
Simplifying Transformations
for Type-alpha Certificates

Konstantine Arkoudas

AI Memo 2001-031 November 2001

© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

@ MIT

Abstract

This paper presents an algorithm for simplifying NDL deductions. An array of simplifying transformations

are rigorously defined. They are shown to be terminating, and to respect the formal semantics of the language.

We also show that the transformations never increase the size or complexity of a deduction—in the worst case,

they produce deductions of the same size and complexity as the original. We present several examples of proofs

containing various types of superfluous “detours”, and explain how our procedure eliminates them, resulting

in smaller and cleaner deductions. All of the given transformations are fully implemented in SML-NJ. The

complete code listing is presented, along with explanatory comments. Finally, although the transformations

given here are defined for NDL, we point out that they can be applied to any type-α DPL that satisfies a

few simple conditions.

1.1 Introduction

This paper presents a simplification procedure for NDL [1] deductions. Various transformations
are rigorously defined, shown to respect the formal semantics, and fully implemented in SML-NJ.
The complete code listing is included, along with explanatory comments. Moreover, although the
transformations we present here are defined for NDL, we show how they can be applied to any
type-α DPL that satisfies some simple conditions.

Our subject is related to proof-tree normalization in the sense of Prawitz [4] (or alternatively,
cut-elimination in sequent-based systems [3, 2]). In the intuitionist case, the Curry-Howard corre-
spondence means that Prawitz normalization coincides with reduction in the simply typed λ-calculus.
Accordingly, the normalization algorithm in that case is particularly simple: keep contracting as long
as there is a redex (either a β-redex or one of the form l(〈e1, e2〉), r(〈e1, e2〉), etc.). Strong normaliza-
tion and the Church-Rosser property guarantee that eventually we will converge to a unique normal
form. In the classical case, there is some pre-processing to be done (see Section I, Chapter III of
Prawitz’s book [4]) before carrying out reductions.

Type-α DPLs such as NDL present complications of a different nature. One important difference
is that in type-α DPLs inference rules are applied to propositions rather than to entire proofs. If
NDL were based on a proof-tree model, where inference rules are applied to proofs, we could then
readily formulate local contraction rules in the style of Prawitz, such as

right-and(both(D1, D2)) −→ D2

modus-ponens(assume P . D1, D2) −→ D1[D2/P]

and so on. But in NDL there is not much we can infer from looking at an individual application of an
inference rule (such as left-iff P ⇔Q), so global analyses are needed to identify and eliminate detours.
Essentially, because assumptions and intermediate conclusions can have limited and arbitrarily nested
scopes, it is generally not possible to carry out reductions in a local manner; the overall surrounding
context must usually be taken into consideration. Further, the result of one transformation might
affect the applicability or outcome of another transformation, so the order in which these occur is
important.

Our simplification procedure will consist of a series of transformations, which fall into two groups:

• restructuring transformations; and

• contracting transformations, or simply contractions.

1

Contracting transformations form the bedrock of the simplification process: they remove extraneous
parts, thereby reducing the size and complexity of a deduction. Restructuring transformations sim-
ply rearrange the structure of a deduction so as to better expose simplification opportunities; they
constitute a kind of pre-processing aimed at facilitating the contracting transformations.

Specifically, our top-level simplification procedure is defined as follows:

simplify = contract · restructure (1.1)

where · denotes ordinary function composition and

contract = fp (C · P · U) (1.2)

restructure = reduce (λ f, g . MS · f · g) MS [A3, A2, A1]. (1.3)

The fixed-point-finder function fp is defined as:

fp f = λD . let D′ = f D
in

D = D′ ? → D, fp f D′

while reduce is the usual list-reducing functional. An equivalent definition of restructure is as follows:

restructure = weave MS [A3, A2, A1] (1.4)

with the weaving function defined thus:

weave f L = let T [] = f
T g::L′ = f · g · (T L′)

in
T L

We will continue to define functions in this informal notation, using pattern matching, recursion, etc.,
in the style of (strict) higher-order functional languages such as ML. Any reader moderately familiar
with a programming language of this kind should be able to make sense of our definitions. Complete
SML-NJ code will be given in Section 1.6. As a convention, we will write E ? → E1, E2 to mean “if
E then E1 else E2”. Also, we write [x1, . . . , xn] for the list of any n ≥ 0 elements x1, . . . , xn, and x::L
for the list obtained by prepending (“consing”) x in front of L. Finally, we will use the symbol ⊕ to
denote list concatenation.

We will show that our simplification procedure has three important properties: it always termi-
nates; it is safe; and it never increases the size or complexity of a deduction. Specifically, the following
will hold for all deductions D:

1. The computation of simplify(D) terminates.

2. simplify(D) respects the semantics of D, in a sense that will be made rigorous in Section 1.2.

3. The size of simplify(D) is less than or equal to the size of D.

The remainder of this paper is structured as follows. The next section briefly reviews the syntax
and semantics of NDL, along with some basic notions and results that will form the theoretical
background for our transformations. The following two sections discuss each group of transformations
in turn: first the contractions C, P, and U; and then the restructuring transformations MS, A1, A2,

2

Prim-Rule ::= claim | modus-ponens | cond | neg | true-intro
| both | left-and | right-and | double-negation
| cd | left-either | right-either | equivalence
| left-iff | right-iff | absurd

Figure 1.1: The primitive inference rules of NDL.

and A3. In Section 1.5 we give a number of examples illustrating the various transformations in
action; the examples demonstrate that simplify can often result in dramatic size reductions. Finally,
in Section 1.6 we present SML-NJ code that implements all of the given transformations, and we
discuss how these ideas can be applied to other type-α DPLs. An appendix offers rigorous definitions
of some NDL concepts that appear informally in Section 1.2.

1.2 Review of NDL
Propositions are defined by the following abstract grammar:

P ::= A | true | false | ¬P | P ∧ Q | P ∨ Q | P ⇒Q | P ⇔Q

where A ranges over some unspecified, countable set of atomic propositions (“atoms”). The letters
A, B, and C will be used as typical atoms, and P , Q, and R as propositions. Parsing ambiguities
will be resolved by parentheses and brackets. By an assumption base β we will mean a finite set of
propositions.

The proofs (or “deductions”) of NDL have the following abstract syntax:

D = Prim-Rule P1, . . . , Pn (Primitive rule applications)
| assume P in D (Conditional deductions)
| suppose-absurd P in D (Proofs by contradiction)
| D1; D2 (Compositions)

where Prim-Rule ranges over the collection of primitive inference rules shown in Figure 1.1.1 De-
ductions of the form Prim-Rule P1, . . . , Pn are called primitive rule applications; those of the form
assume P in D and D1; D2 are hypothetical and composite deductions, respectively; and those of the
form suppose-absurd P in D are called deductions by contradiction. Primitive rule applications
are atomic deductions, as they have no recursive structure, whereas all other forms are compound
or complex. Conditional deductions of the form assume P in D and proofs by contradiction of the
form suppose-absurd P in D will be called hypothetical deductions. In both cases, P and D are
called the hypothesis and body of the deduction, respectively; we also say that the body D repre-
sents the scope of the hypothesis P . A trivial deduction is a claim, i.e., an atomic deduction of
the form claim P . A deduction is well-formed iff every primitive rule application in it has one of
the forms shown in Figure 1.12 (a precise definition appears in the Appendix). It is straightforward
to check whether a deduction is well-formed, and from now on we will assume that all deductions
are well-formed. We stipulate that the composition operator is right-associative. A maximal-length

1Note that modus-tollens and false-elim are not needed here, since we are taking suppose-absurd as a primitive.
Also, cond and neg, which are used to introduce conditionals and negations, respectively, are not found in other
presentations of NDL. Consult the Appendix for a discussion of these two rules.

3

FA(D1; D2) = FA(D1) ∪ (FA(D2) − {C(D1)}) (1.5)

FA(assume P in D) = FA(D) − {P} (1.6)

FA(suppose-absurd P in D) = FA(D) − {P} (1.7)

FA(left-either P1, P2) = {P1} (1.8)

FA(right-either P1, P2) = {P2} (1.9)

FA(Prim-Rule P1, . . . , Pn) = {P1, . . . , Pn} (1.10)

Figure 1.2: Definition of FA(D) for NDL (Prim-Rule �∈ {left-either, right-either} in 1.10).

composition D1; . . . ; Dn is called a thread. The last element of a thread is said to be in a tail position.
Ambiguities in the parsing of NDL deductions will be resolved by the use of begin-end pairs.

The semantics of NDL are given by judgments of the form β
 D � P , which are understood to
say “Evaluating D in β produces the conclusion P .” The semantics of rule applications appear in
Figure 1.12, in the Appendix. The semantics of compound deductions are given by the following three
rules:

β ∪ {P} � D � Q [R1]
β � assume P in D � P ⇒Q

β ∪ {P} � D � false [R2]
β � suppose-absurd P in D � ¬P

β � D1 � P1 β ∪ {P1} � D2 � P2 [R3]
β � D1; D2 � P2

We have:

Theorem 1.1 (Dilution) If β
 D � P then β ∪ β′
 D � P .

The conclusion of a deduction D, denoted C(D), is defined by structural recursion. For compound
deductions we have:

C(assume P in D) = P ⇒C(D)

C(suppose-absurd P in D) = ¬P

C(D1; D2) = C(D2)

while rule applications are covered in the Appendix.

Theorem 1.2 If β
 D � P then P = C(D).

Proof: A straightforward induction on D.

Corollary 1.3 If β
 D � P1 and β
 D � P2 then P1 = P2.

Figure 1.2 defines FA(D), the set of free assumptions of a proof D. The elements of FA(D) are
propositions that D uses as premises, without proof. Note in particular equations 1.6 and 1.7, for
hypothetical deductions: the free assumptions here are those of the body D minus the hypothesis P .
We will say that the elements of FA(D) are strictly used by D.

4

Theorem 1.4 β
 D � C(D) iff FA(D) ⊆ β.

Proof: By induction on the structure of D.

We say that two deductions D1 and D2 are observationally equivalent with respect to an assumption
base β, written D1 ≈β D2, whenever

β
 D1 � P iff β
 D2 � P

for all P . We say that D1 and D2 are observationally equivalent, written D1 ≈D2, iff we have
D1 ≈β D2 for all β.

Lemma 1.5 If D1 ≈D2 then C(D1) = C(D2).

Proof: Set β = FA(D1) ∪ FA(D2). By Theorem 1.4, we have β
 D1 � C(D1), so the assumption
D1 ≈D2 entails β
 D2 � C(D1). But Theorem 1.4 also gives β
 D2 � C(D2), hence C(D1) = C(D2)
by Corollary 1.3.

Theorem 1.6 D1 ≈D2 iff FA(D1) = FA(D2) and C(D1) = C(D2). Therefore, observational equiv-
alence is decidable.

Proof: In one direction, suppose that FA(D1) = FA(D2) and C(D1) = C(D2). Then, for any β and
P , we have:

β
 D1 � P iff (by Theorem 1.2 and Theorem 1.4)

P = C(D1) and β ⊇ FA(D1) iff (by the assumptions C(D1) = C(D2) and FA(D1) = FA(D2))

P = C(D2) and β ⊇ FA(D2) iff (by Theorem 1.2 and Theorem 1.4)

β
 D2 � P .

This shows that D1 ≈D2.
Conversely, suppose that D1 ≈D2. Then C(D1) = C(D2) follows from Lemma 1.5. Moreover,

by Theorem 1.4, FA(D1)
 D1 � C(D1), so the assumption D1 ≈D2 entails FA(D1)
 D2 � C(D1).
Therefore, by Theorem 1.4,

FA(D1) ⊇ FA(D2). (1.11)

Likewise, we have FA(D2)
 D2 � C(D2), so D1 ≈D2 implies FA(D2)
 D1 � C(D2), and hence The-
orem 1.4 gives

FA(D2) ⊇ FA(D1) (1.12)

and now FA(D1) = FA(D2) follows from 1.11 and 1.12.

Observational equivalence is a very strong condition. Oftentimes we are only interested in replacing
a deduction D1 by some D2 on the assumption that D1 will yield its conclusion in the intended β (i.e.,
on the assumption that its evaluation will not lead to error), even though we might have D1 �≈D2. To
take a simple example, although we have claim P ; D �≈D (pick D to be true-intro and consider any
β that does not contain P), it is true that in any given assumption base, if claim P ; D �≈D produces
some conclusion Q then so will D. (In fact this observation will be the formal justification for a
transformation we will introduce later for removing redundant claims.) We formalize this relation as
follows.

5

We write D1 �β D2 to mean that, for all P ,

if β
 D1 � P then β
 D2 � P.

That is, D1 �β D2 holds if Eval(D1, β) = Eval(D2, β) whenever Eval(D1, β) = C(D1), or, equiva-
lently, whenever Eval(D1, β) �= error. And we will write D1 � D2 to mean that D1 �β D2 for all
β.

Clearly, � is not a symmetric relation: we vacuously have claim A� true-intro, but the con-
verse does not hold. However, � is a quasi-order (reflexive and transitive), and in fact ≈ is the
contensive equality generated by the weaker relation’s symmetric closure.

Lemma 1.7 � is a quasi-order whose symmetric closure coincides with ≈. Accordingly, D1 ≈D2 iff
D1 � D2 and D2 � D1.

It will be useful to note that � is compatible with the syntactic constructs of NDL:

Lemma 1.8 If D1 � D′
1, D2 � D′

2 then assume P in D1 � assume P in D′
1, D1; D2 � D′

1; D
′
2,

and suppose-absurd P in D1 � suppose-absurd P in D′
1.

Reasoning similar to that used in the proof of Theorem 1.4 will show:

Theorem 1.9 D1 � D2 iff C(D1) = C(D2) and FA(D1) ⊇ FA(D2). Therefore, the relation � is
decidable.

Finally, the following result will help us to justify a “hoisting” transformation that we will define
later:

Theorem 1.10 If P �∈ FA(D1) then (a) assume P in (D1; D2)� D1; assume P in D2, and

(b) suppose-absurd P in (D1; D2)� D1; suppose-absurd P in D2.

Proof: We prove part (a); part (b) is similar. Suppose β
 assume P in (D1; D2) � P ⇒Q, so that
β ∪ {P}
 D1; D2 � Q. Accordingly,

β ∪ {P}
 D1 � P1 (1.13)

and
β ∪ {P} ∪ {P1}
 D2 � Q (1.14)

(where, of course, P1 = C(D1), Q = C(D2)). Thus 1.14 gives

β ∪ {P1}
 assume P in D2 � P ⇒Q. (1.15)

From 1.13 and Theorem 1.4, β ∪ {P} ⊇ FA(D1), hence, since P �∈ FA(D1),

β ⊇ FA(D1). (1.16)

Therefore,
β
 D1 � P1 (1.17)

so, from 1.15 and 1.17, rule [R3] gives β
 D1; assume P in D2 � P ⇒Q, which establishes (a).

6

The relation � will serve as our formal notion of safety for the transformations that will be
introduced. That is, whenever a transformation maps a deduction D1 to some D2, we will have
D1 � D2. This is an appropriate notion of safety in the context of certificates, because if D1 is a
certificate then presumably we already know that it works; we are only interested in making it more
efficient or succinct. For other applications, however, if we wish our transformations to be perfectly
safe then we should insist on observational equivalence. For D1 ≈D2 means that the two deductions
behave identically in all contexts, i.e., in all assumption bases. For any β, if D1 fails in β then
D2 will fail in β as well; while if D1 produces a conclusion P in β, then D2 will produce that same
conclusion in β. Accordingly, the replacement of D1 by D2 would be a completely semantics-preserving
transformation.

1.3 Contracting transformations

Informally, our contracting transformations will be based on two simple principles:

Productivity: Every intermediate conclusion should be used at some later point as an argument to
a primitive inference rule.

Parsimony: At no point should a non-trivial deduction establish something that has already been
established, or something that has been hypothetically postulated.

These principles are respectively based on the notions of redundancies and repetitions, which we will
now study in detail.

Redundancies

Intuitively, a deduction contains redundancies if it generates conclusions which are not subsequently
used. For all practical purposes, such conclusions are useless “noise”. We will see that they can
be systematically eliminated. Redundancy-free deductions will be called strict. As a very simple
example, the following deduction, which proves A ∧ B ⇒A, is not strict:

assume A ∧ B in begin right-and A ∧ B; left-and A ∧ B; end

The redundancy here is the application of right-and to derive B. This is superfluous because it plays
no role in the derivation of the final conclusion. We formally define the judgment
S D, “D is strict”,
in Figure 1.3. Verbally, the definition can be phrased as follows:

• Atomic deductions are always strict.

• A hypothetical deduction is strict if its body is strict.

• A composite deduction D1; D2 is strict if both D1 and D2 are strict, and the conclusion of D1

is strictly used in D2.

The last of the above clauses is the most important one. Note that we require that C(D1) be
strictly used in D2. Accordingly, the deduction

left-and A ∧ B; assume A in both A, A

is not strict: the derivation of A via left-and is extraneous because the only subsequent use of A, as
a premise to both inside the assume, has been “buffered” by the hypothetical postulation of A.

7

�S Prim-Rule P1, . . . , Pn

�S D

�S assume P in D

�S D

�S suppose-absurd P in D

�S D1 �S D2 C(D1) ∈ FA(D2)

�S D1; D2

Figure 1.3: Definition of strict deductions.

We will now present a transformation algorithm U that converts a given deduction D into a strict
deduction D′. We will prove that
S D′, and also that the semantics of D are conservatively preserved
in the sense that D � D′. The transformation is defined by structural recursion:

U (assume P in D) = assume P in U (D)
U (suppose-absurd P in D) = suppose-absurd P in U (D)
U (D1; D2) = let D′

1 = U (D1)
D′

2 = U (D2)
in
C(D′

1) �∈ FA(D′
2)→ D′

2, D
′
1; D

′
2

U (D) = D

Informally, it is easy to see that D � U (D) because U (D) does not introduce any additional free
assumptions (though it might eliminate some of the free assumptions of D), and does not alter C(D).
Therefore, by Theorem 1.9, we have D � U (D). More precisely:

Theorem 1.11 (a) U always terminates; (b) U (D) is strict; (c) D � U (D).

Proof: Termination is clear, since the size of the argument strictly decreases with each recursive call.
We prove (b) and (c) simultaneously by structural induction on D.

The base case of atomic deductions is immediate. When D is of the form assume P in Db, we
have

U (D) = assume P in U (Db). (1.18)

By the inductive hypothesis, U (Db) is strict, hence so is U (D), by the definition of strictness. Further,
again by the inductive hypothesis, we have Db � U (Db), hence by Lemma 1.8 we get

assume P in Db � assume P in U (Db)

which is to say, by virtue of 1.18, that D � U (D). The reasoning for proofs by contradiction is similar.
Finally, suppose that D is a composite deduction D1; D2 and let D′

1 = U (D1), D′
2 = U (D2).

Either C(D′
1) ∈ FA(D′

2) or not. If so, then U (D) = D′
1; D

′
2, and strictness follows from the induc-

tive hypothesis and our supposition that C(D′
1) ∈ FA(D′

2), according to the definition of
S; while
D � U (D) in this case means D1; D2 � D′

1; D
′
2, which follows from the inductive hypotheses in tan-

dem with Lemma 1.8. By contrast, suppose that C(D′
1) �∈ FA(D′

2), so that U (D) = D′
2. Since

D = D1; D2 � D′
1; D′

2 follows from the inductive hypotheses and Lemma 1.8, if we can show that
D′

1; D
′
2 � D′

2 then D � D′
2 = U (D) will follow from the transitivity of � (Lemma 1.7). Accordingly,

8

pick any β and Q, and suppose that β
 D′
1; D

′
2 � Q (where, of course, by Theorem 1.2 we must have

Q = C(D′
1; D′

2) = C(D′
2)). By Theorem 1.4, this means that

β ⊇ FA(D′
1; D

′
2). (1.19)

But the supposition C(D′
1) �∈ FA(D′

2) entails, by the definition of free assumptions, that FA(D′
1; D′

2) =
FA(D′

1) ∪ FA(D′
2), so 1.19 gives β ⊇ FA(D′

2). Therefore, Theorem 1.4 implies β
 D′
2 � C(D′

2) = Q.
We have thus shown that for any β and Q, if β
 D′

1; D
′
2 � Q then β
 D′

2 � Q, which is to say
D′

1; D
′
2 � D′

2. It follows from our earlier remarks that D = D1; D2 � D′
2 = U (D). This completes

the inductive argument.

As an illustration, suppose we wish to use the algorithm to remove redundancies from the deduction

D1; D2;both A, B; left-either A, C (1.20)

where C(D1) = A, C(D2) = B. Assuming that D1 and D2 are already strict, the interesting reduction
steps taken by the algorithm, in temporal order, may be depicted as follows (where we use the arrow
=⇒ to represent a reduction step):

1. both A, B; left-either A, C =⇒ left-either A, C (as A ∧ B �∈ FA(left-either A, C))

2. D2; left-either A, C =⇒ left-either A, C (as C(D2) = B �∈ FA(left-either A, C))

3. D2;both A, B; left-either A, C =⇒D2; left-either A, C (from 1)

4. D2;both A, B; left-either A, C =⇒ left-either A, C (from 2 and 3)

5. D1; D2;both A, B; left-either A, C =⇒D1; left-either A, C (from 4)

Thus the original deduction becomes reduced to D1; left-either A, C.

Repetitions

The principle of productivity alone cannot guarantee that a deduction will not have superfluous
components. For instance, consider a slight modification of example 1.20:

D1; D2;both A, B; left-and A ∧ B (1.21)

where again C(D1) = A, C(D2) = B. The difference with 1.20 is that the last deduction is

left-and A ∧ B

instead of left-either A, C. In this case algorithm U will have no effect because the deduction is
already strict: D1 establishes A; D2 establishes B; then we use both A and B to obtain A ∧ B; and
finally we use left-and A ∧ B to get A. Thus the principle of productivity is observed. The principle
of parsimony, however, is clearly violated: the left-and deduction establishes something (A) which
has already been established by D1. For that reason, it is superfluous, and hence so are the derivations
of B and A ∧ B.

This example illustrates what Prawitz called a detour: the gratuitous application of an introduction
rule followed by the application of a corresponding elimination rule that gets us back to a premise which
we had supplied to the introduction rule. The reason why these are detours is because elimination rules
are the inverses of introduction rules. Prawitz enunciated this intuition with an informal statement

9

D1; (proves P)
.
..

suppose-absurd ¬P in

D2;
...

double-negation ¬¬P ;
...

(a) Detour for ¬.

D1; (proves P)
...

D2; (proves Q)
...

both P, Q;
..
.

left-and P ∧ Q;
..
.

(b) Detour for ∧.

{D1; (proves Q})
.
..

D2; (proves P)
...

assume P in

D3; (proves Q)
...

modus-ponens P ⇒Q, P ;
...

(c) Detour for ⇒.

D1; (proves P)
.
..

left-either P, Q;
...

assume P in

D2; (proves Q′)
...

assume Q in

D3; (proves Q′)
...

cd P ∨ Q, P ⇒Q′, Q ⇒Q′;
...

(d) Detour for ∨.

assume P in

D1; (proves Q)
.
..

assume Q in

D2; (proves P)
.
..

equivalence P ⇒Q, Q ⇒P ;
...

left-iff P ⇔Q;
...

(e) Detour for ⇔.

Figure 1.4: Prawitz-type detours for NDL.

that he called “the inversion principle”. Figure 1.4 shows the form that Prawitz’s detours take in
NDL for each of the five connectives. For ∧, ∨, and ⇔ there are twin detours, which we do not
depict here, where right-and, right-either, and right-iff take the place of left-and, left-either,
and left-iff, respectively. Furthermore, the detour contained in each of the threads shown in Figure 1.4
is insensitive to the ordering of most of the thread’s elements: for instance, in thread (b) we may be
able to swap D1 and D2, but this would not affect the detour; in (c) we might put D1 immediately
before the modus-ponens, but we would still have the same detour; and so on. So the threads
of Figure 1.4 should be understood up to some permutation of the depicted elements (of course
one ordering constraint that must always be respected is that elimination rules should come after
introduction rules). Finally, D1 in (c) is optional, indicated by the braces around it; we would still
have essentially the same detour in the absence of D1.

It is important to realize that Prawitz’s reductions are not readily applicable in NDL. Detours may
not be freely replaced by their obvious contractions; the greater context in which the subdeduction
occurs will determine whether the replacement is permissible. For example, the boxed subdeduction
below indicates a detour, but we may not blindly simplify it because C(D2), or C(D1) ∧ C(D2), or

10

P(D) = RR(D, ∅)
where

RR(D, Φ) = C(D) ∈ Φ→ claim C(D),

match D

assume P in Db → assume P in RR(Db, Φ ∪ {P})
suppose-absurd P in Db → suppose-absurd P in RR(Db, Φ ∪ {P})
D1; D2 → let D′

1 = RR(D1, Φ)

in

D′
1;RR(D2, Φ ∪ {C(D′

1)})
D → D

Figure 1.5: Algorithm for removing redundancies.

both, might be needed inside D′:

· · · ; D1; D2;both C(D1), C(D2); left-and C(D1) ∧ C(D2) ; · · ·D′ · · ·

What we can do, however, is replace the inference left-and C(D1) ∧ C(D2) by the trivial claim C(D1).
A subsequent strictness analysis will determine whether C(D2) or C(D1) ∧ C(D2) are needed at any
later point. If not, then we can be sure that the deductions D2 and both C(D1), C(D2) were indeed
a detour, and algorithm U will eliminate them. We will see that this simple technique of

1. replacing every deduction whose conclusion P has already been established by the trivial de-
duction that claims P , and then

2. removing redundancies with our productivity analysis

will be sufficient for the elimination of most of the detours shown in Figure 1.4. The first step can
result in a deduction with various trivial claims sprinkled throughout. This is mostly a cosmetic
annoyance; a simple contracting analysis that we will present shortly will eliminate all extraneous
claims. That analysis will always be performed at the end of all other transformations in order to
clean up the final result.

We now present an algorithm P, in Figure 1.5, for performing the first step of the above process.
The following lemma will be useful in proving the correctness of this transformation.

Lemma 1.12 If β
 RR(D, Φ) � Q then β ∪ {P}
 RR(D, Φ ∪ {P}) � Q.

Proof: By structural induction on D. When D is an atomic deduction, we distinguish two cases:
either C(D) ∈ Φ or not. In the former case we have RR(D, Φ) = claim C(D), so the assumption
β
 RR(D, Φ) � Q = C(D) means that

β
 claim C(D) � C(D). (1.22)

Now since we are assuming C(D) ∈ Φ, we have C(D) ∈ Φ ∪ {P}, hence

RR(D, Φ ∪ {P}) = claim C(D)

11

so we need to show that β ∪ {P}
 claim C(D) � C(D). But this follows from 1.22 by dilution. By
contrast, if C(D) �∈ Φ then RR(D, Φ) = D, so we are assuming that

β
 D � C(D) (1.23)

and we need to show that
β ∪ {P}
 RR(D, Φ ∪ {P}) � C(D). (1.24)

Now there are two subcases, namely, either C(D) = P or not. If C(D) = P then

RR(D, Φ ∪ {P}) = claim P

and 1.24 follows from the semantics of claim. If C(D) �= P then RR(D, Φ ∪ {P}) = D (since then
C(D) �∈ Φ∪{P}), so 1.24 is tantamount to β ∪{P}
 D � C(D), which follows from 1.23 by dilution.
This completes both case analyses.

When D is of the form assume P1 in D1, the assumption β
 RR(D, Φ) � Q translates to

β
 assume P1 in RR(D1, Φ ∪ {P1}) � P1 ⇒P2 (1.25)

where
β ∪ {P1}
 RR(D1, Φ ∪ {P1}) � P2. (1.26)

Now RR(D, Φ ∪ {P}) = assume P1 in RR(D1, Φ ∪ {P, P1}), so what we need to show is

β ∪ {P}
 assume P1 in RR(D1, Φ ∪ {P, P1}) � P1 ⇒P2.

There are two cases: (a) P = P1, and (b) P �= P1. In (a), the result follows from 1.25 and dilution,
since Φ ∪ {P1} = Φ ∪ {P, P1}. If (b) holds, then, from the inductive hypothesis, 1.26 entails that

β ∪ {P} ∪ {P1}
 RR(D1, Φ ∪ {P1} ∪ {P}) � P2

and hence
β ∪ {P}
 assume P1 in RR(D1, Φ ∪ {P, P1}) � P1 ⇒P2

which is exactly what we wanted to show.
The reasoning for proofs by contradiction is similar. Specifically, when D is of the form

suppose-absurd P1 in D1,

the assumption β
 RR(D, Φ) � Q translates to

β
 suppose-absurd P1 in RR(D1, Φ ∪ {P1}) � ¬P1 (1.27)

which means that
β ∪ {P1}
 RR(D1, Φ ∪ {P1}) � false. (1.28)

If P = P1, then the desired conclusion

β ∪ {P}
 RR(suppose-absurd P1 in D1, Φ ∪ {P}) � Q = ¬P1 (1.29)

follows from 1.27 and dilution. If P �= P1, the the inductive hypothesis in tandem with 1.28 yield

β ∪ {P1} ∪ {P}
 RR(D1, Φ ∪ {P1} ∪ {P}) � false (1.30)

12

hence β ∪ {P}
 suppose-absurd P1 in RR(D1, Φ ∪ {P, P1}) � ¬P1, which is the desired 1.29.
Finally, suppose that D is of the form D1; D2 and that β
 RR(D, Φ) � Q, which is to say

β
 D′
1; D

′
2 � Q (1.31)

where
D′

1 = RR(D1, Φ) (1.32)

D′
2 = RR(D2, Φ ∪ {P1}) (1.33)

β
 D′
1 � P1 (1.34)

and
β ∪ {P1}
 D′

2 � Q. (1.35)

We need to prove β ∪ {P}
 RR(D, Φ ∪ {P}) � Q, i.e.,

β ∪ {P}
 D′′
1 ; D′′

2 � Q (1.36)

where
D′′

1 = RR(D1, Φ ∪ {P}) (1.37)

and
D′′

2 = RR(D2, Φ ∪ {P} ∪ C(D′′
1)). (1.38)

On the basis of 1.32 and the inductive hypothesis, 1.34 implies that

β ∪ {P}
 RR(D1, Φ ∪ {P}) � P1

i.e.,
β ∪ {P}
 D′′

1 � P1 (1.39)

so that
C(D′′

1) = P1. (1.40)

Likewise, by virtue of 1.33 and the inductive hypothesis, 1.35 implies that

β ∪ {P} ∪ {P1}
 RR(D2, Φ ∪ {P1} ∪ {P}) � Q. (1.41)

From 1.38 and 1.40 we get D′′
2 = RR(D2, Φ ∪ {P} ∪ {P1}), so from 1.41,

β ∪ {P} ∪ {P1}
 D′′
2 � Q. (1.42)

Finally, 1.36 follows from 1.39 and 1.42, hence β ∪ {P}
 RR(D, Φ ∪ {P}) � Q. This completes the
induction.

Theorem 1.13 D � P(D).

Proof: We will prove that D � RR(D, ∅) by induction on D. When D is an atomic deduction,
RR(D, ∅) = D, so the result is immediate since � is reflexive. When D is of the form

assume P in Db,

13

RR(D, ∅) = assume P in RR(Db, {P}), so to show D � RR(D, ∅) we need to prove that if

β
 assume P in Db � P ⇒Q (1.43)

then
β
 assume P in RR(Db, {P}) � P ⇒Q. (1.44)

On the assumption that 1.43 holds, we have

β ∪ {P}
 Db � Q. (1.45)

By the inductive hypothesis, Db � RR(Db, ∅), so from 1.45 we get

β ∪ {P}
 RR(Db, ∅) � Q

and by Lemma 1.12, β ∪ {P}
 RR(Db, {P}) � Q. Therefore,

β
 assume P in RR(Db, {P}) � P ⇒Q

which is the desired 1.44.
Proofs by contradiction are handled similarly. In particular, suppose that D is of the form

suppose-absurd P in Db

and assume that β
 suppose-absurd P in Db � ¬P , for arbitrary β, so that

β ∪ {P}
 Db � false. (1.46)

Inductively, Db � RR(Db, ∅), so 1.46 gives

β ∪ {P}
 RR(Db, ∅) � false.

Therefore, Lemma 1.12 yields
β ∪ {P}
 RR(Db, {P}) � false

and this implies β
 suppose-absurd P in RR(Db, {P}) � ¬P . We have thus shown that

suppose-absurd P in Db � suppose-absurd P in RR(Db, {P})

which is to say D � RR(D, ∅).
Finally, suppose that D is of the form D1; D2 and that β
 D1; D2 � Q, so that

β
 D1 � P (1.47)

and
β ∪ {P}
 D2 � Q. (1.48)

We have RR(D, ∅) = D′
1; D

′
2, where

D′
1 = RR(D1, ∅) (1.49)

and
D′

2 = RR(D2, C(D′
1)). (1.50)

14

From the inductive hypothesis, D1 � RR(D1, ∅), hence from 1.47,

β
 RR(D1, ∅) � P (1.51)

so from 1.49,
β
 D′

1 � P (1.52)

and
C(D′

1) = P. (1.53)

Likewise, D2 � RR(D2, ∅), so from 1.48,

β ∪ {P}
 RR(D2, ∅) � Q

and from Lemma 1.12,
β ∪ {P}
 RR(D2, {P}) � Q

which, from 1.50 and 1.53 means
β ∪ {P}
 D′

2 � Q. (1.54)

Finally, from 1.52 and 1.54 we obtain β
 D′
1; D

′
2 � Q, and thus we infer D � RR(D, ∅) = D′

1; D
′
2.

Claim elimination

The third and final contracting transformation we will present is particularly simple: it eliminates all
claims in non-tail positions. It is readily verified that all such claims are superfluous. For example,
the claim in

D = dn ¬¬A; claim B;both A, A

can be removed because D � dn ¬¬A;both A, A.
Claims in tail positions cannot in general be removed, since they serve as conclusions. One

exception, however, occurs when the claim of some P is the last element of a thread whose immediately
preceding element concludes P . In those cases the claim can be removed despite being in tail position.
An example is

dn ¬¬A;both A, B; claim A ∧ B.

Here the tail claim of A ∧ B can be eliminated because it is derived by the immediately dominating
deduction both A, B.

The following algorithm removes all claims in non-tail positions, as well as all extraneous tail
claims of the sort discussed above:

C(D) =
match D

assume P in Db → assume P in C(Db)
suppose-absurd P in Db → suppose-absurd P in C(Db)
D1; D2 → let D′

1 = C(D1)
D′

2 = C(D2)
in

claim?(D′
1)→ D′

2, claim?(D′
2) and C(D′

1) = C(D′
2)→ D′

1, D
′
1; D

′
2

D→ D

15

where claim?(D) returns true iff D is an application of claim. We have:

Lemma 1.14 claim P ; D � D. Further, D; claim P � D whenever C(D) = P .

Using this lemma, a straightforward induction will show that D � C(D). Termination is immediate.

Theorem 1.15 C always terminates. In addition, D � C(D).

Another property that will prove useful is the following:

Lemma 1.16 Let D1; . . . ; Dn; Dn+1 be a chain in C(D), n > 0. Then ∀ i ∈ {1, . . . , n}, Di is not a
claim.

Recall from 1.2 that the contracting phase of simplify is defined as

contract = fp (C · P · U).

For any given D, let us write NT (D) to denote the number of non-trivial subdeductions of D,
i.e., the number of subdeductions of D that are not claims. Define a quantity Q(D) as the pair
(SZ(D),NT (D)). A simple induction on D will show:

• U D = D or SZ(U D) < SZ(D);

• P D = D or else SZ(P D) < SZ(D) or SZ(P D) = SZ(D) and NT (P D) < NT (D);

• C D = D or SZ(C D) < SZ(D).

Therefore, writing (a1, b1) <lex (a2, b2) to mean that a1 < a2 or a1 = a2 and b1 < b2, we have:

Lemma 1.17 For all D, either (C · P · U) D = D or else Q((C · P · U) D) <lex Q(D).

It follows that the fixed-point algorithm will eventually converge, since an infinitely long chain of
distinct deductions D1, D2, . . . produced by repeated applications of C · P · U would entail

Q(Di+1) <lex Q(Di)

for all i, which is impossible since <lex is well-founded. It also follows from Lemma 1.17 that the
size of the final result of contract will not be greater than the size of the original input. Finally,
D � contract(D) follows from Theorem 1.11, Theorem 1.13, Theorem 1.15, and the transitivity of
� . We summarize:

Theorem 1.18 The contraction procedure always terminates. In addition, D � contract(D) and
SZ(contract(D)) ≤ SZ(D).

1.4 Restructuring transformations

Scope maximization

The most fundamental restructuring transformation is scope maximization. Intuitively, this aims
at making the conclusion of a subdeduction visible to as many subsequent parts of a deduction as
possible. Scope can be limited in two ways: with bracketing (begin-end pairs), and with hypothetical
deductions. We examine each case below.

16

Left-linear compositions

The first factor that can affect conclusion visibility is left-linear composition, namely, deductions of
the form (D1; D2); D3, where the conclusion of D1 is only available to D2. Such deductions are rare
in practice because the natural threading style in NDL is right-associative (which is why composition
associates to the right by default). When they occur, left-linear compositions can complicate our
parsimony analysis. Consider, for instance, D = (D1; D2); D3 where C(D1) = C(D3). Algorithm
P might well find D to be repetition-free even though, intuitively, it is clear that D3 unnecessarily
duplicates the work of D1. The problem is the limited scope of D1: as long as D2 does not replicate the
conclusion of D1 and D3 the conclusion of D1; D2, i.e., the conclusion of D2, then D will be deemed
repetition-free. The problem can be avoided by right-associating D, thereby maximizing the scope of
D1. The algorithm RL that we present below converts every subdeduction of the form (D1; D2); D3

into D1; (D2; D3). Our proof that this is a safe transformation will be based on Lemma 1.19 below.
The proof of the lemma is straightforward and omitted, but the intuition is important: in both cases
D1 is available to D2, and D2 to D3, but in D1; (D2; D3) we also have D1 available to D3. So if
(D1; D2); D3 goes through, then certainly D1; (D2; D3) will do too.

Lemma 1.19 (D1; D2); D3 � D1; (D2; D3).

Let us say that a deduction D is right-linear iff Label(D, u ⊕ [1]) �= ; for all u ∈ Dom(D) such that
Label(D, u) = ;. That is, D is right-linear iff it has no subdeductions of the form (D1; D2); D3. The
following is immediate:

Lemma 1.20 If D is right-linear then so are assume P in D and suppose-absurd P in D. More-
over, if D1 and D2 are right-linear and D1 is not a composite deduction then D1; D2 is right-linear.

Algorithm RL will transform any given D into a right-linear D′ such that D � D′:

RL(assume P in D) = assume P in RL(D)
RL(suppose-absurd P in D) = suppose-absurd P in RL(D)

RL(Dl; Dr) =
match Dl

D1; D2 → RL(D1; (D2; Dr))

→ RL(Dl); RL(Dr)
RL(D) = D

For our termination proof, let us write SZ(D) to denote the size of D, and let us define a quantity
LSZ(D) as follows: if D is of the form D1; D2 then LSZ(D) = SZ(D1); otherwise LSZ(D) = 0. It
immediately follows:

Lemma 1.21 (a) LSZ((D1; D2); D3) < LSZ(D1; (D2; D3)), and (b) SZ((D1; D2); D3) = SZ(D1; (D2; D3)).

Theorem 1.22 RL always terminates.

Proof: We claim that with each recursive call, the pair (SZ(D),LSZ(D)) strictly decreases lexico-
graphically.2 This can be seen by checking each recursive call: in the recursive calls of the first two
lines, the size of D strictly decreases. In the recursive call RL(D1; (D2; Dr)) the size does not increase
(Lemma 1.21, part (b)), while the quantity LSZ strictly decreases ((Lemma 1.21, part (a)). Finally,
in both recursive calls in the next line, the size strictly decreases.

2Using the lexicographic extension of < to pairs of natural numbers: (n1, n2) is smaller than (n′
1, n′

2) iff n1 < n′
1 or

else n1 = n′
1 and n2 < n′

2.

17

Theorem 1.23 RL(D) is right-linear. Furthermore, D � RL(D).

Proof: Let us write D1 ≺ D2 to mean that the pair (SZ(D1),LSZ(D1)) is lexicographically smaller
than (SZ(D2),LSZ(D2)). We will use well-founded induction on the relation ≺, i.e., we will show
that for all deductions D, if the result holds for every D′ such that D′ ≺ D then it also holds for
D. We proceed by a case analysis of an arbitrary D. If D is an atomic deduction then RL(D) = D
and the result follows immediately. If D is a conditional deduction with hypothesis P and body D′

then RL(D) = assume P in RL(D′). Since D′ ≺ D, the inductive hypothesis entails that RL(D′)
is right-linear and that D′ � RL(D′). The same reasoning is used for proofs by contradiction. The
result now follows from Lemma 1.20 and Lemma 1.8.

Finally, suppose that D is of the form Dl; Dr. Then either Dl is of the form D1; D2, or not. In
the first case we have

RL(D) = RL(D1; (D2; Dr)) (1.55)

and since D = (D1; D2); Dr � D1; (D2; Dr), we conclude inductively that

(i) RL(D1; (D2; Dr)) is right linear, and

(ii) D1; (D2; Dr)� RL(D1; (D2; Dr)).

Thus the conclusion that RL(D) is right-linear follows from (i) and 1.55, while

D � RL(D) = RL(D1; (D2; Dr))

follows from (ii) and the transitivity of �, since D � D1; (D2; Dr) from Lemma 1.19. If D is not of
the form D1; D2 then

RL(D) = RL(Dl); RL(Dr) (1.56)

and since Dl ≺ D, Dr ≺ D, the inductive hypothesis entails that (i) RL(Dl) and RL(Dr) are right-
linear, and (ii) Dl � RL(Dl), Dr � RL(Dr). Because Dl is not a composite deduction, neither is
RL(Dl) (a necessary condition for RL(D) to be composite is that D be composite), hence it follows
from part (b) of Lemma 1.20 and 1.56 that RL(D) is right-linear. Further, D � RL(D) follows from
(ii) and Lemma 1.8. This concludes the case analysis and the inductive argument.

Hypothetical deductions

The second case of undue scope limitation arises in hypothetical deductions. Consider a hypothetical
deduction with body Db and hypothesis P . If D is a subdeduction of Db then its scope cannot extend
beyond Db. But this need not be the case if D is not strictly dependent on the hypothesis P . If there
is no such dependence, then D is unnecessarily restricted by being inside Db. Its scope should be
maximized by hoisting it outside Db. As a simple example, consider

assume B in
begin

double-negation ¬¬A;
both A, B

end

Here the subdeduction double-negation ¬¬A makes no use of the hypothesis B, and therefore it is
appropriate to pull it outside, resulting in

18

double-negation ¬¬A;
assume B in

both A, B

This deduction is observationally equivalent to the first one, and has a cleaner structure that better
reflects the various logical dependencies. Besides increased clarity, hoisting will greatly facilitate our
repetition analysis later on. Repetitions are much easier to detect and eliminate when they are in the
same scope. Consider, for instance, the deduction

assume B in
begin

double-negation ¬¬A;
both A, B

end;
left-and A ∧ C;
both A, B ⇒A ∧ B

In view of double-negation ¬¬A, the deduction left-and A ∧ C is superfluous, but this is not easy
to determine mechanically because the former deduction lies inside the scope of the hypothesis B.
More importantly, neither deduction can be safely eliminated as things stand, even though it is clearly
extraneous to have both of them. If we eliminated the double-negation then the assume might fail;
while if we eliminated the left-and, the composition might fail. But if we hoist the double negation
outside of the assume, resulting in

double-negation ¬¬A;
assume B in

both A, B;
left-and A ∧ C;
both A, B ⇒A ∧ B

then the repetition becomes much easier to detect, and the left-and can be confidently eliminated.
In what follows we will be dealing with lists of deductions [D1, . . . , Dn]. We will use the letter

∆ to denote such lists. For a non-empty list ∆ = [D1, . . . , Dn], n > 0, we define ∆ as the thread
D1; . . . ; Dn. The following will come handy later:

Lemma 1.24 ∆1 ⊕ ∆2 = ∆1; ∆2

We adopt the convention that when ∆ is empty the expresssion ∆; D stands for D.
The algorithm H in Figure 1.6 examines a right-linear thread D = D1; . . . ; Dn (we make the

simplifying convention that we might have n = 1, in which case D1 will not be composite, since we
are assuming that D is right-linear) and pulls out every Di that is not transitively dependent on a set
of assumptions Φ. Each hoisted Di is replaced in-place in D by the trivial deduction claim C(Di).
Specifically, H(D, Φ) returns a triple (D′, Ψ, ∆), where

• D′ is obtained from D by replacing every Di that does not transitively depend on Φ by C(Di).

• Ψ ⊇ Φ is monotonically obtained from Φ by incorporating the conclusions of those deductions
Dj that do depend (transitively) on Φ. This is essential in order to handle transitive dependence.

19

H(D1; D2, Φ) =

let (D′
1, Φ1, ∆1) = H(D1, Φ)

(D′
2, Φ2, ∆2) = H(D2, Φ1)

in
(D′

1; D
′
2, Φ2, ∆1 ⊕ ∆2)

H(D, Φ) = FA(D) ∩ Φ = ∅ ? → (claim C(D), Φ, [D]), (D, Φ ∪ {C(D)}, [])

Figure 1.6: The kernel of the hoisting algorithm.

• ∆ is a list [Di1 , . . . , Dik
], 1 ≤ ij ≤ n, j = 1, . . . , k ≥ 0, of those deductions that do not depend

on Φ. The order is important for preserving dominance constraints: we have ia < ib for a < b,
since, e.g., D5 and D8 might not be dependent on Φ, but D8 might depend on D5. Accordingly,
∆ should respect the original ordering.

As Theorem 1.30 will prove, the idea is that we will have D � ∆; D′. The thread D1; · · · ; Dn

should be thought of as the body of a hypothetical deduction with hypothesis P , and Φ should
be thought of as {P}. Then if H(D1; . . . ; Dn, Φ) = (D′, Ψ, ∆), D′ will be the new body of the
hypothetical deduction, and the thread ∆ will comprise the hoisted deductions, with a dominance
relation that respects the original ordering 1, . . . , n.

Lemma 1.25 Let H(D1, Φ1) = (D2, Φ2, ∆). Then for all D ∈ ∆, (a) Φ1 ∩ FA(D) = ∅, and (b) D is
not a composition.

Proof: By induction on D1. Suppose first that D1 is not composite. There are two cases: either
FA(D1) ∩ Φ1 = ∅ or not. If not, then ∆ = [] so the result holds vacuously. If FA(D1) ∩ Φ1 = ∅ then
∆ = [D1], so the result holds by supposition. Finally, if D1 is of the form Dl; Dr then ∆ = ∆l ⊕ ∆r,
where H(Dl, Φ1) = (D′

l, Φl, ∆l) and H(Dr, Φl) = (D′
r, Φr, ∆r). Inductively,

∀D ∈ ∆l, Φ1 ∩ FA(D) = ∅ (1.57)

and
∀D ∈ ∆r, Φl ∩ FA(D) = ∅ (1.58)

while every D in ∆l and ∆r is a non-composition. Since Φ1 ⊆ Φl, 1.58 entails

∀D ∈ ∆r, Φ1 ∩ FA(D) = ∅ (1.59)

Part (a) now follows from 1.57 and 1.59 since ∆ = ∆l ⊕ ∆r, while (b) follows directly from the
inductive hypotheses.

We will also need the following four results, whose proofs are simple and omitted:

Lemma 1.26 Let H(D1, Φ1) = (D2, Φ2, ∆). If D1 is right-linear then D2 is right-linear, and every
D ∈ ∆ is right-linear too.

Lemma 1.27 Let (D′, Ψ, ∆) = H(D, Φ). Then either

1. D′ = D; or else

20

2. D′ is a claim; or

3. D is a chain D1, . . . , Dn, Dn+1 and D′ is a chain D′
1, . . . , D

′
n, D′

n+1, where for all i, either
D′

i = Di or else D′
i is a claim.

Lemma 1.28 If C(D) �∈ FA(Di) for i = 1, . . . , n then

D; D1; . . . ; Dn; D′ � D1; . . . ; Dn; D; D′.

Lemma 1.29 P ; D1; . . . ; Dn; D � D1; . . . ; Dn; P ; D.

Theorem 1.30 If D is right-linear and (D′, Ψ, ∆) = H(D, Φ) then D � ∆; D′.
Proof: By induction on D. Suppose first that D is not a composition. Then either FA(D) ∩ Φ = ∅
or not. If not, then D′ = D and ∆ = [], so the result is immediate. If FA(D)∩Φ = ∅ then D′ = C(D)
and ∆ = [D], so again the result follows directly. Suppose next that D is of the form D1; D2. Then,
letting

(D′
1, Φ1, ∆1) = H(D1, Φ) (1.60)

and
(D′

2, Φ2, ∆2) = H(D2, Φ1) (1.61)

we have D′ = D′
1; D′

2 and ∆ = ∆1 ⊕ ∆2, so we have to show

D � ∆1 ⊕ ∆2; D′
1; D

′
2. (1.62)

From 1.60, 1.61, and the inductive hypothesis, we have

D1 � ∆1; D′
1 (1.63)

and
D2 � ∆2; D′

2 (1.64)

Therefore,
D = D1; D2 � ∆1; D′

1; ∆2; D′
2 (1.65)

Now since we are assuming that D is right-linear, D1 cannot be composite, hence again we distinguish
two cases: FA(D1)∩Φ = ∅, or not. If the latter holds then D′

1 = D1, Φ1 = Φ∪ {C(D1)}, and ∆1 = [].
Now by 1.61 and Lemma 1.25 we have that, for every Dx ∈ ∆2, Φ1 ∩ FA(Dx) = ∅, and since
C(D1) ∈ Φ1, this means that C(D1) �∈ FA(Dx). Hence, from Lemma 1.28,

D′
1; ∆2; D′

2 � ∆2; D′
1; D

′
2

and thus
∆1; D′

1; ∆2; D′
2 � ∆1; ∆2; D′

1; D
′
2. (1.66)

On the other hand, if FA(D1) ∩ Φ = ∅ then D′
1 = C(D1), so by Lemma 1.29 we have

D′
1; ∆2; D′

2 � ∆2; D′
1; D

′
2

and hence 1.66 follows again. Thus we have shown that in either case 1.66 holds, and since ∆1 ⊕ ∆2 =
∆1 ⊕ ∆2, it now follows from 1.65, 1.66, and the transitivity of � that

D � ∆1 ⊕ ∆2; D′
1; D

′
2

which is 1.62, exactly what we wanted to show. This completes the induction.

21

Theorem 1.31 If D is right-linear and H(D, {P}) = (D′, Φ, ∆) then

(a) assume P in D � ∆; assume P in D′; and

(b) suppose-absurd P in D � ∆; suppose-absurd P in D′.

Proof: We prove (a); the proof of (b) is entirely analogous. First we note that, by Theorem 1.30,
D � ∆; D′, therefore, by Lemma 1.8,

assume P in D � assume P in ∆; D′. (1.67)

We now proceed by induction on the structure of ∆. When ∆ is the empty list, 1.67 becomes

assume P in D � assume P in D′ = ∆; assume P in D′.

When ∆ is of the form D1::∆1, 1.67 becomes

assume P in D � assume P in D1::∆1; D′ = assume P in D1; ∆1; D′. (1.68)

By Lemma 1.25, {P} ∩ FA(D1) = ∅, so Theorem 1.10 yields

assume P in D1; ∆1; D′ � D1; assume P in ∆1; D′. (1.69)

By Lemma 1.25 and Lemma 1.26, every deduction in ∆1 is right-linear and not a composition, and
D′ is right-linear as well, hence, using the second part of Lemma 1.20, a straightforward induction
on the length of ∆1 will show that ∆1; D′ is right-linear. This means that the inductive hypothesis
applies, and yields

assume P in ∆1; D′ � ∆1; assume P in D′

so, since D1 � D1, Lemma 1.8 gives

D1;assume P in ∆1; D′ � D1; ∆1; assume P in D′ = ∆; assume P in D′. (1.70)

Finally, from 1.68, 1.69, 1.70, and the transitivity of � we conclude

assume P in D � ∆; assume P in ∆′

and the induction is complete.

As an illustration of the algorithm, let D be the deduction

1. modus-ponens A ⇒B ∧ C, A;
2. double-negation ¬¬E;
3. left-and B ∧ C;
4. right-either F, E;
5. both B, F ∨ E

and consider the call H(D, {A}). Let D1–D5 refer to the deductions in lines 1–5, respectively.
Since D is composite, the first clause of the algorithm will be chosen, so the first recursive call
will be H(D1, {A}), which, since D1 is not composite and FA(D1) ∩ {A} �= ∅, will yield the result

22

(D1, {A, B ∧ C}, []). The second recursive call is H(D2; D3; D4; D5, {A, B ∧ C}). This in turn gives
rise to the recursive calls H(D2, {A, B ∧ C}), which returns

(claim E, {A, B ∧ C}, [double-negation ¬¬E]),

and H(D3; D4; D5, {A, B ∧ C}). The latter will spawn H(D3, {A, B ∧ C}), which will produce

(D3, {A, B ∧ C, B}, []),
and H(D4; D5, {A, B ∧ C, B}). In the same fashion, the latter will spawn H(D4, {A, B ∧ C, B}),
which will return

(claim F ∨ E, {A, B ∧ C, B}, [right-either F, E]),

and H(D5, {A, B ∧ C, B}), which will produce (D5, {A, B ∧ C, B, B ∧ (F ∨ E)}, []). Moving up the
recursion tree will eventually yield the final result (D′, Ψ, ∆), where D′ is the deduction

1.modus-ponens A ⇒B ∧ C, A;
2.claim E;
3.left-and B ∧ C;
4.claim F ∨ E;
5.both B, F ∨ E

while Ψ is the set {A, B ∧ C, B, B ∧ (F ∨ E)} and ∆ is the list

[double-negation ¬¬E, right-either F, E].

Thus ∆; D′ is the deduction

double-negation ¬¬E;
right-either F, E;

modus-ponens A ⇒B ∧ C, A;
claim E;
left-and B ∧ C;
claim F ∨ E;
both B, F ∨ E

The horizontal line demarcates the hoisted deductions from D′.
If D were the body of a hypothetical deduction with hypothesis A, then the result of the hoisting

would be
∆; assume A in D′

namely,

double-negation ¬¬E;
right-either F, E;
assume A in

begin
modus-ponens A ⇒B ∧ C, A;
claim E;
left-and B ∧ C;
claim F ∨ E;
both B, F ∨ E

end

23

A subsequent contracting transformation to remove claims (algorithm C) would result in

double-negation ¬¬E;
right-either F, E;
assume A in

begin
modus-ponens A ⇒B ∧ C, A;
left-and B ∧ C;
both B, F ∨ E

end

The hoisting algorithm should be applied to every hypothetical deduction contained in a given D.
This must be done in stages and in a bottom-up direction in order for hoisted inferences to “bubble”
as far up as possible (to maximize their scope). Specifically, let D be a given deduction. The hoisting
will proceed in stages i = 1, . . . , n, . . ., where we begin with D1 = D. At each stage i we replace
certain candidate hypothetical subdeductions of Di by new deductions, and the result we obtain from
these replacements becomes Di+1. We keep going until we reach a fixed point, i.e., until Di+1 = Di.

At each point in the process every hypothetical subdeduction of Di is either marked, indicating
that its body has already been processed, or unmarked. An invariant we will maintain throughout is
that a marked hypothetical subdeduction will never contain unmarked hypothetical deductions; this
will be enforced by the way in which we will be choosing our candidates, and will ensure that hoisting
proceeds in a bottom-up direction. Initially, all hypothetical subdeductions of D1 = D are unmarked.
On stage i, an unmarked hypothetical subdeduction of Di is a candidate for hoisting iff it is as deep
as possible, i.e., iff it does not itself contain any unmarked hypothetical subdeductions. For each
such candidate Dc = assume P in Db (or Dc = suppose-absurd P in Db) occurring in position
u ∈ Dom(Di), we compute (D′

b, Ψ, ∆) = H(Db, {P}), and we replace Dc in position u of Di by
∆; assume P in D′

b (or ∆; suppose-absurd P in D′
b), where the assume (or suppose-absurd) is

now marked to indicate that its body D′
b has been combed bottom-up and we are thus finished with

it—it can no longer serve as a candidate. The deduction we obtain from Di by carrying out these
replacements becomes Di+1. One pitfall to be avoided: the replacements might introduce left-linear
subdeductions in Di+1. Algorithm H , however, expects its argument to be right-linear, so after the
replacements are performed we need to apply RL to Di+1 before continuing on to the next stage.

Algorithm Hoist below replaces every candidate hypothetical subdeduction of a given D in the
manner discussed above and marks the processed subdeduction:

Hoist(D) = match D

assume P in Db →
Is every assume and suppose-absurd within Db marked? →

let (D′
b, , ∆) = H(Db, {P})

in
∆; assume P in D′

b,

assume P in Hoist(Db)
suppose-absurd P in Db →

Is every assume and suppose-absurd within Db marked? →
let (D′

b, , ∆) = H(Db, {P})
in

∆; suppose-absurd P in D′
b,

24

suppose-absurd P in Hoist(Db)
D1; D2 → Hoist(D1);Hoist(D2)
D→ D

Using Theorem 1.31 and Lemma 1.8, a straightforward induction on D will prove the following result:

Theorem 1.32 If D is right-linear then D � Hoist(D).

We can now formulate our final scope-maximization transformation as follows:

MS D = fp (RL · Hoist) (RL D)

where fp is as defined in Section 1.1. That MS always terminates follows from the fact that Hoist does
not introduce any additional hypothetical deductions, and either outputs the same result unchanged
(a fixed point) or a deduction with at least one more hypothetical deduction marked. Since any
deduction only has a finite number of hypothetical subdeductions, this means that MS will eventually
converge to a fixed point. Further, D � MS(D) follows from the corresponding property of RL, from
Theorem 1.32, and from the transitivity of the � relation. The right-linearity of the result follows
directly from the definition of MS. We summarize:

Theorem 1.33 (a) MS always terminates; (b) MS(D) is right-linear; (c) D � MS(D).

We close by addressing the question of whether this restructuring algorithm might ever increase
the size of a deduction. Since MS works by repeatedly applying the composition of Hoist with RL,
it will follow that MS preserves the size of its argument if both RL and Hoist do. This is readily
verified for RL; we have SZ(RL(D)) = SZ(D) for all D. Consider now the hoisting transformation
H , which is the core of Hoist. When Hoist applies H to the body of a hypothetical deduction,
say assume P in Db, thereby obtaining a new deduction ∆; assume P in D′

b, the new part ∆ is
obtained by trimming down the body Db, so, intuitively, we should have SZ(Db) = SZ(D′

b) + SZ(∆).
But that is not quite true because the new body D′

b might contain some claims where the hoisted
deductions used to be, and those claims will cause the size of the result to be somewhat larger than
that of the original. However, most such claims will be subsequently removed by the claim-elimination
algorithm presented earlier, and this will rebalance the final size—even in the worst-case scenario in
which the hoisting did not expose any new contraction opportunities. This is evinced by Lemma 1.27:
claims inserted in D′

b in non-tail positions will be eliminated by C , as guaranteed by Lemma 1.16.
There is only one exception, again as prescribed by Lemma 1.27: when the new body D′

b is a chain
of the form D1; . . . ; Dn, n ≥ 1, and the last element of the thread, Dn, is a newly inserted claim.
Such a claim, being in a tail position, will not be removed by the claim-elimination algorithm. As a
simple example, consider

D = assume A in double-negation ¬¬B. (1.71)

Here the body does not depend on the hypothesis A, so hoisting it outside results in the deduction

double-negation ¬¬B; assume A in claim B

which is slightly larger than the original 1.71. But this minor wrinkle is easily rectified using cond
(or neg, in the case of suppose-absurd). Specifically, by the way H is defined, a trivial deduction
claim Q will be inserted in the last slot of D′

b (viewing D′
b as a chain of one or more elements)

iff the last element of the produced list ∆ is a deduction whose conclusion is Q. Therefore, in

25

that case, instead of producing ∆; assume P in D′
b we may simply output ∆; cond P, C(∆); or, in

the case of proofs by contradiction, ∆;neg P . Accordingly, we modify Hoist by replacing the line
∆; assume P in D′

b, by

∆ �= [] and C(∆) = C(D′
b) ? → ∆; cond P, C(D′

b), ∆; assume P in D′
b,

and the line ∆; suppose-absurd P in D′
b, by

∆ �= [] and C(∆) = C(D′
b) ? → ∆;neg P, ∆; suppose-absurd P in D′

b.

It is readily verified that this change does not affect Theorem 1.33, yet it ensures that all claims
inserted by H will be subsequently removed during the contraction phase.

Global transformations of hypothetical deductions

The hoisting algorithm is a focused, local transformation: we delve inside a given deduction D and
work on subdeductions of the form assume P in Db or suppose-absurd P in Db, taking into ac-
count only the hypothesis P and the body Db. We do not utilize any knowledge from a wider context.
More intelligent transformations become possible if we look at the big picture, namely, at how P
and Db relate to other parts of the enclosing deduction D. In this section we will present three such
transformations, A1, A2, and A3. All three of them perform a global analysis of a given deduction D
and replace every hypothetical subdeduction D′ of it by some other deduction D′′ (where we might
have D′′ = D′). These transformations expect their input deductions to have been processed by
MS, but their output deductions might contain left-linear compositions or hoisting possibilities that
were not previously visible. It is for this reason that their composition must be interleaved with the
scope-maximization procedure MS, as specified in 1.3 (or 1.4).

The first transformation, A1, targets every hypothetical subdeduction of D of the form D′ =
assume P in Db whose hypothesis P is a free assumption of D, i.e., such that P ∈ FA(D). Clearly,
D can only be successfully evaluated in an assumption base that contains P (Theorem 1.4). But
if we must evaluate D in an assumption base that contains P , then there is no need to hide Db

behind that hypothesis; we can pull it outside. Accordingly, this analysis will replace D′ by the
composition D′′ = Db; cond P, C(Db). Thus the final conclusion is unaffected (it is still the conditional
P ⇒C(Db)), but the scope of Db is enlarged. An analogous transformation is performed for proofs
by contradiction. Specifically, we define:

A1(D) = T (D)
where
T (assume P in Db) =

let D′
b = T (Db)

in
P ∈ FA(D) ? → D′

b; cond P, C(D′
b), assume P in D′

b

T (suppose-absurd P in Db) =
let D′

b = T (Db)
in

P ∈ FA(D) ? → D′
b;neg P, suppose-absurd P in D′

b

T (Dl; Dr) = T (Dl); T (Dr)
T (D) = D

Note that we first process Db recursively and then pull it out, since Db might itself contain hypothetical
deductions with a free assumption as a hypothesis. For example, if D is the deduction

26

assume A in
begin
both A, A;
assume B in

both B, A∧A
end;

both A, B;
both A ∧ B, A ⇒ B ⇒ B ∧ A ∧ A

where both conditional deductions have free assumptions as hypotheses (A and B) then A1(D) will
be:

begin
begin

both A, A;
both B, A ∧ A;
cond B, B ∧ A ∧ A

end;
cond A, B ⇒ B ∧ A ∧ A

end;
both A, B;
both A ∧ B, A ⇒ B ⇒ B ∧ A ∧ A

Observe that the output deduction is heavily skewed to the left (when viewed as a tree). After a pass
of the right-linearization algorithm, we will eventually obtain the following:

both A, A;
both B, A ∧ A;
cond B, B ∧ A ∧ A;
cond A, B ⇒ B ∧ A ∧ A;
both A, B;
both A ∧ B, A ⇒ B ⇒ B ∧ A ∧ A

A straightforward induction will show:

Lemma 1.34 A1 terminates. Moreover, D � A1(D) and SZ(A1(D)) ≤ SZ(D).

The two remaining transformations turn not on whether the hypothesis of a conditional deduc-
tion is a free assumption, but on whether it is deduced at some prior or subsequent point. For the
second transformation, A2, suppose that during our evaluation of D we come to a conditional subd-
eduction D′ = assume P in Db whose hypothesis P either has already been established or else has
already been hypothetically postulated (i.e., D′ is itself nested within an assume with hypothesis
P). Then we may again pull Db out, replacing D′ by the composition D′′ = Db; assume P in C(Db).
(More precisely, just as in A1, we first have to process Db recursively before hoisting it.) A similar
transformation is possible for proofs by contradiction.

To motivate this transformation, consider the following deduction:

left-and ¬¬A ∧ C;
assume ¬¬A in
begin

27

dn ¬¬A;
both A, B

end;
modus-ponens ¬¬A ⇒A ∧ B,¬¬A

This deduction illustrates one of the detours we discussed earlier, whereby Q is derived by first inferring
P , then P ⇒Q, and then using modus-ponens on P ⇒Q and P . The detour arises because the
hypothesis P is in fact deducible, and hence there is no need for the implication P ⇒Q and the
modus-ponens. We can simply deduce P and then directly perform the reasoning of the body of
the hypothetical deduction. Thus we arrive at the following algorithm:

A2(D) = T (D, ∅)
where
T (D, Φ) = match D

assume P in Db →
P ∈ Φ→ let D′

b = T (Db, Φ)
in

D′
b; cond P, C(D′

b),
assume P in T (Db, Φ ∪ {P})

suppose-absurd P in Db →
P ∈ Φ→ let D′

b = T (Db, Φ)
in

D′
b;neg P,

suppose-absurd P in T (Db, Φ ∪ {P})
D1; D2 → let D′

1 = T (D1, Φ)
in

D′
1; T (D2, Φ ∪ {C(D1)})

D→ D

Applying this algorithm to the foregoing example would yield:

left-and ¬¬A ∧ C;
begin

begin
dn ¬¬A;
both A, B

end;
cond ¬¬A, A ∧ B

end;
modus-ponens ¬¬A ⇒A ∧ B,¬¬A

Passing this on to the scope-maximization procedure and then to the contraction algorithm will
produce the final result:

left-and ¬¬A ∧ C;
dn ¬¬A;
both A, B

We can establish the soundness of this algorithm in two steps. First, we can prove by induction on
D that if β
 T (D, Φ) � Q then β∪{P}
 T (D, Φ∪{P}) � Q. Then, using this lemma, an induction

28

on D will show that D � T (D, ∅), which will prove that D � A2(D) for all D. However, it is readily
observed that A1 and A2 can be combined in one pass simply by calling T (D,FA(D)). In other words,
applying the composition of A1 with A2 to some D produces the same result as T (D,FA(D)):

A1 · A2 = λD . T (D,FA(D)).

Accordingly, we define an algorithm A as A(D) = T (D,FA(D)). In implementation practice, instead
of first calling A2, then MS, and then A1, as prescribed by 1.4, we can simply call A once. (For
exposition purposes, we choose to keep the presentations of A1 and A2 distinct.) The following
lemma will prove useful in showing the soundness of A.

Lemma 1.35 If β
 D � Q then β
 T (D, β) � Q.

Proof: By induction on the structure of D. When D atomic the result is immediate. Let D be a
conditional deduction of the form assume P in Db, and suppose that β
 D � P ⇒P ′, so that

β ∪ {P}
 Db � P ′. (1.72)

Hence, in this case need to show
β
 T (D, β) � P ⇒P ′. (1.73)

From 1.72 and the inductive hypothesis we obtain

β ∪ {P}
 T (Db, β ∪ {P}) � P ′. (1.74)

We now distinguish two cases:

P ∈ β: Then β ∪ {P} = β, so 1.74 becomes β
 T (Db, β) � P ′. Accordingly, by the semantics of
cond (see the Appendix) and compositions, we get

β
 T (Db, β); cond P, C(T (Db, β)) � P ⇒P ′. (1.75)

But P ∈ β means that

T (D, β) = T (Db, β); cond P, C(T (Db, β))

so the goal 1.73 follows directly from 1.75.

P �∈ β: In this case T (D, β) = assume P in T (Db, β ∪ {P}), so by the semantics of assume, 1.73
will follow if we show β ∪ {P}
 T (Db, β ∪ {P}) � P ′. But this is already given by 1.74.

Similar reasoning is used for proofs by contradiction. Finally, supposing that D is of the form D1; D2,
the assumption β
 D � Q means that β
 D1 � P1 and β ∪ {P1}
 D2 � Q, where, of course, P1 =
C(D1). Inductively, we get β
 T (D1, β) � P1 and β ∪ {P1}
 T (D2, β ∪ {P1}) � Q. Accordingly,

β
 T (D1, β); T (D2, β ∪ {C(D1)}) � Q

which is to say, β
 T (D) � Q. This completes the inductive argument.

Theorem 1.36 A terminates; D � A(D); and SZ(A(D)) ≤ SZ(D).

29

Proof: Termination is obvious. That the size of A(D) is never more than the size of D also follows
by a straightforward induction on D. Finally, to prove D � A(D), suppose that β
 D � P for some
β. By Theorem 1.4, we must have

β ⊇ FA(D). (1.76)

By the same result, FA(D)
 D � P , hence, by Lemma 1.35, FA(D)
 T (D,FA(D)) � P , i.e.,

FA(D)
 A(D) � P.

Therefore, by 1.76 and dilution we get β
 A(D) � P , which shows that D � A(D).

The final transformation, A3, determines whether the hypothesis P of a conditional deduction
D′ = assume P in Db is deduced at a later point, or, more precisely, whether it is deduced somewhere
within a deduction dominated by D′, as in the following picture:

...
D′ = assume P in Db;

...
D′′; (Deduces P)

...

This can lead to the following variant of the detour we discussed earlier:

(1) assume ¬¬A in
begin
dn ¬¬A;
both A, B

end;
(2) left-and ¬¬A ∧ C;
(3) modus-ponens ¬¬A ⇒A ∧ B,¬¬A

However, unlike the cases discussed in connection with A2 and A1, here we cannot hoist the body
of (1) above the assume (and replace the assume by an application of cond), because the said body
strictly uses the hypothesis ¬¬A, which is neither a free assumption of the overall deduction nor is it
deduced prior to its hypothetical postulation in (1). Rather, ¬¬A is deduced after the conditional
deduction where it appears as a hypothesis. What we will do instead is reduce this case to one that
can be handled by the simple hoisting method of algorithm A. We can do that by “bubbling up” the
deduction which derives the hypothesis in question until it precedes the hypothetical deduction, at
which point A will be able to perform as usual. Specifically, we define:

1. A3(assume P in Db) = assume P in A3(Db)
2. A3(suppose-absurd P in Db) = suppose-absurd P in A3(Db)
3. A3((assume P in Db); D) =
4. let (D′

b, D
′) = (A3(Db), A3(D))

5. (D′′, , ∆) = H(D′, {P ⇒C(D′
b)})

6. in
7. ∆; assume P in D′

b; D
′′

8. A3((suppose-absurd P in Db); D) =
9. let (D′

b, D
′) = (A3(Db), A3(D))

30

10. (D′′, , ∆) = H(D′, {¬P})
11. in
12. ∆; suppose-absurd P in D′

b; D
′′

13. A3(D1; D2) = A3(D1); A3(D2)
14. A3(D) = D

Applying this algorith to the deduction above yields:

left-and ¬¬A ∧ C;
assume ¬¬A in
begin
dn ¬¬A;
both A, B

end;
claim ¬¬A;
modus-ponens ¬¬A ⇒A ∧ B,¬¬A

which will be readily handled by A. In particular, after applying A to the above deduction, followed
by MS and contract, we obtain the final result:

left-and ¬¬A ∧ C;
dn ¬¬A;
both A, B

We can prove:

Theorem 1.37 A3 terminates. Moreover, if D is right-linear then D � A3(D).

Proof: Termination is straightforward. We will prove D � A3(D) by induction on the structure of
D. When D is an atomic deduction, the result is immediate. When D is a hypothetical deduction,
the result follows by straightforward applications of the inductive hypothesis and Lemma 1.8. Finally,
suppose that D is of the form D1; D2. We distinguish three subscases:

(a) D1 is of the form assume P in Db: In this case, letting D′
b = A3(Db) and D′

2 = A3(D2), we
have

A3(D) = ∆; assume P in D′
b; D

′′
2 (1.77)

where (D′′
2 ,, ∆) = H(D′

2, {P ⇒C(D′
b)}). Inductively, Db � D′

b and D2 � D′
2, so, by Lemma 1.8,

(assume P in Db); D2 � (assume P in D′
b); D

′
2. (1.78)

Further, Lemma 1.30 implies
D′

2 � ∆; D′′
2 . (1.79)

From 1.79 and 1.78 we get

(assume P in Db); D2 � (assume P in D′
b); ∆; D′′

2 . (1.80)

By Lemma 1.25, we have FA(Dx) ∩ {P ⇒C(D′
b)} = ∅ for all Dx ∈ ∆, hence, by Lemma 1.29,

(assume P in D′
b); ∆; D′′

2 � ∆; (assume P in D′
b); D

′′
2 . (1.81)

Finally, from 1.80, 1.81, and the transitivity of � , and in view of 1.77, we conclude D � A3(D).

31

(b) D1 is of the form suppose-absurd P in Db: The reasoning here is the same as in (a).

(c) None of the above: In this case the result follows directly from the inductive hypotheses.

This completes the case analysis and the induction.

Finally, we address the question of size—whether A3(D) is always smaller than D. This will
usually be the case, but there is an exception similar to that which we discussed in connection with
Hoist: when algorithm H inserts a tail-position claim in D′′ (lines 5 and 10). This will increase the
size of the resulting deduction by one. (any other claims generated by H will be eliminated later by
the claim-removal algorithm, C, as guaranteed by Lemma 1.16). But it is easy to avoid this special
case, since H is defined so that whenever a tail-position claim is appended to D′′, the last deduction
of the list ∆ has the same conclusion as the proposition asserted by the said claim. But if this is
the case we can do away with D′′ altogether, as well with the assume P in D′

b, and simply output
∆ (and likewise for the suppose-absurd), in which case the size of the resulting deduction will be
strictly smaller than that of the original. Accordingly, we modify lines 7 and 12 to be as follows,
respectively:

∆ �= [] and C(∆) = C(D′′) ? → ∆, ∆; assume P in D′
b; D

′′

and
∆ �= [] and C(∆) = C(D′′) ? → ∆, ∆; suppose-absurd P in D′

b; D
′′.

This affects neither termination nor the property D � A3(D) (on the assumption that D is right-
linear), since the reduction is performed only if C(∆) = C(D′′), so Theorem 1.37 continues to hold.
Further, the modification guarantees that every claim inserted by H will eventually be removed by
C, which ensures that the ultimate result of the simplification procedure will never be of greater size
than the original.3

In conclusion, we define

restructure = MS · A · MS · A3 · MS

and
simplify = contract · restructure.

Putting together the various preceding results will show that simplify always terminates and that
D � simplify(D). Size is always either strictly decreased or preserved, except by Hoist, during the
application of MS, and by A3. Both of these transformations may introduce some additional trivial
claims. However, we have taken care to define MS and A3 so that all such claims will be in non-tail
positions and will thus be eventually eliminated by the claim-removal algorithm, C. Therefore, we
conclude:

Theorem 1.38 simplify always terminates; D � simplify(D); SZ(simplify(D)) ≤ SZ(D).

1.5 Examples

In this section we illustrate simplify with some simple examples of the “detours” shown in Figure 1.4.
We will write mp and dn as abbreviations for modus-ponens and double-negation, respectively.
We begin with a couple of examples of detour (c):

3Moreover, to avoid gratuitous hoistings, in practice we will perform these restructurings only if the hypothesis P is
in fact derived within D (lines 3 and 8). See the implementation of A3 in Figure 1.11.

32

D =

dn ¬¬A;
assume A in

both A,B;
mp A ⇒A ∧ B, A

restructure
−−−−−−−−→

dn ¬¬A;
both A, B;
cond A, A ∧ B;
mp A ⇒A ∧ B, A

contract
−−−−−−→

dn ¬¬A;
both A, B;

An alternative form of the same detour is obtained by swapping the order of dn and assume in
the above deduction. We see that simplify handles this with the same ease:

D =

assume A in
both A, B;

dn ¬¬A;
mp A ⇒A ∧ B, A

restructure
−−−−−−−−→

dn ¬¬A;
both A, B;
cond A, A ∧ B;
claim A;
mp A ⇒A ∧ B,A

contract
−−−−−−→

dn ¬¬A;
both A, B;

We continue with detour (a), based on negation:

D =

left-and A ∧ B;
suppose-absurd ¬A in

absurd A,¬A;
dn ¬¬A

restructure
−−−−−−−−→

left-and A ∧ B;
suppose-absurd ¬A in

absurd A,¬A;
dn ¬¬A

contract
−−−−−−→ left-and A ∧ B

A slightly trickier variant of the same detour is shown in the next deduction:

D =

suppose-absurd ¬A in
begin
left-and A ∧ B;
absurd A,¬A

end;
dn ¬¬A

Here simplify will operate as follows:

suppose-absurd ¬A in
begin
left-and A ∧ B;
absurd A,¬A

end;
dn ¬¬A

restructure
−−−−−−−−→

left-and A ∧ B;
claim A;
claim A;
suppose-absurd ¬A in

begin
claim A;
absurd A,¬A

end;
dn ¬¬A

contract
−−−−−−→ left-and A ∧ B

33

Next we illustrate a disjunction detour. Let D be the following deduction:

dn ¬¬(A1 ∧ B);
left-either A1 ∧ B, A2 ∧ B;
assume A1 ∧ B in

right-and A1 ∧ B;
assume A2 ∧ B in

right-and A2 ∧ B;
cd (A1 ∧ B) ∨ (A2 ∧ B), (A1 ∧ B) ⇒B, (A2 ∧ B) ⇒B

We have:

D
restructure
−−−−−−−−→

dn ¬¬(A1 ∧ B);
left-either A1 ∧ B, A2 ∧ B;
right-and A1 ∧ B;
cond A1 ∧ B, B;
assume A2 ∧ B in

right-and A2 ∧ B;
cd (A1 ∧ B) ∨ (A2 ∧ B), (A1 ∧ B) ⇒B, (A2 ∧ B) ⇒B

contract
−−−−−−→

dn ¬¬(A1 ∧ B);
right-and A1 ∧ B

A variant of this detour is contained in the following deduction, call it D:

assume A1 ∧ B in
right-and A1 ∧ B;

assume A2 ∧ B in
right-and A2 ∧ B;

dn ¬¬(A2 ∧ B);
right-either A1 ∧ B, A2 ∧ B;
cd (A1 ∧ B) ∨ (A2 ∧ B), (A1 ∧ B) ⇒B, (A2 ∧ B) ⇒B

In this case we have:

D
restructure
−−−−−−−−→

assume A1 ∧ B in
right-and A1 ∧ B;

dn ¬¬(A2 ∧ B);
right-either A1 ∧ B, A2 ∧ B;
right-and A2 ∧ B;
cond A2 ∧ B, B;
claim A2 ∧ B;
claim (A1 ∧ B) ∨ (A2 ∧ B);
cd (A1 ∧ B) ∨ (A2 ∧ B), (A1 ∧ B) ⇒B, (A2 ∧ B) ⇒B

contract
−−−−−−→ dn ¬¬(A2 ∧ B);

right-and A2 ∧ B

We close with a biconditional detour. Let D be the following deduction:

assume A ∧ B in
begin
left-and A ∧ B;
right-and A ∧ B;
both B, A

34

end;
assume B ∧ A in
begin
right-and B ∧ A;
left-and B ∧ A;
both A, B

end;
equivalence A ∧ B ⇒B ∧ A, B ∧ A ⇒A ∧ B;
left-iff A ∧ B ⇔B ∧ A

We have:

D
restructure
−−−−−−−−→ D

contract
−−−−−−→

assume A ∧ B in
begin
left-and A ∧ B;
right-and A ∧ B;
both B, A

end

1.6 Implementation

In this section we present SML-NJ code implementing every transformation presented in this paper.4

Figure 1.7 depicts SML-NJ datatypes encoding the abstract syntax of propositions and proofs, along
with some auxiliary functions. Note that there is a bit (a bool field) associated with every hypothetical
deduction. This bit is used to indicate whether or not the hypothetical deduction is “marked”, as
required by the hoisting algorithm discussed in Section 1.4. When a proof is initially constructed, all
such bits should be false to signify that the corresponding hypothetical deductions have not been
processed yet.

Implementations of C and FA appear in Figure 1.8. Here FA returns a list of propositions, rather
than a set. We take care to remove duplicates from such lists; this can lighten the load of some
transformations. The computation of a proof’s conclusion will succeed only if the proof is well-
formed, as prescribed by the relevant inference system in the Appendix. An exception IllFormedProof

will be raised otherwise. The contraction procedures are implemented in Figure 1.9, and the scope-
maximization algorithm in Figure 1.10. Finally, the global transformations A and A3 are shown in
Figure 1.11. Observe that the A3 restructuring of a hypothetical deduction (assume P in Db); D (or
(suppose-absurd P in Db); D) is carried out only if we are certain that the hypothesis P is deduced
inside D, which we determine by checking if memberOf (map concl (getThreadElements D)) P. This
is done to avoid disrupting the structure of the original deduction without reason.

Finally, we note that the two major contraction procedures introduced in this paper, the produc-
tivity and parsimony analyses, are applicable to any type-α DPL [1] that features a cut operator (such
as “;”) and for which the two functions C(D) and FA(D) are definable for any given D in a way that
preserves their meaning in NDL, i.e., so that

1. β
 D � C(D); and

2. β
 D � C(D) iff β ⊇ FA(D)

4An online copy of this code can be found at www.ai.mit.edu/projects/dynlangs/dpls/alpha-simp.sml.

35

for all D and β. As long as the proof theory of the DPL is as described in Section 1.2, the trans-
formations will be safe in the expected sense. Since this is the case for most type-α DPLs, these
procedures could be applied with minimum modification to any such language. We leave it as an
exercise for the reader to recast the given algorithms at a more abstract level by using an SML-NJ
functor parameterized over a structure with types such as prop and proof and functions such as
is-composition:proof -> bool, concl:proof -> prop, and fa: proof -> prop list.

36

structure Simplify =

struct

datatype prim_rule = claim | dn | mp | both | leftAnd | rightAnd | cd

| leftEither | rightEither | equiv | leftIff | rightIff

| absurd | trueIntro | condRule | negRule;

datatype prop = atom of string

| trueProp

| falseProp

| neg of prop

| conj of prop * prop

| disj of prop * prop

| cond of prop * prop

| biCond of prop * prop;

datatype proof = ruleApp of prim_rule * prop list

| assumeProof of prop * proof * bool

| supAbProof of prop * proof * bool

| compProof of proof * proof;

exception IllFormedProof;

fun illFormed() = raise IllFormedProof;

fun fp f = fn D => let val D’ = f D

in

if D = D’ then D else (fp f) D’

end;

fun weave f [] = f

| weave f (g::rest) = f o g o (weave f rest);

fun memberOf L x = List.exists (fn a => a = x) L;

fun emptyIntersection(L1,L2) = not (List.exists (memberOf L2) L1);

fun remove(x,L) = List.filter (fn y => not(x = y)) L;

fun removeDuplicates [] = []

| removeDuplicates (x::rest) = x::removeDuplicates(remove(x,rest));

fun getThreadElements(compProof(D1,D2)) = D1::getThreadElements(D2)

| getThreadElements(D) = [D];

fun makeThread([D]) = D

| makeThread(D::rest) = compProof(D,makeThread(rest))

fun isClaim(ruleApp(claim,_)) = true

| isClaim(_) = false

Figure 1.7: Abstract syntax and some auxiliary functions.

37

fun ruleConcl(claim,[P]) = P

| ruleConcl(dn,[neg(neg(P))]) = P

| ruleConcl(condRule,[P,Q]) = cond(P,Q)

| ruleConcl(negRule,[P]) = neg(P)

| ruleConcl(mp,[cond(P1,P2),P3]) = if (P1 = P3) then P2 else illFormed()

| ruleConcl(both,[P1,P2]) = conj(P1,P2)

| ruleConcl(leftAnd,[conj(P1,P2)]) = P1

| ruleConcl(rightAnd,[conj(P1,P2)]) = P2

| ruleConcl(equiv,[cond(P1,P2),cond(P3,P4)]) =

if P1 = P4 andalso P2 = P3 then biCond(P1,P2) else illFormed()

| ruleConcl(leftIff,[biCond(P,Q)]) = cond(P,Q)

| ruleConcl(rightIff,[biCond(P,Q)]) = cond(Q,P)

| ruleConcl(leftEither,[P,Q]) = disj(P,Q)

| ruleConcl(rightEither,[P,Q]) = disj(P,Q)

| ruleConcl(cd,[disj(P1,P2),cond(P3,Q),cond(P4,Q’)]) =

if P1 = P3 andalso P2 = P4 andalso Q = Q’ then Q else illFormed()

| ruleConcl(absurd,[P1,neg(P2)]) = if P1 = P2 then falseProp else illFormed()

| ruleConcl(trueIntro,[]) = trueProp

| ruleConcl(_) = illFormed();

fun concl(ruleApp(M,args)) = ruleConcl(M,args)

| concl(assumeProof(P,D,_)) = cond(P,concl(D))

| concl(supAbProof(P,D,_)) = neg(P)

| concl(compProof(_,D2)) = concl(D2);

fun fa D =

let fun h(ruleApp(leftEither,[P1,P2])) = [P1]

| h(ruleApp(rightEither,[P1,P2])) = [P2]

| h(ruleApp(M,args)) = args

| h(assumeProof(P,D,_)) = remove(P,h(D))

| h(supAbProof(P,D,_)) = remove(P,h(D))

| h(compProof(D1,D2)) =

h(D1)@(remove(concl(D1),h(D2)))

in

removeDuplicates(h(D))

end;

Figure 1.8: Computing conclusions and free assumptions.

38

fun makeStrict(assumeProof(P,D,mark)) = assumeProof(P,makeStrict(D),mark)

| makeStrict(supAbProof(P,D,mark)) = supAbProof(P,makeStrict(D),mark)

| makeStrict(compProof(D1,D2)) =

let val D1’ = makeStrict(D1)

val D2’ = makeStrict(D2)

in

if memberOf (fa D2’) (concl D1’) then compProof(D1’,D2’) else D2’

end

| makeStrict(D) = D;

fun removeRepetitions(D) =

let fun RR(D,L) =

let val P = concl(D)

in

if memberOf L P then ruleApp(claim,[P])

else

case D of

assumeProof(hyp,D_b,mark) => assumeProof(hyp,RR(D_b,hyp::L),mark)

| supAbProof(hyp,D_b,mark) => supAbProof(hyp,RR(D_b,hyp::L),mark)

| compProof(D1,D2) => let val D1’ = RR(D1,L)

in

compProof(D1’,RR(D2,concl(D1’)::L))

end

| _ => D

end

in

RR(D,[])

end;

fun elimClaims(assumeProof(P,D_b,mark)) = assumeProof(P,elimClaims(D_b),mark)

| elimClaims(supAbProof(P,D_b,mark)) = supAbProof(P,elimClaims(D_b),mark)

| elimClaims(compProof(D1,D2)) =

let val (D1’,D2’) = (elimClaims(D1),elimClaims(D2))

val comp = compProof(D1’,D2’)

in

(case D1’ of

ruleApp(claim,_) => D2’

| _ => (case D2’ of

ruleApp(claim,_) =>

if concl(D1’) = concl(D2’) then D1’ else comp

| _ => comp))

end

| elimClaims(D) = D;

val contract = fp (elimClaims o removeRepetitions o makeStrict);

Figure 1.9: The contraction algorithms.

39

fun H(compProof(D1,D2),L) =

let val (D1’,L1,Delta1) = H(D1,L)

val (D2’,L2,Delta2) = H(D2,L1)

in

(compProof(D1’,D2’),L2,Delta1 @ Delta2)

end

| H(D,L) = let val C = concl(D)

in

if emptyIntersection(fa(D),L) then

(ruleApp(claim,[C]),L,[D])

else

(D,C::L,[])

end;

val maximizeScope =

let val rightLinearize =

let fun rl(assumeProof(P,D,b)) = assumeProof(P,rl(D),b)

| rl(supAbProof(P,D,b)) = supAbProof(P,rl(D),b)

| rl(compProof(D_l,D_r)) =

(case D_l of

compProof(D1,D2) => rl(compProof(D1,compProof(D2,D_r)))

| _ => compProof(rl(D_l),rl(D_r)))

| rl(D) = D

in

rl

end

fun allMarked(assumeProof(_,D,mark)) = mark andalso allMarked(D)

| allMarked(supAbProof(_,D,mark)) = mark andalso allMarked(D)

| allMarked(compProof(D1,D2)) = allMarked(D1) andalso allMarked(D2)

| allMarked(ruleApp(_)) = true

fun hoist(assumeProof(P,D_b,mark as false)) =

if allMarked(D_b) then

let val (D_b’,_,Delta) = H(D_b,[P])

in

if not(null(Delta)) andalso concl(makeThread(Delta)) = concl(D_b’)

then makeThread(Delta@[ruleApp(condRule,[P,concl(D_b’)])])

else

makeThread(Delta@[assumeProof(P,D_b’,true)])

end

else

assumeProof(P,hoist(D_b),mark)

| hoist(supAbProof(P,D_b,mark as false)) =

if allMarked(D_b) then

let val (D_b’,_,Delta) = H(D_b,[P])

in

if not(null(Delta)) andalso concl(makeThread(Delta)) = concl(D_b’)

then makeThread(Delta@[ruleApp(negRule,[P])])

else

makeThread(Delta@[supAbProof(P,D_b’,true)])

end

else

supAbProof(P,hoist(D_b),mark)

| hoist(compProof(D1,D2)) = compProof(hoist(D1),hoist(D2))

| hoist(D) = D

in

(fp (rightLinearize o hoist)) o rightLinearize

end;

Figure 1.10: Scope-maximization algorithms.

40

fun A(D) =

let fun T(assumeProof(P,D_b,mark),L) =

if memberOf L P then

let val D_b’ = T(D_b,L)

in

compProof(D_b’,ruleApp(condRule,[P,concl(D_b’)]))

end

else

assumeProof(P,T(D_b,P::L),mark)

| T(supAbProof(P,D_b,mark),L) =

if memberOf L P then

let val D_b’ = T(D_b,L)

in

compProof(D_b’,ruleApp(negRule,[P]))

end

else

supAbProof(P,T(D_b,P::L),mark)

| T(compProof(D1,D2),L) =

let val D1’ = T(D1,L)

in

compProof(D1’,T(D2,concl(D1’)::L))

end

| T(D,_) = D

in

T(D,fa(D))

end;

fun A3(assumeProof(P,D,mark)) = assumeProof(P,A3(D),mark)

| A3(supAbProof(P,D,mark)) = supAbProof(P,A3(D),mark)

| A3(compProof(assumeProof(P,D_b,mark),D)) =

let val (D_b’,D’) = (A3(D_b),A3(D))

val (D’’,_,Delta) = H(D’,[cond(P,concl(D_b’))])

in

if memberOf (map concl (getThreadElements D)) P

then

(if not(null(Delta)) andalso concl(makeThread(Delta)) = concl(D’’)

then makeThread(Delta)

else

makeThread(Delta@[assumeProof(P,D_b’,mark),D’’]))

else

compProof(assumeProof(P,D_b’,mark),D’)

end

| A3(compProof(supAbProof(P,D_b,mark),D)) =

let val (D_b’,D’) = (A3(D_b),A3(D))

val (D’’,_,Delta) = H(D’,[neg(P)])

in

if memberOf (map concl (getThreadElements D)) P

then

(if not(null(Delta)) andalso concl(makeThread(Delta)) = concl(D’’)

then makeThread(Delta)

else

makeThread(Delta@[supAbProof(P,D_b’,mark),D’’]))

else

compProof(supAbProof(P,D_b’,mark),D’)

end

| A3(compProof(D1,D2)) = compProof(A3(D1),A3(D2))

| A3(D) = D;

val restructure = weave maximizeScope [A,A3];

val simplify = contract o restructure;

end; (* of structure Simplify *)

Figure 1.11: Global transformations.

41

Appendix

In this appendix we give rigorous definitions of some NDL notions that appear in the body of the
paper.

The domain of a deduction D, written Dom(D), is a set of integer lists defined as follows:

Dom(Rule P1, . . . , Pn) = { []} ∪ { [1], . . . , [n]}
Dom(assume P in D) = { []} ∪ { [1]} ∪ { 2::p | p ∈ Dom(D)}

Dom(suppose-absurd P in D) = { []} ∪ { [1]} ∪ { 2::p | p ∈ Dom(D)}
Dom(D1; D2) = { []} ∪ { 1::p | p ∈ Dom(D1)} ∪ { 2::p | p ∈ Dom(D2)}

Next, we define a function Label that takes a deduction D and a “position” p ∈ Dom(D) and returns
whatever part of D appears there:

Label(P, []) = P

Label(Prim-Rule P1, . . . , Pn, []) = Prim-Rule

Label(Prim-Rule P1, . . . , Pn, [i]) = Pi (for i = 1, . . . , n)

Label(assume P in D, []) = assume

Label(assume P in D, [1]) = P

Label(assume P in D, 2::p) = Label(D, p)

Label(suppose-absurd P in D, []) = suppose-absurd

Label(suppose-absurd P in D, [1]) = P

Label(suppose-absurd P in D, 2::p) = Label(D, p)

Label(D1; D2, []) = ;

Label(D1; D2, 1::p) = Label(D1, p)

Label(D1; D2, 2::p) = Label(D2, p)

We say that a deduction D′ occurs in D at some p ∈ Dom(D) iff Label(D′, q) = Label(D, p ⊕ q)
for every q ∈ Dom(D′). By a subdeduction of D we will mean any deduction that occurs in D at
some position. We define a thread of D as any subdeduction of D of the form D1; D2; . . . ; Dn; Dn+1,
n ≥ 1.5 (Occasionally it is also convenient to view a deduction D that is not a composition as a
single-element thread.) We call D1, . . . , Dn the elements of the thread. For each i = 1, . . . , n, we say
that Di dominates every Dj , i < j ≤ n + 1; and we call D1, . . . , Dn the dominating elements of the
thread. In general, we say that a deduction D′ dominates a deduction D′′ in D iff there is a position
p ∈ Dom(D) and a non-empty list q = [2, . . . , 2] (i.e., q is a list of one or more 2s) such that

1. Label(D, p) = ;

2. D′ occurs in D at p ⊕ [1]

3. Label(D, p ⊕ q′) = ; for every prefix q′ � q

4. D′′ occurs in D at p ⊕ q ⊕ [1].

Clearly, the dominance relation imposes a total ordering on the elements of a thread.
We write D′ � D to indicate that D′ is a subdeduction of D that occurs in tail position inside D.

This relation is precisely defined by the following rules:
5Or more precisely, recalling that composition associates to the right, as any subdeduction of the form

D1; (D2; · · · ; (Dn; Dn+1) · · ·).

42

D � D

D′ � D

D′ � assume P in D

D′ � D

D′ � suppose-absurd P in D

D′
2 � D2

D′
2 � D1; D2

We introduce the notion of a well-formed deduction via rules that establish judgements of the form

W D (read “D is well-formed.”) For atomic deductions we have the following axiom schemas:

�W both P, Q �W left-and P ∧ Q �W right-and P ∧ Q

�W modus-ponens P ⇒Q, P �W left-either P, Q �W right-either P, Q

�W cd P1 ∨ P2, P1 ⇒Q, P2 ⇒Q �W cond P, Q

�W equivalence P ⇒Q, Q ⇒P �W absurd P,¬P �W neg P

�W double-negation ¬¬P �W left-iff P ⇔Q �W right-iff P ⇔Q

For compound deductions we have:

�W D
�W assume P in D

�W D
�W suppose-absurd P in D

�W D1 �W D2

�W D1; D2

The conclusion C(D) of a well-formed atomic deduction D is defined as:

C(modus-ponens P ⇒Q,P) = Q

C(double-negation ¬¬P) = P

C(both P, Q) = P ∧ Q

C(left-and P ∧ Q) = P

C(right-and P ∧ Q) = Q

C(left-either P, Q) = P ∨ Q

C(right-either P, Q) = P ∨ Q

C(cd P1 ∨ P2, P1 ⇒Q, P2 ⇒Q) = Q

C(equivalence P ⇒Q, Q ⇒P) = P ⇔Q

C(left-iff P ⇔Q) = P ⇒Q

C(right-iff P ⇔Q) = Q ⇒P

C(neg P) = ¬P

C(cond P, Q) = P ⇒Q

C(absurd P,¬P) = false

For non-primitive deductions we have:

C(assume P in D) = P ⇒C(D)

C(suppose-absurd P in D) = ¬P

C(D1; D2) = C(D2)

Finally, Figure 1.12 depicts the semantics of primitive rule applications. Observe the specification
of cond and neg. The first of these allows us to introduce a conditional P ⇒Q whenever the
conclusion Q is already established (in the assumption base). The second, neg, allows us to negate

43

β ∪ {P} � claim P � P

β ∪ {P ⇒Q, P} � modus-ponens P ⇒Q, P � Q

β ∪ {¬¬P} � double-negation ¬¬P � P

β ∪ {P1, P2} � both P1, P2 � P1 ∧ P2

β ∪ {P1 ∧ P2} � left-and P1 ∧ P2 � P1

β ∪ {P1 ∧ P2} � right-and P1 ∧ P2 � P2

β ∪ {P1} � left-either P1, P2 � P1 ∨ P2

β ∪ {P2} � right-either P1, P2 � P1 ∨ P2

β ∪ {P1 ∨ P2, P1 ⇒Q, P2 ⇒Q} � cd P1 ∨ P2, P1 ⇒Q, P2 ⇒Q � Q

β ∪ {P1 ⇒P2, P2 ⇒P1} � equivalence P1 ⇒P2, P2 ⇒P1 � P1 ⇔P2

β ∪ {P1 ⇔P2} � left-iff P1 ⇔P2 � P1 ⇒P2

β ∪ {P1 ⇔P2} � right-iff P1 ⇔P2 � P2 ⇒P1

β � true-intro � true

β ∪ {P,¬P} � absurd P,¬P � false

β ∪ {Q} � cond P, Q � P ⇒Q

β ∪ {false} � neg P � ¬P

Figure 1.12: Evaluation axioms for rule applications.

any proposition P , provided that false is in the assumption base. Both rules are obviously sound.
Neither is necessary: cond is subsumed by assume, and neg by suppose-absurd. They are included
here because they allow more succinct deductions whenever the aforementioned conditions obtain. For
instance, if we already know that B is in the assumption base, we can introduce A ⇒B with the single
rule application cond A, B, instead of the slightly larger

assume A in claim B.

And likewise, whenever false is known to be in the assumption base, we can introduce a negation ¬P
with the single application neg P instead of

suppose-absurd P in claim false.

44

Bibliography

[1] K. Arkoudas. Type-α DPLs. MIT AI Memo 2001-25.

[2] A. G. Dragalin. Mathematical Intuitionism. Introduction to Proof Theory, volume 67 of Transla-
tions of Mathematical Monographs. American Mathematical Society, Providence, RI, 1988.

[3] G. Gentzen. The collected papers of Gerhard Gentzen. North-Holland, Amsterdam, Holland, 1969.
English translations of Gentzen’s papers, edited and introduced by M. E. Szabo.

[4] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockhol, Sweden, 1965.

45

