
Structure-based Realignment of Non-coding RNAs

in Multiple Whole Genome Alignments.

by

Michael Ku Yu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
ARCHIVES

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

MASSACHUE N U TE
OF TECH IOLOY

JUN 2 1 2011

LIBRARI ES

@ Massachusetts Institute of Technology 2011. All rights reserved.

'$7
A uthor ............ . .. .. . ... .............

Department of Electrical Wgineering and Computer Science
May 20, 2011

Certified by..................................... ......
Bonnie Berger

Professor of Applied Mathematics and Computer Science
Thesis Supervisor

Accepted by.... .......................................
Christopher J. Terman

Chairman, Department Committee on Graduate Theses



2



Structure-based Realignment of Non-coding RNAs in

Multiple Whole Genome Alignments

by

Michael Ku Yu

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Whole genome alignments have become a central tool in biological sequence analy-
sis. A major application is the de novo prediction of non-coding RNAs (ncRNAs)
from structural conservation visible in the alignment. However, current methods for
constructing genome alignments do so by explicitly optimizing for sequence simi-
larity but not structural similarity. Therefore, de novo prediction of ncRNAs with
high structural but low sequence conservation is intrinsically challenging in a genome
alignment because the conservation signal is typically hidden. This study addresses
this problem with a method for genome-wide realignment of potential ncRNAs ac-
cording to structural similarity. Doing so reveals thousands of new high-confidence
ncRNA predictions with particularly low sequence conservation from an alignment of
12 Drosophila genomes and hundreds from an alignment of 28 vertebrate genomes in
the Encode project.
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Chapter 1

Introduction

The rise of high-throughput sequencing technologies in the past decade has marched

in a new era in biology characterized by a wealth of raw sequence and expression

analysis data. Not surprisingly, increasing attention is being given to new methods

to decipher this sea of information. Currently at hand are the complete genomes of

hundreds of species, and the number is expected to climb exponentially in time. One

of the most widely used tools for analyzing them is the sequence alignment of multiple

whole genomes. This thesis addresses the current challenges of constructing whole

genome alignments and focuses on improving the structural alignment of non-coding

RNAs.

1.1 Sequence Alignment

The concept of a sequence alignment is among the oldest and important in the history

of computational biology. Simply put, a sequence alignment is a matching of the

individual characters in two or more strings to identify shared biology represented

by the strings. In general the strings are amino acid sequences of proteins or nucleic

acid sequences of DNA or RNA. Sequence alignments can be constructed so as to

reflect evolutionary conservation and divergence among the sequences or to establish

functional similarities such as sequence patterns that give rise to molecular structure

or targeted binding sites. For example, the strings may represent the DNA sequences



of genes that have similar functions in closely related species, and the genes could

be aligned so as to indicate which subregions of the genes descended from a common

ancestral gene and which are mutations unique to a species.

Algorithmically, typical methods for constructing alignments will optimize objec-

tive functions. In sequence-similarity based methods, the objective function reflects

evolutionary conservation on the sequence level by favoring the alignment of identical

or similar characters. Much progress in sequence-similarity methods has been made

in the past two decades through tools like Muscle [14], Clustalw [29], T-Coffee [21],

and Probcons [12], to name only a handful, that can align multiple short sequences

in seconds.

In structural-similarity based methods, the objective function reflects conservation

of molecular structure and favors the alignment of positions that may not necessarily

contain similar characters but do give rise to similar structures. For example, consider

RNA secondary structure where the building block of structure is the base pairing

of nucleotides either through Watson-Crick pairs ("A" with "U", or "C" with "G")

or wobble pairs ("G" with "U"). Suppose that in a given RNA, two positions with

nucleotides "A" and "U" form a base pair. Suppose further that in an evolutionarily

related RNA, the two positions have mutated simultaneously into the nucleotides "C"

and "G", respectively, but still remain a base pair. A structural-similarity method

aligning these two RNAs may favor aligning "A" to "C" and "U" to "G" to match

base pairs even though the characters do not match.

Alignment methods can be both structural and sequence-similarity based. This

combination is clearly seen from the "simultaneous sequence alignment and fold-

ing" algorithm of Sankoff [27] for aligning RNAs. Under the right parameters, the

Sankoff algorithm can detect conservation on both the sequence and structural level.

It is therefore regarded as more accurate than "sequence" methods that rely only

on sequence-similarity based and "folding" methods that rely only on structural-

similarity. However, the original Sankoff algorithm runs in 0(n') time and is infeasi-

ble for large sequences. Variations of Sankoff's approach of "simultaneous alignment

and folding" has been strongly improved during the last years, e.g. by the LocARNA



tool [35], making large scale structural alignment of RNAs possible.

When sequence identity is high, sequence-similarity methods will accurately align

structural elements in sequences. However, the inverse is not necessarily true. Under

low sequence identity, sequence-similarity methods cannot identify compensatory mu-

tations, i.e. character mutations which change the sequence but preserve structure.

In the most recent Bralibase study [36], a benchmark to assess methods for aligning

structural RNAs, the performance of sequence-similarity methods broke down when

the sequence identity of RNAs to be aligned was below 60%. On the other hand,

structural-similarity methods can still accurately align these RNAs.

1.2 Whole Genome Alignments

The sequence alignment of multiple whole genomes, more compactly known as a

"whole genome alignment" (WGA), has become an essential tool for comparative

genomics. Genome alignments have a number of biological applications. Aligned

regions showing a high degree of conservation is the basis of prediction programs

for functional genes and non-coding RNAs. Genome alignments are also used for

inferring evolutionary history such as phylogeny and rates of evolutionary processes.

1.2.1 Challenges in construction

Aligning genomes, due to their size and heterogenous make-up, is more challenging

computationally than aligning short sequences such as individual genes. A major chal-

lenge is the sheer size of genomes because it prevents direct application of commonly

used tools for short sequences. Another source of difficulty is biological complexity. A

genome is a heterogenous composition of discrete regions, each of which may encode

different biological functions and undergo different evolutionary pressures. Delin-

eating regions is a difficult task in itself, let alone adapting the alignment method

according to special characteristics of the region. Assessing genome alignment meth-

ods is also an open problem because there does not exist any established benchmark

or accepted genome alignment on which to train or compare against.



1.2.2 Current methods

Standard construction of genome alignments follow two stages. First, a large-scale

syntenic map is made. Because of genome rearrangements events, in the form of

duplications and transpositions, two genomes cannot be aligned simply by inserting

gaps in both. Instead, a genome must be sliced beforehand into smaller subsequences,

each of which is matched with slices from other genomes to form a syntenic block.

Second, each block is individually aligned.

First generation whole genome alignment tools, like Enredo/Pecan [23], Merca-

tor/Mavid [6, 11], MULTIZ [5], and MLAGAN [7] have become widely used. The

continued use of multiple genome alignments suggests that it is still an open problem

without consensus. Recent studies have suggested that indeed there is still room for

improvement. For example, Prakash and Tompa [25] identified "suspicious regions",

composing 9.7% of a MULTIZ alignment of human chromosome 1 to 17 vertebrates,

where in each suspicious region at least one sequence appeared to be forced into align-

ment with unrelated sequences. Chen and Tompa [8] also found a significant presence

of such regions in four different alignments (Pecan, Mavid, MULTIZ, and MLAGAN)

of the same Encode regions [19] to 28 verterbrates genomes.

A limitation of these current tools is the sole use of sequence-similarity alignment

models. As remarked in Section 1.1, such models inevitably lead to misalignments

of sequences with low enough identity. In intergenic regions and introns which are

regions known to have low sequence conservation, Chen and Tompa [8] also found

greater disagreement among the four alignments than in exons which are known to

have higher sequence conservation.

1.3 De novo prediction of non-coding RNAs

Traditional dogma in molecular biology has been that protein synthesis is the most

prominent code stored in a genome. This has been uprooted in recent decades with

the discovery of an extensive presence of functional transcripts that do not code

for proteins. Collectively known as non-coding RNAs (ncRNAs), these transcripts



include, but are not limited to, miRNAs, riboswitches, snoRNAs, tRNAs, and RNase

Ps. Interest in ncRNAs has given rise to the development of de novo prediction

of ncRNAs genes from genomic sequences. Among the most widely used tools are

RNAz [3, 26, 33, 32], EvoFold [33, 24], and CMFinder [30, 34]. These tools predict

ncRNAs based on the observation that many classes of functional non-coding RNAs,

but not all, exhibit conservation of secondary structure.

RNAz and EvoFold rely on accurate input alignment to detect structural conserva-

tion. Thus, they cannot predict ncRNAs that are sufficiently misaligned. CMFinder

is not constrained to an input alignment, however it is much slower than RNAz and

EvoFold. In order to run CMFinder on an alignment of the Encode regions, Torarins-

son et al. [30] applied a number of heuristics, such as a limitation to two stems, that

simplified the possible structures that could be found. The heuristics notwithstand-

ing, the Encode alignment is only composed of 1% of the human genome and is much

smaller than some genome alignments that RNAz [26] and EvoFold [24] have been

applied to. For an excellent review of de novo ncRNA prediction, see [17].

1.4 Motivation and aims

This thesis addresses two intertwined problems discussed earlier: 1.) Current genome

alignments are constructed with only sequence-similarity methods, leading to poten-

tial misalignment on a structural level, and 2.) efficient de novo RNA prediction

tools depend on alignment accuracy on a structural level. To solve these two prob-

lems simultaneously, we present a general method for realigning ncRNAs in a whole

genome alignment according to both sequence and structural-similarity. The goal of

realignment is two-fold. First, latent ncRNAs which were previously undetected due

to misalignment can now be predicted. Second, the whole genome alignment can be

improved by patching it according to the ncRNA realignments.

Uncovering previously unknown ncRNAs through realignment, however, can be a

circular cat-and-mouse problem. If a ncRNA is not yet known, how can it be targeted

in genomes for realignment? Morever, using a structural-similarity model to realign



motifs that are not ncRNA and whose molecular structure is not important could

worsen the already existing alignment. We workaround this problem as follows. After

realigning a site from an existing genome alignment, we apply a de novo predictor to

decide whether there is an ncRNA. If so, then we keep the realignment, and otherwise,

we keep the original alignment.

The relatively expensive computation of structural-similarity methods than those

that only model sequence-similarity has hitherto prevented applying them on a genome-

wide level. In Chapter and 2 and 3, we present a computational pipeline that solves

this problem by incorporating two novel features, a stability filter and constrained

realignment. In Chapter 4, we demonstrate the effectiveness of this pipeline on the

alignments of 12 Fly genomes and an Encode alignment.



Chapter 2

A pipeline for genome-wide

realignment of structural

non-coding RNAs.

In this chapter, we present a novel pipeline that takes as input a whole genome

alignment (WGA) and realigns potential structural non-coding RNAs according to

sequence and structural similarity. The end product is a set of ncRNA predictions

and an improved WGA alignment formed by replacing the original alignments of the

ncRNAs with their realignments. The pipeline can be applied to patch any WGA

and does not rely on external genome annotations.

As an overview, there are three main stages of the pipeline. First, a stability

filter reduces the computational time of the pipeline by filtering only for sites in the

WGA where individual sequences have sufficient structural stability in order to form

functional RNAs. An important property of the filter is that it does not depend

on local alignment quality and is therefore robust against local inaccuracies in the

WGA. Second, the RNAz tool is used to make de novo ncRNA predictions based on

the original WGA and realignments. Finally, the WGA is patched.



2.1 The pipeline step-by-step

The procedure is outlined in Figure 2-1. In the following description of the pipeline,

we number the single steps to correspond with the figure.

The pipeline processes a whole genome alignment (WGA), which consists of a

set of colinear segments, to identify potential sites for non-coding RNA. We follow

the RNAz screens of [26] in the way we slice the segments into windows and merge

overlapping windows into loci. In Step (1), each segment is sliced along both strand

orientations into windows of length 120 alignment columns at every 40 columns. For

each window, sequences are removed from the window if they contain more than 25%

gaps, more than 25% GC or AU content, or contain a large number of masked char-

acters. Only window with at least two sequences remaining are kept. We distinguish

between windows that span the same columns but are read in opposite directions.

For this step, we employ the script rnazwindows. pl from the RNAz 2.0 package [3].

In deviation from its default settings, we run the script without an explicit reference

sequence, by setting the -no-reference option, and do not set limits on the minimum

sequence identity, by assigning 0 to the -min-id option.

In Step (2), we filter windows for thermodynamic stability in the individual se-

quences. Thermodynamic stability is the major alignment-independent feature for the

decision of de-novo ncRNA predictors. Note that unlike the RNAz p score, which [26]

used to filter the windows, the stability of individual sequences does not depend on

details of the alignment. Filtering by stability, therefore, retains misaligned potential

non-coding RNAs for further analysis. For each window, we assess its stability by

applying RNAz-2.0 [3] to estimate the average z-score of the minimum free energy of

the sequences. Only windows with an average z-score below a fixed stability threshold

0stability are kept. Therefore, filtering by stability removes many windows unlikely

to contain ncRNAs because of insufficient stability.

In step (3) windows are merged and reassembled into continuous alignment blocks

referred to as "loci". In a WGA with sequences numbered 1, ... , k, two windows A

and B containing sequences SA, SB E {1, . . . , k} are merged into a locus if they are
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located in the same colinear segment, are oriented in the same direction, and overlap

in one of the following two ways

1. A and B overlap at 80 alignment columns.

2. A and B overlap at 40 alignment columns or are positioned side-by-side. In

this case, A and B must share a sufficient number of species defined by the

condition SA n SB / SA U SB > 0.5.

A set of more than two windows is merged all together into one locus if there is a

transitive chain of merging, i.e. A and B merge, B and C merge, etc. The locus is

formed by re-slicing from the WGA the alignment block spanned by the windows and

keeping sequences which appeared in one of the windows.

In step (4), we realign each locus, optimizing for sequence and structural similar-

ity. In order to introduce only limited changes to the original alignment and maintain

efficiency of the whole approach, we limit the deviation from the original alignment

in a specified way. For this purpose, we apply a novel extension of the LocARNA

multiple RNA alignment algorithm, which is introduced in Chapter 3. Before and af-

ter realignment, in Steps (4) and (6), we assess the likelihood that the locus contains

structural non-coding RNA by de-novo ncRNA prediction. In our study, we estimate

this likelihood by RNAz 2.0, i.e. we slice the locus into windows as above and de-

termine the maximal RNAz ncRNA class probability P of the constituent windows.

Before realignment, RNAz is applied in its non-structural alignment model, which is

trained for sequence alignments produced by Clustal [29]. After realignment, we eval-

uate with RNAz in its structural alignment model [3] of RNAz, which was recently

trained on the structural alignments of the LocARNA variant LocARNATE [22].

Applying RNAz after realignment can reveal potential non-coding RNAs that were

misaligned in the whole genome alignment.

Since windows and hence loci were distinguished by strand orientation in earlier

steps, some loci may be overlapping in genomic position. In step (7), we select a

subset of the loci that are non-overlapping in position. We greedily consider adding

loci one at a time to a non-overlapping set according to the maximum p score of a



locus before and after realignment. A locus is added to the set only if no other loci

already in the set overlaps with it in position.

Finally, we propose to patch back locus alignments in step (8), replacing the

original alignments of the loci with realignments. We use the evaluation of a realigned

locus from earlier steps to decide where to patch the locus back. In this way, we can

control the patching process and minimize the patching of loci that are not structural

ncRNAs.
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Chapter 3

Constrained realignment

In this chapter, we present a general algorithmic framework for realigning loci in step

(5) of the pipeline. In this framework, we constrain the realignment of a locus such

that it does not deviate too much from the original WGA. Doing so is faster than

aligning the locus from scratch. Combined with the speedup of the stability filter in

step (2), this framework allows the pipeline to be feasible for running over a whole

genome alignment.

First, we motivate the idea of constrained realignment. One possibility for realign-

ing a locus is to simply disregard the original WGA and align the locus completely

from scratch. However, this would not take advantage of the WGA which, even if

not perfect, may still provide useful information about the desired correct alignment.

Some sequence positions of the locus may already be aligned correctly or almost cor-

rectly in the WGA. Instead, consider using the WGA as a reference and constraining

the realignment of a locus around it.

Formally, we define this constraint with the notion of A-deviation from a refer-

ence alignment. We show how constraining the realignment provides a complexity

speedup, how to apply it to any dynamic programming-based alignment algorithm,

and finally its particular implementation in LocARNA [22], an efficient algorithm for

simultaneous sequence and structural alignment of RNAs.



3.1 Preliminaries and terminology

A sequence S is a word of fixed alphabet E. We reserve a special symbol - E called

gap. A word T of alphabet E U {-} is called gapped sequence. We write T_ for the

sequence that is obtained by removing all gap symbols from T. The length of a word

w is denoted by |wl and its i-th character by w[i].

A q-wise (multiple) alignment A of length m =: |A| is a matrix A C (E U{--})*m

with q =: rows(A) rows. We denote the x-th row of A by Ax and associate it with

the gapped sequence Ax[1] . . . Ax[m]. A q-wise alignment A is an alignment of the

sequences S1, ... , Sq if and only if

1. for all 1 < x < q: Sx = Axl_.

2. no column in A is gap-only, i.e. consists only of symbols -.

For a q-wise alignment A and a p-tuple I = (x1, . . . , xp) of distinct integers in

{1,... , q}, the projection A(I) of A onto I corresponds to the sub-alignment im-

plied by A on the sequences indexed by I. It is constructed by taking the matrix

(A 1 .. . Ax,)T and deleting all gap-only columns. A q-wise alignment A is an align-

ment of A' and A 2 if and only if A' = A((1,. .. , qi)) and A2 = A((q + 1,. . . , q)) for

some 1 < qi < q.

A (pairwise) cut is a vector c E N2 . For a pairwise alignment A, a cut c = (ci, c2)

is called cut of A at column i (0 < i < |AI) iff |(Ax[1] . .. Ax[i]) 1_| = cx for x = 1, 2. A

pairwise alignment A of sequences Si and S2 is uniquely described by its set of cuts

cuts(A).

We define mappings between positions and columns in an alignment. For a gapped

sequence T and 0 < j < ITI, translate from positions in T (i.e. alignment columns)

to positions in T_ by ctplT(j) := |(T[1] ... T[j])|_|. Note that in the case where

T[j] = -, ctplT(j) points to the position left of the gap. For 0 < i < |TI, ptcT

inversely translates from positions to columns, i.e. ptcT(i) is the unique j where

CtplT(j) = i



Example. We consider the triplewise multiple alignment

C - - T A

A = - G T T (3.1)

C G T T-

of the sequences Si = CTA, S2 = GTT and S3  CGTT. The rows of A are A1

C - -TA, A2 =-GTTC and A3 =CGTTA . A is an alignment of A' = ( C T A)

and A2  ( ) . The cuts of A2 are (0, 0), (0, 1), (1, 2), (2, 3), and (3, 4) at
(C G T T)

respective columns 0 to 4. There is no other alignment of S2 and S3 with the same

set of cuts. Furthermore, ptcA 2 (3) = 4, ctplA, (5) = 3, and ctplAj (3) = 1. A

3.1.1 RNA secondary structure

A base pair is a pair a = (i, j) C N2 . We call i =: a' its left end and j =: ar its right

end. An (RNA) structure P for length n is a set of base pairs (i, j), 1 < i < j < n,

where no two different base pairs share a common end, i.e. for all (i, j), (i', j') E P

i = i' j j' and j f i'. We call P crossing if and only if there exist two base

pairs (i, j), (i', j') E P such that i < i' < j < j'. Otherwise, P is called non-crossing

or nested. In this thesis, all RNA structures are non-crossing.

3.2 Simultaneous Alignment and Folding (SA&F)

Following [18] and [35], we define a sequence-structure similarity score for an align-

ment |A| and an RNA structure P for length |A|. In the case of a pairwise alignment



A, this similarity score is of the form

E(Si, S2, A1 , A2,P) = (3.2)

STS1,s2 (ctplA1 (i), CtPlAi (j), CtPlA2 (i), CtPlA2 (j)) (structural similarity)
(ij)EP

A1[i]#A-,A1[j]# -
A2[i]#,-,A2[j]#-

+ E0sis2 ( ctpl'A (i), ctplA2 (i)) (sequence similarity)
1<i<n,

i unpaired in P,
A1 [i]#--,A2[i]#A-

± Z y(k)N iA2, (affine gap cost)
k>O

where asi ,S 2 is a sequence similarity and rS1,S 2 is a structural similarity function,

-y(k) = -yo + k'ye, and N iA2 is the number of maximal subsequences of k gaps in A1

and A2 . For the definition of or 1,S 2 and TS1iS2 confer [35]. We generalize this to the

q-wise case by sum-of-pairs, i.e. we define for q > 2,

6 (A, P) = 67E5(S2, Sy, AX , AYI P).
1<x<y~q

Given sequences S1,..., Sq, the problem of simultaneous alignment and folding

(SA&F) is

arg max
A of Si. , Sq, P for length IAI

6(A, P).

An efficient algorithm to solve this specific problem for the pairwise case (q = 2)

was introduced in [18] and significantly improved in [35]. Whereas LocARNA [35]

(and therefore our implementation) supports affine gap cost, we keep presentation

simple, by describing only linear gap cost, where each gap costs -y (i.e. -y = 0, y = -y).

The pairwise LocARNA-algorithm has parameters (n, m, o-1T, Y), where n and m

are sequence lengths, o denotes sequence similarity, T structural similarity, and y gap

cost. We assume for our description w.l.o.g that the algorithm aligns two sequences



Si and S2 of respective lengths n and m. The algorithm evaluates the recursion

Mii_1; k-1 = 0

Mij_1;kI_1 - o(j, 1)

Mj;kI = max Mij-1;k + 7 (3.3)
Mij;kI-1 +

maxyi' Mij'1;kI'_1+ Dj j; i

Dij;k 1 = Mi+1+1;k- 1-1 + T(i, j; k, 1)

for 1 < i <j n and 1 < k < 1 < m. The matrix entries Mij;kl are defined as the

maximal similarity score of an alignment of subsequences SI[i]..S1[j] and S2[k]..S 2[l].

Dij;kI is the maximal similarity score of such an alignment where base pairs (i, j) and

(k, 1) are matched.

In this way, the pairwise LocARNA-algorithm solves the alignment problem for

sequence Si and S2 when parametrized by (ISi, S21, asS2 ,s TS1S2,7)/). The maximal

sequence-structure similarity is obtained as M1 1;nm and the actual alignment is ob-

tained by trace back from the dynamic programming matrices.

The same algorithm can be employed in a progressive alignment scheme to com-

pute multiple alignments [18, 35]. There the algorithm computes an alignment A

of two alignments A' and A 2. For this reason the algorithm is parametrized by

(JA11, JA2 1 JA A 2 I 2TA,,'7). Details on how to construct JA A 2 and T A 1,A2 accord-

ing to the sum-of-pairs idea are given in [18] and [35]. In our representation, we

assume that the algorithm actually aligns two "consensus" sequences Si and S2 of

respective alignments A' and A 2. For these sequences, we require only that Si and

S2 have respective lengths IA'l and IA2 1. Their actual composition is arbitrary, since

all similarity information is encoded by a and T, which depend only on sequence

positions. By traceback, one obtains a pairwise alignment Ap of Si and S2. This

alignment Ap induces a multiple alignment A of A' and A 2, write A := [ApJ,

which is optimal, among all alignments of A' and A2 , due to the defined sum-of-pairs



score.

3.3 SA&F constrained to limited deviation from a

reference alignment

We modify the pairwise LocARNA algorithm in order to compute optimal align-

ments in a limited neighborhood around a reference alignment. The idea is in-

spired by a common ad-hoc heuristic applicable to dynamic programming sequence-

structure alignment or pure sequence alignment. It is thus instructive, to recall

simple Needleman-Wunsch-style alignment of sequences Si and S2 that evaluates

Mij= max{jMi_1,_1 + o(Si[i], S2 [j]), Mi_1, + -y, Mi,y1 + _y} for 1 < i < |S1 and

1 < j |S2 | (after initializing Moo = 0, Mjo = i-y, MO = j-y). Instead of filling the

whole O(IS1I|S 2 |) matrix, this heuristic computes only O(ISilA) entries Mij, where

i - j < A and (virtually) sets all other cells to -oc. This arbitrarily restricts the

search space to alignments A, where lI - j < A for all possible decompositions of

A into an alignment Apre of prefixes S1[1... i] and S2[1 ... j] and an alignment Asuf

of suffixes Si[i... Sil] and S2 [j... S21]. For SA&F, such a heuristic has been intro-

duced with dynalign [20]. In fact, our method will subsume this and similar ad-hoc

heuristics as a special case where, e.g. in this special case and for i < j, the reference

alignment AR is A1  A 2  ... i- -

B1 B2 ... Bi . Bj.

3.3.1 A-deviation from an alignment

We are going to define a deviation of an alignment A from an alignment AR, called

the reference alignment. This deviation is directly understood as a deviation of the

cuts in A from cuts in AR. It will allow efficient optimization over all alignments in

a limited deviation from AR.

First, we define a distance on pairwise cuts c = (ci, c2) and c' = (c', c') as their

Manhattan distance ||c - c'll1 = Ici - c'| +|c 2 - c'. Then, for pairwise alignments A



C

U
U
U

C

Figure 3- 1: Matrix visualization of cut sets. Each cut (i, j) is represented as a matrix
entry (i, j). The pairwise cuts of the alignment A R=t (AC ---GUUUC, AGTTTG---C)
(dark gray) and the cuts in 1-deviation from AR (dark and light gray).

and AR we define

dAR(A) =max (min Ric - cR111 ).
cut of A cR cut of AR

Now, we generalize this to a deviation of alignments A from AR of the same q se-

quences (q > 2) by

dAR(A) = max {dAR(,j) (A(ij)) 11 < i <J j k}

Fig. 3-1 visualizes the set of all cuts with (maximal) deviation 1 from a given

example alignment.

Given sequences Si,... , Sk, the SA&F problem with limited deviation A from a

reference alignment AR is

arg max E5(A, P).
AOf S1 . ,Sk in

A-deviation from AR,
P structure for length JAI

3.3.2 Pairwise algorithm

The input of the pairwise algorithm consists of two sequences S, and S2 and a pair-

wise reference alignment AR of these sequences. The pairwise alignment problem in

deviation A from AR will be solved by a variant of the pairwise LOCA RNA- algorithm

in Eq. 3.3 parametrized by (ISil, S2 1, or SlS2,T7Sl1S2 , ).

Due to the limitation, we change the semantics of the matrix entries Mij;kI and

Dij;kl in a way that they contain the maximal score only over subalignments of



alignments with limited deviation A from AR. Let C2(AR, A) C { .... , S} X

(0,..., S2 } denote the set of cuts in A-deviation from AR. It is defined such that

for all alignments of the sequences of AR holds that

cuts(A) C C2 (A R, A) iff dAR(A) < A.

By definition of d2 , this is equivalent to

C2(A, A)0 < i < |S1|,O 0 J j I|S2|,

CR C cuts(AR): J CR - C11i <A

Due to the definition of the matrix entries, we need to compute entries Mij;kl

only if the optimal alignment can be derived from an alignment of subsequences

S1[i] ... Si[j] and S2[k] ... S2[l], i.e. only if the cuts (i - 1, k - 1) and (j, 1) are in

C2 (AR, A). Dij;kl needs to be computed only when i can be matched to k and j can

be matched to 1, i.e. (i, k), (i - 1, k - 1), (j, 1), and (j - 1,1 - 1) are in C2 (ARA).

Furthermore, the computation of Mij;kl is restricted to indices i and k that can match,

i.e. where also (i - 2, k - 2) E C2 (AR, A) (with the exception of case (i, k) = (1, 1)).

We will now describe an algorithm for constructing C2(AR, A). Since by definition

for each 0 < i < |AR, C2 (AR, A) contains consecutive elements (ijmin max

the set can be conveniently described in terms of jmli" and jnax. This is useful, both

for constructing the set and when restricting the alignment algorithm.

By iterating over the cuts of AR, these values are efficiently computed (for 0 <

i < ARI) as

min max(OJR - A) if iR - i

(in, M)cutofA if jR - A



and

min(|S 2 , jR A)R - R
j,"m:= ma

(iR, ) cut of A' iR -- R< A-

3.3.3 Progressive alignment heuristic

We devise a progressive alignment scheme to heuristically solve the problem of mul-

tiple alignment in deviation A from a reference alignment AR. The elementary op-

eration of this scheme is computing an alignment A of two alignments A' and A2

restricted by a set of permissible cuts C(AR, A). The algorithm is analogous to the

pairwise case. However, the definition and construction of this set is more involved

than in the pairwise case, since cuts are required for a pairwise alignment, although

the reference alignment is multiple. The algorithm is parametrized as in unrestricted

progressive alignment.

Let A' and A2 be alignments of respective sequences Si, ... Srows(A1) and Srows(Al)+1,... Sq.

W.l.o.g. let AR be a multiple alignment of the sequences Si,... , Sq. Recall that in

our presentation, the algorithm computes an alignment Ap of consensus sequences Si

and S2 of respective A' and A2, such that the optimal alignment of A' and A2 is in-

duced by Ap. We define a set of permissible cuts C(AR, A) for the alignment Ap of 51
and S2, such that the A, with cuts(Ap) C C(AR, A) describe exactly the alignments

whose induced alignments are in A-deviation from the reference alignment, i.e.

cuts(Ap) C C(AR, A) iff dAR(TAp ) <A.

Due to the definition of the deviation as "maximum-of-pairs", we can compute

this set as intersection of pairwise cut sets C(AR, X, y, A) C {O, . . . , rows(Ai)} x

{, ... , rows(A 2)} (1 < x < |A1l, |A1l + 1 < y < q) that guarantee the A-deviation
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Figure 3-2: Example of cut sets C(AR, x, y, A). Matrix visualization as in Fig-
ure 3-1. Sets for A = 0 (dark gray), A = 1 (dark+medium gray), and A = 2
(dark+medium+light gray). A 12 = AC---TTT, A2 (ylrows(Ai)) = CCTTT--G, AR_ =
AC---TTT-, AR, = -CCTT-TG

for the pairwise alignment of sequences S2 and Sy, i.e.

cuts(Ap) G C(ARx,y,A)

iff dAR(X,y) (JApJ (Xy) A.

Let y' = y-rows(A1) denote the index of sequence S, in A 2. The set C(AR, x, y, A)

from the gapped sequences A'2, A2 /, AR2, AR, is generated as follows. A cut c, of A,

corresponds to a cut c = [c,] ,= (ctplA1 (), ctplA2 (j)) of [Ap]IA (x, y). For each

cut c of the alignment AR(x, y), we generate the set of cuts c' in distance A. Then

for each such cut c', we generate the cuts c,, where c' = [c,] , and add them to the

set C(AR, x, y, A). As in the pairwise case, this is conveniently computed in terms

of boundaries jnin and jax for "matrix rows" 1 < i 1 A|. Figure 3-2 provides

examples of cut sets C(AR, x, y, A).

All multiple alignments generated by a progressive alignment scheme built on this

strict definition of permissible cuts C(AR, A) will have at most deviation A from the

reference alignment. However, due to potential misalignments in previous progressive

steps, this strategy can fail to produce an alignment at all. We remark that such

potential inconsistencies are unavoidable in a method that guarantees the maximal

deviation A and obeys the principles of progressive alignment, i.e. that each single

progressive alignment step sees only the local information from the input alignments

and alignments generated in previous steps are not changed ("once a gap, always a



gap"). In our experiments such inconsistencies are rare and such rare events can be

tolerated.

Relaxed cut sets. For applications that require guaranteed success, we propose

a relaxation of the method that avoids inconsistencies by relaxing the distance con-

straints in an optimal way. By dynamic programming, we compute a relaxed cut set

Crelaxed(AR, A) that has a size limited by A and minimizes the distance to the sets

C(AR, x, y, A)- Crelaxed(AR, A) is computed as set of cuts in A- deviation from an

alignment A' of Si and S2. A' minimizes EcEcuts(A') cost(c), where the cost of a cut

of A' is defined by

cost(c) min ||c - c'||1.
1<x<rows(A1), c'EC(AR,x,y,O)

rows(Ai)<y<rows(A)

The alignment A' is obtained by traceback from the dynamic programming matrix C

evaluating C(0, 0) = cost(0, 0), C(i, 0) = cost(i, 0) + C(i - 1, 0), C(,j) = cost(0, j) +

C(Oj - 1), and

C(i, j) = cost(i, j) + min{C(i - 1, j - 1), C(i - 1, j), C(i, j - 1)}

for 1 < i < AlI, 1 < j < |A 2 1. Finally, we set Crelaxed(AR, A) := C(A' A). Clearly, a

heuristic based on this relaxation will not guarantee A-deviation from AR. However,

by construction, it will favor low deviation and limit the computational cost and

deviation in each progressive alignment step by A.
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Chapter 4

Results

In this chapter, we demonstrate the effectiveness of the realignment pipeline (Chapter

2) in conjunction with constrained realignment (Chapter 3). We show that LocARNA

is more powerful as the method for realignment in the pipeline than is Muscle as

measured by the resulting prediction of new putative ncRNAs.

We ran our pipeline on the whole genome alignments of 12 fly genomes compiled

by the Drosophila Twelve Genomes Consortium [1, 9] and of genomic regions selected

from 28 vertebrates for the ENCODE project [19]. We shall refer to these alignments

simply as "Fly" and "Encode", respectively. Both alignments were constructed using

the Pecan tool [23]. These sets of genomes were chosen because of their use in

previous de novo ncRNA prediction screens: Fly in [26] and Encode in [30, 33].

Moreover, they have become regarded in the biological community as test models for

comparative sequence analysis of closely related species.

Loci were realigned in step (5) of the pipeline with either LocARNA [35] or Muscle

[14]. LocARNA realignments were constrained to A-deviations of 5, 10, or 20. Muscle

served as a control against LocARNA to distinguish between realignment effects that

are reproducible just from the act of realignment versus those uniquely stemming from

LocARNA's explicit optimization for structural similarity. In BraliBase benchmark

reviews [36], Muscle was shown to be one of the most accurate sequence-similarity

tools for aligning structural RNAs.

RNAz p scores of loci and windows were evaluated multiple times: once with



respect to the original WGA in step (4), and again after realignment with LocARNA

or Muscle in step (6) of the pipeline. Note that only windows were directly evaluated

by RNAz to generate p scores. The p score of a locus was defined to be the maximum

p score among the windows composing the locus.

Following the convention of previous genome-wide RNAz screens [26, 33], we pre-

dicted ncRNA sites by applying a lower threshold of 0.5 or 0.9 on the p scores.

Windows and loci with a p score of at least 0.5 are labeled "low confidence" hits, and

those with a p score of at least 0.9 are labeled "high confidence" hits.

4.1 Construction of the stability filter

Execution of the thermodynamic stability filter in step (2) of the pipeline first requires

the selection of a stability threshold on which to filter windows containing structurally

stable sequences. Recall from Chapter 2 that the stability of a window is assessed

by the average z-score of the mean free energy (MFE) of the window's sequences. A

window passes the filter if its average z-score is below a fixed threshold 6 stable. Note

that this measurement of stability depends only on which sequences are in a window

and not by how the sequences are aligned. This filter is therefore robust to local

alignment inaccuracies within windows in the original WGA.

The goal of the stability filter is to improve the overall run-time of the pipeline by

avoiding further processing of windows that are unlikely to produce RNAz hits due

to insufficient thermodynamic stability while simultaneously retaining most of the

windows that will produce hits. Selecting a stability threshold, therefore, involves a

trade off between the pipeline's computational tractability and sensitivity for ncRNAs

in the form of RNAz hits. If the stability filter is weak (a high 0stable), then it will pass

more windows that will not form hits at the end of the pipeline due to insufficient

structural stability in the windows' sequences. Thus, the total computation of the

pipeline is unnecessarily increased for these windows. On the other hand if the filter

is strict (a low Ostable), fewer windows will pass, but now the filter will prematurely

remove more windows that would otherwise form hits. Thus, the threshold needs to



be carefully chosen in order to optimize for this performance trade off.

Since the end result of the pipeline is the prediction and patching of ncRNA sites,

at this stage of the pipeline we cannot completely predetermine the sensitivity of the

stability filter under a given threshold. In lieu of this cat-and-mouse problem, we

offer a workaround as follows. We first run RNAz over all windows in the original

WGA returned by step (1) to identify low-confidence hits (p > 0.5) and their average

z-scores. Note that these calculations are not shown explicitly in Figure 2-1 but

are regarded as implicit pre-processing before applying the stability filter. We then

assume that the distribution of these hits according to their average z-scores is an

approximation of the distribution of actual ncRNAs in the genomes. Thus for a fixed

threshold Ostable, we estimate the filter's sensitivity for ncRNAs to be the fraction of

the hits that would pass under 6stable.

Under this approximation framework, Figure 4-1 illustrates that simply setting

a threshold is an effective means for constructing a stability filter. The figure is

a 2D histogram of the windows returned by step (1) according to their average z-

scores and to their p scores in the original WGA. While in general all windows are

symmetrically distributed around an average z-score of about 0, most low-confidence

hits (p > 0.5) have a low average z-score. Figure 4-2 plots the total number of windows

and the fraction of low confidence-hits that would pass under various thresholds.

This curve exhibits a desirable region of thresholds where the filter retains most

hits but removes many windows. Higher thresholds beyond this region provide only

marginal increases in hit sensitivity while the total number of passing windows quickly

increases. Inversely, lower thresholds only have marginal filtering of windows but see a

quick drop in hit sensitivity. Thus, we chose a threshold from this region (Table 4.1),

in particular 0 stable -1 for our implementation of the pipeline. Windows passing the

filter under this threshold were then merged and reassembled in step (3) into 33846

loci in Encode and 503830 loci in Fly.
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Figure 4-1: 2D histogram of windows in the original WGA according to average
z-scores of MFE and to RNAz p scores. Each discrete square counts the number
of windows that fall within an interval of 0.1 in the p scores and average z-scores.
Counts are color-coded on a base 10 logarithmic scale. Most low-confidence RNAz
hits (p > 0.5) have a low average z-score.
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Figure 4-2: Selecting a stability threshold. Each point on the curve plots, for a fixed
threshold 9 stable, the number of windows and the fraction of low-confidence RNAz
hits (p > 0.5) that would pass the stability filter. 9stable presents a trade off between
the run-time of the pipeline and sensitivity for ncRNAs. The green square marks the
chosen threshold = -1.

4.2 RNAz p scores after realignment

Realignment noticeably changes the RNAz p scores of loci. Figure 4-3 is a 2D his-

togram of loci according to p scores evaluated before and after realignment. Located
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80.
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Z 0.
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Table 4.1: Performance of the stability filter under the chosen threshold 9 stable= -1.

Listed are the total number of windows and low-confidence RNAz hits (p > 0.5)
obtained after slicing the original WGA (step (1)) and the number that remains after
being filtered for stability under 0 stable= -1 (step (2)). The stability filter reduced
the set of total windows while being sensitive for hits.

Fly Encode

Sliced Passing (%) Sliced Passing (%)

Total windows 5598326 737928 13.2% 829518 44328 5.3%
Low-confidence RNAz hits 348648 316623 90.8% 9615 8588 89.3%

along the left strips of 4-3(c)-(d), many loci start off with a very low p score in

the original WGA but acquire a very p high score after realignment with LocARNA

constrained to A = 20. On the other hand, such loci are relatively absent after

realignment with Muscle.

In general, p scores changed more so after realignment with LocARNA, as exhib-

ited by the cloud of loci around both sides of the diagonals in Figure 4-3(c)-(d), than

they did after realignment with Muscle, where most loci are remain concentrated

exactly along the diagonal in Figure 4-3(a)-(b).

Some loci even experienced a drop in p score after realignment with LocARNA, but

we believe that this can be mostly explained by the use of differently trained models

of RNAz. In the original WGA and Muscle realignments, loci were evaluated with

the sequence-similarity model trained over Clustal alignments, but in the LocARNA

alignments, loci were evaluated with the more appropriate structural-similarity model

trained over LocARNATE alignments. We believe that RNAz, when ran over the

same or similar alignments, tends to assign a lower p score in the structural model

than the sequence model in order to compensate for false structural conservation that

is more likely produced with LocARNATE than with Clustal. Therefore, we believe

that the p score of a locus probably decreases even when the LocARNA realignment

does not significantly change the original alignment. This may happen, for example,

if structural-similarity is already nearly optimized in the original alignment, or if the



sequence identity of the locus is too high to permit significant alignment change.
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Figure 4-3: RNAz p scores of loci evaluated in the original WGA and after realign-
ment. Loci were counted according to fixed intervals of 0.1 in the p scores before and
after realignment with Muscle or LocARNA constrained to A = 20. The number
of loci is color-coded on a base 10 logarithmic scale. The diagonals count the loci
experiencing less than 0.1 change in score. The loci in the left strip of the LocARNA
histograms start with a very low score in the original WGA but acquire a very high
score after realignment. By comparison, the score after realignment with Muscle is
relatively unchanged.

The change from a locus's original alignment to its realignment was measured with

the COMPALIGNP tool [36]. Briefly, COMPALIGNP computes the fraction of the origi-

nal alignment that agrees with the realignment. A COMPALIGNP score of 1 indicates

identical alignments and a 0 indicates complete disagreement. Figure 4-4 shows that

a large increase in the p score after realignment with LocARNA is often seen when

Muscle

LocARNA

4

E
C

3 0 .
0

.. .......... . ... ............................................... ...



realignment was extensive. This strong correlation suggests that some loci are "hid-

den" from prediction in the original WGA because of a low p score, but nevertheless

they can be "uncovered" by a sufficiently different realignment.
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Figure 4-4: COMPALIGNP score vs. change in RNAz p scores.

4.3 New hits discovered after realignment

For each realignment method, a non-overlapping subset of the loci was selected (step

(7)). For the rest of this chapter, we shall refer to these subsets of the loci by default

unless otherwise stated.

For each p score threshold of 0.5 or 0.9, we delineated loci according to whether

they were RNAz hits before realignment in the original WGA and/or after realign-

ment. We refer to loci that are hits before and after realignment as "common hits",
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LocARNA
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loci that are hits only after realignment as "new hits", and those that are hits before

realignment but are no longer so after realignment as "old hits". Table 4.2 summarizes

the breakdown of RNAz hits according to these distinctions.

All methods of realignment revealed thousands of new hits among the 12 fly

genomes and hundreds among the 28 vertebrates. These hits were not detected from

the original WGA. In this regard of discovering more ncRNA sites, realigning with

Muscle was the least effective, and realigning with LocARNA under an allowed devi-

ation of A = 20 was the most effective. Realigning with A-deviations smaller than 20

did not result in as many new hits, suggesting that some loci require more extensive

realignment than others to be discovered de novo. Moreover, the increase in new hits

from A = 10 to 20 is much smaller than the increase from A = 5 to 10. It is likely that

this reflects a diminishing marginal returns in new hits as A increases. Therefore,

constraining the LocARNA realignments by setting A to a sufficiently high value

should reveal the same number of hits as by alignment with no constraints. This

supports the use of the framework for constrained realignment presented in Chapter

3 to make the pipeline run faster.

4.4 Sequence identity of new hits

The average pairwise sequence identity (APSI) of every locus was measured with

respect to the original WGA using the ALISTAT tool [13]. New hits after realignment

had lower sequence identities on the mean and in the median than all of the hits

discovered in the original WGA (Table 4.3). Figure 4-5 shows the shift in the sequence

identity distribution. With respect to decreasing identity, the realignment methods

ranked in the same order of effectiveness as they did with respect to the total number

of new hits. This is also consistent with the most recent Bralibase benchmark study

[36] that showed that as identity drops, constructing accurate structural alignments

becomes more difficult for tools purely based on sequence-similarity. In particular,

Wilm et al. [36] identified a "twilight" zone of < 60% identity where the performance

of these methods is outperformed by methods that explicitly optimize for structural-



New Hits (%)

Fly
Common Hits (%) Old Hits (%) All Hits All Loci

Muscle 6305 (8.4%) 61539 (82.3%) 6943 (9.3%) 74787 157400
LocARNA, A = 5 10287 (13.0%) 51587 (65.1%) 17339 (21.9%) 79213 158158
LocARNA, A = 10 14076 (16.6%) 53085 (62.5%) 17786 (20.9%) 84947 162582
LocARNA, A = 20 16000 (18.6%) 52708 (61.1%) 17514 (20.3%) 86222 161391

Muscle 3986 (10.5%) 28994 (76.7%) 4815 (12.7%) 37795 157400
LocARNA, A = 5 5826 (14.6%) 21419 (53.5%) 12777 (31.9%) 40022 158158
LocARNA, A = 10 8339 (19.2%) 21960 (50.4%) 13236 (30.4%) 43535 162582
LocARNA, A = 20 9914 (22.2%) 21756 (48.6%) 13059 (29.2%) 44729 161391

Encode
New Hits (%) Common Hits (%) Old Hits (%) All Hits All Loci

Muscle 144 (9.9%) 1141 (78.8%) 163 (11.3%) 1448 5426
LocARNA, A = 5 284 (16.5%) 1008 (58.4%) 433 (25.1%) 1725 6597
LocARNA, A = 10 401 (21.7%) 1038 (56.2%) 409 (22.1%) 1848 6607
LocARNA, A = 20 460 (24.5%) 1027 (54.7%) 391 (20.8%) 1878 6410

Muscle 70 (13.1%) 401 (75.2%) 62 (11.6%) 533 5426
LocARNA, A = 5 133 (20.1%) 331 (50.1%) 197 (29.8%) 661 6597

p 2 0.9 LocARNA, A = 10 206 (28.5%) 331 (45.8%) 186 (25.7%) 723 6607
LocARNA, A = 20 243 (32.4%) 331 (44.1%) 177 (23.6%) 751 6410

Table 4.2: Loci were evaluated with RNAz before realignment in the original WGA
and after realignment with Muscle or LocARNA. "All loci" refers to the non-
overlapping set of loci selected in step (7) of the realignment pipeline. Of those loci,
"new hits" are the ones newly predicted only after realignment, "common hits" are
the ones predicted before and after realignment, and "old hits" are the ones predicted
only before realignment in the original WGA. .

similarity. The enrichment of lower sequence identity in the new hits, especially after

applying LocARNA, therefore suggests that not only is realignment revealing new

hits, but these hits were inherently more challenging to align accurately during the

construction of the original WGA.

4.5 Validation with known ncRNAs

Known ncRNAs from Flybase and Rfam served as independent validation of RNAz

hits. Table 4.4 lists the number of loci in Fly that matched at least one D. melanogaster

ncRNA listed in Rfam or Flybase. A locus was considered to match an annotation

if the locus contains a D. melanogaster sequence and there is a non-zero overlap in

genomic position, disregarding strand orientation. Note that we did not distinguish

between a match where a locus is completely contained inside a larger annotation, or



New

mean

Hits

median

Fly
Common Hits

mean median

Old

mean

Hits

median

All

mean

Hits

median

All loci

mean median

Muscle 0.77 0.78 0.92 0.97 0.81 0.82 0.90 0.96 0.84 0.86
LocARNA, A = 5 0.75 0.76 0.91 0.96 0.91 0.98 0.89 0.95 0.84 0.86

p > 0.5 LocARNA, A = 10 0.74 0.74 0.91 0.96 0.92 0.98 0.88 0.95 0.84 0.87
LocARNA, A = 20 0.73 0.73 0.91 0.96 0.92 0.98 0.88 0.94 0.84 0.87

Muscle 0.81 0.82 0.94 0.98 0.85 0.88 0.91 0.97 0.84 0.86
LocARNA, A = 5 0.76 0.76 0.92 0.96 0.93 0.98 0.90 0.96 0.84 0.86

p 0.9 LocARNA, A = 10 0.74 0.73 0.92 0.97 0.93 0.98 0.89 0.96 0.84 0.87
LocARNA, A = 20 0.72 0.72 0.92 0.97 0.93 0.98 0.88 0.95 0.84 0.87

Encode
New Hits Common Hits Old Hits All Hits All loci

mean median mean median mean median mean median mean median

Muscle 0.69 0.71 0.81 0.81 0.71 0.75 0.79 0.79 0.75 0.75
LocARNA, A = 5 0.68 0.68 0.82 0.83 0.77 0.76 0.78 0.78 0.75 0.75

P 0.5 LocARNA, A = 10 0.67 0.67 0.81 0.82 0.76 0.76 0.77 0.77 0.75 0.75
LocARNA, A = 20 0.66 0.67 0.81 0.82 0.77 0.75 0.77 0.77 0.75 0.75

Muscle 0.69 0.72 0.83 0.82 0.74 0.76 0.80 0.79 0.75 0.75
LocARNA, A = 5 0.66 0.67 0.83 0.85 0.78 0.77 0.78 0.79 0.75 0.75
LocARNA, A = 10 0.65 0.67 0.82 0.84 0.78 0.77 0.77 0.77 0.75 0.75
LocARNA, A = 20 0.65 0.66 0.82 0.83 0.79 0.77 0.76 0.76 0.75 0.75

Table 4.3: Sequence identity of loci. The average pairwise sequence identity (APSI),
computed with the ALISTAT tool on every locus with respect to the original WGA,
served as a measure of sequence identity. New hits after realignment (in bold) are
more concentrated in lower sequence identity levels.

vice versa, and a match with only partial overlap.

Several new hits discovered after realignment match known ncRNAs. More of

such hits were seen with LocARNA realignments at higher values of A than at lower

A's or with Muscle realignments. This is consistent with the relative number of new

hits for each realignment methods. While there are also many validated old hits, they

are still outnumbered by the validated new hits.

4.6 False Discovery Rate of the pipeline

We estimated the false discovery rate (FDR) of our realignment pipeline according to

the procedure described in Chapter 6.5. Table 4.5 compares the FDR for predictions

made from the original WGA and after each realignment method. We find that the

FDR does increase after realignment but remains about the same. In fact, the FDR



Flybase

New hits Common hits Old hits All hits All loci

Muscle 11 202 9 222 329

>05 LocARNA, A = 5 23 235 12 270 379
p LocARNA, A = 10 23 233 15 271 383

LocARNA, A = 20 24 241 14 279 389

Muscle 13 156 7 176 329
LocARNA, A = 5 26 174 11 211 379

p> 0.9 LocARNA, A = 10 24 174 11 209 383
LocARNA, A = 20 28 181 11 220 389

Rfam

New hits Common hits Old hits All hits All loci

Muscle 3 162 2 167 186
LocARNA, A = 5 3 183 1 187 206

p> 0.5 LocARNA, A = 10 3 171 1 175 193
LocARNA, A = 20 4 179 1 184 202

Muscle 6 134 2 142 186
LocARNA, A = 5 10 145 7 162 206

p 2 0.9 LocARNA, A = 10 11 135 5 151 193
LocARNA, A = 20 13 143 5 161 202

Table 4.4: Validation with known ncRNAs. Loci were matched against annotations
of known D. melanogaster ncRNAs in Flybase and Rfam. A locus was counted if it
contains a D. melanogaster sequence and overlaps in genomic position, disregarding
strand orientation, with an least one annotation. Several new hits after realignment
with LocARNA (in bold) were validated, more so than the new hits with Muscle.

after realignment with LocARNA at any A is slightly lower in Fly. Thus, we believe

that the new hits discovered after realignment contain about the same fraction of true

ncRNAs as the hits from the original WGA.



Fly

Original WGA
(tot. windows = 5598326)

Window hits Hit %

Randomized WGA
(tot. windows = 5461614)

Window hits Hit %

Original WGA 316623 5.66% 211241 3.87% 0.68%
Muscle 310390 5.54% 207867 3.81% 0.69%

p > 0.5 LocARNA, A = 5 251306 4.49% 154685 2.83% 0.63%
LocARNA, A = 10 263011 4.70% 161404 2.96% 0.63%
LocARNA, A = 20 271213 4.84% 166437 3.05% 0.63%

Original WGA 132464 2.37% 77876 1.43% 0.60%
Muscle 129652 2.32% 76901 1.41% 0.61%

p > 0.9 LocARNA, A = 5 95808 1.71% 49192 0.90% 0.53%
LocARNA, A = 10 103058 1.84% 52819 0.97% 0.53%
LocARNA, A = 20 108621 1.94% 56273 1.03% 0.53%

Encode

Original WGA Randomized WGA
(tot. windows = 829518) (tot. windows 815524) FDR

Window hits Hit % Window hits Hit %

Original WGA 8588 1.04% 4102 0.50% 0.49%
Muscle 8442 1.02% 4179 0.51% 0.50%

p > 0.5 LocARNA, A = 5 7559 0.91% 3712 0.46% 0.50%
LocARNA, A = 10 8364 1.01% 4057 0.50% 0.49%
LocARNA, A = 20 8904 1.07% 4381 0.54% 0.50%

Original WGA 2922 0.35% 1150 0.14% 0.40%
Muscle 2910 0.35% 1176 0.14% 0.41%

p > 0.9 LocARNA, A = 5 2544 0.31% 977 0.12% 0.39%
LocARNA, A = 10 2888 0.35% 1150 0.14% 0.41%
LocARNA, A = 20 3191 0.38% 1318 0.16% 0.42%

Table 4.5: False discovery rates of predictions

4.7 Examples

Figure 4-6 shows the alignments and consensus structures of an example locus, located

on columns 9363200 to 9368080 in the syntenic block X_3665964_3708413 of Fly.

Consensus secondary structures were computed and drawn with RNAALIFOLD [4].

FDR



The locus is contained with Flybase gene roX1 (ID = FBtr0070634), a long ncRNA

that increases the expression of the X chromosome in D. melanogaster to compensate

for the presence of only one X chromosome in male individuals [28]. The locus was

a high-confidence hit after realignment with LocARNA constrained at A = 20 (p =

0.93) but not in the original WGA (p = 0) and was only a low-confidence hit after

realignment with Muscle (p = 0.72). This example suggests that new hits after

realignment with LocARNA include many other functional ncRNAs.
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DroMel CAFl
DroSim CAFl
DroYak CAFl
DroEre CAFl
DroPse CAFl
DroPerCAFl

DroMel CAFl
DroSim CAFI
DroYakCAFl
DroEreCAFl
DroPseCAF1
DroPerCAFl

----------------------- TTTGAGTG-TTTCTTGTGTTCATTAAGGTTTAATGAA
----------------------- TTTTAGTG-TTTCTTGGGTTCATTAAGGTTTAATGAA
----------------------- TTTGATGG-TTACTTTGCTTCATCAAGGTTTAATGGT
----------------------- TTTGATGG-TTTCTTTGCTTCATCAAGTTTTAATGAT
GGGCCATGGCCTCCTCTGATCGATTAG-GGGTTTTCTTGCTTGATTTATCGGTTGATGGA
GGGCCATGGCCTCCTCTGATCGATTAG-GGGTTTTCTTGCTTGATTTATCGGTTGATGGA
......... 10........20........30........40........50.........

. (..))))....)).))..)))).............
TCT GA GAGTAAT 9GCTTGAAGCTGTG TTATCTGC GTAT---TGA--A
TCTA G GAGTACT GGCTTGAAGCTGGG TTATCTGC GTAT---TGA--A
TCT G GAGTATT GGCTTGAAGCTGTG GTTTCTG GCG TAT---TGA--A
TCTA GAGTATT GCTTGAAGCTGT GTTTCTGC GTAT---TGA--A
GCAA GG G -AT TAGTGA--GTGG GATTCTG GCCATAGGTGAATA
GCAA GG G----ATBTAGTGA--GTGGG GATTCTG GCCATAGGTGAATA
......... 70........80........90........100.......110........

(a) Alignment

(b) Consensus secondary structure

Figure 4-6: Example locus in the original Fly whole genome alignment
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DroMel CAF1
DroSim CAF1
DroYak CAF1
DroEre CAF1
DroPse CAF1
DroPerCAF1

-- TTTGAGT TEGTGTT --- --------- G TT GAG
-- TTTTAGT T3GTT --------- T T GAG
--TTTGATG CT CTT C --------- G GTT T TG GJGAG
--TTTGATG CT T CTT C --------- TT T GAG
GGGCCATGG C CT TC GGTTTTCTT TAT G GAG
GGGCCATGG C CT3T TC TGGGCCAtGG iT GGTTTTCTT TAT G GAG
......... 10 ........ 20 ........ 30 ........ 40 ........ 50 .........

DroMelCAF1
DroSim CAF1
DroYak CAF1
DroEreCAF1
DroPseCAF1
DroPerCAF1

...( ( ( ......( ( (. ( ( ( ( .......) )) ) .)) ) .....)) ) ..........
TAWC-------T T C ATE---TGAA -T C------ GCTGTGTTTAT CAA

TAC G------- ---T GCTGGGCTTAT CACATGT---TGAA--
TA G-------- T GCTGTGTGTTT CGCATGUT
TAT C------ --- T GCTGTGTG.TTT CACATG T - TGAA
C GGGTGAT TGAGTGGGTGATT T CATGGCTAGGTGAATACATGC TAGATA
C GGGTGAT TGAGTGGGTGATTTCATGGCTAGGTGAATA
. . 70......... 80........90........100.......110.

(c) Alignment

(d) Consensus secondary structure

Figure 4-6: Example locus realigned with Muscle
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DroYak CAFl
DroEre CAFl
DroPse CAFl
DroPerCAFl

DroMelCAFl
DroSim CAFl
DroYakCAFl
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CAAUG GUG GG UGGCCAU UAGGUGAAUA 113
CAAU GUG GG UGGCCAU UAGGUGAAUA 113
......... 70........80........90........100.......110.
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(e) Alignment

(f) Consensus secondary structure

Figure 4-6: Example locus realigned with LocARNA constrained at A = 20
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Chapter 5

Discussion

We have demonstrated the first genome-wide means for realigning ncRNAs accord-

ing to sequence and structural similarity. We introduced two techniques that make

our realignment pipeline computationally feasible. First, the stability filter removes

windows with sequences that are probably too unstable to form structure. Second,

constructing an alignment with limited deviation from a reference alignment by con-

straining the dynamic programming search space is faster than creating an align-

ment from scratch. We use this technique to make structural alignment methods like

LocARNA that are otherwise too expensive relative to sequence-similarity methods

amenable for large-scale use.

Multiple levels of evidence in the Fly and Encode experiments show that our

pipeline enhances de novo ncRNA prediction capabilities and addresses the misalign-

ment of ncRNAs. Realignment of loci with Muscle or LocARNA reveals thousands

of new ncRNA candidates predicted by RNAz in Fly and hundreds in Encode. FDR

estimations show that the pipeline has a similar fraction of false predictions compared

to just applying RNAz on the original WGA. Following the arguments of previous

screens [26, 33] for the reliability of RNAz predictions, we claim that a significant

fraction of the new candidates represent true ncRNAs, several of which in Fly are

verified by known annotations. The sequence identity distribution of the new can-

didates with respect to the original WGA are also lower than the candidates found

from the original WGA. Sequences with lower identity are inherently more difficult



to align so as to reveal underlying structural conservation. Therefore, the discovery

of a new candidate after realignment suggests that it was originally misaligned.

In addition to speed improvements, our framework for constrained realignment

also has the advantage of ensuring that only conservative changes are made to the

original WGA. All though our pipeline is careful in patching the original WGA by

replacing only sites predicted to contain ncRNAs, it still suffers from a high FDR rate

found in all de novo prediction studies [17]. In such cases the structural realignment

of a locus may actually be more inaccurate than its original alignment. By controlling

the realignment deviation A, we limit the extent to which patching has the opposite

effect of misalignment.

In all of the above measurements, LocARNA outperforms Muscle as a realign-

ment method for the pipeline. As both LocARNA and Muscle optimize for sequence

similarity, we believe that the extra leverage of LocARNA stems mainly from the

explicit additional optimization for structural similarity rather than minor details of

the alignment algorithm such as gap and substitution costs and guide tree construc-

tion. This feature is neither present in the Pecan tool used in the Fly and Encode

alignments here nor in other whole genome alignment methods. Structural alignment

is therefore important for the accurate alignment and de novo prediction of ncRNAs

in WGAs.



Chapter 6

Methods

6.1 Genome alignments

The alignment of 12 fly genomes was the same used by [26]. The genome sequences

were taken from the Comparative Analysis Freeze 1 (CAFI) genome assemblies which

were compiled by the Drosophila Twelve Genomes Consortium [1, 9] and include Re-

lease 4 of D. melanogaster. The alignment was constructed with Mercator [10, 11] to

identify syntenic blocks and Pecan [23] to align each block. The alignment was origi-

nally downloaded from the site http: //www. sanger. ac .uk/Users/td2/pecan-CAF1;

however, we were unable to locate an existing download mirror.

We used the alignment of 28 vertebrates to 1% of the human genome selected by

the Encode project [19]. The alignment was downloaded from http: //www. ebi. ac.

uk/~bjp/pecan/encode-sept-pecan-mfas-proj.tar.bz2.

6.2 Annotations

Annotations of known ncRNAs were obtained from Flybase Release 5.36 [31] and

Rfam 10.0 [15]. The genomic position of the annotations are referenced with respect

to Release 5 of the D. melanogaster genome. The coordinates were converted to

Release 4, based on the MAPPING.SQL file of the BDGP Release 5 notes, in order to

directly identify positional overlaps between loci and annotations. Annotations that



could not be mapped into exactly one assembly block in Release 4 were removed from

consideration.

6.3 Alignment tools

LocARNA can be downloaded from http: //www. bioinf .uni-freiburg. de/Software/

LocARNA/. Constrained realignment can be enabled with the '-max-diff' and '-max-

diff-aln' options.

Muscle was downloaded http://www.drive5. com/muscle/. The default settings

were used.

The Alistat tool for calculating the average pairwise sequence identity was down-

loaded from the squid package [13] at http: //selab. janelia.org/software.html.

Compalignp [36] (http: //www. biophys .uni-duesseldorf . de/bralibase/) is a "para-

noid" version of the squid package's Compalign tool. It computes the same functions

but makes extra checks that input sequences are in the correct order.

RNAalifold [4] was downloaded from http: //www. tbi. univie. ac. at/~ivo/RNA/

as part of the Vienna RNA package 2.0. The options '-old', '-color', '-p' were used to

generate Figure 4-6.

6.4 RNAz package

RNAz 2.0[3] and its accompanying Perl scripts including rnazWindow.pl was down-

loaded from http: //www.tbi.univie.ac. at/~wash/RNAz/. RNAz was ran with the

'-d' option to use the improvements in using dinucleotide shuffling for calculating MFE

z-scores. RNAz's default setting is to use the sequence-similarity trained model, and

the '-1' option was included to use the structural-similarity trained model. In the

pipeline described in Chapter 2, rnazWindow.pl was ran with the '-no-reference' op-

tion in order to filter sequences independently according to gap content and nucleotide

content. No limit was imposed by rnazWindow.pl on the sequence identity of a se-

quence or the maximum number of sequences in a window by setting the parameters



'-min-id=O' and '-max-seqs=100', respectively.

6.5 Estimating the false discovery rate

An inherent challenge in measuring the false discovery rate (FDR) of de novo ncRNA

prediction tools like RNAz is the lack of a set of sequences that are established as

true negatives, i.e. sequences that do not contain structural ncRNAs. Previous RNAz

studies [3, 26] have worked around this problem by generating a set of randomized

alignments assumed to contain no structural conservation, and hence are suitable as

a set of negatives. For each window sliced from a genome alignment, they generated

a randomized variation of the window that preserved local base-composition, gap

pattern, and conservation pattern while presumably not containing any structural

conservation. We followed a similar idea of randomizing alignment to estimate the

FDR of predictions from our realignment pipeline. First, we constructed a randomized

variation of the input WGA. We took the set of windows returned by step (1) of the

pipeline, skipped the stability filter and immediately merged and reassembled the

windows in step (3). We shall refer to the re-assemblies simply as "blocks" instead

of "loci" to avoid confusion with terminology in the rest of this section. We skipped

the stability filter in step (2) because the windows passing the filter would be biased

towards local base compositions and conservation patterns that are more likely to be

associated with conserved structure. Hence such a set of windows is not representative

of the sequence features of the original WGA. Through visual inspection, we found

that the blocks were in general longer than the loci formed by normal execution

of the pipeline because the removal of windows by the stability filter results in a

more discontinuous set of windows. For each locus, we randomized non-overlapping

windows of length 120 nt starting from the lowest column position. If the length

of a locus is not a multiple of 120, then the window in the last 120 columns was

also randomized. Following [3], a window was randomized by the shuffling of columns

with MULTIPERM [2] if the window's entropy is below 0.5 or by re-sampling nucleotides

with SISSIz [16] if the entropy is > 0.5. In this way, we generate a set of randomized



loci. By considering each locus as a sytenic block of the genomes, the blocks form

a randomized variation of original WGA that we treat as negative set of ncRNAs.

Finally, we run the entire realignment pipeline on the blocks as normal and count the

predictions.

By definition, the FDR is the expected ratio of false negatives, i.e. a site is

predicted as an RNAz hit but does not actually contain ncRNAs, to the total set of

predictions. For a given RNAz p score threshold, we will estimate

FDR = Pr[true negativeIpredict positive] (6.1)

Pr[predict positiveltrue negative] Pr[true negative] (6.2)
Pr[predict positive]

where the second equation follows from Bayes's rule. Letting Pr[true negative] < 1,

we have the upper bound

Pr[predict positiveltrue negative]
FDR - Pr[predict positive]

From the execution of the pipeline on the original WGA, we calculate the ratio of

the number of windows composing the loci after step (6) and are RNAz hits to

the total number of windows considered after step (1). This gives an estimate of

Pr[predict positive]. To estimate Pr[predict positiveltrue negative], we calculate the

same ratio but over the execution of the pipeline on the randomized blocks. Note

that windows rather than loci were counted in these ratios because the aforementioned

sampling bias of loci due to the stability filter. By counting windows, we estimate

the FDR of the entire pipeline rather than the FDR conditioned on stable loci.
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