketch to a
3D computer model is no longer a disparate one, but rather one comparable to tracing over one's rough
pencil sketch using a pen and ruler and coloring the refined drawing with markers. The goal is to provide
tools that are really no more complicated to use than picking up a new marker color or learning to use
compasses or French curves. Ideally one will be almost inadvertently creating a three dimensional model
in hardening the sketch plan, and thought need only be given to the added dimension when it is appropri-
ate to do so. Visualization tools may then be used to capitalize on the third dimension as one feels the
curiosity or the need to use them.

Maya Commands Used
Before describing the tools created for DASPE, it will be useful to describe all the native Maya tools

that are used and how they may be accessed from an unmodified Maya interface (referred to here as
the Maya GUI for graphic user interface). This should help to clarify for each of the tools what is be-
ing done by Maya and what has been added for DASPE. The tools are grouped according to their use in
the DASPE interface. For most tools there is both a GUI command available from a menu in Maya and
a MEL command that can be either used in a script or entered in the "command line." In describing the
tools, I will list the MEL command first, followed by the GUI location in parentheses, for example: pla-
narSrf (Modelling I Surfaces > Planar). Here "Modelling" refers to the toolbar, "Surfaces" to a menu on
that toolbar, and "Planar" to the menu item in that menu.

General use - lines and dragging: Figure 14: curves of varying
degrees

Curve: specify a curve spanning a number of points. Curves must be of a
specified "degree": degree 1 is "linear" and creates the curve as a series of
straight lines between points. The higher the degree, the smoother the curve.
Degree 3 is also known as a "b-spline" (see discussion on "Lines" under
components). Maya provides two different tools for placing curves by pick-
ing a series of points. These nay be either "edit points" (Modelling I Curves >
EP Curve Tool), or "control vertices" (Modelling I Curves > CV Curve Tool).
Curves may also be drawn freehand with a pencil tool (Modelling I Curves
> Pencil Curve Tool). These tools all make use of the same MEL command
("curve") followed by specifications of the desired degree and a list of points source: Maya 4.0 Documentation
in the Cartesian plane.

The Pencil Curve Tool would seem ideal for a sketch interface such as this. Unfortunately its usefulness
is limited by its inability to be modified or communicate with MEL scripts. There is no way to execute
commands to work while the curve is being drawn - so for example it could not be used to make the tree-
placing script that places trees along the curve while the sketcher is drawing a stroke. In order to execute
scripts on completion of a line, one has to make use of a "scriptJob" that checks continually for a selec-
tion change to indicate the completion of the line. In other words one must employ a number of work-
arounds in order to make use of the tool in customized contexts. The methods are messy and may interfere
with other scripts if not terminated properly.

For these reasons, most of the tools written for DASPE look directly at all drag points and make a curve
from those points if the tool requires it. The curve is linear (or degree 1) and its quality is not as good
because there is currently no interpretation of the points and only a basic averaging is done for smoothing
purposes. This could be improved in the future by better emulating the Pencil Curve Tool or similar tools
found in other software products.

The command used by the scripts to look at drag points is called "draggerContext." This command
allows MEL scripts to be executed at the start of the drag, at each new drag-point, at the end of the drag
operation, or any time the cursor halts during a drag. It allows a great deal of control to be achieved for
any MEL script. Especially important for a gestural interface such as DASPE is the ability to run scripts
while the mouse is being dragged. This is critical for more advanced "interpretation" as used in tools such
as the building sketch tool. Note that draggerContext is available for use as a MEL command only. One
uses it to create new "tool contexts." It is therefore not directly available through the Maya GUI although
it may be present in GUI tools.

Zoning tool, grass and water.

These tools are the only tools that make use of the Pencil Curve Tool. Shapes for land-use zones, grass
and water are characteristically drawn large and curvilinear. They may therefore take advantage of the

Figure 15: automation for drawing large curvilinear shapes (land-use, grass and water)

2

Pencil Curve Tool's smooth lines. Furthermore, it is common practice to draw larger curvilinear shapes
by leaving a small gap when one lifts one's hand. Each curve sketched is therefore automatically joined
to the previous one (see figure 15:C) using "attachCurve" (Modelling I Edit Curve >Attach Curves.) This
happens whenever a scriptJob determines that the line has been completed. In the event that the end-point
and start-point of this connected curve are within a given tolerance (D), the shape is closed using the
"close-curve" command (E).

The curve is then filled (E) by creating a planar NURBS fill with "planarSrf" (Modelling I Surfaces >
Planar). This command can be used on any number of lines (not just closed curves) provided that the lines
do touch and form a closed plane.

It was initially hoped that this method could be used for all shapes, but it proved too basic and unreliable
for sketching buildings. It does not handle intersecting lines well, corners are always slightly rounded and
"loaded" with CVs and there is no way to ensure that the building will be right-angular. The rounding and
CV clustering is most noticeable if the shape is extruded. It is therefore best used for rough, mostly curvi-
linear shapes that aren't extruded and is hence well suited to the task of drawing areas for grass, water and
land-use.

Commands used in making buildings, concrete, roads and hedges:

These tools share the characteristics of using "offsets" and "extrusions" based on the lines drawn to cre-
ate shapes that have volume and height.

Hedges, concrete and roads make use of the same method for constructing a raised, thickened stroke
along a line. A number of methods were considered in order to construct such an extruded shape. The
most obvious way to do this when making models manually in Maya would be to extrude a cross section
of the road, concrete object or hedge along the line. However, automating this to work in all situations
becomes a little more complicated because the cross-section must first be rotated to match the direction
of the line and placed at the beginning of the line. It is also necessary to close off the ends of the shape
using a planar surface otherwise a hollow tube is left. Furthermore, since roads are to be used in a boolean
operation and Maya Complete does not allow boolean operations to be performed on NURBS objects, it
became apparent that this method would not be adequate.

Instead, it seemed desirable to write a script that would convert the center-line into a polygon facet with
the appropriate width before extrusion. Figure 16 shows this process. The curve (A) is offset (B) to the
desired width on either side. The script then loops through all CVs for each line and stores this informa-
tion as a string of points (C). These points are then fed to the "polyCreateFacet" command (see below)
in order to create a single polygon facet (D). This polygon facet is then extruded (E) to form hedges,
concrete and the road object to be used in the boolean operation (see DASPE Tools: Road Tool). Hedges
and concrete objects are completed through application of a texture to this extruded shape. Hedges make

Figure 16: automation for extrusions along lines (used in hedges, concrete and roads)

1 E

6

use of a bitmap texture and use "polyAutoProjection" (Modelling I Edit Polygons > Texture > Automatic
Mapping) to achieve the correct mapping to all the various angles of the extruded form.

"offsetCurve" (Modelling I Edit Curves > Offset > Offset Curve): the process of "offsetting" is a com-
mon CAD function in which a new curve is created such that it lies a set distance from the first curve at
all points along the line. This command is used for roads, concrete and hedges to offset the centre line on
both sides (figure 16: B). For buildings it is employed to create a slightly larger footprint used to make the
lower story and roof-line. This gives a slight overhang for the eaves and allows the lower storey to wrap
around the rest of the building with a different texture map. If there was no offset for the lower storey
the renderer would attempt to render both texture maps at once resulting in an undesirable shimmering
surface.

"polyCreateFacet" (Modelling I Polygons > Create Polygon Tool): this command creates a single
polygon facet made up from a series of specified points. The order of points specified for this tool is very
important as edge-lines joining the points can cross each other.

"polyExtrudeFacet" (Modelling I Edit Polygons > Extrude Face): the command used to "extrude" a
polygon so that it becomes a solid shape with a specified depth. In the case of buildings, the extrusion
height is set such that it is linked to the roof object. When the roof-object is moved, the height of the ex-
trusion changes to match it. One cannot currently change the height of hedges and concrete objects easily
once drawn, however this function could be added simply by allowing the user to change the extrusion
height for the object (it has not yet been added as a function because there is no easy way to change the
width and one would expect to be able to change both.)

polyBevel (Modelling I Edit Polygons > Bevel): The bevel command is mostly used to "bevel" the edg-
es of a 3D solid such as a box (see figure 17). The physical equivalent would be to run a chisel or plane
down the edge of a block to give a more rounded edge - or a flat one at 45 degrees. For making roofs, the
bevel is set so that its height is equivalent to the height F
of the roof object. It therefore starts at the bottom of the rigur 7 bevelling a block to create different
object (at the edges of the roof) and cuts it back at 45
degrees in all directions. A hipped roof may be formed -
if the bevels meet at the top. For smaller buildings, the
rise of the roof is set such that the bevel will form a hip
but for larger buildings the bevel is stopped at a certain
height or it would result in an unrealistically high roof.
It is easy to created unwanted shapes with the bevel

- for example if two bevels collide they create a strange, inverted form at the pitch. In order to guard
against this, every edge of a building is checked before bevelling and the height is set such that it creates
the right bevel for the smallest span.

Texture mapping:

Maya provides a number of ways to apply texture maps to objects. A texture map is a bitmap image or
"texture" that is mapped onto the surface of any 3D geometry. There are a number of mapping options
available - for example one may apply the bitmap so that it is "draped" onto the object from a particular
direction (generally from above). This works well with flat objects, or objects viewed mainly from one
side, but with other objects it will result in long streaks on the faces that aren't in the specified plane (such
as the faces of the buildings). Another option may be to create a separate map for each face of the object
(automatic mapping - as used for hedges), this ensures that each face is mapped proportionally, but con-
nections between faces may be problematic. Cylindrical mapping (Modelling I Edit Polygons > Texture
> Cylindrical Mapping or "polyProjection -type Cylindrical") will project the map radially from a center-
point. It is best used for cylinders, or similar regular prisms, but it works well for buildings too, since it
allows windows to run in a consistent band around the building. Problems exist mainly with indented cor-
ners that run towards the center of the "cylinder" as these will appear with a significantly stretched map.
Large buildings will also exhibit stretching, but this looks more coherent since all windows are stretched
together.

Texture maps are an excellent way of increasing the apparent complexity of a model without slowing
down the rendering speed. Maya also allows an "alpha" transparency mask to be used with a texture. An
example of this can be seen in the trees where the leaves are rendered as opaque and the spaces between
as transparent. This also helps break up the rough geometry of the trees without adding any more poly-
gons.

The texture mapping aims to provide a sense of scale for the surrounding spaces. In this first rendition
of DASPE, the buildings do not aim to be realistic, however, as Steven Wilson from the planning firm
Sasaki Associates has asserted, people will be "hung up on those ugly buildings" if they do not appear
well designed. It seems that most clients or members of the public will have difficulty seeing past the poor
rendering quality. There are two ways to address this situation. The first is to write better, more intel-
ligent algorithms for creating buildings from the footprint. The second would be to present the 3D view
rendered as a sketch with loose lines and little detail, but with enough information to indicate the feeling
of the space. These options are discussed in more detail in the Related Work section under Texturing and
Rendering Methods.

Trees:

Trees make use of spheres ("polySphere") and cylinders ("polyCylinder") whose vertices are then se-
lected either individually or in groups and moved and scaled using the "move" and "scale" commands.

Cameras:

Maya allows camera objects to be placed at any specified x,y and z position. Cameras may either be
made to point towards a node placed anywhere in 3D space, or have their rotation in all axes set inde-
pendently. Cameras may be assigned to a certain model panel (or viewport). When one uses the dolly or
track tools to change a 3D view one is actually changing the position of a camera. One may set the "focal
length" of a camera in order to make it show a wider angle or appear more zoomed in. For example the
sun tool uses a 100mm zoom lens to look from the sun, but a 15mm wide angle to look at the sun so as to
show as much of the surrounding buildings as possible.

Real-time rendering

Maya is designed as a tool for creating movies with animated characters. The final "rendering" of a
scene involves many processor-intensive tasks and is time-consuming. In order that the animator may be

confident that processor time is not spent on renderings that are not what he or she was hoping for, Maya
provides a real-time view of one's model that can be made to match the rendering as closely as possible.
The real-time model viewer includes options for flat or smooth shading, mapping textures to surfaces,
basic representation of lighting, depth map shadows and a few others not used in DASPE. Most of these
features have become possible only recently owing to improvements in graphics cards. The advantage of
these "hardware renderers" is that the speed of refresh is high enough to be able to experience the model
in real-time. However the user changes the view, the representation of the model, complete with textures,
lighting and shadows can be refreshed as quickly as necessary for a smooth viewing experience.

This is a mind-boggling achievement of computer power, and it is not surprising that performance drops
off visibly when the number of polygons is substantially increased. Performance is likely to be improved
further in the future and when this happens it may be conceivable to use realistic models for every tree,
building, car and person in the city. As the time of writing, however, while performance is very impres-
sive for a large number of polygons, it is good practice to do all one can to reduce the number of polygons
particularly for repetitive objects such as trees and cars that are not the focus of attention.

DASPE Tools

Construction Tools:

1.Building Sketch Tool
This is the main building sketch tool (also referred to as the "pletch tool" as derived from "poly

sketch"). It embodies the main principles of this thesis and is the tool on which the most programming
effort was spent.

My ambition for the pletch tool was to create a tool that would allow buildings to be sketched, moved,
deleted and have their height changed all with little thought to the tool needed to do this. I have men-
tioned already my idea that efficiency is not always the most important consideration for computerized
drawing tools. Efficient methods require thought and effort to be put into deciding on the best method
rather than into design thinking. The goal of the pletch tool is to provide a single tool that can be used to
create and modify buildings with little thought to the tools used. Gestural interpretation causes less dis-
ruption than choosing a tool from a toolbar or palette and its use can become second nature: one merely
has to think about moving a building and the "select building for move" gesture is made by one's hand.

Figure 18:The process for drawing building footprints. Note how corners are found and the lines between them
are straightened if that segment is found to be mostly straight.

33

To create a building, the sketcher draws lines for each edge. Once complete, a building is automatically
popped up to the height specified and given an appearance appropriate to the selected land-use.

Choices for land-use and height are made in the tool pallette where a slider can be used to enter height
numerically without the use of a keyboard.

Figure 18 shows the steps for drawing a series of intersecting lines and curves until an enclosed shape
is completed. Completion is determined by looking at the area of a polygon made from a surface trimmed
by the lines being drawn. Maya allows a number of lines to be used to trim a planar surface that is created
to fit the "bounding box" surrounding all the lines. If the lines do not form an enclosed shape, the trimmed
surface will still exist but will be invisible until an enclosed shape is formed. Once the lines are found to
enclose a shape and the trimmed surface becomes visible, it will have an associated area value. By watch-
ing this value, the script can decide when the footprint has been completed.

If automatic land-use is selected, the outline of the footprint is checked against the land-use zones and
the appropriate land-use is applied to the building. The polygon is then extruded to the appropriate height
and the line of the footprint is offset to create a slightly larger footprint that is used to create the roof and
ground-floor. It is necessary to distinguish the ground floor from the others since this allows a separate
texture map containing doors. Furthermore land-use often differs from the lower floor to those above.
This is currently implemented only for the "residential above retail" land-use.

Figure 19: Flow diagram for the Building Sketch Tool that allows a number of processes to be selected using
gestures.

Select building for move:

A shade action (see figure 13 on page 31 for examples of shades) is made with the pen on
the building to be moved. The building is selected and the context set to Maya's move tool.
The box used to drag the building is at the point where the shade was made so that shading
to select for move and moving the object to its new position can be done with brisk, easy
movements of the pen. Clicking outside the box will return to the normal state of the building
sketch tool.

Select for raise/lower.

Circling the center of the building will select it for "raise/lower". Note that a circle may
also be used to draw a circular building. The distinction is made based on whether or not the
circle surrounds a building center (refer to figure 18).

Maya provides no tools for raising and lowering objects in the plan view. However since the interface
here is designed such that a 3D model may be created entirely in the plan view, it was necessary to come
up with a method for indicating one's intention to move up or down. On a computer screen, drawing verti-
cally can consistently mean "up" or "down", but on a flat table surface, one cannot assume that a line

drawn in a certain direction will always mean up or always mean down. This is especially true when the
surface is being used from many sides. For a multisided drawing surface such as DASPE's, there are no
directions that are the same for every user. However rotation clockwise or counter-clockwise is always
the same for sketchers from all sides. Furthermore there is a universal standard established that turning
clockwise will tighten or move in, and turning counter-clockwise will loosen or move out.

I have not seen this interpretation used before in a computer interface even though using the mouse or
pen to specify rotation is common. Rotation is most often determined by comparing the point at which
the pen is placed to a center point and rotating the object to face that point. It would have been fairly
simple to write a script that worked in a similar fashion in determining the direction in which the rotation
is changing. This would require that the pen should always be rotated around a center point (figure 20:A).
However when drawing with a pen, while it is very easy for the user to know in which direction the pen
tip is turning, the loops tend to be very small and wander across the page (Figure 20:B). This is especially
true when the eye is diverted away from the action of the pen. It was undesirable to use conventional
methods of analyzing rotation.

In order to analyze the direction and speed of turning without relying on a centerpoint, it was neces-
sary to write a script that analyses the angle between every plotted point and the previous point. It then
looks to see each time the angle passes 90 degrees from whether this represents a positive-negative (PN)
or negative-positive (NP) change. Further analysis of these positive and negative changes allows one to
decide where it is in relation to the previous change - is it above, below, left or right? This will indicate
whether the point is moving clockwise or counter-clockwise. This sounds more complex than one would
expect to decide which way the point is turning, but without a static center point, this was the best method
I could construct and it works well. More control is given to the user by using the exponential speed at
which the pen tip is moving to determine the speed of raising or lowering. The result is that it is easy to
make both large adjustments or finer ones quickly.

Figure 20: the logic used to figure out whether turning is clockwise or counter-clockwise.

conclusion:
rotation is counter-

X 1N clockwise

arc tangent of angle moves conclusion: rota-
from positive to negative tion is clockwise
arc tangent of angle moves
from negative to positive

Delete:

To delete a building one simply draws a cross through it. A cross shape will often be
formed when drawing a building footprint. As with the circle used to select for raise-low-
er, this operation will only be performed if the cross is found to lie on an existing building
(see figure 19).

Making the building:

Buildings are made from the footprint in two or three extrusions: one for the roof, one for the body, and,
if needed, one for the lower portion at the street level. The roof is bevelled to a certain height depending
on the land-use style for the building and texture maps are applied to the other portions. DASPE does not
currently allow the user to make any choices about the aesthetic of a building beyond setting its height
and choosing its land-use.

Figure 21: texture mapping for different land-use typologies

residential e
Low residential buildings sim u

of larerimsi windows. nHnigha

eachd flooselab Hhcerioffice buld

adds a "retail strip" to the base of
the building. Roofs for residential
buildings are hipped for smaller
footprints or bevelled to a set height
for larger ones.

office

Low office buildings make use
of larger windows and banding at
each floor slab. Higher office build-
ings are rendered as glass boxes.

industrial
Industrial buildings represent

the large floor to ceiling windows
that characterize this use. Lower
industrial buildings have vertical
sections (their structure is outside)
while higher buildings show more
continuous banding (their structural
elements are internalized although
floor slabs are visible.)

I

Land-use styles

The texture mapping used to represent various land-use styles is very basic. It would be a fairly simple
matter to improve the quality of the building's appearance for each style, but to really capture the essence
of land-use and create anything believable would require a great deal of investigation and is beyond the
scope of this thesis.

One basic trend in building construction that is represented is the tendency for low buildings to exter-
nalize their structure and employ solid materials such as brick or concrete in their facades whereas higher
buildings tend to use internalized structural elements and "curtain walls" for their facades.

E 2.Ortho Snap Tool
Most buildings drawn by planners are made from rectilinear shapes. It is therefore desirable to have an

"ortho-snap" function that will snap a line to a predefined angle if drawn close enough.

While most buildings are drawn with right-angles at their corners, they
are very seldom drawn pointing exactly north, east, south or west. In
order to set the angle to which the line should snap, the user must specify
the direction for one of the sides. This is done by dragging the stylus in
the desired direction. A second line will be drawn perpendicular to the
drag line through its midpoint for better visualization of the right angles.
Once drawn, the ortho angle will remain set until it is reset or turned off.
This is the method chosen for DASPE.

Another alternative that would also ensure rectilinear buildings would
be to set the ortho angle based on the first line drawn for the building.
This would have the advantage that the ortho angle would not have to be
reset for each new building if the buildings were at a variety of angles.
However, since most planning scenarios involve buildings that are regu-
larly arranged, the first method is preferred as it allows buildings to be
drawn not only with right angles at their corners, but also aligned to each
other. Ideally one would allow the user to choose which of these methods
to use, but this second method has not yet been implemented.

A third method, also not implemented, would be ideally suited to lay-
ing out suburban developments where buildings are often arranged in
circular or wavy patterns. A single line would be used to place a number
of buildings. These would be spaced evenly along the line and rotated to
match the direction of the line. The spacing between buildings could be
set, and preferably altered dynamically after the fact. This would function
very similarly to Adobe Illustrator's "scatter brush" tool or Maya's "paint
effects" tool.

Figure 22: methods for setting orthogonal building orien-
tation

("21ILM

4$0*

3.Land-use Zoning Tool
The land-use zoning tool is used to draw the land-use objects. These are used to decide the land-use for

the building sketch tool when it is set to have automatic land-use. If one is drawing a large number of
buildings over different regions of a plan, it is useful to declare land-use zones so that one does not have
to keep switching between land-uses in the palette. The tool could also be used to draw zones that have
more information than land-use alone, for example building set-backs, maximum height or FAR (see
section on Future Work). In the case of FAR, one would use this tool to draw a specific lot rather than a
broader land-use region.

One uses the land-use zoning tool by drawing either a single line whose end-point is near its start, or a
series of lines end to end. These are automatically connected as the user draws the shape. Refer to the sub-
section on "zoning tool, grass and water" under Maya Tools.

4.Concrete Pen Tool
The Concrete Pen tool can be used to

draw paths, walls or simple representa-
tions of buildings. Such basic solids are
ideal for creating context for a model
by very quickly sketching up simple
massing studies. One sets the height
and width for the Concrete Pen, then
sketches the center-line for it to follow.

The images A through C in Figure 22
show the tool being used to sketch a
rough organic form in plan (A) while
the Curiosity Camera looks at the
results of each stroke drawn (B). The
sketcher then switches to the Leashed
Camera view (C) in order to move
around the space created.

When drawing on varied topogra-
phy, the walls will be placed on the
land so that they start out at a chosen
height above the surface. The user may
choose whether the walls should then Figure 23: Using the Concrete Pen for paths, walls and a massing

study

remain level (horizontal) or should follow the land. The walls drawn in images D (plan) and E (perspec-
tive) are all drawn with the same width and height, however walls 1 and 2 are made with the "follow
land" option turned on. Level walls (as drawn in 3 and 4 with "follow land" off) are useful for creating
foundations, dam walls or buildings set into a hill. Wall 4 is drawn with 2 strokes so that the height is
reset for the second stroke whereas 3 is drawn with a single stroke and is therefore level along its entire
length. The sketch in F uses a combination of different options and size settings and shows how a rough
massing study may be quickly sketched and viewed.

5.Roads
Roads are automated from a single line. The user may set the desired width (in lanes), choose a style

for the lamps to be placed on its edges and decide which sides of the roads should feature parking lanes if
any.

This tool works well for the level of thought at which the designer thinks of the road in fairly basic
terms. In its current implementation, however this tool would be frustrating if the designer wanted to
show the roads at the level of resolution typical of the "design guidelines" documents planners are often
required to produce. However, at the sketch planning stage, this tool provides a quick and easy way to
represent the large amount of 3D geometry necessary for depicting roads..

Lamps are evenly spaced along a line offset from the center line. They are rotated so that they face
straight back towards the center-line. The lamp shapes are imported from a certain file depending on the
style of lamp chosen by the user (see figure 26). Each contains a light object that is linked to a central,
global light-intensity node. This allows all lights to be turned on as the sun sets. It is therefore possible to
get a sense of the street at night.

Figure 24: cutting roads away from a paving surface to represent curbs

Parking meters (see
figure 25) are placed
along the edge of
the road in a similar
fashion. The meters
are randomly loaded
from a selection of
files each containing
a meter as well as
a variety of parked
cars. This is a simple
way of representing
most elements in a
streetscape. It was
tempting to use some
of the realistic 3D
car shapes available
online, but in the inter-
ests of minimizing the
polygon count it was
necessary to create
new car shapes with
very few polygons.
As processor speeds
continue to improve,
it is hoped that more
realistic cars could be
used instead without
compromising the
refresh speed.

Where roads inter-
sect, it is necessary to
remove the features
at the intersection
so that these do not
appear to float in the
middle of the inter-
section. This is done
by finding the point
of intersection and
removing all features
within a radius that
relates to the width of
the road just drawn.
These objects are
placed on a hidden
trash layer so that
they may be brought
back if desired.

Figure 25: Lamps and parking meters are placed down the side of a road at a set
spacing. The meters are randomly loaded from a series of files. Parked cars, hy-
drants and people are also contained in these files and are thus randomly placed on
the edge of the road.

Figure 26: different lamp styles, A-Urban, B-Nouveau, C-Victorian

The roads themselves are cut
out of the paving surface. A grey
"plane" is revealed by the cutting
operation. This is the surface of
the road and can be seen in both
plan and perspective (see figure
27).The perception is therefore
that one is drawing with grey road
lines, although in reality a "bool-
ean" subtraction is used to cut a
positive road extrusion from the
larger paving object (figure 24).

Many other features could also
be associated with roads. For
example, in future version of
DASPE, building setbacks could
be used to force buildings to be
placed a certain distance from the
road or lotting diagrams could be
generated based on the road center
line. Indeed a number of automa-
tion features could be added to
this interface. Such automated
tools are common in CAD pack-
ages and are not the focus of this
thesis. If any thought is to be
given to a process, automating it
may be as limiting as it is liber-
ating. However it is ideal to be
able to automate a process that is
mindless and repetitive.

Figure 27: the resulting roads in plan and perspective

LandscaDe tools:

1.Water

The water tool is used in exactly the same way as the land-use zoning tool. Once the shape is complete,
the surface makes use of a "phong" shader that gives it reflectivity in the modelling view. When drawn on
existing topography, the water object will be placed such that its center lies on the land. Some parts will
be obscured beneath the surface of the land while others will hover above it. The 3D Grass tool may be
used to sculpt the land to accomodate the water and the Concrete Pen tool may be used to create a dam
wall if desired.

B 2.3D Grass
3D grass makes use of the same scripts as the water and zoning tools in order to create a colored surface,

but then takes an additional step in that the NURBS surface is converted into a polygonal mesh. The grass
may then be sculpted with Maya's "Sculpt Surfaces" tool that allows the user to "sculpt" a surface by
choosing either to push or to pull vertices when they "rub" the surface with the mouse pointer or pen. This
is useful for creating rough 3D topography such as berms or small hills.

Ideally this tool would be adapted to conform to the concept of using clockwise rotation to push down
and counter-clockwise rotation to pull out, but this would need to be implemented in Maya at the "plug-
in" level. As it stands the user must choose whether they would like to push, pull, smooth or erase from
a tool palette. The tool is automatically selected and set to "pull" whenever the user creates a new grass
object. Note that it is sometimes difficult to tell how one is affecting the topography when drawing in
plan view. Unfortunately the perspective view is only updated after the drag operation is complete and the
sculpt surfaces tool therefore works best if used directly in the perspective view. In this particular case, it
is desirable to break the rule of drawing in the plan view only, but it should be noted that this would not
be necessary if the aforementioned plug-in could be developed.

Figure 28: making a hill with Maya's "sculpt polygons" tool

ff 4.Hedges
The sketcher chooses the height and width for the hedge then draws a line for it to follow. Hedges are

an important screening element in city design. DASPE allows the user to choose between solid hedges (as
shown in figure 29) or "see-through" ones (not shown). From the leashed camera view (B) one may ap-
preciate the difference in spatial quality provided by hedges that are above one's head or below it. Hedges
will always follow the topography on which they are drawn (they are very similar to objects drawn with
the concrete pen when set to "follow land").

Layering

As shown in figure 30, roads (F) are cut out of the base (A) so that the curb-cuts may be represented on
the edges of the roads. This could also have been done using a raised sidewalk object on either side of the
road, but the latter method would not work at intersections. It may not be exactly true to life that the side-
walk level of pavement (A) should be a base object covering the entire site, but it works well since adding
grass (B, C, D) seems more natural if done as a "positive" object rather than a negative one.

Similarly, although water (E) always occurs below the land which surrounds it, it is actually drawn
slightly above any flat grass (B). This is done because water objects are contained within grass in all cases
with the exception of islands. Water must therefore be placed above the land or it will not be seen. Islands
(D) can be created by "pulling" the grass with Maya's "sculpt polygons" tool. The grassed land around
the water (C) may be sculpted in a similar fashion. It should be noted however that the water is only
slightly above the flat grassed land (B) and is perceived as being flush with it.

Hedges (G) and concrete objects
are placed on the paving level. How-
ever since they have depth they may
project through the grass or water
object and appear above them. This
works well unless the grass object
has been pulled into a hill form (C)
(see the section on Future Work
called "Capitalizing on 3D" which
discusses how this may be overcome
in future versions.) Figure 30: layering solution for representing roads, sidewalks,

grass and water

5.Trees
Trees are comprised of basic cylinders and spheres that are warped to form branches and leaves. The

sphere contains only eight divisions vertically and eight horizontally (twenty is the default for a reason-
ably smooth sphere). It is therefore extremely rough and this is only heightened by randomization of
its facets, however Maya allows texture maps to be rendered with transparency in the modelling view.
Applying a texture of leaves with a transparent background to the sphere breaks up the appearance of the
geometry so that the reduction of facets is not bothersome. While texture-maps may appear more complex
to the eye, they are very efficient to render when compared to creating the same complexity with a large
number of polygons. The advantage of this is that the sketcher can place fairly realistic trees quite liber-
ally without worrying about reducing system performance (see figure 31).

-igure 31: ditterent styles of trees

It should be noted that Maya does contain a sophisticated tool for easily creating complex organic forms
such as trees and grass from simple brush-strokes. The rendering quality for these objects in the final ren-
der is excellent. However, since these make use of a number of "tubes" each of which must be rendered
individually, Maya displays only a simple representation of them as a series of lines in the modelling
view. Since DASPE relies on this view for viewing the scene in realtime, this is unsuitable for achieving
the appropriate sense of what those trees contribute.

6.People Spray
The people spray tool allows the user to put rep-

resentations of people into the scene by drawing
a line along which they should be placed. People she"

are extremely small in the context of most urban

design projects and can barely be seen at most
scales used offered by DASPE (and commonly
used by planners). However when moving around
the scene and appreciating the spaces created, Figure 30: tool options for the People Tool
the inclusion of people is important to creating a
sense of place. It has therefore been desirable to offer the sketcher a simple means with which to populate
spaces with rough representations of people. These also serve to add a sense of scale to the model.

Since people representations might need to be numerous in order to populate a scheme, they are made
from as few polygons as possible. It has been an interesting challenge to represent a wide variety of
people with a single cylinder made from 8 segments vertically and 10 around. But nevertheless the script
used to make people will make them differently based on their gender and how active their hands and feet
should appear. Such attention to detail was deemed necessary (even though the people can barely be seen
when placed in the plan view) because one will often come very close to people when navigating a scene
with the Leashed Camera. Furthermore a number of settings are provided on the People Tool palette that
allow the "spray" of people to be controlled even though they can barely be seen whilst being sprayed.
Figure 32 shows the options for gender and activity mentioned already as well as two other options.
"Scatter" determines how far from the line the people may be randomly scattered (low values will place
all people exactly on the line. "Frequency" determines how often people should be placed along the line
(a higher frequency will result in a higher density of people.)

Figure 32: Images A and B contrast the different spatial quality when people do or don't populate the same
space. Image C shows how people's heights and genders may vary. Person 1 is female, while person 2 is
male. Note also that the people walking on the path (in C) have been made with a higher activity setting than
the people in standing by the path (in A and B).

Visualization:
One of the main advantages of building 3D models on a computer is the ability to place cameras in

places that are not easily accessible in physical models. For example one can place a camera at eye level
and move it around to any point on the plan. This allows an on the-ground experience to be represented.

In Maya's GUI, one can position the camera using the move tool and rotate it to give the desired view.
This is sufficient to achieve any static viewpoint, but in order to create a more dynamic visualization ex-
perience, it has been desirable to create new tools that are more appropriate to a sketched based interface.

I.Sketched View
The "sketched view" tools make the placing of a camera and its view point a matter of drawing strokes

with the pen. This is a natural way to gesture the desire to either "look this way" (by drawing a straight
line where one wants to look from and to) or "consider this from here" (by drawing a node followed by a
line). In the latter case, the camera aim object will be placed at the node of interest while the camera itself
will be placed at the end of the line and selected for use with the move tool. This allows one to move
around a point of interest and consider it from all angles. For an example of its use see image 8 on page
59 in the Use Case.

U 2.Leashed Camera
The leashed camera attempts to overcome the problem of specifying the camera's position and rotation

simultaneously. Usually these two actions are separated, and it is not easy to do both at once in a natural
fashion. The leashed camera takes its inspiration from the practice of using animation path curves to cre-
ate a "fly-through." In these a camera is made to move from the start to the end of the path and is most
often rotated to match the path's direction. The leashed camera basically takes this idea and attempts to
implement it in real time. As the line is being drawn, so the camera is moved along it a short distance
behind. The camera actually rotates to face the point being drawn, not the direction of the line as such, but
the experience would be very similar in both cases. This is achieved by placing a camera aim object at the
position of the stylus. Cameras will always point at their aim object so this can be used to set the camera's
rotation. All of the points drawn are stored and the camera object itself will lag a number of points behind
the aim object.

The number of lag points used depends on the velocity at which the stylus tip is determined to be mov-
ing. This is important because a large number of lag points will delay the camera's catching-up too long
when the pointer is moving fast. It therefore becomes difficult to understand the cause and effect when
looking at the perspective view. A large number of lag points are necessary however for smooth motion
when moving the stylus slowly.

The leashed camera can be used to simulate the experience of moving through any of the spaces created
and can be used for almost all on-the ground visualization requirements.

3.Analyze Sun
This tool allows one to consider the affect of the sun on a site. The URP interface (see page 20) dem-

onstrated how shadows could be dynamically projected by the computer for models on the table for any
specified time of day and year. DASPE provides similar shadow analysis capabilities and adds some
features.

1. Single slider object for whole year.

A trapezoidal shape (see figure 33, images A and D) is used to represent the daylight hours for the entire
year. Horizontal space represents time of day. Thus the narrow end represents winter and the broad end
the longer hours of summer. Each point in the shape actually represents the two times of the year when
the sun is at the same position. The horizontal line through the center represents the equinoxes in spring
and autumn. The left and right edges represent sunrise and sunset respectively. Using this shape it is really
easy to consider the path of a day at any time of year, or just as simple to consider the difference from
summer to winter for a set time of day.

2. View point of interest from
sun.

Placing a camera at the position
of the sun object allows one to
view a point of interest as the sun
would see it. Any object that can
be seen from this view would be in
sunlight, anything hidden would be
shaded at the specified time.

3. View sun from point of inter-
est.

Switching the positions of the
camera and view object allows one
to view the sun from the point of
interest. This allows one to quickly
assess the sun's impact on a par-
ticular spot at different times of day
and year.

A separate window contains the
trapezoidal shape. Dragging in this
window will place a circle at the
sun's location in the diagram and
will rotate and move the solar sys-
tem object accordingly. The point
of interest for both centricities is
set by clicking or dragging in the
plan view. Maya does not directly
allow for different operations to be
performed in different views, but
checking the window's identity as
it is clicked allows one to switch
the procedure called by the drag
command of the tool.

A "directional light" is placed
directly behind the camera and
represents the light of the sun. The
light may be used to cast depth-
map shadows that give an accurate,
but pixelated representation of
the shadows cast by the sun (see
figure 33 C and H). These shadows
may be seen in any view. Further
improvements in video card tech-
nology will hopefully improve the
resolution of the depth-map and
reduce the pixelation. Note that
the current version of Maya (4.0)

Early in the morning, the sun casts long shadows (C). Looking from the
point of interest (Cl) toward the sun, one looks straight at the tall building (B).
The sun first shines on this point during the equinoxes at around 10:20am (see
below). This information is displayed in all the GUI windows and shadows are
turned off during the drag operation (see D, E and F). Upon completion of the
drag, the shadows are displayed (H). These are true depth map shadows. They
are pixelated, but have the advantage of projecting onto buildings or topogra-
phy correctly (notice that the shadow edge at HI is closer to the building than
the shadow edge at H2 even though it represents the same edge of the roof-
line).

Once the point of interest becomes exposed to the sun it can both be seen
from the sun camera (G) and the sun can be seen from the ground (E). Learn-
ing to understand the implications of the human-centric and solar-centric
views can allow for highly sophisticated understanding of the behavior of the
sun on one's site in relation to one's design decisions. It also allows for well
informed placing of objects that depend on sunlight - for example trees or
play-grounds.

Figure 33: studying shadows with the solar analysis tools

Figure 34: the sun first becomes visible at a new point of interest

One may change one's point of interest simply by dragging in the plan view. The perspective view will change during this
drag so one can quickly see when the view becomes obscured even though the shadows are turned off during a drag. In this
diagram the sketcher has decided to analyze the conditions in the space between these buildings. The sun first shines here at
2:27pm around the equinoxes.

contains a bug that crashes the program on Microsoft Windows 2000 if depth map shadows are turned on
while dragging. Shadows are therefore turned off during a drag operation and are turned back on upon its
completion.

* 4.Curiosity Camera
Plans are inherently two dimensional so when one draws 3D objects in plan it is difficult to get a sense

of their height. One method to show height in plan is to represent it with shadows that lengthen as the
object gets taller. This is more useful for a relative sense of height as shadow length may vary according
to the direction of the light. Ideally one would like to see a perspective or isometric view of the object
being drawn, however placing the view so that one can always see what one is drawing can be tedious.
The Curiosity Camera attempts to provide such a view automatically by flying over to the position of the
newly drawn object.

This view becomes essential when using the raise/lower tool. Recall that this tool is used to change the
height of objects in the plan view using the convention of clockwise to mean down and counter-clockwise
to mean up. While one has a sense of how quickly one is changing the height of the object and of the di-
rection of this change, one needs to rely on the perspective view provided by the Curiosity Camera to get
feedback for one's actions.

a One may opt to manually choose an object in the scene in which the Curiosity Camera should
take interest. This provides a quick way of navigating the plan from one object to another and helps one
keep a sense of which objects in plan correspond to which objects in the perspective view.

*1The Curiosity Camera may be disabled if one would rather use a set view (such as one specified
with the Sketched View Tool) to assess the visual impact of creating a new intervention or changing its
height. The software will still keep track of the "object of interest" and turning the Curiosity Camera back
on will immediately cause the camera to fly over to that object.

Use Case - Design for the Big Dig Corridor

There may be many uses for a sketch planning environment such as DASPE. As argued by Bulmer
(2001) one such use would be to facilitate better communication between designers and the public or
client. The interface may be used to bridge the gap between those who understand designs shown in plan
and those who prefer to visualize them in more familiar terms. This is done through the provision of per-
spective views. The possible uses for facilitating communication and encouraging conversation that this
provides are very broad and depend greatly on the personalities involved.

Similarly, the potential for DASPE to be used to facilitate communication between groups of designers
has been discussed. However this interface may be used not just for communicating ideas and decisions,
but also for generating ideas and informing the decision making process, This use case looks at a situation
in which a designer works alone with the interface. Focussing on this situation allows for the demonstra-
tion of DASPE in its role as a design assistant, independent of its promise as a tool for communication.

This use case does not attempt to be a comprehensive demonstration of all the tools available in DASPE,
but rather tries to illustrate the use of this software from the perspective of the designer. The designer's use
of DASPE tools and traditional media are shown step by step as he/she goes about making design deci-
sions.

The Big Dig Corridor deals with the land that will be recovered once the Central Artery highway in
Boston has been successfully buried. This site has been chosen for this use case because it is relevant and
interesting to planners and also because the data for the base was readily available. The base model comes
from a larger and very comprehensive model of the city produced by Urban Data Systems. Figure 6 (in the
introduction on page 7) shows the base for this model in plan, perspective and elevation with the Customs
House highlighted in red. This kind of model is perhaps not ideal for representing context as it contains
many polygons and is not texture mapped with photographic information (refer to discussion on 3D Vi-
sioning Systems under Related Work, page 16). The base is however sufficient for this use case and Maya
handles this scale of model quite capably with only a barely perceptible reduction in general performance.

The designer will be considering a key point along the Big Dig Corridor. This is the point where the
Central Artery broke State Street's historic connection to Long Wharf. Faneuil Hall is nearby and the site
lies on the route between this popular tourist attraction and attractions on the waterfront which include the
aquarium and ferry terminal.

Christopher Columbus park also adjoins the site. This park currently features a modernist landscape by
Hideo Sasaki, but is in the process of being redesigned to be more "neighborhood friendly" (Flint 2002).
Our designer has decided that his/her design approach will look to celebrate the submersion of the Central
Artery highway and capitalize on the new views back towards the iconic Customs House. This example
demonstrates how design decisions may be made based upon analysis conducted with DASPE's visualiza-
tion tools.

Another concern that our designer will address is the separation of the waterfront from the rest of the
city. More specifically he/she is concerned with reconnecting State Street to the historic Long Wharf.
These were separated to make way for the construction of the Central Artery overpass in the early 1950s.
The designer has decided that creating a consistent street edge along State Street is the best way to cel-
ebrate this renewed connection. This may be prove to be more difficult than it appears in plan since the
design of the Marriot Long Wharf hotel on the wharf side of the overpass made no attempt to maintain
alignment with State Street. As a result, some skillful manipulation of building placement and massing
may be necessary to achieve the desired affect.

Figure 35: Big Dig Corridor 'Use Case.' This figure contains 29 images with textual annotation.

Projection and Trace
"Trace" paper can be used on the table in the

conventional fashion. The projected information
simply becomes a layer of information such as
a base map. A dry-erase marker is used as it is
easy to forget about the edges of the trace when
looking at projected information.

Context Tracing

It is common practice when using "trace pa-
per" to roughly trace context lines. This serves
to both highlight important contextual infor-
mation and ensure that the page may be easily
realigned if shifted

Design Sketching.
Designs may be sketched using a regular

marker on trace. This process is independent of
the software so any medium may be used.

Desirable View Line.
Here the designer has decided that the view

of the Customs House building (A) should
be celebrated. The central path through the
new park (B) is oriented such that it forms a
view corridor that terminates in the Customs
House. The designer does not know at this
point to what extent the tall building (C) will
obscure the view or if the Customs House is
visible from the path at all.

Drawing Trees.
In order to draw trees with DASPE, the user

simply traces his/her tree-scribbles with the
pen stylus. The tree tool will place trees along
the drawn line at a specified spacing chosen
by the designer.

Note that the trees appear faint here be-
cause the projector is "competing" with bright
neon lights. Dimming the lighting in the room
would make the projected information more
dominant.

View from ground.
Dragging the "leashed camera" down the

path will show the on-the-ground perspective
moving down the view corridor. Highlighted
in red is the Customs House tower in which
the designer is interested. At this point on the
plan, the tower is still sufficiently visible as to
provide a desirable view.

View becomes obscured.

The designer moves the lhed camera"
along the path towards the tower until he/she
decides that the view is no longer interesting.
This point is marked with a line across the path
(although in reality the designer knows only
about the one point where the camera is, not

A about all the points for that line.)

Point of Interest

In order to better determine all the points at
which theoCusths loue becomes sufficiently
obscured as to be uninteresting, the sketched
view tool is used to draw a node of interest on
the Customs House. The viewer's position may

n tbe then dragged with the stylus to any point in
--- order to look back at the tower.

node of interest

Line of obstruction

It soon becomes obvious where the line of
obstruction ies. This line may either be remem-
bered and sketched in (as shown) or it may be
desirable to run the ballpoint pen alongside the
stylus in order to draw sketched lines while
changing the view.

The designer will also notice that the customs house will seldom be obscured by trees
before the building in front obscures it. This may not have been obvious in the plan view.
Furthermore since the building in front of the customs house has been designed to face onto
a busy highway and presents an unattractive facade to this site, it may be desirable to use
methods such as these described here to place trees in such a way as to best soften or ob-
scure the facade of the building.

Zooming in
The designer has decided that the experi-

ence of the view corridor cannot be appreci-
ated without first articulating a fountain as
a node of interest. He/she zooms in on the
space to 1:30 scale (that is 1 inch on the table
represents 30 feet on the ground) and sketch-
es the fountain plan. A grid becomes visible
at this scale. Each block represents 10 feet by
10 feet.

Landscaping tools
Hedges and paths (11 & 14) are constructed

along the lines drawn. Note that the Concrete
Pen tool may be used to draw both paths and
walls (see 15). Trees (13) are placed with a sin-
gle click at their center in this case. Water and
grass (12 & 14) are drawn as a single line or a
series of lines that complete a closed shape. The
Curiosity Camera will re-center itself on each
new object drawn. Notice that the view from
this camera (shown above, 15) is also visible to
the right of the designer on the table. DASPE
is designed to be used with this view projected
much larger on a wall to one side. Not only
would this avoid obstruction by trace and other
objects on the table, but it gives all participants
a correctly oriented view regardless of where
they stand around the table.

Rough Land-use

The sketcher chooses a land-use option from
the palette then draws a series of lines head to
tail finishing close to the start of the first line.
The tolerance to register completion depends
on the scale - here 1:20. After quickly sketching
these rough land-use objects, the user chooses
to hide them in order to concentrate on the
building footprints. The land-use objects will
still be recognized later and will determine the
use of the building if land-use is set to automat-
ic for the building sketch tool.

Buildings on State St.
The designer decided to experiment with a

number of options for State Street. This first ex-
ample (alternative A) places the buildings so as
to create a consistent street edge on both sides.
Building B is stepped so as to take up the dif-
ference between the Marriot Long Wharf Hotel
(M) and building A which is aligned with the
existing building (S) on State St. The designer
does not know how this stepped back solution
will "feel" at this point but is curious to try it.

Building Sketch tool
The designer draws a number of lines with the

stylus tracing the outline drawn with the marker
Any line deemed straight is straightened (2 &
3). A line found to contain corners will have its
segments straightened if they are straight (4) or
any curved segments will be smoothed and bro-
ken into a number of smaller straight segments
(1). Once the shape is found to be complete, a
building is automatically popped up from the
footprint. Its texture map is determined by the
land-use diagram since the "automatic" option
is selected.

Raise Building
The sketcher draws a circle around the center point of the building to select it to be raised or lowered (note that the

circle shown (B 1) is purely illustrative as it does not enclose the building center which is obscured by the pen). He/she
then turns the pen-tip counter-clockwise to raise the building "out" of the page (C2). Its texture is automatically changed
to one more appropriate for a taller building. If the user goes too far he/she may lower the roof again simply by chang-
ing to a clockwise motion. The quicker or larger the turns, the faster the raising or lowering. Therefore smaller turns can
be used to fine-tune the height.

Context sensitive heights
The designer next draws in the buildings on the other side of State St. (see A & B from image 17). He/she is concerned

with creating a consistent street edge along both sides. One of the challenges provided here is that the buildings toward
the city (S) are far higher than the Marriot Hotel (M). The designer therefore decides to step down the new intervention
to ensure a smooth transition. This is not done mathematically (it would be difficult with such irregular forms) but by
constructing a perspective view and raising and lowering them until they feel right. The sketch-view tool is used to set
the perspective first towards the Marriot (A & B), then back towards the city (C & D) before raising each building.

Alternatives
Alternatives are useful to the designer both for keeping his/her options open

while designing and also as a tool for communicating decisions. In order to
illustrate the reasons for making any decision it is useful to be able to show a
number of alternatives to the decision. Furthermore presenting alternatives is
a useful way to generate conversation about the implications of each alterna-
tive shown. DASPE allows objects to be drawn on either a default layer that is
visible across all alternatives, or on any of three alternative layers (A, B or C).
Here only A and B are used.

After drawing the office buildings, the designer decides to see how they feel
in perspective. Using the leashed camera he/she moves around down the street
in both directions. Going toward the city (see view 22A) presents no problems
from the designer's perspective: the street edge is consistent and the buildings
step up comfortably. However, the designer decides that walking down to-
wards the sea (22B) feels awkward as the building steps out too far. In order to
try different options, the designer first sketches some ideas (21) then chooses
the current building 3 in alternative A. Once alternative B is selected, building
3 is no longer visible (22C). The designer sketches a new building in its place
(22D) and raises it up to a height that seems well suited to the streetscape
(22E).

Further experimentation for alternative B is done with the positioning of the
building (23 A & B).

The designer may once more move around the street with the leashed cam-
era, and may at any point switch between alternatives A and B (see 24).

The Next Iteration
Once the designer has reached a certain

level of completion with the computer
model made in DASPE, it may be desir-
able to revert to conventional media in
order to keep moving the design forward.
While DASPE makes every effort to facil-
itate natural sketching in the plan view and
to expedite the process of model creation,
it cannot compete with the freedom of a
pen or pencil when it comes to sketching
into a drawing. The solution in DASPE is
not to emulate the sketching experience
with the computer, but to augment it with
digital media.

Here the perspective view is projected
onto the table and becomes a layer of in-
formation upon which to trace one's lines.
In a sense it is no different to any other
layer of information placed on the table.
However the ease with which the designer
can generate new perspective views allow
him or her to make the most of the digital
nature of this layer. But most importantly,
this can happen alongside the conventional
media with which he or she feels comfort-
able exploring design ideas.

Computer graphics often fall short of
hand-drawn sketches in terms of offering
visual intrigue and a sense of vibrancy.
Note that even though the sketch in image
27 is little more than a rough trace of the
computer generated perspective seen in
image 26, it suggests a far more interest-
ing, lively and dynamic space than the
view of the computer model does. These
qualities may be important in getting one's
audience to "buy into" one's design, and
sketching over computer perspectives in
this way can be easily learned without the
need for training in the art of perspective
drawing.

Reflections
This thesis includes both a theoretical framework for the interface and a working prototype. Here follow

some reflections on how the current implementation of DASPE lives up to its theoretical aspirations in
terms of the design principles laid down earlier in this document.

1: Match the level of input to the level of design thinking

DASPE's key goal has been to allow the sketcher to work at a level of detail that is most useful to the
designer when thinking through a sketched plan. When sketching with conventional media the designer
will at times be drawing lines that represent roads, at others they will be drawing lines for trees or build-
ings. In the early stages of sketching, these may all look very similar and a great deal of imagination is
necessary on the part of the designer to differentiate between lines on the sketch. DASPE does not attempt
to distinguish between these very similar lines at this early stage of the design since no computer input
takes place.

However, even when designers sketch only for themselves and even at the roughest stages, many de-
signers will look to add color, cleaner lines and sometimes quick shadows in order to better visualize their
design and assist their thought process. It is at this stage of design that DASPE looks to assist the design-
er. In coloring the design with digital tools and providing greater clarity for each element (such as roads
or paths), it is hoped that the designer can move their thinking forward in the a similar fashion to coloring
with markers. The real advantages of a system such as DASPE is that this stage of "thinking through"
may be assisted by a number of digital visualization tools.

Most of DASPE's tools work well at this stage of the design and provide adequate visualization to move
the design further and to consider different alternatives. However since the design does not end at this
stage, DASPE's tools should also allow it to be taken further at later stages. The building sketch tool is
currently the only tool that allows one to change one's mind and alter the tool options after the sketch has
been made.

It should also be noted that hardening one's sketched lines is most often done by continually draw them
darker as one's confidence in their accuracy increases. DASPE requires that the user instead draw a single
outline or center-line for its tools. This is satisfactory, but it may be more natural to develop an algorithm
capable of recognizing the intent of multiple sketched lines. In addition it may be desirable to choose the
type of object represented by those lines only after they have been drawn. A "paint bucket" tool similar to
those provided by Adobe's PhotoShop or Macromedia's Flash applications could be used to "fill" the lines
with an object type in order to make them hedges, paths or buildings. This could provide a more natural
design process, but it would be very difficult to implement in Maya.

Most of DASPE's tools are used to create fairly specific representations of objects and have limited
room for creativity. One notable exception is the Concrete Pen tool which may be used to draw a large
variety of objects from paths, to walls to rough buildings. Such a tool allows a the designer a great deal
of creativity and he or she might begin to think of its use in new terms - for example as drawing concrete
elements as brush-strokes of varying widths and thicknesses. As such it may provide not so much a way
to "harden" lines sketched with conventional media as a whole new way of thinking about the medium
with which one is sketching. My guess that such a tool would be used more as a sketching tool in itself
whereas a tool such as the Road Tool would probably be used more as a tool for representing or hardening
a road that has already been sketched with a pencil.

It may also be desirable to give more thought to matching the level of output to the level of design
thinking. Some concerns have been raised over the quality of the rendering in DASPE: it goes part of the
way to being photoreal, but does not live up to the expected standards for the genre of 3D flythroughs
- after all its just a sketch. In addition, rendering the buildings as solid objects with hard lines suggests a
level of thought and a sense of completion that are inappropriate for the level of design thinking. An NPR

rendering solution may be the best way to resolve this problem (see Related Work, Texturing and Render-
ing) however it may prove difficult to implement in Maya.

There is a long way to go before DASPE can really match the level of input to the level of design think-
ing, but the tools provided thus far show enough to suggest that such a goal may be worth pursuing. How-
ever it should also be noted the "level" and manner of design thinking at each stage of the design is also
likely to change in response to the new sketch medium. But in all cases we should respect the continuity
between mind and hand because in design sketching when "the hand moves, the mind becomes engaged,
and vice versa" (Rowe, 1995)

2: Facilitate effective communication and maintain its intent

DASPE has not yet been developed to a level of sophistication that would allow a realistic assessment
of the quality of communication it facilitates. However the ability to quickly communicate plan sketches
in perspective holds great promise for bridging the gap between those who know the language and syntax
of sketch planning and those who do not. The ability to move around spaces with the leashed camera or to
consider a node of interest from a number of perspectives with the sketched view provides a useful forum
for talking about the experience of the spaces created. Furthermor, the ability to flip between alternatives
and make comparisons at any point while using these view tools enables to sketcher to communicate a
number of ideas and demonstrate their relationships.

3: Add a dimension without adding complexity

Two main innovations have enabled 3D modelling while maintaining the requirement of plan-only in-
put. These are the raise/lower tool and the Curiosity Camera.

The Curiosity Camera allows the user to have a 3D perspective view with which to watch the results
of their sketched strokes made in the plan view. In flying over to the new object of interest, the camera
is currently susceptible to becoming obscured or not capturing the whole object of interest in the view-
plane. This is overcome by providing tools with which to easily make manual adjustments. It may be
preferable however to create a more intelligent script that would always ensure a clear view of the whole
object. But the concept seems to be extremely promising and it helps make the link between what one
sees in plan and the implications that has for a perspective experience.

The raise/lower tool provides a means of moving objects up or down. It requires input only from above
and is consistent from all directions. Using this tool, it is a simple matter to change the height or vertical
placing of objects. Feedback is provided by the Curiosity Camera. The tool itself does well to provide a
simple way of moving objects up and down and it feels natural in that making bigger, faster turns will
move the object more quickly and smaller turns allow for fine-tuning. The raise/lower tool is very effec-
tive at overcoming the limitation of 2D input for 3D manipulation and has been essential to the goal of
creating an effective plan-view interface.

4: The computer as butler - pervasive computing

In order to determine the effectiveness of DASPE as a "pervasive" augmentation of design space, one
would need to test it on a real project in which designers would be asked to sketch plans using both
conventional media and the tools provided by DASPE. It is unclear whether users would find it obvious
at what stage to make use of digital media or whether it would require a set routine for using each type of
media. However such a design environment seems to have great promise in providing the ability to sketch
using conventional media then quickly transfer that sketch to the digital realm while at the same time
engaging with the necessary practice hardening one's design decisions.

Conclusions

The current implementation of DASPE shows promise as a sketching tool for the early stages of design.
However if it is to be used at the heart of the urban planning process, it will need to evolve to the point

where it allows refinement of its sketch objects in such a way as to match the level of the thinking of the
user at each point of the process. As it stands DASPE's vizualization tools allow one to see how ones
rough sketches have implications at the ground level, but while this will almost certainly influence the
decisions made by the designer there is currently no easy way to refine ones model and keep moving it
forward.

These are interesting times for the planning profession and it stands to be influenced by a variety of new
technologies. DASPE should not be thought of in isolation but as part of a larger framework of computer
support systems for planners. However while the computer may continue to support designers and influ-
ence their decisions, computer support remains largely separated from design sketching. A system such as
DASPE can serve to bring a wide spectrum of digital support literally "to the table" of the designer.

Future Work

Parking Tool

A parking tool is one obvious omission from the DASPE tool set. This tool would most likely be used to
draw a parking lot shape in the same manner as grass or water. This would then be cut away from the pav-
ing surface using a boolean operation in the same way as roads. Parking spaces with cars could then be
drawn as lines within this shape. This would be a fairly simple addition that has not yet been added owing
to time constraints.

Spreadsheet Tools

All buildings are made as a group of objects, and the group is
given a number of fields that store information on the building.
One such piece of information is the area for the building's foot-
print. This is multiplied by its height in stories to achieve a total
square footage (called "sfootage" in figure 36). The user may then
input square footage for each land-use and compare this to an "un-
used" field at the bottom. (Note that the units used here are incor-E rect as they have not been scaled.)

As it stands, this provides a useful way of seeing how
much "program" one may fit into a certain building for

each land-use type, however this would be far more useful if one
could view a spreadsheet for all buildings in the scheme and see i e
how each contributes to a total for each land-use type. This could to buildt
be compared to a desired target or "program" for each. Changing
figures for square footage in the spreadsheet would automatically change the height of the building to
accommodate the new program. This tool has been partially developed, but problems were encountered
in getting all the information for more than one building to display in the spreadsheet. Presumably this
problem can be overcome, but this feature is not available at the time of writing.

Floor-Area Ratio (FAR) calculations

The user may use the FAR of a land-n
use object to determine the maximum
allowable height of a building. This is
determined from the footprint area of the
building, the floor area ratio (FAR) and
the area of the land-use object. The user
would choose the FAR option only if the -
land use object represented a lot. If not, a
preferred default height could be set for
all buildings.

The examples in figure 37 show how the
FAR option would work for a lot drawn
with a FAR of 1.0. If a rectangular build-
ing is drawn to cover the whole site, the Figure 37: a proposed tool to automate FAR calculations
building will have its height set at 1 storey.
This is the maximum allowable height for a building covering the whole lot when the FAR is 1.0, how-
ever for smaller footprints, the maximum height will increase proportionally (A).

If a second building is added to the land-use object, the first must be lowered to accommodate the new
conditions (B). Both will initially be set at the same height, but if one is raised, the other must be lowered

69

in a seesaw fashion.

Modelling and Simulations

URP has demonstrated that very simple models may be useful in generating design discussions about
phenomena that would most likely be otherwise avoided owing to their complexity (Frenchman, per-
sonal communication, April 26, 2002). It would be desirable to include modelling capabilities in DASPE
that would play the same role. For example simulating the behavior of cars as they would behave under
different "levels of service" at intersections allows a better understanding of what the numbers mean.
For DASPE it would be hoped that such models would not need to be entirely rewritten but instead just
adapted so that their output might be viewed in 3D.

Looking at alternatives: Plug-ins, API and 3D Studio

Maya has proved to be a useful package through the ease of customization it provides and its ability to
quickly produce a fully working prototype such as DASPE. However, in considering the future of such a
system, it may be necessary to look at other alternatives to MEL.

Remaining within Maya, there exists the option to write some of the more sophisticated tools using
Maya's Developer API. This level of programming allows the developer to have far more control over the
software, however it is far more complex and difficult to learn.

Another alternative might be to "port" all the code to another application such as 3D Studio (now pack-
aged as "AutoDesk Viz" or "3ds Max") in the form of plug-ins. A feasibility study would be in order, but
using DASPE with an initially more user-friendly application such as 3D Studio would have numerous
advantages. It would also reduce software costs for implemented DASPE and allow users to use DASPE
alongside a number of other plug-ins designed to enhance the interface. Although Maya also uses plug-
ins, the user base is not as large as Max's and there are not as many plug-ins available.

Further into the future:

Voice and hand-writing recognition are two technologies that can complement a gestural sketch inter-
face and improve the range of commands that can be used without the need to keep changing the state of
the tool. Ultimately the entire DASPE interface could be achieved without a traditional GUI but simply
by using voice commands and informative feedback loops for tools. Handwriting is slow and not useful
for choosing functions, however it may be useful for annotation or in assisting a voice driven interface
that may otherwise become confused between similar words.

Augmented Reality

Virtual reality systems are not conducive to encouraging face to face interaction around a table, however
some "augmented reality" systems may be able to bring some of the advantages of true stereo represen-
tation to users of DASPE while keeping the advantages of sharing the same physical space. In the aug-
mented reality systems described by Billinghurst et al (2000) "users can see and interact with physical and
virtual objects, and also see the other participants." Users wear 3D goggles with built in video cameras to
represent the existing scene (see figure 38). The digital image displayed is also augmented with computer-
generated information. The software picks up cues from the video captured by the camera in order to
know where to place the augmented objects and how to rotate them.

In DASPE this could mean that the 3D model would be added to the participant's 3D view so that it
would appear to pop out of the table. Using the table digitizer as input, this could be a quite incredible
way of creating a 3D model that appears to have a physical presence, but is scalable, editable and whose
construction is easily automated. This may sound like a dream for the distant future but it is actually a
highly feasible existing technology. The only current barrier to its implementation is the high cost of 3D
goggles that can match the 3D view captured by the video camera to the real view.

But while this technology might not be a dream, its ability to be integrated into Maya is uncertain. I will
however take the liberty here of briefly dreaming about some of the possibilities that this new level of
visualization would allow. For example the 3D goggles may be used to either augment the environment or
to "go fully immersive." One of the chief design challenges is in switching between immersion levels.

Billinghurst et al (2000) demonstrate the ability to fly into a book and walk around in its spaces in 3D.
In DASPE one could design it so that when one started dragging the leashed camera one's view would fly
down onto the table and follow it through the buildings. Upon release, one could fly back out to ones real
position in the room and see the bigger picture and one's human companions once more.

Figure 38: An Augmented Reality Interface for Collaborative Computing

source: www.hit.washington.edu/magicbook/papers/icme2000.pdf I

I

Conclusion
According to Frenchman (personal communication, April 26, 2002) we have only just begun to scratch

the surface of the potential for digital tools to radically change the face of planning as we know it. While
many digital innovations such as GIS, CAD and, more recently, 3D visualization systems have already
made their presence felt, the area of sketch planning has remained largely aloof.

With DASPE, an attempt has been made to bring many of the advantages of computation to planners
while they sketch without requiring them to conform to a predetermined method or medium in order to
make use of the software. By augmenting the process of sketch planning rather than replacing it, DASPE
allows designers to continue in their own chosen fashion, drawing on the set of computer tools provided
only as the need arises. This is done without leaving the sketching table and without changing the input
paradigm from pen to mouse. A gestural interface allows the sketcher to capitalize on the greater freedom
of input that the pen gives and can facilitate a number of different processes without the need to change
tools.

The process of moving from conventional media to a digital medium then becomes an important and
integral part of the design methodology. Rather than being a mindless task, hardening one's lines from
pencil or marker to digital "ink" corresponds to a stage at which one is looking to harden one's design
thinking. Furthermore, the visualization that the digital model allows can be used to liberate one's think-
ing from the confines of a plan and help generate new ideas.

In addition to its potential as a tool for design, DASPE looks to bridge the ever-present gap between
those who understand the implications and "language" of design sketches and those who prefer to under-
stand space in terms of a more familiar representation such as a perspective view. It is hoped that such a
"translation" will allow for a better quality of discussion between all participants.

Moving forward, it will be interesting to observe how designers will respond to the new possibilities
DASPE provides as well as how it may be used to inform the decision making process when more voices
are brought to the table.

References

ALIAS WAVEFRONT, 2001, Portfolio Wall: the digital chalkboard [online], Available from: - http:
//www.aliaswavefront.com/en/WhatWeDo/studio/see/see-portfoliowall.shtml [Accessed 04/26/2002]

BILLINGHURST, M., POUPYREV, I., KATO, H., AND MAY, R., 2000, Mixing Realities in Shared
Space: An Augmented Reality Interface for Collaborative Computing, ICME 2000, pp16 4 1-16 4 4 , also
vailable from [online]: - http://www.hitl.washington.edu/magicbook/papers/icme2000.pdf [Accessed
04/26/2002]

BULMER, D., 2001, How can computer simulated visualizations of the built environment facilitate
better public participation in the planning process?, Online Planning Journal [online], Available from:
- http://www.casa.ucl.ac.uk/planning/articles61/complanning.pdf [Accessed 04/26/2002]

COYNE, R. D., 1999, Technoromanticism: Digital Narrative, Holism, and the Romance of the Real,
MIT Press, Cambridge, Massachusetts, November 1999

DOWNIE, M AND TOMLINSON, B., 2002, AlphaWolf [online] Available from: - http://
badger.www.media.mit.edu/people/badger/alphaWolf/resources.html [Accessed 04/26/2002]

FLINT, A., 2002: A Sense Of Place: Modernist landscapes just don't get any respect - or protection,
Boston Globe (newspaper) 2/24/2002

FORSBERG, A., LAVIOLA, J. AND ZELEZNIK, R.. 1998 Ergodesk: A frameworkfor two and three
dimensional interaction at the activedesk, In Proceedings of the 2nd International Immersive Projection
Technology Workshop, Ames, Iowa 1998.

HOPKINS, L. RAMANATHAN, R., AND VARKKI, G., 2002 Interface for a Planning Workbench [on-
line], Department of Urban and Regional Planning, University of Illinois at Urbana-Champaign. Available
from: - http://www.rehearsal.uiuc.edu/projects/DesignWorkspace [Accessed 04/26/2002]

LEGAKIS, J., DORSEY, J. AND GORTLER, S., 2001, Feature-Based Cellular Texturing for Architec-
tural Models, SIGGRAPH'01, pp 309-316, also vailable from [online]: - http://graphics.lcs.mit.edu/pubs/
sg01lfbct.pdf [Accessed 04/26/2002]

MCCRACKEN, E. R., 1997, Computer Graphics: Ideas and People from America's Universities Fuel
a Multi-Billion-Dollar Industry [online], Computing Research Association. Available from: - http:
//www.cs.washington.edu/homes/lazowska/cra/graphics.html [Accessed 04/26/2002]

MCLUHAN, M., 1967, The Medium is the Massage, New York: Bantam.

MILGRAM, S., 1967. The Small-World Problem, Psychology Today. Volume 1(1);

MILLER, C. G., 1988. Carscape: a Parking Handbook. Washington Street Press, Columbus, IN.

NEGROPONTE, N., 1995. Being Digital. New York: Vintage Books.

NEMETSCHECK, 2002, D-Board [online]. Available from: - http://www.nemetschek.co.uk/products/
dboard.html [Accessed 04/26/2002]

RATTI, C., PIPER, B., AND ISHII, H., 2002, Illuminating Clay: A 3-D Tangible Interface for Land-
scape Analysis. Available at: http://web.mit.edu/ebj/www/lpt/clay.pdf

RICHENS, R. & SCHOFIELD, S, 1995: Interactive Computer Rendering, in Architectural Research
Quarterly, Volume 1(1) Autumn 1995.

ROWE, P. G., Design Thinking. Cambridge, MA: MIT Press, 1987

SCHRAGE, M., 2000, Serious Play. Harvard Business School Press.

SHIFFER, M.J., 1996, Community-Building communications Technologies and Decision Support Sys-
tems. Colloquium on advanced Information Technology, Massachusetts Institute of Technology, Cam-
bridge, MA.

TOLBA, 0., DORSEY, J., AND MCMILLAN, L, 1999, Sketching with Projective 2D Strokes. In UIST
99: Proceedings of the 12th Annual ACM Symposium on User Interface Software & Technology, CHI
Letters, 1(1): 149-157, November 1999.

UNDERKOFFLER, J. AND ISHII, H., 1999 Urp: A Luminous-Tangible Workbenchfor Urban Planning
and Design, in Proceedings of CHI '99, May 1999

WELLNER, P., 1992, Tactile Manipulation on the DigitalDesk. (video) in CHI '92 Special Video Pro-
gram, ACM SIG-GRAPH Video Review issue no. 79.

ZELEZNIK, R., HERNDON, K. AND HUGHES, J., 1996, SKETCH: An Interface for Sketching 3D
Scenes, Proc. SIGGRAPH'96, pp. 163-170

Appendix A: MEL Scripts

The scripts in this thesis are written in the Maya Embedded Language (MEL). The language is basically
the same as "C" except that it features a number of extra commands used to communicate with Maya.

The scripts are grouped here according to the different kinds of tools they support. This grouping does
not correspond to the grouping of the tools under "Construction," "Landscape" and "Visualize" but rather
to the internal patterns shared by a number of these tools.

While it is customary to include all scripts in such an appendix, many scripts are either uninteresting or
repetitive and this would be extremely wasteful. There are over 100 scripts for DASPE with a total of just
under 12,000 lines (11,932) which would require over 150 pages to print (with an 8 point font as used in
this appendix). All these scripts are instead available as files with a ".mel" extension at the following loca-
tion (the link is to an index page that includes the same categories as below): http://gis.mit.edu/projects/
daspe/scripts.

The main reason for this bulk is that MEL commands for making and modifying windows can be very
lengthy. Only those scripts specifically discussed in the text or otherwise thought to be unusual or interest-
ing are included here. All scripts are however listed and a brief descriptions of each is given. If interested,
the reader is asked to access them on the internet at the aforementioned location.

Contents

75 Buildings/Pletching Tool

87 Zoning Tool, 3D Grass and Water

87 Concrete Pen, Roads and Hedges

90 Trees and People

93 Vizualization

96 Windows, View and Toolbars

96 Library scripts

Buildings/Pletching Tool
The Building Sketch Tool

pletching tool.mel

This script is used to create the windows used for the pletching tool (also known as the Building Sketch
tool) and to create the tool "contexts" for this tool. A "context" is just a new tool state in Maya. The main
"context" in this case is the "pletchContext" create as a draggerContext at the end of this script. The
Building Sketch tool may have both a creation or "sketch" state and an edit state so different tool options
will be created by this tool depending on the $bt-state variable.

One may notice that the tool window is not being created in this script, but only edited (using "window
-edit"). This is because the same window is used for all the DASPE tool options. Each time a new tool is
selected, the window is cleared (using the custom written "clearcontent") and new options are specified.

global proc pletchingtool()

// general variable declarations
global int $linecount;
global int $ceptcount;
global int $btstate;
global string $LUchoice; if ($LUchoice=="") $LU-choice="residential";
global float $cbldgheight;if (($cbldgheight<1)||($cbldgheight>100)) $cbldg-height=3;

// If the "building chooser" tool doesn't exist, make it now. This tool lets one pick buildings
for modification and is available from the "select building" button.

if (! 'scriptCtx -exists BldgChooser')

scriptCtx
-title "Edit Building"
-totalSelectionSets 1
-fcs "select -r $Selectionl;$selected-bldg='getAttr ($Selectionl[0]+\".number\")';nameField

-edit -object $bldg group[$selected-bldg] $fieldl;$bt state=2;pletching tool;"
-cumulativeLists false -expandSelectionList false
-setNoSelectionPrompt "Choose Building to Edit"
-setAutoToggleSelection true -setSelectionCount 1
-setAutoComplete true
-exitUponCompletion true

BldgChooser;
}

// Make the tool menu depending on the state of the tool
tool_window("none");

modelEditor -e -wos 0 modelPanell;

global string $toolimage;
global string $toolwindow;
global string $tooltips;
global string $toolform;
global string $ctrlsliderl;
global string $sliderl;
global string $ptbut;
global string $checkpicl;
global string $checkpic2;
global string $checkpic3;
global string $checkpic4;
global string $checkpic5;
global string $checkpic6;
global string $tl;
global string $bl;
global string $b2;
global string $fieldl;
global string $previoustool[];

string $toolctx;

clearcontent;

symbolButton -edit -image "D:/DASPE/icons/small/pletch-s.bmp" -c "$bt_state=1;pletchingtool"
Stoolimage;

if ($btstate>=2) //the menu used when a building is made and/or selected

{
global string $bldg-group[];global int $selected bldg;
global float $buildingx[];global float $building-z[];
construction cam($building_x($selected bldg] , 0 ,$buildingz [$selected bldg]);
select -r $bldg-group[$selectedbldg];
window -edit -title "Building Tool - Edit Building" $toolwindow;
text -edit -m 1 -label "Building name: " $tl;
nameField -edit -m 1 -w 200 -object $bldg-group[$selected-bldg] -cc "$bldg-group[$selected_

bldg]='nameField -query -object $fieldl'" $fieldl;
symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/resion.bmp" -ofi "D:/DASPE/icons/resi.bmp"

-onc "gcswitch(1,3,1);setAttr ($bodyof[$selected-bldg]+\".landUse\") -type \"string\" \
"residential\";changeht($selectedbldg, 1);" $checkpicl;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/induston.bmp" -ofi "D:/DASPE/icons/indust.bmp"
-onc "gcswitch(1,3,2);setAttr ($bodyof[$selected bldg]+\".landUse\") -type \"string\" \
"industrial\" ; changeht ($ selectedbldg, 1);" $checkpic2;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/officeon.bmp" -ofi "D:/DASPE/icons/office.bmp"
-onc "gcswitch(1,3,3);setAttr ($bodyoff$selected bldg]+\".landUse\") -type \"string\" \"office\
";changeht($selected bldg,1);" $checkpic3;

button -edit -m 1 -label "Draw New Building" -c "$bt state=l;pletching tool" $bl;
button -edit -m 1 -label "Select Building" -c "changeSelectMode -hierarchical;select -

cl;setTool(1,\"BldgChooser\");" $b2;
floatSliderGrp -edit -m 1
-cc "setAttr ($bldg-group[$selected-bldg]+\".stories\") 'floatSliderGrp -query -value $ctrl_

sliderl'"
-cw 1 133 -cw 2 33
-label "Height (selected building)"
-extraLabel "stories"
-minValue 1 -maxValue 50
-fieldMinValue 1 -fieldMaxValue 100
-value $cbldgheight

$ctrl_sliderl;$ctr-slierl;Figure 39: menu created for edit mode
connectControl $ctrlsliderl ($bldg_

group[$selected bldg]+".stories");

$tool ctx="pletchingtool";
if (($previous tool [0]1="") && ($previous_

tool[0]1=$tool ctx)) button -edit -m 1 -la-
bel "Previous Tool" -command $previous-tool[O]
$pt but;

else button -edit -m 0 $ptbut;

formLayout -edit

-attachForm $tl "top" 7
-attachControl $tl "left" 7 Stoolimage
-attachForm $fieldl "top" 7
-attachControl $fieldl "left" 2 $tl

-attachControl $ctrlsliderl "top" 7 $tl
-attachControl $ctrlsliderl "left" 3 $toolimage

-attachForm $checkpicl "left" 7
-attachControl $checkpicl "top" 7 $ctrlsliderl
-attachControl $checkpic2 "left" 3 $check_picl
-attachControl $checkpic2 "top" 7 $ctrlsliderl
-attachControl $check_pic3 "left" 3 $checkpic2
-attachControl $checkpic3 "top" 7 $ctrlsliderl

-attachControl $bl "left" 7 $checkpic3
-attachControl $bl "top" 7 $ctrl-sliderl
-attachControl $b2 "left" 7 $checkpic3
-attachControl $b2 "top" 5 $bl

$toolform;
global string $bodyof[];
string $currentuse;
$current use=' getAttr ($bodyof [$selected bldg]+". lu")';
if ($currentuse=="residential") {symbolCheckBox -edit -value 1 -en 0 $check-picl; gc_

switch(1,3,1);} else symbolCheckBox -edit -value 0 -en 1 $checkpicl;
if ($currentuse=="industrial") {symbolCheckBox -edit -value 1 -en 0 $checkpic2; gc_

switch(1,3,2);} else symbolCheckBox -edit -value 0 -en 1 $check-pic2;
if ($currentuse=="office") {symbolCheckBox -edit -value 1 -en 0 $checkpic3; gc_

switch(1,3,3);} else symbolCheckBox -edit -value 0 -en 1 $check-pic3;

}
else //the menu used when in sketching mode
{
window -edit -title "Building Tool - Sketch Building" $toolwindow;
text -edit -m 1 -label "This tool lets you sketch building footprints, move them and change

their height.\nDraw a circle on a building to change its height, a shade to move it, or a cross
to delete it." $tooltips;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/resion.bmp" -ofi "D:/DASPE/icons/resi.bmp"
-onc "gcswitch(1,5,1);$LU choice=\"residential\";" $checkpicl;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/resi-reton.bmp" -ofi "D:/DASPE/icons/resi-
ret.bmp" -onc "gcswitch(1,5,2);$LU choice=\"resiretail\";" $checkpic2;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/indust-on.bmp" -ofi "D:/DASPE/icons/indust.bmp"
-onc "gcswitch(1,5,3); $LU choice=\"industrial\";" $checkpic3;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/office on.bmp" -ofi "D:/DASPE/icons/office.bmp"
-onc "gcswitch(1,5,4);$LU choice=\"office\";" $checkpic4;

symbolCheckBox -edit -m 1 -dni "D:/DASPE/icons/auto on.bmp" -ofi "D:/DASPE/icons/auto.bmp"
-onc "gcswitch(1,5,5);$LU-choice=\"automatic\";" $checkpic5;

button -edit -m 1 -label "Select Building" -c "changeSelectMode -hierarchical;select -
cl;setTool(1,\"BldgChooser\");" $bl;

button -edit -m 1 -label "Start Over" -c "deletelines;$linecount=O" $b2;
floatSliderGrp -edit -m 1
-cc "$cbldgheight='floatSliderGrp -query -value $sliderl'"
-label "Height for new building"
-cw 1 173 -cw 2 33
-extraLabel "stories"
-minValue 1 -maxValue 50
-fieldMinValue 1 -fieldMaxValue 100 Figure 40: menu created for sketch mode
-value $cbldgheight
$sliderl;

$toolctx="pletchingtool";
if (($previous tool[0]1="")&&($previous_

tool[0]!=$tool ctx)) button -edit -m 1 -la-
bel "Previous Tool" -command $previoustool[0]
$ptbut;

else button -edit -m 0 $ptbut;

formLayout -edit

-attachForm $checkpicl "left" 7
-attachControl $checkpicl "top" 7 $toolimage
-attachControl $checkpic2 "left" 3 $checkpicl
-attachControl $checkpic2 "top" 7 stool image
-attachControl $checkpic3 "left" 3 $checkyic2
-attachControl $checkpic3 "top" 7 $tool image
-attachControl $checkpic4 "left" 3 $checkpic3
-attachControl $checkpic4 "top" 7 stool image
-attachControl $checkpic5 "left" 3 $checkpic4
-attachControl $checkpic5 "top" 7 $toolimage

-attachControl $bl "left" 7 $checkhic k
-attachControl $bl "top" 7 $tool image
-attachControl $b2 "left" 7 $checkhic5
-attachControl $b2 "top" 5 $bl
-attachControl $sliderl "top" 7 $checkpic3
-attachForm $sliderl "left" -45

$toolform;

if ($LU choice=="residential") {symbolCheckBox -edit -value 1 -en 0 $checkpicl; go
switch(1,5,1);} else symbolCheckBox -edit -value 0 -en 1 $checkpicl;

if ($LUchoice=="resi-retail") {symbolCheckBox -edit -value 1 -en 0 $checkyic2; go

switch(1,5,2);} else symbolCheckBox -edit -value 0 -en 1 $check-pic2;

if ($LU choice=="industrial") {symbolCheckBox -edit -value 1 -en 0 $checkpic3; gc

switch(l,5,3);$ else sybolCheckBox -edit -value 0 -en 1 $checkppic3;

if ($LUchoice=="office") {symbolCheckBox -edit -value 1 -en 0 $checkpic4; gc_

switch(l,5,4);} else symbolCheckBox -edit -value 0 -en 1 $checkjpic4;

if ($LU choice=="automatic") {symbolCheckBox -edit -value 1 -en 0 $check_pic5; gc_

switch(1,5,5);} else symbolCheckBox -edit -value 0 -en 1 $check_pic5;

}

// create the pletchContext tool that is used to sketch, move, delete and raise/lower buildings

if ('draggerContext -exists pletchContext'=0)

{
draggerContext
-il "D:/DASPE/icons/small/pletch.bmp"
-pressCommand "pletch down"
-dragCommand "plotpoints"
-releaseCommand "checkpletch"
-cursor "crossHair"
-sp "world"
pletchContext;

}
select -cl;
setTool(1,"pletchContext");

}//endp//

You will notice how long this script is even though it is just used to create a couple of window layouts
and tool contexts. Most other scripts (apart from similar tool declarations) are shorter, use far fewer MEL-
specific commands, and are sometimes indistinguishable from "C".

pletch down.mel
The "pressCommand" specified above for pletchContext is "pletchdown." The pressCommand is

called whenever the mouse button is clicked (or stylus tip is depressed) while the current tool "context" is
set to pletchContext.

plot points.mel
The "dragCommand" for the Pletch tool. This script is called each time the pointer is determined to

have moved during a mouse drag. Plot-points is used to store information about the line while it is being
drawn. It also plots a line that follows the cursor so the user can see what they're drawing.

check pletch.mel
The "realeaseCommand" for pletchContext is "check-pletch." This procedure (shown below) is called

whenever the mouse-button or stylus is released. The check-pletch procedure is at the heart of the pletch-
ing-tool's gestural functionality and corresponds to the flow-diagram on page 41. Scripts specifically
associated with this procedure are shown in bold type and are listed after it. Comments showing the logic
of the flow-diagram are also shown in bold type.

global proc checkpletch()

{
//declare general variables
global float $xpos[]; global float $zpos[];
global int $count-g;
global float $cum dist[]; //cumulative distance//
global string $name ofdline[];
global int $linecount;
string $temp_cons;
int $count;
string $ext-num;
global float $ortho;
float $line dist;
float $tempz;float $temp-x;
float $increment=90;

global int $extnumber;
global int $hascorner;

if ($countg>0) //ie has a line actually been drawn...

{
//STRAIGHT OR NOT STRAIGHT??//
if ($cum-dist[$countg-.1]>(distcalc($xpos[$count_g-l],$zpos[$count-g-1],$xpos[0],$zpos[0]))/

0.85)
{

//NOT STRAIGHT//
deleteplotted;
//DOES IT HAVE CORNERS?//
string $temp_curve=findcorners(;int $use-temp=l;
if ($has_corner!=l)

if(check-circ(0.7,1.2))//IS IT A CIRCLE?//

//YES - CIRCLE//
global float $circ center x;
global float $circcenter z;
global float $circle rad;
I/IS THE CIRCLE ON A BUILDING//
if(on building($circ center x,$circcenter-z,$circle-rad))

{
//YES - LIES ON BUILDING//
$use temp=0;delete $tempcurve;
global string $roofof[];
int $numma=on building($circ center-x,$circcenterz,$circle-rad);
global int $bt state;
$btstate=3; pletchingtool;
raiselower($roofoff$numma]);
//select the roof of the building the circle is on for raise/lower//

}else{
/NO - NOT ON BUILDING
//make circular building//
if (check circ(0.3,0.7)) //more strict if not on building...
{
circularbuilding($circcenter_x,$circcenter z,$circle rad);
$use temp=0;

}
}//endif on building
}else{
//NO - NOT CIRCLE//
//IS IT A SHADE?//
if (check shade()) {$use-temp=0;delete $temp curve;}
else $linecount=0;
//NO - NOT A SHADE//
}//end if it is a circle//

}//end if it has no corners
if ($use-temp)

{
$line count++;
$nameofdlinef$line count]=$temp curve;
check for completion($name-of-dline[$line count],$line count,"none");

}
}else{

//IF LINE IS STRAIGHT//
deleteplotted;

//first check to see if its an extension of another line.
string $extension=is_it_an_extension();//returns name of line just extended...//

if ($extension=="none")

$linecount=$line-count+l;

int $cross=0;

I/IS IT A CROSS//
if ($linecount==2) $cross=check-cross();

//NOT A CROSS (If it is a cross, a building will be deleted in the checkcross procedure.)

if (!$cross)
{
//ORTHO SNAP//
float $lortho;$1ortho=$ortho;
if (($ortho>90)&&($ortho<=180)) $lortho=$ortho-90;
if (($ortho>180)&&($ortho<=270)) $lortho=$ortho-180;
if (($ortho>270)&&($ortho<=360)) $lortho=$ortho-270;
if ($ortho!=-100)//ie if ortho is on//

{
for($count=-90;$count<=90;$count=$count+$increment)
{
float $abs helper= ($count+$lortho- (angle($xpos [$countg-l] ,$zpos [$count-g-

l1],$xpos[0],$zpos[0])));
if ('abs $abs-helper'<18)

{
$line dist=distcalc($xpos[01,$zpos[O],$xpos[$countg-1],$zpos[$count g-1]);//
$temp-z=($zpos[O]+$line dist*(sin(deg to rad($count+$lortho))));
$tempx=($xpos[O]+$linedist*(cos(deg-to-rad($count+$lortho))));

if (distcalc($xpos[$countg-l1,$zpos[$count g-1],$tempx,$tempz)<$line dist)//ie the
distance from the old end point to the new one is not bigger than the whole line...

{
$zpos [$count g-1]=$temp_z;
$xpos [$countg-1]=$tempx;

}else{
$zposf$count_g-lj=($zpos[O]-$line-dist*(sin(deg-to-rad($count+$lortho))));
$xpos[$count_g-l]=($xpos[O]-$linefdist*(cos(degtorad(count+$ortho))));
}
}
}//endfor
}//endif ortho is on//

$name_of dline[$linecount]='curve -d 1 -p $xpos[$countg-1] 0 $zpos[$countg-1] -p
$xpos[O] 0 $zpos[O]';

namespace -set
select -cl;
//CHECK TO SEE IF THAT COMPLETES A BUILDING FOOTPRINT//
checkfor completion($name of dline[$line count),$line count,"none");

}//endif cross
}//endif ext

if ($extension!="none")
{
$tempcons='curve -d 1 -p $xpos[$countg-1] 0 $zposf$countg-1] -p $xpos[O] 0 $zpos O]';
checkfor completion($temp_cons,$ext_number,$extension);
delete $tempcons;
}//endif extension=none//

}//endif not straight//
}
global string $toptool;if ($toptool=="pletchContext") {select -cl;}

}//endp//

The following scripts are listed in the order in which they appear in the above procedure:

find corners.mel
This script looks at the angles between lines drawn from one drag-point to the next. It is used to find

corners in a line drawn with the pletch tool. It will also straighten out lines between corners if deemed
straight or will otherwise create these segments as curves. Some corners will not occur neatly around a
single drag point and the drag points comprising the corner may instead lie in a number of configurations.
A, B and C are used to look at each possibility.

global proc string find corners()

{
global float $xpos[]; global float $zpos[];

global int $countg;
global float $cumdist[];
global int $line_count;
float $A anglel;
float $Aangle2;
float $A angleYdif;
float $Banglel;
float $B angle2;
float $B-angleYdif;
float $C_anglel;
float $C angle2;
float $C-angle dif;
string $completed;
global int $hascorner;$has-corner=O;
float $acute-tol;$acutetol=15;
float $obtuse tol;$obtusetol=35;
float $corner-x[];
float $corner_z[];
int $num corners;$numcorners=O;
int $corner_posf];
float $totalangle;$total-angle=0;
float $x;float $z;
float $last corn[];//O=x 2=z;
float $zoom=('camera -q -ow top')/46.25;//5=1:50ft 2=l:20ft etc

//Find the corners

move down the line getting the angle between every 2 points
if the difference in angle between any 2 angles is big (say 75-105)
then mark it as a corner.

//make the namespace so that all temporary construction may be deleted at the end.
namespace -add "FINDCORNRS";
namespace -set "FINDCORNRS";

//A, B and C all look at different possible corner configurations. If no corner is found for A,
it will check configuration B and if there is still no corner it will use C.

for ($loop=5;$loop<$count g;$loop++)

{
$A anglel=CASTangle($xpos[$loop-5],$zpos[$loop-5],$xpos[$loop-3],$zpos[$loop-3]);
$Aangle2=CASTangle($xpos[$loop-2] ,$zpos[$loop-2] ,$xpos[$loop] ,$zpos[$loop]);
$A-angledif=$Aanglel-$A-angle2;
$totalangle=$totalangle+abs($A-angle-dif);

$B anglel=CASTangle($xpos[$loop-4),$zpos[$loop-4],$xpos[$loop-2],$zpos[$loop-2]);
$B angle2=CASTangle($xpos[$loop-2],$zpos[$loop-2],$xpos[$loop],$zpos[$loop]);
$B-angle-dif=$B-anglel-$Bangle2;
$totalangle=$totalangle+abs($Bangle-dif);
if ($loop>=

7
)

{
$Canglel=CASTangle($xpos[$loop-71,$zpos[$loop-7],$xpos[$loop-4],$zpos[$loop-4]);
$C_angle2=CASTangle($xpos[$loop-3] ,$zpos[$loop-3] ,$xpos[$loop] ,$zpos[$loop]);
$Cangledif=$Canglel-$Cangle2;
}
if (((abs($A angle dif)>(90-$acute_tol))&&(abs($A angledif)<(90+$obtuse tol)))||((abs($A an-

gle-dif)>(270-$obtuse-tol))&&(abs($A angle dif)<(270+$acutetol))))
{
$x=($xpos[$loop-2]+$xpos[$loop-3])/2;
$z=($zpos[$loop-2]+$zpos[$loop-3])/2;
if (distcalc($x,$z,$cornerx[$num corners],$cornerz[$num corners])>0.2*$zoom)/*ARBITRARY*/
{
circle -nr 0 1 0 -c $x 0 $z -r 0.2;
$has-corner=l;
$num-corners++;
$cornerx[$numcorners]=$x;
$corner z[$numcorners]=$z;
$cornerpos[$num corners]=$loop-2;
$totalangle=$totalangle-abs($A angle dif);//eliminate outliers...
}

}
else

{
if (((abs($Bangledif)>(90-$acutetol))&&(abs($Bangle dif)<(90+$obtusetol))) I((abs($Ban-

gle-dif)>(270-$obtusetol))&&(abs($B angle dif)<(270+$acute tol))))

$x=$xpos[$loop-
2];

$z=$zpos[$loop-2];
if (distcalc($x,$z,$corner x[$numcorners],$corner_z[$num corners])>0.5*$zoom)/*ARBITRARY*/

circle -nr 0 1 0 -c $x 0 $z -r 0.2;
$has corner=l;
$numcorners++;
$cornerx[$num corners]=$x;
$cornerz[$numncorners]=$z;
$cornerpos ($numcorners]=$loop-2;
$totalangle=$totalangle-abs($B angle dif);//eliminate outliers...

}
}
else if (((abs($Cangle dif)>(90-$acute_tol))&&(abs($Cangle dif)<(90+$obtuse_

tol)))1|((abs($C angle dif)>(270-$obtuse tol))&&(abs($Cangle dif)<(270+$acutetol))))

$x=($xpos[$loop-4]+$xpos[$loop-3])/2;
$z=($zpos[$loop-4]+$zposf$loop-

3])/2 ;
if (distcalc($x,$z,$corner x[$num corners],$corner z[$num corners])>0.5*$zoom)/*ARBITRARY*/
{
circle -nr 0 1 0 -c $x 0 $z -r 0.2;
$has corner=l;
$numcorners++;
$corner_x[$num corners]=$x;
$corner_z[$num cornersJ=$z;
$corner_pos [$num corners]=$loop-3;

}
}

}
}//endfor
string $curve-string;

//Make the straight lines or curves between the corners.

float $cumulative;string $curvy;float $straight;string $straightline;
$curvestring="curve -d 1 ";//start

if ($num-corners>0)
{
$cornerpos[0]=0;$corner x[0]=$xpos(0];$cornerz[0]=$zpos[0];//start
$corner_pos[$num-corners+]=($countg-2);//must be -2 because there is an n+l...
$corner-x[$numcorners+l]=$xpos[$count g-2];$corner z($numcorners+l]=$zpos[$count g-2];//end

//make lines for corners and end
for ($corna=0;$corna<=$numcorners+l;$corna++)

$cumulative=O;$curvy="";
if ($corna<=$numcorners)
f
for ($n=$cornerpos[$corna];$n<=$cornerpos[$corna+l];$n++)
f
$cumulative=$cumulative+distcalc($xpos[$nl,$zpos[$n],$xpos[$n+l],$zpos[$n+l]);
$curvy=$curvy+" -p "+$xpos[$n]+" 0 "+$zpos[$n];
}//end for
$straight=distcalc($corner x[$corna],$corner_z[$cornaJ,$corner x[$corna+l],$corner_

z[$corna+l1);
$straightline=(" -p "+$corner_x[$corna]+" 0 "+$corner-z[$corna]);
}//endif

if ($corna>$numcorners)
{
$straight=$cumulative;//this just tricks the next check into using the string below...
$straightline=(" -p "+$xpos[$countg-lJ+" 0 "+$zpos[$count-g-1]);//end

}

if ($cumulative>1.1*$straight)//arbitrary
{
$curvy=smoothcurve($curvy);

$curve string=$curvestring+$curvy;
}else{
$curve-string=$curve_string+$straight_line;

}//endfor corna
}else //if there are no corners - note there is no need to determine whether the whole thing is

straight - this has been done in check pletch...

for ($n=O;$n<$countg;$n++)

$curvy=$curvy+" -p "+$xpos[$n]+" 0 "+$zpos[$n];
}//end for
$curvy=smooth curve ($curvy);
$curvestring=$curvestring+$curvy;

}//end if corners

//delete the temporary lines
catch('delete "FINDCORNRS:*"');
namespace -set
catch('namespace -rm "FINDCORNRS"');
string $completed='eval($curve string)';

//the average of the angle between all lines that don't make a corner allows the script to de-
cide whether a line may be a circle even if it appears to have some corners.

if ($avg>50) $has corner=O;//this allows circle to be created...
return $completed;
}//endproc

check circ.mel
In order to determine whether or not a given line is a circle, this script divides the line into 7 points then

looks at the sections between 1-3, 2-4, 3-5, 4-6, and 5-7. (See figure 1).

The following scripts are used only in checkcirc and were created for convenience only:

averageof.mel -used to get the average length of a number of lines.

longestof.mel - used to get the longest length for a number of lines.

shortestof.mel - used to get the shortest length of a number of lines.

on building.mel
This script scans through all building groups and looks to see if their center position is near the position

specified, then returns the number of the building. It is used to determine if a circle, shade or cross lies on
a building.

check shade.mel
Checks to see if the user has "shaded" a building - basically just looks to see whether the points are

drawn in a dense area or not.

is it an extension.mel
Checks a line to see if it is an extension of another line.

check cross.mel
Checks for a cross shape as determined by where two straight intersecting lines are found to cross each

other. Deletes a building found to be inside the cross shape.

check for completion.mel
This script looks at all lines drawn and uses a planar NURBS surface to determine whether a building

footprint has been completed. The script then converts the NURBS surface to a single polygonal facet that
gets extruded to form the building.

deletelines.mel - deletes temporary lines used to make buildings and in other "pletch" commands.

Scripts used to make buildings

popupBldg.mel
Gets land-use properties from land-use objects if they exist and uses "straightBldg" to pop up a building

based on what it finds.

straightBldg.mel
Makes buildings in three parts based on a given footprint. The middle section is made from the footprint

(as is) while the roof and lower section (if used) are made from a slightly large offset of the building foot-
print. A number of attributes also get connected to each other in this script so that the building height will
change the roof height and vice versa.

makeRoof.mel
Used by "straightBldg" to make the roof by bevelling an extruded polygon.

change ht.mel
Used by a scriptJob to continually check the height for a building - calls for a texture change (using

change_texture) according to the height it finds.

change texture.mel
changeht and straightBldg call this to change the texture of a building according to its land-use.

circular building.mel
For now this script makes a hut shaped building - it may be adapted in future to make a fountain, statue

or other central, circular "node" of interest instead.

Raise/Lower Tool

raise lower.mel
Creates the tool used to screw (or raise/lower) objects up and down.

screwdown.mel - the pressCommand for the raise/lower tool.

screw points.mel
The dragCommand for the raise/lower tool. This script looks at each point plotted and considers the

angle between it and the previous point. It watches the arc tangent of these angles for positive and nega-
tive "switches" which it analyzes in order to determine whether rotation is clockwise or counter-clock-
wise. The script will then change the height (or y position) of the specified object according to the size of
the turns being made and their speed.

global proc screwpoints()
{

global float $xpos[]; global float $zpos[];
global int $countg;
global float $prev angle;
float $angle;
global float $runningtotal;
float $dragPosition(= 'draggerContext -query -dragPoint screwcontext;
global float $neg;global float $pos;
global string $isneg;
global float $lastposx;global float $lastposz;
global string $wise;
global string $time-before;
float $numdivs;float $factor;
global float Starget;
global int $dragcounter;
global int $numdivs;
global int $surity;
global string $object;

float $xdif;foat $zdif;
string $last_posis;

$xpos[$countg]=$dragPosition[O]; $zpos[$countg]=$dragPosition[2];

if ($countg>5)

if ($xpos[$countg-51!=$xpos[$countg]) $angle=angle($xpos[$countg],$zpos[$count_
g],$xpos[$countg-5],$zpos[$count-g-5]);//avoid division by 0 and also only consider changes...

if (($angle>0 && $isneg=="yes")J|($angle<0 && $isneg=="no")) //if there is a switch//

//figure out the direction of the last position based on whether the change is horizontal
or vertical and the position of the previous switch.

if (abs($xpos[$count-g]-$lastposx)>abs($zpos[$countg]-$last-posz)) //ie if change is
horizontal

{
if (($xpos[$count_g]-$last_posx)>0) $last_pos_is="left"; else $lastposis="right";

if (abs($xpos[$count-g]-$lastposx)<abs($zpos[$countg]-$lastposz)) //ie if change is
vertical

f
if (($zpos[$count-g]-$last_posz)<O) $lastpos_is="below"; else $lastpos_is="above";

}

//upon negative positive swich or positive negative switch determine the direction of
turning.

if (($angle>0 && $isneg=="yes")JJ($angle<0 && $isneg=="no"))

if ($time-before=="above")

{
if ($lastposis=="right") $wise="clock";
if ($lastposis=="left") $wise="anti";

if ($time-before=="below")

{
if ($last_posis=="right") $wise="anti";
if ($lastposis=="left") $wise="clock";

}

if ($timebefore=="left")

{
if ($lastposis=="below") $wise="anti";
if ($lastposis=="above") $wise="clock";

}

if ($timebefore=="right")

if ($last_posis=="below") $wise="clock";
if ($lastposis=="above") $wise="anti";

}

}//end if switch

//base the factor by which to move the object on the size of the turns being made.
$factor='pow (distcalc($xpos[$countg],$zpos[$countg],$lastposx,$last-posz)) 2'/2;
if ($wise=="clock") $target=-$factor;
if ($wise=="anti") $target=$factor;

$numdivs=3+'pow $drag-counter 2';
$drag-counter=l;
$surity=$surity+l;

$timebefore=$last_posis;$lastposx=$xpos[$countg];$lastposz=$zpos[$countg];

}//end: if there is a switch//

//this is used to determine whether there is a switch.
if ($angle>=0) $isneg="no";
if ($angle<O) $isneg="yes";

//use the loops between switches to move smoothly to the set target - ensures a smoother
motion.

//once the sure about the direction (it has seen enough changes to be confident) it will
move the object by changing its runningtotal.

if (($num divs>O) && ($surity>l)) $running-total=$runningtotal+$target/$num-divs;
$drag-counter=$dragcounter+l;

//set maximum and minimum positions
if ($running-total>45) $running_total=45;

global string $tool choice;
if ($tool-choice=="pletch")
{
if ($runningtotal<l) $running-total=l;
if ($running-total>25) $runningtotal=25;

}
else
f

if ($running-total<-27) $runningtotal=-27;
if ($runningtotal>45) $runningtotal=45;

};

float $objy=$running_total;
setAttr ($object+".ty") $objy;refresh;

$prev-angle=$angle;

}//end: if (countg>5)

$countg=$countg+1;
}//end proc//

check screw.mel - the releaseCommand for the raise/lower tool.

Set Ortho Angle Tool

ortho set.mel
creates a draggerContext tool used to set the ortho-snap angle. It makes use of the following scripts:

orthoscomplete.mel - releaseCommand for orthoset.

orthosetdown.mel - pressCommand for orthoset.

orthoset-drag.mel - dragCommand for orthoset.

ortho angle.mel
A very simple script just used to display the ortho angle in the "heads up display".

Zoning Tool! 3D Grass and Water
sketch land.mel
This creates window options and sets up a scriptJob so that the pencil curve tool may be used to draw

enclosed shapes for water, 3D grass and land-use shapes.

joiner.mel
This script will attempt to join lines drawn with the pencil curve tool together and complete a shape with

any of a number of different surfaces once the end of the line is found to be near its start. This script must
be called from a "scriptJob" because of limitations with the pencil curve tool.

putty opts.mel
Used by the 3D grass tool to set a number of options for use with Maya's sculpt surfaces tool.

Concrete Pen, Roads and Hedges
General scridpts for these tools

cvline tool.mel
This is a generic tool used to draw a line then run another procedure (for roads, concrete, hedges, and

Sketched Camera). Attempts to overcome the limitation of Maya's Pencil Curve tool.

plot pointsCV.mel
The dragCommand for the cvlinetool. It is basically the same as plotpoints (used by the pletching

tool) except that it uses a different context for the points (cvlineContext).

line then.mel
Used by the "cvlinetool" to make a line and smooth it, then call on a specified procedure with which to

use the line.

Hedges and Concrete Pen

hedge-etc.mel
This script is used to make a polygon of a certain width either side of a center-line and then extrude it

to a certain height to form a solid object along the line. Refer to figure 9 to understand what this script is
doing.

global proc hedge etc(string $centerline, string $type)

global float $hedgewidth;
global float $hedgeheight;
global float $path-width;
global float $path depth;
float $prev x;float $prev-z;
float $cv-xyzf];
string $polystring="";
float $width;
global int $foltop;float $low;foat $high;

if ($type=="hedge")

$width=$hedgewidth/20; //unit conversion and half ...

else

$width=$pathwidth/20; //unit conversion and half ...
}

//offset the curves on either side of the center-line

string $curveler[]='offsetCurve -ch off -rn false -cb 2 -st true -cl true -cr 0 -d $width -tol
0.01 -sd 5 -nr 0 1 0 $centerline';

$curvel=$curveler[0];
string $curve2er[]='offsetCurve -ch off -rn false -cb 2 -st true -cl true -cr 0 -d (-l*$width)

-tol 0.01 -sd 5 -nr 0 1 0 $center-line';
$curve2=$curve2er[0];

int $num-cvs=l+(getAttr ($curvel + ".spans"));

//set variables for the lowest and highest points along the lines - this is used to place level
concrete objects at the right height.

$low=100; $high=-100;

//move through all CVs of the offset curves and add them to a "string" of points that will be
used to make the polygon. Also use the y value for each of the points if the object is set to
follow the land.

$prev_x=0 ;$prevz=0;
for ($loop=o;$loop<=$numcvs;$loop++)

{
float $cvxyz[]='getAttr ($curvel + ".cv["+$loop+"]")';
if (distcalc($prev-x,$prev-z,$cv-Xyz[O],$cv xyz[21)>0.2)//avoid nonmanifold geometry...

{
if ($low>y-of($cv-xyz[0],$cv-xyz[2])) $low=yof($cvxyz[0],$cv-xyz[2]);

if ($high<y-of($cvIxyz[0],$cvxyz[2])) $high=yof($cv-xyz[O],$cv xyz[2]);

if ($fol top) $polystring=$polystring+" -p "+$cv-xyz[0]+" "+(yof($cv-xyz[O],$cv xyz[2]))+"
"+$cv-xyz[2];

if (!$fol top) $polystring=$polystring+" -p "+$cv-xyz[0]+" 0 "+$cv-xyz[2];

$prev-x=$cv-xyz[0];
$prev-z=$cv-xyz[21;

}
}

$prev x=0;$prevz=0;
for ($loop=$num-cvs;$loop>=O;$loop--)

{
float $cvxyz2[]='getAttr ($curve2 + ".cv["+$1oop+"]")';
if (distcalc($prev-x,$prev-z,$cv-xyz2[0],$cv xyz2[21)>0.2)//avoid nonmanifold geometry...

{
if ($low>y_of($cv-xyz2[0],$cv-xyz2[2])) $low=y_of($cv-xyz2[0],$cv-xyz2[2]);
if ($high<yof($cv xyz2[0],$cv xyz2[2])) $high=yof($cv-xyz2[0],$cv-xyz2[2]);

if ($fol top) $polystring=$polystring+" -p "+$cv-xyz2[0]+" "+(yof($cv-xyz2[0],$cv_
xyz2[2]))+" "+$cv-xyz2[2);

if (!$fol top) $polystring=$polystring+" -p "+$cv-xyz2[0]+" 0 "+$cv-xyz2[2];

$prev x=$cv xyz2[0];
$prev-z=$cvxyz2[2];

}
}

//now use that string to make the polygon
string $polynamer[]='eval("polyCreateFacet -ch on -tx 1 -s 1"+$polystring)';

string $polyname=$polynamer[0];

//depending on the type of object (ie whether its a hedge or concrete) extrude it to a certain

height and set its texture.
if ($type=="hedge")
{
string $polyextruder[]='polyExtrudeFacet -ch 0 -ty ($hedgeheight/10) ($polyname+".f[O]")';

polyAutoProjection -ibd 1 -cm 0 -l 2 -sc 1 -o 1 -p 6 -ps 0.2 -ch 1 ($polyname+".f[0:"+($num_
cvs*2)+"]");

global int $hollowhedges;
if ($hollow hedges) catch('sets -e -forceElement "hollow-treeSG"');

else catch('sets -e -forceElement "solid treeSG"');

}
else

string $polyextruder[];
if ($fol top) $polyextruder='polyExtrudeFacet -ch 0 -ty ($path-depth/10)

($polyname+".f[0]")';
else $poly_extruder='polyExtrudeFacet -ch 0 -ty (($high-$low)+$path-depth/10)

($polyname+".f[0J")';
polyAutoProjection -ibd 1 -cm 0 -l 2 -sc 1 -o 1 -p 6 -ps 0.2 -ch 1 ($polyname+".f[0:"+($num_

cvs*2)+"]");
catch('sets -e -forceElement "pavementSG"');
if (!$fol top) move -a 0 $low 0 $polyname;

}

delete $centerline $curvel $curve2;

select -cl;
}//endp

Roads

road.mel
Makes a road given a center-line and setting for width, parking lanes and lamp style.

make features.mel
Runs down lines along the sides of the road and places a specified "feature" (i.e. lamps or parking me-

ters and cars) along its edge. Rotates the features so the they face down the road by comparing a point on
the feature line to the corresponding point on the center-line.

make lamp.mel
Called by "make-features" if a lamp is to be made. Will import a lamp from a file and place it at a spe-

cific rotation.

make pcar.mel
Called by "make-features" if a parking meter (and its associated cars) is to be made. The file is random-

ly chosen from 6 possible files to ensure variation.

hide-features.mel
If a road is found to intersect another, this script looks for any "features" along the roads that lie near the

intersection and deletes them so that they do not clutter the intersection.

Trees and People
Trees

tree tool.mel
creates the tool window and the draggerContext for the Tree Tool.

placeTree.mel - pressCommand for the Tree tool - places a single tree.

spaceTrees.mel - the dragCommand for the treetool. This places trees based on options for spacing,
tree type and size during a mouse drag.

upTree.mel - releaseCommand for the Tree tool

street tree.mel
Takes a sphere and some cylinders and warps them with a certain amount of randomization to form a

rough tree with a small number of polygons. Each tree will be different owing to the randomization. The
sphere is then texture mapped with a partly transparent leaf texture.

global proc street_tree(float $x,float $z)

{
global int $tree-count;
global string $tree-name[];
global float Stree-scaling;
float $scale;
$scale=(0.15+('rand 1'/20))*$treescaling;

//Make the tree body as a sphere and set its height with a small amount of randomization.
string $treebodyer(]='polySphere -r ($scale*4) -sx 8 -sy 8 -ch 0';
string $treebody=$treebodyer[O;

setAttr ($treebody+".ty") ($scale*(7.5+('rand 0.5')));
setAttr ($treebody+".tx") $x; setAttr ($treebody+".tz") $z;
string $treetrunk[];

//Move the vertices of the tree body randomly by a small amount to roughen the sphere shape.
for ($loop=O;$loop<58;$loop=$loop+l)

{
float $x;float $y;float $z;
$x=$scale*(0.5-('rand l'));$y=$scale*(O.8-('rand 2 '));$z=$scale*(0.5-('rand l'));
move -r -os $x $y $z ($treebody+".vtx["+$loop+"]");

}

//Give the tree body a partly-transparent leaf texture.
select -r $treebody;
sets -e -forceElement "hollow treeSG";

//Make the trunk of the tree from 2 cylinder and move the vertices mid-way and higher. This

forms a forked trunk.
for ($loop=1;$loop<=2;$loop=$loop+l)
{
$treetrunker='polyCylinder -r ($scale*0.3) -h ($scale*5) -sx 10 -sy 4 -sz 1 -ax 0 1 0 -tx

1 -ch 0';
$treetrunk[$loop]=$tree_trunker[0];

// bottom 0:9 then 10:19 then 20:29 then 30:39 top 40:49

setAttr ($tree_trunk[$loop]+".ty") ($scale*2.5);
setAttr ($tree_trunk[$loop]+".tx") $x; setAttr ($treetrunk[$loop]+".tz") $z;

$movebranch=($scale*('rand l'));
select -r ($tree-trunk[$loop]+".vtx[40:491");select -add ($tree-trunk[$loop]+".vtx[51]");//

top
scale .4 1 .4; move -r $movebranch 0 $movebranch;

select -r ($treetrunk[$loop]+".vtx(30:39]");//ldown...
scale .5 1 .5; move -r ($move-branch/2) 0 ($move-branch/2);

select -r ($tree trunk[$loop]+".vtx[0:9]");//bottom
scale 1.2 1 1.2;

select -r $treetrunk[$loop];
sets -e -forceElement "tree trunkSG";
float $rotate=30-('rand 60');
if ($loop==

2
) rotate 0 (180+$rotate) 0;

}

//Group the parts of the tree and place it so that it sits on the landscape - yof will return
the height value for the landscape at the given point.

$treecount=$treecount+1;
$treename[$tree_count]=' group $treebody $tree trunk(1 $tree-trunk[2]';
setAttr ($treename[$treecount]+".ty") (y_of($x,$z));

}//endp

umbrella tree.mel
Similar to the above procedure except in this case the sphere is made so that the bottom is pushed back

up underneath the top to form and "umbrella" shape. This shape is duplicated and shifted is then texture
mapped with a mostly transparent texture. These trees are made larger by default and may be used to form
a canopy.

solid tree.mel
The sphere for the solid tree is elongated then texture mapped with a solid pine-needle texture. These

trees are smaller and can be used as ornamental trees.

People

peopleTool.mel
Creates the tool window and the draggerContext for the People Tool.

placePeep.mel - pressCommand for the People Spray tool - places a single person.

spacePeep.mel - the dragCommand for the peopleTool. This places (or sprays) people based on options
for scatter, frequency, gender and activity during a mouse drag.

upPeep.mel - releaseCommand for the People Spray tool

maketh man.mel
This is a similar tool to trees in that it also automated the moving and scaling of vertices in order to

make an object. It also makes used of randomization to ensure that the people don't look repetitive. The
script is used to make a person of a specified gender and will move that person's arms and legs according
to an "activity" setting.

global proc maketh-man(float $x,float $z, float $rot, string $sex,float $activity)

string $man cylinderer[]='polyCylinder -r 0.1 -h 0.6 -sx 10 -sy 8 -sz 1 -ax 0 1 0 -tx 1 -ch 0';
$mancylinder=$man-cylinderer[0];
move -r $x 0.3 $z;

//head
select -r ($man cylinder+".vtx[70:89]");
scale -r 0.45 0.7 0.45;
move -r 0 0.073 0;
select -r ($man cylinder+".vtx[80:89]");
scale -r 0.9 1 0.9;

//neck
select -r ($man cylinder+".vtx[60:69]")
scale -r 0.3 0.3 0.3;
move -r 0 0.166 0;
select -r ($man cylinder+".vtx[50:59]");
scale -r 0.4 0.4 0.4;
move -r 0 0.162 0;

if ($sex=="female")
{//make hairdo
move -r 0 0.3 0 ($man-cylinder+".scalePivot");
select -r ($man-cylinder+".vtx[70:71j") ($man-cylinder+".vtx[77:81]") ($mancylinder+".vtx[87:

89]") ;
scale -r 1 (1+'rand 0.6') 1;

}

//shoulders
select -r ($man cylinder+".vtx[40:49]")
if ($sex=="female") scale -r .7 .7 ('rand 0.1'+0.8);
else scale -r ('rand 0.1'+0.8) ('rand 0.1'+0.8) ('rand 0.2'+1.1);
move -a -y 0.46;

//waist
select -r ($man cylinder+".vtx[30:39]") ;
scale -a .8 .8 1;
move -a -y 0.268;
select -r ($man cylinder+".vtx[20:29]") ;
scale -r .6 .6 .8;
move -a -y 0.25;

//feet
select -r ($man cylinder+".vtx[10:19]") ;
scale -r .3 1 .6;
move -a -y 0.025;
select -r ($mancylinder+".vtx[0:9]")
scale -r .4 1 .8;

//set the size of the person
if ($sex=="female")
{
move -r 0 -0.6 0 ($mancylinder+".scalePivot");
scale -r 0.85 (0.8+'rand 0.1') 0.85 $man-cylinder;

else

move -r 0 -0.3 0 ($mancylinder+".scalePivot");
scale -r 0.9 (0.85+'rand 0.2') 1 $man-cylinder;

}

//now give them movement according to activity variable passed...
int $negpos=-l+('rand 3');if ($negpos<=0) $negpos=-l;
select -r ($man cylinder+".vtx[0:4]") ($mancylinder+".vtx[9:14]") ($mancylinder+".vtx[19]");
move -r -x ($negpos*$activity*0.05);

select -r ($mancylinder+".vtx[5:8]") ($mancylinder+".vtx[15:18]")
move -r -x (-l*$negpos*$activity*0.05);

select -r ($mancylinder+".vtx[36:37]");
move -r ($negpos*$activity*0.05) 0 0.02;

select -r ($man cylinder+".vtx[31:32]");
move -r (-1*$negpos*$activity*0.05) 0 -0.02;

select -r ($man cylinder+".vtx[60:89]") ($mancylinder+".vtx[91]") ;//head
move -r -x (-0.015*$activity);

select -r ($man cylinder+".vtx[40:89]") ($mancylinder+".vtx[91]")
move -r (-0.025*$activity) ((-0.01+'rand 0.02')*$activity) 0;

select -r ($mancylinder+".vtx[48:49]") ($man-cylinder+".vtx[40]");//flatten chest
scale -r 0.6 1 1;
move -r -x (-0.008*$activity);

select -r $man cylinder;
rotate -r 0 $rot 0;
move -r -y (yof($x,$z));
select -cl;

}

Vizualization
Sketched Camera

cam sketch.mel
Works out whether a line is straight or a node then a line and sets the Sketched Camera accordingly. The

actual tool context for the sketched camera is made by the cvlinetool which is listed under "Concrete
Pen, Roads and Hedges."

Leashed Camera (or CamFollow)

camfollow tool.mel
Create the tool window and tool contexts for the Leashed Camera tool.

placeCamFollow.mel - the pressCommand for the Leashed Camera tool - can also be used to set the
camera at eye level or set it to be level with the ground.

CamFollow.mel
The dragCommand for the Leashed Camera tool. This script sets the position of the camera and the

camera view node. Cameras will always rotate to look at their view nodes. This script sets the view node
at the position of the mouse pointer while the camera is made to "lag" a few steps behind. The result is
similar to a real-time motion path because the camera will fly along the line drawn by the user as it is be-
ing drawn.

global proc CamFollow()
{

float $dragPosition[] = 'draggerContext -query -dragPoint camfol2Context';
global float $posx[];
global float $posz[];
global int $sincestart;
global int $lag=35;
float $velocity;
float Slagval;
int $counter;
global int $lagvel;
global string $cam-folname;
global string $cam follight;
float $viewx;float $viewz;
$velocity=velcalco;

//use the velocity of the camera to determine how far behind the drag point the camera should
lag (ie the length of the leash).

$lagval=($lag-($velocity-0.2)*3
8); //values based on how it feels - this could be changed to

accomodate performance drop-off when dealing with more polygons - not implemented yet//
if ($lagval<12) $lagval=12;

$lagvel=$lagval;
if ($lagvel>$lag) $lag vel=$lag;

if ($sincestart<$lag)

{
$lagvel=$since start/($lagval/$lag);
if ($lagvel>$lagval) $lagvel=$lagval-1;
$sincestart=$sincestart+l;

//increases every time a drag move is registered since the start of the drag.

$counter=$lag;

//average the view points for a smoother ride - ie to prevent the camera from moving abruptly
as it looks at each new point

$view-x=($dragPosition[0]+$posx[O])/2;
$view-z=($dragPosition[2]+$posz[O])/2;

//set the viewpoint at the current cursor position and place it on the landscape.
global float $viewyoff;

setAttr ($camfolname+"_view.tx") $view-x;
setAttr ($c am_fol_name+"_view.ty") (y-of($view-x,$view-z)+$viewyoff);
setAttr ($camfol_name+"_view.tz") $viewz;

while ($counter>O)
{$counter=$counter-1; //makes counter 15 initially...!!
$posx[$counter+l]=$posx[$counter]; //compare [161 and (15] first... down to [1] and [0]//
$posz[$counter+l]=$posz[$counter];

float $avg-x;float $avgz;

//average the camera points for a smoother ride - using 3 points on a short leash (20-35 lag
points) or 6 points when the leash is long (35 lag points).

//there will be no averaging if the leash is less than 20 lag points.
if ($lagvel>20)

{
$avgx=($posx[$lagvel-2]+$posx[$lagvel-l]+$posx[$lagvel])/3;
$avg-z=(Sposz[$lagvel-2]+$posz[$lagvel-l]+$posz[$lag-vel])/3;

if ($lagvel==35)

{
$avgx=($posx[$lagvel-5]+$posx[$lagvel-4]+$posx[$lagvel-3]+$posx[$lagvel-2]+$posx[$lag_

vel-l]+$posx[$lagvel])/6;
$avg-z=($posz($lagvel-5]+$posz[$lagvel-4]+$posz[$lagvel-3]+$posz[$lagvel-2]+$posz[$lag_

vel-1]+$posz[$lagvelj)/6;

}

if ($lagvel<=20)

{
if ($lag vel>l)

$avgx=($posxf$lagvel-l]+$posx[$lagvel])/2;
$avgz=($posz($lagvel-l]+$posz[$lagvelj)/2;

if ($lagvel<=1)

$avgx=$posx[$lagvel];
$avg-z=$posz[$lagvel];

}
}

//set the camera at the position determined by the length of the leash and the averaging pro-
cess and place it on the landscape at that point.

global float $cam_yoff;

setAttr ($camfolname+" .tx") $avg-x;
setAttr (Scamfolname+".ty") (yof($avgx,$avgz)+$camyoff);
setAttr ($camfolname+".tz") $avg-z;

$posx[O]=$dragPosition[OJ;
$posz[0]=$dragPosition[2];

refresh;
}//end proc//

velcalc.mel
Calculates the velocity of the pointer while dragging the Leashed camera. This is used to lengthen or

tighten the "leash" depending on how fast one moves the pointer.

Solar Analysis Tools

sunset tool.mel
Sets the tool window (by calling sunset-window) and creates the tool context for the Solar Analysis

tool.

sunsetdown.mel - the pressCommand for the sunsettool. This will set the dragCommand to sunset_
drag or sunsetinterest based on the window in which the mouse is pressed. It will also turn shadows off
in the interests of optimization.

sunset drag.mel - the dragCommand for the sunsettool called when dragging in the tool window (in
the trepezoid). This calls on position-sun to set the position of the solar system object for that day and
time.

sunsetinterest.mel - the dragCommand for the sunsettool called when dragging in the plan view. This
moves the entire solar system object so that the center of interest is placed at the position of the drag.

sunset-up.mel - the releaseCommand for the sunsettool.

position sun.mel
Used to position the sun in the solar system based on where the sun object lies in the trapezoid.

sunset window.mel
Creates the tool options for the Solar Analysis tool. This window includes model view from the side of

the trapezoidal object used to place the sun.

displaydate.mel - display the date in an intelligible form - used in the "heads-up display" to display the
date.

displaydate.mel - display the time in an intelligible form - used in the "heads-up display" to display the
time.

make solar system.mel
This script makes a solar system object that is moved and rotated to represent changes in season and

time respectively. The solar system contains an "ecliptic" - a circle for the sun to follow - a sun, and a
node of interest. The sun object contains a directional light that is set to cast "depth-map" shadows. Both
the sun and the node of interest contain cameras and view points so that the user can look either from the
sun at the point of interest or from the point of interest towards the sun.

Curiosity Camera

construction cam.mel
The curiosity camera was formerly known as the "construction camera" as it looks at objects while they

are being constructed. This script is used to create the curiosity camera if it doesn't exist and sets up a
scriptJob that uses background-process to move the camera to the specified position.

kitty interest.mel
This script creates a new tool context that allows the user to select an object of interest for the Curiosity

Camera.

background process.mel
Used to move the Curiosity Camera when all else is idle.

Windows, View and Toolbars
shelf window.mel
This creates the main toolbox window for DASPE. Three shelf states are possible: Construction, Land-

scape and Visualize.

altswitch.mel - called when the user clicks an alternative - switches the alternative buttons and turns
layers on and off.

tool window.mel
This script creates the window that is used to display options for each different tool. The window is first

created with a number of generic elements. These are all turned off initially and are turned back on by
specific tools as needed.

togglejtools.mel - ensures the tool buttons work as radio-buttons and disables the current tool from be-
ing deselected.

spective window.mel
Creates a window with a perspective view and buttons used to control it.

spect switch.mel - used to ensure that check-boxes on the perspective window act as radio-buttons
rather than check-boxes.

elevation window.mel
Create the elevation/section window and its associated buttons.

RL selector.mel
Creates a tool used to pick an object for use with the raise/lower tool.

focuscondi.mel
This script is used in creating a "condition" that is used to determine when the window under the mouse

pointer gets changed.

switch tools.mel
Called whenever the window under the pointer changes, it will switch the tool state to suit the specified

window if necessary.

gc switch.mel
Used to switch check-boxes so that they act like radio buttons.

lamp-switch.mel - similar to gc_switch, but specific to lamp selection.

set section.mel

set sect pos.mel

setTool.mel
DASPE uses two tool states (one for the perspective window, the other for the plan). This script allows

either or both to be set to a specified tool.

Library scripts

(These scripts are used by many other procedures and fall under no particular category):

angle.mel
(convenience) just a more convenient way to get an angle between two point in plan - used by a number

of scripts including check-screw.

averagepoint.mel

(convenience) used to get the average of a number of points - useful for smoothing.

CASTangle.mel
(convenience) the same as angle except that the angle returned is out of 360 degrees, not just 90 degrees.

cvdist.mel
(convenience) returns the distance between two specified CVs for a given line.

delete plotted.mel
Most sketched tools plot a line as the user draws. This script deletes it.

distcalc.mel
(convenience) return the linear distance between 2 points.

osTest.mel
Checks the operating system so that some commands may be disabled for older versions.

point is on line.mel
Checks to see whether a given point lies on a certain line.

smooth curve.mel
Basic averaging used to smooth the curve made from mouse or particularly stylus input.

y of.mel
For any given x and z position on the plan, this script will return an associated y position based on the

surface of the land.

Acknowledgements
This thesis was made possible by the assistance and support of a large number of people.

First I would like to thank Joe Ferreira, Eran Ben Joseph and Dennis Frenchman of the Department of
Urban Studies and Planning, as well as Hiroshi Ishii of the MIT Media Lab's Tangible Media Group for
their support and guidance throughout the development of this thesis.

Thanks should also go to those who took the time to partake in my gestural sketching survey: Antonio,
Tim, Martha, Sushila, Apiwat, Shahid, Marisa, Rossana, Sunil, Kris, Roohi and Michelle. While the sur-
vey itself provided only limited substance for this thesis, the discussions it generated were greatly inspir-
ing.

Phil Thompson provided advice, encouragement and a great deal of assistance with the physical setup of
DASPE in the Computer Resource Lab. Duncan Kincaid also gave inspiration and support and supplied
the most thorough user-testing I could have hoped for by bringing his gifted nephew to try out the sys-
tem. That testing provided numerous insights about the usability of the system and informed a number of
changes that were subsequently made.

The students in Eran Ben Joseph's Site Planning class gave comments and support at a number of pre-
sentations and I'd like to thank Jordan Karp in particular for his patience in putting up with all the hassles
involved in being the first user to put DASPE through its paces on a real project.

Brygg Ullmer (of Ishii's Tangible Media Group) was a valuable resource for pertinent examples of
related work. Ben Piper and Yao Wang provided much inspiration through their work on the Illuminating
Clay project and were also forthcoming with advice for DASPE. Andy Bennett and Bryan Ewert provided
valuable e-mail support for Maya and MEL problems and I thank them for their time.

I would like to thank MassGIS and the Town of Brookline for help in locating a digitizing table, and in
particular Robert Kefalas for taking the trouble to fetch and deliver this hefty piece of equipment right to
our door. Steven Wilson of Sasaki made a special visit to see DASPE and gave a valuable critique on its
potential use a design tool in an urban planning firm.

Lastly I'd like to thank my father for his pedantic proof-reading without which the text of thesis may
have been an embarrassment. Of course I take full responsibility for any latent typographic, structural or
grammatical errors he and my readers may have missed.

