
Soft Body Animation

in Real-Time Simulations

by

Mark A. Sullivan III

S.B. C.S., M.I.T., 2010

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology _______

MASSACHUSETTS INSTITUTE

May, 2011 OF TECHNOLOGY

UJvv~e Zc)u1'3 1 JUN 2 1 2011
02011 Massachusetts Institute of Technology

All rights reserved.
LIBRARIES

Author

Certified

Accepted b

Department of Electrical Engineering and Computer Science
May 20, 2011

by r
Philip Tan

US Executive Director, Singapore-MIT GAMBIT Game Lab
Thesis Supervisor

y
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

Soft Body Animation in Real-Time Simulations
by

Mark A. Sullivan III

Submitted to the
Department of Electrical Engineering and Computer Science

May 20, 2011

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents a novel approach for creating deformable object animations. A deformable
object can be represented as a discrete lattice of particles, and transforming those particles
defines a new state for the represented object. By applying shape matching techniques, we are
able to adapt traditional mesh based animations to this representation. We then allow these
particles to take place in a soft body physics simulation. By making the particles track positions
defined in the animation, soft body tracking of user created animation has been made possible.

Thesis Supervisor Philip Tan
Title: US Executive Director, Singapore-MIT GAMBIT Game Lab

THIS PAGE INTENTIONALLY LEFT BLANK

Acknowledgements

This research was done at the Singapore-MIT GAMBIT Game Lab, and as such, I owe a lot of

thanks to the lab and its members. In particular, I would like to thank Philip Tan for his

supervision and the chance to do this thesis work at GAMBIT. I also owe special thanks to

Andrew Grant, who helped me find this research project, allowed me to explore this technology

through the UROP program, and provided frequent feedback for both the technical and written

components of this project.

I would like to thank Alec Rivers, who originally developed RealMatter, for allowing me

to build off of his project and for providing me with his source code.

I would also like to thank those students who worked on this project through the UROP

program (pardon the redundant acronym). Adin Schmahmann helped with some of the early

stages of game engine integration. Patrick Rodriguez and Skyler Seto used my design and layout

tools and provided valuable feedback. Lauren Cason, Hing Chui, David Kenyon, and Hannah

Lawler produced many models used for testing and demos.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

1 Introduction..11
2 Background .. 13

2.1 Soft Body Physics...14
2.2 Nonphysical Animation.. 15
2.3 Rigid Body Animation..15
2.4 Soft Body Animation..16

3 RealMatter.. 19
3.1 Soft Body Representation... 19
3.2 Soft Body Simulation..21
3.3 FastLSM... 23
3.4 Soft Body Rendering .. 24
3.5 Fracture Simulation...25
3.6 Fracture Rendering ... 26

4 Animation Tracking...29
5 Animation Creation...1. 1

5.1 M aya ... 3 1
5.2 Forward Solving ... 31
5.3 Inverse Solving ... 34
5.4 Plugin Design Considerations... 39

6 Game Engine Integration... 43
6.1 U nity ... 43
6.2 Integration...44
6.3 User Interface... 46

7 Performance.. 51
8 C onclusion .. 55
A A ppendix ... 57

A .1 U ser G uide..57

List of Figures

Figure 2-1: Rigid body tracking applied to skeletal animation 16
Figure 2-2: Soft body baby with embedded skeleton 17
Figure 3-1: Soft body discretization......................................20
Figure 3-2: Mesh reconstruction...25
Figure 3-3: A summary of Muller's triangle splitting algorithm 27
Figure 4-1: Keyframed lattice states......................................30
Figure 5-1: Forward solving...32
Figure 5-2: Inverse solving..34
Figure 5-3: Transformation not realizable by trilinear interpolation 36
Figure 6-1: Screenshot of Unity editor....................................44
Figure 6-2: Fracture rendering..46
Figure 6-3: Soft body menu bar tsklalt....................i................................47
Figure 6-4: Soft body properties editor.. 28
Figure 6-5: Lattice view 49
Figure 7-1: Simulation time per frame for different animation schemes........................53

Sc ee s oto U it dio 4

List of Tables

Table 5-1: Comparison of forward and inverse animation solving.............................. 39
Table 7-1: Simulation time per frame for different animation schemes 52

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

Video games are continually increasing their capacity for realism. Improvements in the field of

computer graphics allow for detailed rendering of increasingly complex scenes. However, static

renders do not communicate the entire visual experience. Another important class of visual

effects includes animation and physics, which specify the visual dynamics of a game. Many

modem games utilize physics engines, packages which execute a real-time simulation of rigid

body mechanics. This permits objects to react to one another in such a way as to mimic reality.

Current physics techniques in games, however, impose restrictions. If one wanted, for

instance, an object which could bend, stretch, or break, then rigid body mechanics are an

inadequate representation. Rigid bodies can only translate and rotate. Inclusion of these

additional transformation capabilities mandates the use of soft body physics. Soft body physics,

however, isn't nearly as pervasive as its rigid counterpart. Real-time techniques have been

developed, as discussed in Chapter 2, so perhaps there are other improvements which could be

made to foster their inclusion.

To make soft body physics more approachable, a set of tools were developed in this

project which allow non-programmers to set up and run these simulations. In game

development, allowing anyone on a multidisciplinary team to set up and modify soft bodies in a

scene has potential for increasing a team's efficiency over the case where only programmers

have such capability. Therefore, ease of use was a large priority for making soft body use more

appealing.

The tools described here also address the lack of support existing systems have for

controlled animation. These systems work well for simulating soft static objects, but these

objects ultimately settle down to their initial structure after being perturbed. If one wanted to

simulate a self-actuating soft body, for instance an invertebrate which moves about on its own, or

a skeleton guided by the contractions of attached soft muscles, then one would quickly discover

this limitation.

The goal of the thesis project was to fit an existing soft body engine with the ability to

track poses and animations. Another objective was to create an animation representation which

makes use of soft body properties, as current animation representations have a basis in rigid body

ideas. This also entailed the development of artist-usable tools to permit creation of animations

within this framework.

Chapter 2

Background

2.1 Soft Body Physics

"Soft body physics" is a term which refers to the behavior deformable objects exhibit.

Deformable objects are those which change their shape over time, often through transformations

such as stretching, squashing, bending, twisting, or fracturing. This is to be contrasted with rigid

body physics, where objects always maintain their shape, and only have the transformation

affordances of translation and rotation.

Many different approaches to simulation of deformable bodies have been developed [1].

A survey by Gibson and Mirtitch [2] classifies three major types of soft body physics models

used for simulation within the computer graphics community.

Continuum models form the first classification. These types of models attempt to model

the object as continuous, although solving for these models is ultimately discrete. This type of

model is also sometimes called a finite element model. In these methods, the soft body is

adaptively discretized, so that the representation of a body is finer at points where large

deformations are occurring. Internal forces are computed based on real world models of

deformable objects. It is the most physically accurate of all of the proposed model categories.

However, its accuracy comes at the cost of speed. While the techniques used in continuum

models are popular in applications such as computer aided drafting software, where the stress or

thermal flow in a material can be assessed, it is currently too costly for real-time applications.

The next class is composed of mass-spring models. These models approximate soft

bodies as a 3D lattice of masses and springs. One might be able to envision how a model like

this can approximate a soft body which can be stretched or bent; there's some intuition

associated with this model. However, it's not as accurate as a continuum model, and it might not

be stable. Standard first order integrators will often cause the system to explode if the lattice is

too complicated or the springs are too stiff. This mandates the use of implicit or higher order

integrators, which slow down the speed at which this can be simulated.

Finally, there are geometric methods. Whereas the other methods were entirely rooted in

the laws of physics, geometric methods are an approximation achieved by manipulating the mesh

in part based on geometric arguments instead of purely physical ones. Consequently, this is the

least realistic out of these classes. However, the primary application for this work is games.

Perfect physical accuracy is not necessary if the result looks visually plausible. So, while this

model wouldn't be used for a quantitative simulation, in practice it looks convincing enough for

a game. Additionally, these methods have the benefit of being fast enough for real-time

simulation. These qualities make this branch of methods ideal for games, and thus the animation

framework created for this project was built from a soft body system in this category.

2.2 Nonphysical Animation

Animations are often defined in a purely graphical context, independent from any physics

simulation. This type of animation is called "kinematic." Creation of such animation often must

be performed by a skilled expert in order to produce convincing motion [3]. Animations are

typically defined by creating keyframes, representative snapshots of the animation. If necessary,

a sensible interpolation takes place between those keyframes. Since such animations only play

back a scripted sequence of frames, purely kinematic animations will not interact or respond to

their environment. Despite these limitations, these types of animations are very easily

controlled; there is no element of unpredictability during playback, and there do exist qualified

individuals to generate these animations.

One of the most prevalent approaches to defining such animations on a deforming

character is skeletal animation. In typical skeletal animation, a 3D mesh is fit with a nonphysical

skeleton. The vertices on the mesh are given weightings which tell them how to move based on

the transformations of the underlying skeleton. This algorithm which decides the new vertex

positions is called skeletal subspace deformation [4]. To define an animation, an artist only has

to move and position the skeleton. The rest of the mesh follows along. This greatly reduces the

amount of work an artist must do to define an animation, as opposed to manually specifying

vertex positions for every frame, while still allowing for expressiveness.

2.3 Rigid Body Animation

When defining animations for a physical object, it is not desirable for the physical entity to

simply play the animation back. If it did, then the physics has afforded no new behavior, and

this would still be in the realm of kinematic animation. Instead, the animated body should

interact with the physics engine to track the animation [5].

Consider the rigid body case. Let's say we have some physical object that we want to

track a position and orientation over time. We can model that object as a rigid body, some

geometry with a mass and tensor of inertia. Then we can use feedback techniques such as PID

control to compute forces and torques over time which we should apply to that body [6]. This

will allow the body to track its desired position and rotation while still interacting with the

physical world. It has collision geometry so its motion will be appropriately interrupted if a solid

object gets in its path. With an appropriately tuned feedback model, the body will additionally

be able to respond naturally to gravity, wind, explosive forces, or any other external influences.

If there is some model to be physically animated, it can be represented as a physical

skeleton, which can interact with anything in the world. It's very amenable to the nonphysical

skeletal representation of animation. So, one can use that same representation to define target

transformations for all of the bones. An example of how this can be done can be seen in Figure

2-1. Tracking techniques such as those mentioned above can be used to let the bones track

poses, and, using skeletal subspace deformation, the mesh will deform to reflect the changes

based on the state of the underlying skeleton. Tracking the animation allows for that animation

to be realistically interrupted or affected by interactions with other objects in the game world.

a b c d

Figure 2-1: Rigid body tracking applied to skeletal animation. In a, we have a humanoid 3D
model. It can be converted into a collection of rigid bodies representing the skeleton as shown in
b. If that skeleton is told to track an animation, closed loop control can apply forces and torques
necessary to transform it into a new pose such as c. And, given c, we can apply the skeletal
subspace deformation algorithm to reconstruct the appearance of the mesh in d. The skeleton is
exposed to the simulation, but would typically be invisible to the user. This character is from
Moki Combat, created at the Singapore-MIT GAMBIT Game Lab.

2.4 Soft Body Animation

Soft body animation techniques have not been explored as much as their rigid and nonphysical

counterparts. Nevertheless, there do exist some techniques to define animations for soft bodies.

In Autodesk Maya 2011, a popular 3D modeling and animation tool, the creation and

simulation of soft bodies is possible [7]. The soft body is represented as a grid of particles, with

a one-to-one mapping between particles and vertices in a mesh. The artist can paint on weights,

which dictate how strongly those particles pull themselves to their goal position. The artist can

adjust these goal positions by creating a goal object out of either the original or duplicate

geometry. The bijection between particles and vertices allows this technique to work, since a

deformed version of the mesh will have the same particle-vertex mapping.

NVIDIA PhysX is a physics engine which also supports soft bodies [8]. This tool

represents the soft body volumetrically as an approximate tetrahedral lattice, up to a user defined

precision. Affecting the motion of the soft body is typically done by the use of fields, time-

varying spatial arrangements of forces. The drawback to this approach is that this control is

indirect if one wanted to have a self actuating soft body.

Alec Rivers, creator of the geometrically based soft body engine RealMatter, produced a

demonstration of an animated soft body baby, seen in Figure 2-2. The baby's skeleton is rigid,

but the muscles and skin covering the baby form a soft body lattice. The demonstrated

animation is fundamentally rigid. The skeleton tracks an animation, and the skin just follows

along. While this does yield interesting effects like the ability to have the skin deform upon

contact with objects in the scene, many properties of soft body physics are left unexplored.

Artists would have no direct control over what happens to the skin through their animations.

Figure 2-2: Soft body baby with embedded skeleton. Image created by Alec Rivers [9]. The
skin of the baby is soft, but the underlying animation is fundamentally rigid, as it is specified by
the state of the skeleton.

Soft body transformations are important even in traditional animation. As Lesseter

discusses [10], deforming an object with squash and stretch is an important part of emphasizing

the animation. Soft body properties can be used to emphasize movement, communicate material

properties, and provide continuity to animations. These techniques have existed for much of the

history of traditional hand drawn animation, which suggests the value of enabling this type of

animation to be defined for simulations of virtual worlds.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3

RealMatter

In order to understand this project's contributions, it is necessary to understand the underlying

soft body representation and simulation techniques. This project extended RealMatter, a soft

body physics library developed by Alec Rivers. The primary simulation technique used, Fast

Lattice Shape Matching, is discussed in detail in his paper [9].

3.1 Soft Body Representation

It is necessary to have some way to convert from an artist's specification of a 3D mesh to a

representation suitable for physical simulation. This is done by discretizing the mesh into finite

rigid elements. Existing physics engines are able to handle rigid bodies, so such a representation

will be useful when it comes time to simulate the body.

The mesh is discretized into finite elements by overlaying a rectangular grid on top of the

mesh. The dimensions of this grid are parameters which would be set by the user. Each 3D

cuboid which forms an element of the grid is known as a cell. Some subset of those cells is

chosen to be our representation. In particular, those cells which intersect with the surface

polygons, as well as optionally those which are on the inside of the mesh for closed meshes

where the inside is well defined, are selected. This creates a blocky representation of the original

mesh.

The cells will be useful as rendering elements; other objects are used for collision

detection and simulation. These objects are called particles. Once there is a set of cells that

represent the mesh, particles are placed at each vertex of these cells. Each cell is a cuboid, so it

will border eight particles. Particles will be shared by adjacent cells; duplicate particles won't be

created in a single location. The collection of all these particles is known as the lattice. This

process can be seen in Figure 3-1.

Figure 3-1. Soft body discretization. Given a mesh such as this octopus, top image, we are able
to select some set of cells to serve as a discrete approximation, middle image. Finally, we take
the corners of those cells and place particles there, bottom image.

OFO*

3.2 Soft Body Simulation

Simulation only relies on the physical representation of the mesh, the particle lattice.

Reconstruction back to a mesh will be done at a later step. Here, the soft body must both

compute internal restorative forces and react to externally applied ones. Out of the technique

classifications put forth by Gibson and Mirtitch [2], the techniques used here would be classified

as geometric [9].

Every particle i has some associated neighborhood N;. These are all of the particles

reachable via an adjacent cell edge or diagonal, so each neighborhood may have up to 27

particles including itself. There will be fewer particles per neighborhood along the boundaries.

The simulation is given a parameter w. This parameter is the "region half-width." It will be used

to specify the size the particle "regions." Every particle has an associated region R;, which is a

set of particles. If w is 1, then R; equals N;. If w is 2, then R; includes all those particles in the

w=1 case, as well as all of their neighbors, and so forth for higher w.

Intuitively, a region is a portion of the mesh which will track a rigid shape. If w is small,

and consequently regions are small, then perturbations on one side of the lattice won't

immediately be detected on the other side, since a small region here would not span the entire

lattice. If we had a large w which did span the entire lattice, then information about

perturbations would travel through the lattice in a single simulation step, and the body would

more closely model a rigid body. In this way, w controls how soft or rigid a soft body is.

The goal of shape matching is to approximate every region of particles as though they

have been transformed by some rigid transformation applied to their original positions, a

translation and a rotation. We can then move those particles towards those positions

corresponding to that rigid transform. This will give an object a tendency towards a nondeformed

state. Assume that every particle i has a starting position x? and a current position '. All

summations are over all particles belonging to the current region. We can then approximate a

rigid body transform for the set of particles as follows.

X 0

im

- -6

PL = XL- xC

Apq = qL

Equation 3-1

Ap, contains the rotational information required,

decomposition.

and it can be extracted via a polar

S = ApqApq

R = ApqS-1

Equation 3-2

We now have, for every region, an approximate translation and rotation from its initial

state. Each particle in that region is assigned a goal position gi, the position where a rigid

transformation applied to that region would place it.

Equation 3-3

Since a particle may belong to many regions, its final goal position is a weighted average

of the assigned goal positions from all of the regions to which it belongs. Nonuniform weighting

may be used to resolve boundary condition problems and is discussed by Rivers [9].

Given a particle's current position and goal position, the output of this algorithm is an

updated velocity of the particle, given by, for time step h:

vLO(t + h) = vL(t) + a 9(Lt
h

Equation 3-4

Since particles are rigid bodies, they can interact with any objects within a standard rigid

body physics engine. The particles can be simulated in the rigid world along with any other rigid

objects, and then corrective soft body velocities can be applied using the techniques above.

Structuring a simulation cycle like this allows for easy integration of soft body properties into

complete and well developed rigid body physics engines.

3.3 FastLSM

An important optimization involves exploiting the redundancy of shape matching among

multiple regions in a dynamic programming styled approach [9]. This approach is called fast

lattice shape matching, or FastLSM.

We often need to sum up values for all of the particles in some region. Consider the

calculation of the center of mass of each region, necessary for calculating its translational

component. Since the width in each dimension is 2w+1 in a non-boundary case, the cost is

O(w) per region. So, the naive approach isn't very practical. However, we can exploit repetition

by breaking down the summation as follows. Assume every particle xyz has some value vxyz,

and we want to sum over all of those values in every region.
x+w

iX-WXxyz = I Viyz
i=x-w
y+w

XYxyz = Xxjz
J=y-w

z+w

SUMxyz = I XYyk

k=z-w
Equation 3-5

We want to compute X, XY, and SUM for each particle in the lattice. Intuitively, we

are computing the sums one dimension at a time so that we can reuse that sum for the next higher

dimension. There is more redundancy we can exploit. When traversing a dimension to compute

one of these sums, we can reuse the sum just computed as follows.

Xxyz = X(x-1)yz - V2x-w-1)yz + V(x+w)yz

XYz = XYx(y-1)z - XX(y-w-1)z + XX(y+W)Z

SUMXYZ = SUMXY(z-1) - XYXY(z-w-1) + XYx(z+w)

Equation 3-6

So, in a non-boundary case, we have only 6 floating point operations, and, factoring in

boundary cases, we have an 0(1) amortized cost per particle. With this tool, the rigid transform

approximated by each region can be quickly calculated. A similar computation is done for the

rotation, discussed by Rivers [9], and the result is a simulation speed asymptotically independent

of w.

3.4 Soft Body Rendering

The techniques outlined so far can are able to generate a physical representation of a mesh, but it

is still necessary to return to the mesh representation for rendering.

The process of reconstructing the mesh involves trilinear interpolation. At initialization,

every mesh vertex lies inside of a cell. Based on this starting position, we can define a set of

eight weights for each vertex, one corresponding to each of the particles enclosing its occupied

cell.

We can index the eight particles around a given cell by a Boolean triplet ijk, where 000 is

the particle of minimum lattice index along x, y, and z, and any of i, j, or k is 1 if the x, y, or z

index is increased, respectively. If a vertex has a position ' within that cell normalized to a unit

cube, then its weights associated with each of its surrounding particles are given by

wijk -C X) + (1 - 0 1 - . X * 9.y) + (1 - D (1 - Y. y

* (k (C. z) + (1 - k)(1 - C. z))

Equation 3-7

We only need to compute those weights once. From then on, at every rendering step, the

vertex is to be positioned at the weighted sum of the positions of those surrounding particles.

Vi = WijkXijk

ijk

Equation 3-8

This process can be seen in Figure 3-2.

Figure 3-2. Mesh reconstruction. After simulating, an updated set of particle positions and
velocities is produced. The particles and (reconstructed from this data) cells are shown in the top
figure. Using the trilinear interpolation techniques described, the state of the mesh can be
determined.

3.5 Fracture Simulation

In addition to those types of deformations which don't modify the underlying structure of the soft

body, there is also support for fracturing. Fracturing is the process by which a physical body can

rip apart, either partially or totally, disconnecting portions of the lattice.

A fracture can be automatically triggered in one of two ways. In either case, every cell in

the lattice examines its immediate neighbors, those cells which differ in index by one along a

single coordinate. First, for each such pair of cells, the difference between their center of mass

separation in the current pose and the rest pose is computed. If this distance exceeds a certain

threshold, a fracture between these cells is triggered. Second, each cell will have had some

approximate rigid rotation assigned to it as using the shape matching procedure outlined earlier

based on the positions of its surrounding particles. If the magnitude of the rotational difference

between two neighboring cells exceeds a certain threshold, then a fracture is triggered.

Once a fracture is triggered, several changes need to be made to the lattice. Since those

two cells that are being split should no longer be attached, they should not share particles.

Therefore, the four particles along the shared face of the two particles are duplicated. One copy

of each particle is assigned to each of those cells. Other neighboring cells that also share any of

these particles are assigned the copy assigned to that cell on their side of the intersection plane.

Given these changes in the particle lattice, regions, which were dependent on particle

neighborhoods, must now be recomputed.

While each of these fractures is a fairly small, local one, many fractures may occur in the

object, either in a single or across several time steps. When these fractures accumulate, the

object may exhibit larger scale fractures. If the particle lattice may become disconnected

entirely, the object will break apart into multiple pieces.

3.6 Fracture Rendering

Once a soft body has been fractured in simulation, the mesh used for rendering must be changed

as well. The triangles along the fracture boundary surface must be split, and an interior surface

must be generated for proper visualization of the fracture. The technique used is described by

Mnller [11].

Using this technique, the surface triangles are never modified. Instead of splitting the

surface triangles along the face of intersection, each triangle along the boundary are assigned to

one of the sides of the fracture boundary. Vertices which were once shared between formerly

adjacent triangles are duplicated and assigned to either side, so that those triangles can become

completely independent. A closing interior surface is then generated on each side of the mesh.

The algorithm is summarized concisely by Alec Rivers in the RealMatter source code in Figure

3-3.

Triangle Splitting Summary

1. Generate directed graph of nodes.

la. Go through the set of polygons and test them against face f.

1b. If they intersect, generate nodes n1 and n2 either when an edge of t

intersects f or when an edge of f intersects t.

1c. Generate a directed edge between n1 and n2, according to the rule n1-

>n2 iff [nt x (n2 - nl)].nf > 0; nf is normal of face with respect to c1.

1d. Connect coincident nodes from the node without an outgoing edge to

the one with one.

le. Generate four nodes at the corners of f.

1f. Walk along the edges of f in the positive direction, connecting

sequential nodes iff the first node has no outgoing edge yet

1g. Detect cycles, pruning branch edges and unused points

2. Extend the nodes outward to connect to the surface mesh. (That is, close the

mesh.)

2a. Assign to each node a vertex of the surface mesh.

2b. Move each pair of nodes nI, n2 generated by triangle t towards each

other by one third of the segment length (to make sure the

triangulation generates everything).

2c. Delete all consecutive nodes on the formed cycles that refer to the

same surface vertex.

2d. Use the original locations of the nodes on f to compute a 2D

trianglulation using ear-cutting.

2e. Span the generated triangles across the assigned surface vertices.

2f. For each generated triangle t, create a duplicate triangle t' with reversed

orientation. Assign t to ci and t' to c2.

Figure 3-3. A summary of Muller's triangle splitting algorithm.

At a high level, this algorithm determines all triangle intersections along the face at the

boundary between the two cells being split. A node is generated everywhere a triangle edge

intersects the face, as well as everywhere a face edge intersects a triangle. These nodes are

connected in a graph if they were generated from the same triangle, occupy the same position, or

are adjacent along the border of the face. Cycles in the graph are detected to determine surfaces

which need to be closed. This cycle forms a polygon, which can then be tessellated using ear

cutting [12]. These projected triangles can then be mapped back onto a 3D surface using the

nodes which generated them, each of which will generally be mapped to one of the vertices of

the triangle that generated it.

Chapter 4

Animation Tracking

The techniques described so far are able to simulate a soft body which will always tend towards

its initial rest configuration. This allows for simulation of soft inanimate objects, but it requires

modifications to allow for tracking of a dynamic configuration. Fortunately, these changes are

not extensive.

The simulation techniques described compute the target positions of particles. In the

process, an approximate rigid body transformation is calculated for each region. However, while

the particles are arranged in a rectangular grid in the rest pose, there is no mathematical necessity

for this. What has thus far been treated as the "initial" pose, allowing us to compute the invariant

center of mass and rotation properties, can now be treated as a dynamic "target" pose. This will

dirty the invariants, and they will require recalculation every time the target pose changes, but

this modification alone is sufficient to allow soft bodies to track dynamic poses.

Thus, to define an animation for a soft body, the data we need is a keyframed series of

poses. Each pose is a specification of the lattice state, the positions of all of the particles that

frame. The poses are to exist along some time line, so that each pose also has some associated

number signifying its temporal location within the animation. An animation should also have

some sort of framerate, the speed at which the animation timeline is traversed.

Given this information, at any point in time, it can be determined where the animation

exists on the animation timeline. This time will either be on a keyframe or between two of them,

assuming the animation either loops or terminates upon reaching the end. The target particle

positions can then be set to an interpolation over the timeline of the particle positions specified

by the keyframes between which the current frame lies, as seen in Figure 4-1.

00

set
.

*0

0@0

~~e

Figure 4-1. Keyframed lattice states. By defining the state of the particle lattice at keyframes
(boxes), one can interpolate between those to solve for the target animation at any intermediate
point on the animation timeline.

W

M

Chapter 5

Animation Creation

5.1 Maya

Autodesk Maya is a popular 3D modeling and animation program. This software provides a

wide variety of tools used to create content for media such as movies or video games. In

addition to simply using the packaged functionality, Maya permits user scripting. Developers

can create plugins to provide new modeling and animation functionality. These plugins can then

easily exist within the Maya interface as if they were packaged scripts.

Because of its scripting support, it was practical to build the tools for animation creation

into Maya. The alternative would be creating an animation tool as a standalone piece of

software. Using Maya means that the core functionality necessary for animation already exists;

Maya has many advanced animation features which can work in tandem with custom plugins.

5.2 Forward Solving

The first set of Maya scripts is based on the idea termed here as forward solving. This

nomenclature here parallels traditional skeletal animation. In forward kinematics [13], the user

specifies the animation representation, the joint angles, directly. Similarly, here the user

specifies the positions of the lattice particles at several keyframes along a time line. This is

exactly the type of data required during simulation. These tools also permit the user to preview

the effect of their lattice deformations on the target mesh in real-time. An illustration of this

technique can be seen in Figure 5-1.

Figure 5-1. Forward solving. The user specifies the state of the particle lattice (left), and the
effect if that deformation is interactively previewed (right).

The first step for the user is to generate a representation of the particle lattice in Maya.

From the toolbar created for this project, the user must click the "Generate" icon, and then they

are asked to select a .rmb file. This file contains all of the data necessary to create the soft body

lattice: the offset between the origin of the lattice and the origin of the mesh, the spacing between

the particles, the scaling that is applied to the target mesh, and a list of lattice indices which are

occupied by particles. This file type is generated by scripts written for the target game engine,

Unity. Once the user selects the file, a Maya representation of the particle lattice is generated.

In this representation, the lattice is a simple mesh: a set of vertices, edges, and polygons. There

is a vertex associated with each particle of the mesh, placed at a position determined by its lattice

index. Edges are placed between adjacent vertices, that is, particles whose lattice index in a

single dimension differs by one. These edges are purely for visualization purposes, so that the

shape of the soft body is apparent.

Once the generation step is complete, the user has a set of Maya vertices, serving as a

representation of the particle lattice, which they are able to manipulate. Users then have the

optional step of importing a preview mesh. This step allows users to interactively preview the

appearance of a mesh given a particular particle configuration. The vertices of the preview mesh

are positioned based on the same interpolation techniques used to determine the vertex positions

of a mesh from particle positions in simulation. Each mesh vertex is initially contained within a

rectangular cuboid of vertices representing particles. As the set of particle vertices deforms, the

positions of the mesh vertices are determined by a trilinear interpolation of its surrounding

32

particle-vertices. Creation of a preview mesh is not a required step; it has no bearing on the

animation that will be produced. It is designed purely as a usability feature. To enable the

preview, the user clicks the "Import Mesh" button and selects the Maya file that contains the

mesh corresponding to the particle lattice. The preview mesh updates in real-time as the particle

lattice is deformed.

Once the user has finished initialization, he or she can then define the animation. The

user does so by manipulating the vertices of the lattice mesh and storing its state at several

keyframes. The ability to define an animation this way is already present in Maya, and is one of

the reasons why the soft body lattice was chosen to be represented as a mesh within Maya. The

full Maya toolkit is available to the user to create animations. For instance, one common way to

define animations is through the process of skeletal animation. To do this in Maya, an artist

creates a skeleton and assigns it to a mesh. As the skeleton deforms, the mesh follows according

to the skeletal subspace deformation algorithm [4]. Since the particle lattice is represented as a

mesh, Maya can naturally use this object to participate in skeletal animation, a technique most

animators are familiar with. Similarly, the entire Maya toolbox can operate on the representation

of the soft body. Regardless of the techniques used to create deformations, the user will do so at

several keyframes, positions on the animation timeline. The particles are linearly interpolated

between these keyframes.

After creating the animation, the user is able to export it to a format usable by the soft

body simulation. The user clicks the "Export" button, and is presented with a dialog box. It asks

for the destination of the animation file and the desired framerate. When the user clicks export,

the script iterates through the keyframes and writes out the frame numbers and the state of the

particle lattice. These are written out to a .txt file.

This technique has several strengths and weaknesses, which are summarized in

comparison to an alternative technique later in Table 5-1. Giving the user direct control of the

particles means that they are able to modify the purest form of the animation definition.

Additionally, since the soft body is represented as a mesh, Maya's built in tools work well with

it. However, this technique does have its drawbacks. Artists are accustomed to being able to

modify a mesh directly. Here, they can only modify the mesh via the particles, which act as

control points. While mesh modification via control points is not unheard of [14], this may be

unintuitive or against their training. Additionally, it's possible that the soft body properties will

change as the simulation is iterated upon. For instance, a lattice might become more detailed if a

higher resolution is needed, or simplified for performance reasons. Since the animation is

defined purely by the state of the lattice, changing the lattice means that the animation is lost.

Therefore, this approach is not resilient to iteration within the simulation.

5.3 Inverse Solving

The next set of scripts seeks to address some of the failings of forward solving. In forward

solving, the user specifies the state of the particle lattice, and the preview solves for what the

resultant mesh will look like. In what will be termed here as inverse solving, the user specifies

the state of the mesh, and then scripts solve for what the state of the particle lattice should be to

best approximate that mesh state. An illustration of this technique is shown in Figure 5-2.

Figure 5-2. Inverse solving. The user specifies the state of the mesh (left), and the best fit
particle lattice is previewed upon user request (right).

Inverse solving has an analogous relationship to inverse kinematics as forward solving

had to forward kinematics. In each inverted case we define an animation by setting a target. In

this case, the state of the mesh is the target, and we find the corresponding particle lattice state.

In inverse kinematics, the positions of joints are the target, and the rotations of the joints are

solved for [13].

The first step for the user is to import the mesh for which they wish to define animations

into the scene. They are prompted with a dialog window to select the Maya file to import. The

mesh is then added to the scene, and the initial state of the mesh is saved. This data is

maintained to ensure that the lattice, which is generated from the mesh's original state, can be

correctly matched to the deformed mesh.

The artist is then able to animate the mesh as desired. At this stage, the user is working

entirely with the mesh, so he or she can deform the geometry in any way using Maya's tools.

One restriction, however, is that geometry can't be added or removed. That is, the set of

vertices, edges, and polygons in the mesh must remain unchanged, although those elements

themselves will transform. This is not an unusual constraint, but it should be noted.

At some point before exporting the animation, the user needs to import the appropriate

particle lattice. This is done similarly to the forward solving case; the user clicks the "Generate"

icon and selects the appropriate .rmb file. The lattice is represented as a mesh as before. The

user does not need to make any modifications to the lattice mesh to create animations. The

purpose of the lattice mesh is so that the user will be able to preview the state of the particle

lattice that the inverse solver determines is the best fit for the mesh deformations.

When the animation is ready to be exported, the user clicks the "Export" button and is

presented with a similar dialog as with the forward solving case. The user specifies the output

file and framerate, and then clicks the export button. Scripts now solve for the state of the lattice

at each frame, giving the user a preview of each frame as it is computed. The output file is of the

same format as in the forward solving case; it consists of particle positions at each of the

keyframes.

When forward solving, the input is a set of particle positions, and trilinear interpolation is

used to determine the positions of the mesh vertices. However, this mapping is not invertible.

Some configurations of vertices may have no associated configuration of particles which will

yield the necessary deformation. As an example, consider a set of vertices in a line parallel to

one of the coordinate axes, in this case the x axis, as shown on the left portion of Figure 5-3.

Now suppose that, after a user deformation has been applied, one of the vertices is pulled away

from the line, as shown in the right portion of Figure 5-3.

Figure 5-3. Transformation not realizable by trilinear interpolation. If the initial configuration
of vertices lie in a line parallel to one of the coordinate axes as shown on the left, then a
configuration of vertices where the points are not linear as shown on the right is not realizable.

All points on the left side of the figure lie on some line given parametrically by:

x = at + xO

y = YO

Z = Z0

Equation 5-1

Applying Equation 3-7 to determine the weight for an arbitrary point on this line, we see

that, since every weight is linear in x and x is linear in t, every weight is linear in t, so each

weight takes the form:

wi = bit + ci

Equation 5-2

Equation 3-8 can then be applied to reconstruct the deformed positions of the points on

the line, where i7 is the position of the ith particle of the enveloping cell.

7

i=0

Equation 5-3

This is the sum over the product of values linear in t and constants, so the resulting sum

x' is thus linear in t. One can thus conclude that any deformation on such a line must also result

in a line, and so deformations such as the one shown in Figure 5-3 are not realizable by any

configuration of particles.

Conversely, the positions of the set of particles may leave the system underconstrained,

so that there are an infinite number of particle positions which would yield a certain vertex

configuration. Consider a single vertex in an isolated cell, whose neighboring cells also contain

no vertices. With this configuration, the particles which enclose the vertex only affect that single

vertex, so no constraints are introduced by their membership to neighboring cells. Even if it is

assumed that the surrounding particles will form a cuboid, there is no information with regards to

the scale or rotation of that cuboid, and as a result there are infinitely many possible particle

configurations which would result in the correct placement of that vertex.

So given that the trilinear interpolation does not have a simple inversion, approximations

can be used. This is done by associating a linear transformation with each cell. That is, the

algorithm will try to find a translation, scale, and rotation that, if applied to the original positions

of the vertices within the cell, will yield a least squares best fit. The particles can then be moved

into positions so as to create this linear transformation for the mesh vertices by applying that

same transformation to the particles. A single particle may be a corner for several cells, so the

actual position to which it is set is the average of its calculated position for all of the cells to

which it belongs.

To execute this approach, it is necessary to be able to approximate a best-fit linear

transformation. That is, there is a set of vertices within a cell, their positions in the undeformed

mesh, and their positions in the deformed mesh. A similar computation is already done during

the shape matching phase of the soft body physics simulation, and this technique is given by

MUller [15]. This technique seeks to find a rotation and scaling matrix A and translation

vectors t and t that, when applied to the initial positions of the vertices x?, yields a least

squares best fit to the deformed positions of the vertices X. This approximated state of the

lattice x is given by:

Equation 5-4

Muller shows that t and to are given by the deformed and initial center of mass of the

vertices, respectively.

_. Ei Xi iL
to = xO =

Equation 5-5

From here, the scaling and rotation matrix A can be determined as follows:

37

PL -XL - t

Apq =iP >jqL

Aqq =)

A = ApqAqq

Equation 5-6

This is computed for every cell at every frame. Since Aqq only depends on initial

conditions, that matrix is only computed once per cell, and it is cached for use with subsequent

frames.

It may be the case, however, that this approach fails when considering the set of vertices

within a single cell. Some cells may have no vertices within them, so the result here is

completely undefined. A cell with a single vertex contains information about the cell's

associated translation, but nothing about rotation or scale. Even if we have an arbitrary number

of particles, if they are all coplanar, then there is no data about the scale along that plane's

normal axis. Fortunately, detection of this problem is simple; A,, will not exist. That is, it is

computed as a matrix inverse, and the matrix from which it is computed will be singular if there

is insufficient information to compute the linear transform. If this case is detected, a larger

vertex pool is used. The vertex pool is expanded by including the vertices within the

neighboring cells. If this is still singular, we continue this process until we are able to compute

Aqq, in which case we proceed, or our vertex pool contains the whole mesh, in which case this

technique fails. This extreme type of failure can only happen if the entire mesh is planar.

The strengths of this approach address the weaknesses of the forward solving case. This

comparison is summarized in Table 5-1. Artists are used to animating a mesh directly, and this

technique permits them to do so. Additionally, this technique is resilient to new iterations of the

soft body. If a soft body is made to be more or less detailed, then the lattice can be imported

again while leaving the mesh animation intact. The artist can then export the animation again,

and then the animation will be defined for the new lattice. One downside to this technique is that

all details might not be preserved. The artist is permitted to place vertices in positions not

realizable by any lattice configuration, so those details may be smoothed over during the shape

matching. Additionally, when using the forward solving approach, the artist is given a real-time

preview of the effect on the mesh. Similarly, exporting is nearly instantaneous. The matrix

computations here are more computationally intensive than a simple linear interpolation, so a

real-time preview of the lattice as the mesh is deformed is not possible on modem machines.

Similarly, exporting takes on the order of a few seconds. Even given the disadvantages, the

usability and resilience make this a powerful technique.

Forward Solving Inverse Solving

=Artist specifies the state of the particle =Artist specifies the state of the mesh

lattice

+Results can be previewed in real-time -Results take on the order of seconds to

preview

+The artist deals with the animation -The artist has only indirect control of the

representation directly actual exported animation

-Manipulating particles is not the way artists +Artists can animate using the techniques in

are trained to animate which they are trained

-Animations are defined for the particle +Animations are defined for the model,

lattice, which may change resilient to changes in the particle lattice

structure

Table 5-1. Comparison of forward and inverse animation solving.

5.4 Plugin Design Considerations

In Maya, scripts can be executed in response to user activation, usually clicking a button.

Additionally, the data created in the scripts is temporary and lost when the Maya session is

restarted. These restrictions can be circumvented by using what Maya calls plugins. Maya

maintains a directed acyclic graph to represent the scene. This scene contains nodes, which may,

for instance, represent transformations or geometry. Plugins are able to define new custom

nodes one can insert into the scene graph.

An objective of the forward solving implementation was to permit an interactive preview

of the state of the target mesh in response to the state of the particle lattice. By extending

Maya's MPxLocatorNode, the new class, trilerpNode, is able to receive a callback

whenever the scene needs to be redrawn. This will be triggered whenever the particle lattice is

modified, or whenever the user navigates the animation timeline. It will also be triggered,

however, if the camera within the scene moves. To avoid unnecessary recomputation, the state

of the particle lattice is cached, and the target mesh is only updated if the particle lattice has

changed since the last update. This also protects against an infinite loop of draw calls. Updating

the target mesh forces a redraw, so there is another draw callback triggered.

When running scripts, they execute in a temporary Python environment. Restarting Maya

means restarting the Python environment, so any data managed only by the scripts is lost. For

this purpose, the rmDataNode, which extends Maya's MPxNode, is created. Nodes are

permitted to maintain persistent attributes. Therefore, data which might have otherwise been lost

can be stored. This includes the lattice spacing, mesh scaling, mesh offset, mapping between

vertices and particles, and for inverse solving, the initial state of the mesh. Much of this data is

read from the .rmb file and cannot be inferred from the state of the scene. These nodes can't

natively store arbitrary data, however. One data type they can store is a string. Fortunately,

Python's pickling module allows data to be converted to and from a string representation, so this

method of storage is perfectly sufficient. So this means that when Maya is closed and restarted,

the data can be extracted from this node, and the artist can proceed exactly from where they

stopped, requiring no extra data files, just the Maya scene file.

It is also the case that, if a new scene is loaded without restarting Maya, then the Python

environment is unchanged. This means that it must be possible to distinguish this scene's data

from temporary Python data. In the case of the data previously mentioned, that is solved by

reloading the data from the rmDataNode at the start of every script, which is not terribly

expensive. Extra care must be taken during the inverse solving, however. Aqq is stored for each

cell. This means that the Python environment must store some data structure of cells and

matrices. This was done by creating a custom cell datatype. These cells have pointers to one

another, as they keep track of their neighbors. This type of data is not readily pickled into string

form, so it only lives in the Python environment and not in the data storage node. It is desirable

to avoid recomputing this when necessary, though. This is done by including a special boolean

attribute on the data node, needCe llRe compute. This attribute is configured so that it is not

persistent, it resets to true every time a scene is reloaded. In this way, this attribute can be

consulted before proceeding with the set of cells in the Python environment. If recomputation is

necessary, then that is done, and needCellRecompute is set to false. This ensures that the

script does not mistake residual cell lattice data from another scene as the data from this scene.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 6

Game Engine Integration

In addition to the project's goal of adding new functionality, creating a soft body physics engine

capable of allowing soft bodies to track dynamic poses, it was also a goal to improve the

usability of the library. The user interface design was already talked about for the animation

tools, but the details of how one sets up and runs a simulation are thus far unaccounted for.

As received, RealMatter was purely a code library, with a full C++ implementation and a

partial C# implemention. Setting up and running a simulation was thus easy to do as a

programmer, but one of the primary applications of this work is video game creation. Artists or

designers, people who do not necessarily have a programming background, should be able to

create and modify soft bodies in a game without programmer intervention.

6.1 Unity

This project involved the integration of the soft body physics into the game engine and

development tool Unity, created by Unity Technologies. This integration was done with Unity

v3.3. Unity has several features which made it a good candidate for integration. It is designed

for 3D games, which is necessary to showcase extent of the capabilities of the soft body physics.

It has a visual scene editor. This means that any user, even without programming knowledge,

can assemble and modify a scene. It has NVIDIA's PhysX rigid body physics engine built in.

The soft body physics engine was developed to cooperate with the rigid physics engine, which

enables interaction between soft and rigid bodies. Unity supports the export of builds to

multiple platforms, including Windows, Mac OSX, web, iOS, Android, XBox 360, and Wii.

Unity also supports several languages for scripting. Among these languages is C#, of which a

partial implementation of RealMatter existed. The full C++ library is indirectly usable through

dlls, but this would restrict the set of target platforms substantially. Web deployment was a goal

of this project, so the integration was performed with C#. Finally, Unity's editor can be

modified. New buttons and menus can be created, which could aid in a more seamless

integration of the soft body interface with existing interface elements. A glimpse of the Unity

Editor can be seen in Figure 6-1.

Figure 6-1. Screenshot of Unity editor. The top left window allows for placement and
manipulation of objects within the scene. The right pane allows for numerical adjustment of
object properties, as well as the attachment of scripts, as Unity uses a component based object
model.

6.2 Integration

In order to simulate soft bodies in Unity, there must be some information exchange between

Unity and RealMatter. For a given body, every soft body simulation step takes the positions and

velocities of all of the particles in its lattice and produces new velocities. With these as the only

necessary inputs and outputs, bodies and particles are the only objects which require

synchronization.

Any object in Unity which is to be a soft body should have the BodyScript component

attached. This component maintains a reference to the RealMatter body object. When the game

starts, this script is responsible for initializing the RealMatter body. Every BodyScript has

several parameters the user can control. These include the lattice spacing, region half-width w,

and restorative coefficient alpha. This script is responsible for taking the input mesh, as

specified by the object to which the script is attached, and creating a particle lattice.

When a body is built, a lattice of particles is created. For every one of these particles, an

object is created within Unity. This object will have an attached ParticleScript. Similar

to bodies, each Par t icleScript maintains a reference to the RealMatter particle with which

it is associated. Every particle is a small chunk of the soft body which should be treated as

locally rigid, so every particle also has a Unity RigidBody component. This component

informs Unity that this object should take part in the physics simulation. This enables automatic

updating of its position and velocity according to the particle's interactions with the world. In

order to allow for collisions to take place, every particle is also given a SphereCollider.

Collisions with other colliders will be appropriately handled by Unity's physics engine.

Once simulation has started, BodyScript receives a callback after every Unity physics

step. This script first loops through all of the rigid bodies associated with all of the particles and

feeds those positions and velocities into RealMatter. Once this is done for all particles, the

RealMatter library is used to advance the soft body one time step. The script then reads the

updated velocity of every particle and assigns it to each associated rigid body. This occurs every

physics time step, usually once per rendering frame.

While BodyScript is responsible for simulation updates, the MeshShape script is

responsible for the rendering updates. When initialized, this script precomputes the weights for

each vertex used in the trilinear interpolation technique for computing the state of a mesh from

the state of the particle lattice. It receives a callback every rendering step, and updates the vertex

positions accordingly. Vertex normals are updated using Unity's built in functionality for doing

So.

Care was taken with the design to allow for proper rendering of fractures. When a mesh

is fractured, vertices are split as triangles are severed at the boundary, and new triangles must be

drawn at the exposed surface. The user is able to specify a rendering material to be applied to

the interior surfaces. New vertices and triangles are able to be dynamically added as necessary,

as seen in Figure 6-2.

Figure 6-2. Fracture rendering. The user is able to specify a material for exposed surfaces, and
that is used when new vertices and triangles are created at a fracture boundary.

6.3 User Interface

Unity has support for modifying its user interface. In this project, several modifications were

implemented to allow for easy access to the soft body functionality.

Once the user has placed an object into the scene using the usual tools Unity provides,

making it a soft body only requires a few clicks. The user need only select the object and choose

"Soft Body" from the component section of the top menu bar, Figure 6-3.

Figure 6-3. Soft body menu bar. Turning a 3D model into a soft body can be done by placing it
into the scene and selecting this option from the menu bar.

The necessary soft body components are then attached once this button is clicked. The

soft body defaults to reasonable parameters, but they are all exposed to the user through the

interface shown in 6-4.

The Unity representation of the particle lattice can then be built in the editor by clicking

the "Rebuild Body" button. This is done manually so that the body isn't generated before the

user has a chance to tune the parameters. It's possible that the user has a large model and wants a

large lattice spacing - if the lattice were automatically generated with the default parameters,

then a very large number of particles might need to be created, and the software would appear to

hang. "Rebuild Body" should be clicked any time a change of properties would bring about a

change in the lattice, for instance by changing the particle spacing or mesh scale. The computed

particle lattice is then visible in the editor upon selection as seen in Figure 6-5.

Figure 6-4. Soft body properties editor. The user is given full access to all of the properties used
in the creation and simulation of the soft body from this interface. The interface here is fully
expanded; it is collapsed by default to allow for easy access to common operations.

48

Figure 6-5. Lattice view. When selecting a soft body, the lattice representation can be seen in the
editor.

Any of these particles are individually or collectively selectable. Since Unity treats them

as rigid bodies, they can handle other rigid body operations such as the addition of joints. One or

more particles can be fixed to a rigid body or the environment in this way.

From here, the user is able to hit Unity's "Run" button, the usual way of starting a game,

and the simulation will work as desired, making use of the soft body properties specified by the

user. Interaction with all other game objects happens automatically.

THIS PAGE INTENTIONALLY LEFI BLANK

Chapter 7

Performance

While the focus of this project was not explicitly performance engineering, the intended real-

time applications of these tools mandates that the simulation can run at a reasonable speed.

RealMatter was engineered to run at real-time rates [9]. The results in the final product here are

slower than those reported in the paper for several reasons. Soft bodies here are engineered to

take part in collision detection with rigid bodies in the world and with other soft bodies, whereas

those in the paper only collide with static geometry. Additionally, this code was written in C#,

whereas the results in that paper were achieved using a C++ implementation. This decision was

made so that the game would be playable on web pages, as execution of the dlls which would

have been necessary to execute the faster C++ implementation is not permitted on web pages for

security reasons. Despite these tradeoffs, the software still performs in real-time, while

supporting more complete collision detection as well as facilitating distribution.

Soft body animation is reasonably expensive. Every frame that the target pose is

updated, some set of what would otherwise be invariants must be recomputed. In particular,

each region will in general have a new center of mass and configuration from which a rotation is

computed. In the case where the animation is to be played back completely smoothly, this

computation takes place every frame. This cost is high, but it was mitigated by parallelization.

Another solution is only changing the soft body's target pose at keyframes. The velocity driven

motion of the particles will inherently introduce smoothness, so this solution may be sufficient in

many cases. Since this requires far more infrequent recomputation of invariants, the average

time spent per frame is far less.

The primary parallelization technique utilized C# threadpools. There are many

computations which occur independently over some collection, such as particles or regions, so

these types of jobs are evenly divided and assigned to threads, resuming computation once all

threads signal themselves as terminated. The simulation has a serial backbone, so this type of

computation can only be done at certain junctions, but it does produce measurable

improvements, especially with animations which update every frame.

These statistics were taken from a desktop with two Intel Xeon E5462 processors running

at 2.80 GHz. Each processor has four cores, so this machine has eight cores total. The computer

has an NVIDEA GeForce 8800 GT graphics card.

These measurements were done on a scene with a soft body containing 420 particles, a

reasonably high particle count. The amount of time spent per frame was computed when the soft

body had no animation, animated updating its target only at keyframes, and animated updating

its target every frame. The provided animation provided a new keyframe once per second. The

parallelization had the largest impact on continuously updating animation. In order to emulate

usage in applied scenarios, these frame times include the time spent on rigid body simulation and

rendering.

Keyframe
Smooth Only

Unanimated Animation Animation
Frame Time Frame Time Frame Time

Threads (ms) (ms) (ms)
1 16.7 49 17.4
2 15.9 31.2 16
3 15.9 26.9 16
4 15.9 26.1 16
5 15.9 25.4 16
6 15.9 25.6 16
7 16.1 24 16
8 16 24.5 16.2

Table 7-1. Simulation time per frame for different animation schemes. This is the amount of
time it takes to simulate for one frame on a test scene using three different animation schemes.
This performance is seen as a function of the number of parallel threads.

Simulation Time per Frame
60

50

'ft 40
E

E
u 30 -0--Unanimated
CL

-- Smooth Animation

20_ --- Keyframe Only Animation

10

1 2 3 4 5 6 7 8

Number of Cores

Figure 7-1. Simulation time per frame for different animation schemes. Note that an unanimated

object has nearly identical performance to keyframe only animation.

The performance of the Maya animation creation tools was measured as well. In both the

case of forward and inverse solving, the same mesh, consisting of 690 vertices, and particle

lattice, consisting of 420 particles, were used. Deforming the mesh with forward solving, each

update averaged at 22.6ms. This corresponds to approximately 44 updates per second, a rate

which would readily be considered real-time. Using inverse solving, computing the first frame,

which takes care of initialization overhead, averages at 2309ms. Subsequent calculations

averaged at 815ms per frame. So while this implementation of inverse solving is not able to be

run in real-time, an artist with a comparable machine and a similar model should be able to

preview poses within a second, and export entire animations on the order of a few seconds.

Performance in each of these cases was satisfactory and not as much of a concern as in the

simulation. Were performance here more of an issue, these algorithms could have been

implemented in faster C++ plugins rather than Python for some boost.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 8

Conclusion

Real-time physics simulation has become prevalent in many modem games. However, rigid

body dynamics are far more developed than soft body dynamics. Even with the development of

real-time simulation of deformable objects, we are still left with animation techniques such as

skeletal animation, which work well with rigid bodies, but fail to easily express the deformation

affordances of soft bodies.

The particle driven animation techniques presented here seek to address this problem by

creating an animation representation which is both natural for simulation and allows for the full

range of non-rigid deformations which can be simulated by particle driven simulation.

Additionally, animations created using traditional 3D animation techniques can be adapted to

soft bodies using the inverse solving techniques described here. While designed for a particular

soft body physics engine, it is likely that these animation techniques could be adapted to other

systems which represent soft bodies as a set of discrete particles.

These animation tools, along with a simulation framework, were successfully designed

and developed. It is our hope that these tools will make it so that even those without a

programming background, such as many artists or designers, will be able to create soft body

simulations and animations on their own when creating a game.

There is still plenty of room for similar future work. A soft body's collision geometry is

currently represented as a sphere at the site of each particle. This is only an approximate

reflection of the body's actual shape. If the body undergoes large deformations, then the

particles may separate sufficiently and create holes in the object's collision geometry.

Additionally, the current implementation of the soft body simulation is run entirely on the CPU.

More extensive parallelism may be possible if the algorithms can be adapted to run on a GPU.

The author hopes that the techniques developed here, and the corresponding tools which

have been created, will be used by others to create games which showcase interesting physics.

The tools are eventually intended for a general release. In Summer 2011, a team of

undergraduate interns at the Singapore-MIT GAMBIT Game Lab will be making a game to

showcase the new technology developed here. It is the hope of the author that this will be the

first of many projects to use this software.

Appendix

A.1 User Guide

What follows is the user guide that will be distributed with the tools described. These

instructions explain what the tools do, and how a user would accomplish common operations.

Unity-RealMatter User Guide

What are these tools?
These tools allow for the simulation of soft bodies within your Unity game. "Soft body physics"
is a bit of an umbrella term, which may include everything from cloth to hair physics. The type
of soft body physics here primarily refers to rubbery volumes. The soft bodies created with these
tools are able to interact with existing colliders and rigid bodies in your Unity scene.

These Unity plugins allow for generation and simulation of soft bodies in a game. This
document assumes that the user is familiar with the Unity editor. These scripts were designed
for Unity 3. In addition, a set of tools were created for Autodesk Maya 2011 x64; these are not
necessary for basic soft body simulation, but they allow for creation of animations usable by the
Unity tools.

Unity Tools Installation
The relevant files, which are bundled in a Unity package, extract to the folders ./Assets/Editor
and JAssets/RealMatter in your project directory. Those in the Editor folder include
augmentations to the Unity user interface. Those in the RealMatter folder are needed for
simulation.

Creating Soft Bodies
Let us suppose you have a scene with an object that you want to simulate as a soft body. As an
illustration, I will use an octopus model. This model must be a prefab of a model with ONE
mesh. This can be done in modeling software, and it will be discussed later how to ensure this is
the case in Maya.

To make an object a soft body, select the object in the editor, and, from the main menu, select
Component->Soft Body Physics->Soft Body. Select 'Add' if it prompts you that adding a
component will lose the prefab parent.

Now, our object will have a Body Script component which appears in the inspector pane when
selected. This is the primary way that an object's soft body behavior will be modified. This will
also add a Mesh Shape script, and remove any collider or rigid body attached to this body.

Whenever the object's soft body representation should be generated, the user should hit "Rebuild
Body." In this example, I will click that button without making any parameter changes. If you
are trying this with your own model, you may want to rescale your model if it is very large.
Clicking "Rebuild Body" discretizes the mesh into unit cubes by default, and this may generate a
very large number of particles for a large mesh.

When the object is selected after clicking "Rebuild Body," it should look something like this.
You can now hit play to start the game, and you should have a functional soft body!

Each of those spheres is the collision geometry for the particle. Every particle is a rigid body,
and every one, by default, has a spherical collision geometry. In the hierarchy, these are
parented to the soft body.

Soft Body Properties

The soft body might not behave as you want right away. It might be too squishy or too rigid, the
lattice may be too coarse or too fine, the collision geometry might not be perfect. Fortunately,
there are ways to customize your soft body to make it behave the way you'd expect. With the
soft body selected, there are several parameters which can be changed from the inspector.

Rebuild Body
This button creates the particle lattice. Whenever a change is made to the body which
mandates regeneration of the body (initial creation, changing the object's scale, or
changing the lattice spacing), this button must be manually clicked. This is partly
because of the consequence associated with the button. It is a safeguard against the user
inadvertently generating too many particles. Additionally, rebuilding the lattice is
somewhat destructive, since all joints and modifications to the collision geometry will be
lost, since the lattice is now completely different.

w: Object Rigidity
Default value: 1. This is an integer which affects the stiffness of the lattice. Soft bodies
are simulated by approximating regions of particles as locally rigid. This number
specifies exactly how local that computation is. When w is 1, every particle looks at its
nearest neighbors. When w is 2, every particle looks at its neighbors and second
neighbors.

alpha: Object Restitution
Default value: .75. This is a floating point number which specifies the restoring force
the lattice is allowed to apply. Intuitively, one can think of it like a spring constant. At
low alpha, an object will have a harder time maintaining its shape. At high alpha, an
object will be more effective at tracking its target pose. Alpha should be less than 1 to
ensure stability.

Spacing
Default value: (1,1,1). This is a 3-tuple of floating point numbers. When the mesh is
discretized, this value specifies how coarse or fine that discretization is. A smaller
spacing means smaller voxels, and thus more particles. If this value is modified, the user
must click "Rebuild Body" for their changes to take effect. Note that Unity does not

~ support anisotropic scaling of spherical collision geometry, so, if different numbers are
used for different dimensions of spacing, spherical collision geometry will default to
having a diameter of the largest value.

Region Damping
Default value: .02. This is a floating point number which specifies damping to be applied
by the simulation. Smaller damping means that objects will move faster, but may
become unstable.

Fracturing>Enable Fracturing
Default value: False. This is a Boolean which specifies whether or not an object should
be allowed to fracture.

Fracturing>Fracture Distance Tolerance
Default value: 999. This is a floating point number which specifies the translational
tolerance for triggering a fracture. A smaller number means that it's easier to trigger a
fracture by squashing or stretching the object.

Fracturing>Fracture Rotation Tolerance
Default value: .6. This is a floating point number which specifies the rotational tolerance
for triggering a fracture. A smaller number means that it's easier to trigger a fracture by
bending the object.

Fracturing>Fracture Material
Default value: None. This is an object of type Material which specifies the material used
to generate the closing surface when a fracture occurs. That is, what material will be
used to 'fill in' the inside of an object.

Fracturing>Fracture Script
Default value: None. This is a script which inherits from FractureScript. The abstract
class FractureScript can be found at
./Assets/RealMatter/Scripts/FractureScripts/FractureScript.cs. The script here will
receive a callback whenever a fracture occurs. It might be used to trigger functional
events (you broke the object so unlock a door) or graphical effects (create a particle effect
at the fracture site).

Sleeping>Enable Sleeping
Default value: False. This is a Boolean which specifies whether or not a soft body should
fall asleep if you are far enough away from its center. When an object is asleep, it stops
being simulated so performance will improve. If poor thresholds are set, however, an
object may appear to suddenly freeze and become noninteractable.

Sleeping>Distance which Triggers Sleep
Default value: 50. This is a floating point number which specifies how far away you
must be from an object for it to fall asleep.

Sleeping>Distance which Triggers Waking
Default value: 40. This is a floating point number which specifies how close you must be
to an object for it to wake up from sleep. This should be smaller than the sleeping
distance.

Particle Properties>Particle Prefab
Default value: InvisibleParticle. This is a prefab which is instantiated at the site of each
of the particles. By default, it is an invisible particle with spherical collision geometry.
Different particles can be placed here to, for instance, change the material of a particle,

change its collision geometry, or turn off gravity. Note that particles do not have an
associated rotation, so be careful if using nonspherical collision geometry. To use the
existing particle as a template, it is fount at
./Assets/RealMatter/Prefabs/InvisibleParticle.prefab.

Particle Properties>Particle Scale
Default value: 1. This floating point number specifies any additional scaling that should
be applied to the collision geometry of the particles. Rebuilding the body is not
necessary if this value is changed, its results are interactively previewed.

Particle Properties>Mass Scale
Default value: 1. This floating point number specifies the scale that should be applied to
the mass of the particles. When using the default prefab, particles have mass 1, so this
directly specifies the mass of each particle.

Particle Properties>Particle Mesh
Default value: pSpherel. This Mesh specifies what should be used to visualize particles
without a mesh. This mesh is found at ./Assets/RealMatter/Models/particle/pSpherel.
For instance, InvisibleParticle, the default particle prefab, has no built in Mesh, so
visualization is undefined without this.

Particle Properties>Make Particles Visible
This button can be used to visualize all of the particles. The mesh placed at each particle
is given by Particle Mesh above. This is handy because, if we can draw particles, than
we can easily select particles by clicking on them or box-selecting them, which will make
things like placing joints or modifying collision geometry easy.

Particle Properties>Make Particles Invisible
This button destroys the visualization of all of the particles, as created by the previous
button.

Collision Properties>Trim Collision Boundary
This is a common way to remove some of the excess particles at the fringes of the lattice.
This button removes the collision geometry for all particles which do not have all of their
neighbors, so it preserves collision geometry for those particles in the center of a volume.
This does not work well for objects with long and skinny parts, since it may trim all of
those collision geoms.

Collision Properties>Rebuild Collision Boundary
This button is a nice way to fix your mistake if you realize you trimmed too much. It
adds a collider back to every particle in the lattice.

Collision Properties>Ignored Collider Count
Default value: 0. This integer specifies how many colliders the soft body should ignore.
Specifying a nonzero value for this will allow the user to add that many game objects to a
list. The soft body will then not collide with those objects during simulation.

Particle Count
This value is immutable by the user, but displays how many particles are in the current
lattice.

Export Body Data
This is used by the soft body animation tools. This exports the current body
configuration information. When the body is named and this button is clicked, a file is
generated in ./Assets/Lattices/*.rmb. This RealMatter body file is a text file with the
following format. All pieces of data are new line delimited, and all tuples are comma
delimited. The first piece of data is the center of the mesh, as measured from the center
of the particle lattice, that particle with index (0,0,0). Next, it has the spacing of the
lattice. Next, the scale applied to the mesh. Finally, it lists the 3D index of each particle
in the particle lattice.

Many of these properties affect the whole body, you may find yourself wanting to make local
changes. Modifying each particle individually can be a pain, so some common operations are
made easy by ParticleWindow. This window can be launched from Component>Soft Body
Physics>Particle Window, or Window>Particle Window. It is primarily designed for use when
the particles have been made visible in the body.

Remove Colliders
This removes the collision geometry from any selected particles.
control than the bulk operation "Trim Collision Boundary."

This allows for finer

Restore Colliders
Restores collision geometry to any selected particles, the inverse of the previous button

Remove Fixed Joints
Parts of a soft body can be fixed into place by highlighting them and adding a fixed joint.
Unity lets you do this in bulk, but it does not easily let you remove them. Here, you can
remove those joints by selected the target particles and clicking this button.

Modeling
Models for the soft body generation must be a single mesh. Here are steps to ensure that
happens in Maya 2011 64-bit (other versions of Maya may work as well but this was the
development and testing environment).
You can model the object as usual, using compound meshes if necessary. I recommend saving a
working version of your file, since this process will destroy your modeling history and hierarchy.

First, select all of the objects in your scene. Then, with "Polygons" as your active menu set,
select Mesh>Combine.

Next, click Edit>Delete All By Type>History.

If done properly, there should only be one mesh left when you view the Hypergraph window.
You can now save the Maya file to your Unity Assets folder.

Maya Animation Tools Installation
In order to create soft body animations, you must place the files rmDataNode.py and
trilerpNode.py into you Maya plugin directory, <Maya Install>/bin/plug-ins/. These plugins can
be loaded via Window>Settings/Preferences/Plug-in Manager. I recommend selecting Auto load
for the previous two scripts.

You'll also want to install the RealMatter shelf. To do that, place the file shelfRealMatter.mel
into the directory <Maya Workspace>/201 1-x64/prefs/shelves. You may need to restart Maya,
but once you do, you should see the RealMatter shelf.

There are two ways to specify soft body animations, forward and inverse.

Forward Animations
When you define a 'forward animation,' you will specify a keyframed sequence of poses on the
particle lattice. First, you will have to import the particle lattice. You can configure and export
the lattice in Unity as discussed before, but as a reminder, once the body is configured, click
"Export Body Data" on the Body Script inspector window.

Build

Click Build to load this file into Maya. You will be prompted to locate the lattice file,
which is saved by default to <Unity project directory>/Assets/Lattices. This script reads in the
particle data, and creates a vertex at the site of every particle.

You can animate this particle lattice as you would any other mesh. You can pose it and set
keyframes. Since it is just a collection of vertices and edges, you use existing Maya tools, like
skeletal rigging, or you can manually position the vertices at keyframes.
You may want to preview the effect a particle lattice deformation has on its target mesh. To do

that, click Import L]. This step is optional but quite useful. You may do this at any point,
though I'd recommend doing it after building. You will be prompted to select the Maya file that
generated the lattice. The one you select should be the one saved for Unity outlined above, the
one that has been reduced to a single mesh. The preview mesh will generate inside the lattice
originally, but it might be easier to work with if the mesh is translated off to the side, that is up to
the user. The mesh will interactively update as the lattice is deformed.

Once all of the keyframes have been set and the animation is finished, you will want to export

the animation by clicking Export Li. This will prompt you to choose a destination file and an
animation frame rate. You should export somewhere into your Unity project's Assets folder, and
the file exported should have a .txt extension. Click "Export" when you're done.

To edit this animation in the future, simply reopen the Maya file in which this animation was
created. Note that if the particle lattice changes in Unity, you WILL need to recreate the
animation if you use forward animation. If this is a concern, inverse animation may be a better
choice.

Inverse Animations
If you specify an inverse animation, you will animate the mesh directly, and then the soft body
data, that is the state of the particle lattice, will be reconstructed from the mesh deformations.
The first step for an inverse animation is importing the mesh. This is done by clicking Inverse

Import H. The Maya file selected should once again be the Unity version of the file which
has been reduced to a single mesh. Your model will appear, and you can animate the model
using standard Maya animation techniques.

This next step may be done at any point before exporting, but as early as right after you import
the model. You must specify the target particle lattice. This is done by clicking Inverse Build

0 . This will generate the particle lattice. It will be in the lattice's rest pose initially. Similar
to the forward solving case, you can drag the lattice off to the side so that it's easier to
distinguish the two objects. If you ever want to change the particle lattice, for instance, perhaps
you changed the spacing of the lattice in Unity, then you can delete the lattice object and hit
Inverse Build again, selecting the new lattice.

If you want to preview the effect of a deformation on the lattice, hit Inverse Solve M. This
will solve for the state of the particle lattice at the current keyframe.

This operation will take longer the first time you do it in a scene, b
subsequent executions.

When ready to export the animation, click Inverse Export H.
as in the forward solving case, and it exports to the same file type.

ut it will speed up for

This will bring up a dialog just

Animation Simulation
In order to play back an animation, you will need to have a soft body to which you will add the
Soft Animation component. This can be added from the main menu, Component>Soft Body
Physics>Soft Animation.

The soft body will then have a Soft Animation component attached to it, which can be viewed in
the inspector pane when the soft body is selected.

Active Animation Name
This string specifies the name of the animation which is currently playing. If the game is
not running but we are in editor view, then this name corresponds to the animation which
will be played if Play Automatically is checked.

Play Automatically
This Boolean specifies whether or not the object should be animating when the game
starts. If this is checked, then the animation named Active Animation Name will be
played.

Use Lerp
This Boolean specifies whether or not the tracked particle lattice should have a cap on
target particle velocities. This is false by default, but may be useful for smoothing
animation transitions.

Lerp Speed
The amount of game units per second by which a particle's target position is allowed to
change when Use Lerp is active.

Animation Data
Animation count specifies the number of animations the object should have attached to it.
Setting this value dictates how many fields appear beneath it for animation entry. The
fields which appear beneath it are a name:animation pair. Names may be set to anything
the user wants. The animation should be a text file produced by the Maya tools. The
format of the file is as follows. Tuples are comma delimited. Comments here, after '//'
characters, are for the purposes of this document and not for the file itself. Strings within
angle brackets here would not contain angle brackets in the actual file. Each of these
lines is new line delimited. Comments may be present on their own lines, preceded by a
character.:

particle //Specifies the animation type - for these purposes, it should always be particle

fps <FPS count float> //Specifies the animation speed

interpolate <1 or 0 boolean> //Specifies if the tracked animation should interpolate
between keyframes. Always true with the Maya tools.

declaration //For readability, specifies that the next set of tuples declares the particle
lattice

<tupleO> <tuplel> <...tuplen> /Specifies integer tuples, each specifying an index into
the particle lattice.

frames //For readability, specifies that the next set of tuples declares the keyframes

<frame number int> <tupleO> <tuplel> <...tuplen> //Specifies the frame number,
followed by the position of each particle at that frame. Particle order should be identical
to the line following 'declaration'

An example of a simple animation file can be seen below.

particle
#Default framerate of the animation
fps .5
#interpolate between frames?
interpolate 1
#Specify the particle indices and their order
declaration
0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1
#Now specify animation frames
frames
0 -. 5,-.5,-.5 -. 5,-.5,.5 -. 5,.5,-.5 -. 5,.5,.5 .5,-.5,-.5 .5,-.5,.5 .5,.5,-.5 .5,.5,.5

1 -1,-1,-i -1,-1,1 -1,1,-i -1,,1 1,-1,-1 l,-l,1 1,1,-i 1,1,1

The interface within the inspector changes slightly when the game is running.

Each animation has a "Play" button next to it. This will make the soft body begin playing the
corresponding animation immediately. "Pause" pauses the current animation, but changes to
"Resume" so that the animation can be resumed where it left off. "Stop" freezes the current
animation in place, and resuming the animation will bring it back to its beginning.

THIS PAGE INTENTIONALLY LEFT BLANK

References

[1] A. Nealen, M. MUller, R. Keiser, E. Boxerman, M. Carlson. Physically Based Deformable
Models in Computer Graphics, Computer Graphics Forum, Vol. 25, Issue 4, pp 809-836.
December 2006.

[2] S. F. Gibson., B. Mirtitch. A Survey of Deformable Models in Computer Graphics. Technical
Report TR-97-19, Mitsubishi Electric Research Laboratories, Cambridge, MA, November 1997.

[3] Terzopoulos, D., Platt, J., Barr, A., Fleischer, K. Elastically Deformable Models.
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
New York, NY, pp 205-214, 1987.

[4] J.P Lewis, M. Cordner, N. Fong. Pose Space Deformation: A Unified Approach to Shape
Interpolation and Skeleton-Driven Deformation. Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, New York, NY, pp 165-172, July 2000.

[5] Hahn, James K. Realistic Animation of Rigid Bodies. Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques, New York, NY, pp 299-308,
1988.

[6] Isaacs, Paul M., Cohen, Michael F. Controlling Dynamic Simulation with Kinematic
Constraints, Behavior Functions, and Inverse Dynamics. Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques, New York, NY, pp 215-224,
1987.

[7] Autodesk Maya 2011 Online Help. Autodesk, Inc., 2010,
<http://download.autodesk.com/us/maya/201 lhelp/index.html>.

[8] NVIDIA PhysX SDK 2.8 Documentation. NVIDIA Corporation, Santa Clara, CA, 2008

[9] A. Rivers, D. James. FastLSM: Fast Lattice Shape Matching for Robust Real-Time
Deformation. ACM SIGGRAPH 2007 Papers, San Diego, CA, August 2007.

[10] Lasseter, J. Principles of Traditional Animation Applied to 3D Computer Animation.
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
New York, NY, pp 35-44. 1987.

[11] M. MUller, M. Teschner, M. Gross. Physically-Based Simulation of Objects Represented by
Surface Meshes. Proceedings of Computer Graphics International (CGI), Crete, Greece, pp 26-
33. June 2004.

[12] ElGindy, H., Everett, H., and Toussaint, G. T., (1993) Slicing an Ear Using Prune-and-
Search. Pattern Recognition Letters, Volume 14, Issue 9, pp 719-722. 1993.

[13] Welman, C. Inverse Kinematics and Geometric Constraints for Articulated Figure
Manipulation. PhD Thesis, Simon Fraser University. 1993.

[14] T. Sederberg, S. Parry. Free-Form Deformation of Solid Geometric Models. Proceedings of
the 1 3 'h Annual Conference on Computer Graphics and Interactive Techniques, New York, NY,
pp 151-160, August 1986.

[15] MUller, M., Teschner, M., Gross, M. Meshless Deformations Based On Shape Matching.
ACM Transactions on Graphics, Volume 24, Issue 3, New York, NY, pp 471-478. July 2005.

