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Abstract

In this thesis, I leveraged computational methods on biological data to better under-

stand gene regulation and development of the human body, as well as of the model

organisms mouse and yeast. Firstly, I tackled biological questions with machine

learning techniques by studying pre-transcriptional gene regulation through nucleo-

some positioning, which resulted in the identification of function-specific factors and

improved predictive performance. Next, computational analysis enabled the discov-

ery of genome-wide epigenetic modifications that play a foundational role in silencing

for the monoallelic and monogenic expression of olfactory receptor genes in mice.

Lastly, signatures of functional, bound RNA regions provide insight into a potential

protocol-specific bias and produce a new avenue for de novo discovery of functional

regions.
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Chapter 1

Introduction

1.1 Problem Statement

The sequencing of genomes has revolutionized the ways in which scientists can inves-

tigate biological processes and disease pathways; new genome-wide, high-throughput

experiments require computer scientists with a biological understanding to analyze

and interpret the data to improve our understanding about life science.

The question of how the complexity of a human body arises is fundamental to both

biological knowledge and medical treatment. Nevertheless, development has largely

remained an open question due to its complexity. Unraveling the tangled interactions

between the genome and other factors will pave the way for improvements in both

diagnosis and treatment of diseases.

While it is clear that each person's unique DNA, or genetic code, plays a central

role in development, knowing the genome is not enough. This can be evidenced by

the fact that different types of cells, from skin cells to heart cells, can encode different

phenotypes, even though they all have identical DNA. In this thesis, I study various

factors that influence and control development through pre-transcriptional and post-

transcriptional regulatory control.



1.2 Background

1.2.1 Regulation of gene activity

One of the central tenets of biology is that DNA is transcribed into messenger RNA

(mRNA), and mRNA is translated into proteins. The overall process of producing

proteins from the genetic code is generally considered gene expression, and controlling

the time period or quantity in which genes are expressed is often referred to as gene

regulation.

The underlying mechanisms of gene regulation are complex and vary widely in

different contexts. While the genes provide the genetic 'code' necessary for biological

processes, gene regulation acts as the 'control' level. Just as computer programs

must decide which sub-functions to run in which contexts, gene regulation ensures

that specific genes are expressed in specific cell types during specific time points: this

enables the same initial stem cells to differentiate into the hundreds of distinct cell

types in an adult human.

Gene regulation can imply that expression of a gene is increased or decreased, and

different types of gene regulation can occur at different points along the path of gene

expression. Since gene expression is the act of transcription (DNA to RNA), followed

by translation (RNA to proteins), some mechanisms of gene regulation occurr at the

transcriptional level, while some occurr at the post-transcriptional level. For example,

regulatory regions at the transcriptional level can be promoter regions, regions at the

the beginning of genes at which proteins bind to for initiation of transcription, or

enhancer regions, which can distantly regulate the transcription of genes. At the

post-transcriptional level, many regulatory regions fall in the 3' and 5' UTRs, at

binding sites for microRNA and RNA-binding-proteins.

Epigenetic modifications can both control and record gene regulation, as they are

heritable changes made either to DNA (DNA methylation) or to its associated histone

proteins (histone modifications). Epigenomics, which specifically studies epigenetic

modifications on a genome-wide scale, makes discoveries of large-scale patterns of

gene regulation, such as regulation of entire gene families.



Another aspect to study is the genome-wide transcription of genes, as this can give

insight into both pre-transcriptional and post-transcriptional regulation. With new

technologies such as RNA-Seq, I can identify what regions of DNA are transcribed into

RNA, the intermediate step before the RNA is translated into proteins. In this thesis,

I study protein-bound RNA, as these regions are often functional regions closely

tied to gene regulation; for example, protein-bound regions might be transcription

factor binding sites or areas of post-transcriptional modifications. By identifying

signatures in RNA-Seq data for protein-bound regions of RNA across different tissues,

I gain insight into tissue-specificities and reveal a potential bias of the RNA-Seq

protocol. Furthermore, this project provides the fundamental groundwork for de

novo annotation of protein-bound RNA regions of the genome.

1.2.2 Epigenomics and pre-transcriptional regulation

Though the sequencing of genomes was a landmark event in biology, sequence in-

formation is not enough; epigenetic modifications also play a crucial rule in gene

regulation. On a cellular level, epigenetic modifications can play a causal role in the

regulation of genes - for example, a modification might serve as a 'sign' that the

surrounding genes should be expressed. On the other hand, the epigenome might

show the history of how the genome has been used through different developmental

stages; just like hunters can find clues about nearby animals through tracks in the

dirt, scientists can see the history of a cell by observing the locations and types of

epigenetic modifications.

Specifically, the two main types of epigenetic modifications are DNA methylation

and histone modifications. DNA is tightly packed due to being wound around protein

sets called nucleosomes. The combination of nucleosomes and the DNA wrapped

around it is called chromatin, and these nucleosomes are octamers of histone proteins.

Therefore, DNA methylation is the addition of a methyl (-CH3) group to DNA, the

genetic code. Additionally, histone modifications are molecular post-translational

changes made to either the core or the long tail of certain histone proteins in the

histone octamer.



These epigenetic modifications have been shown to be associated with pre-transcriptional

gene regulation, as certain marks often have 'repressive' or 'activating' effects on the

surrounding genes. The mechanism through which this occurs is still unclear, but

there is evidence that it is related to nucleosome positioning.

As mentioned above, DNA is tightly packed in our cells by being wound around

nucleosomes. This means that nucleosome positioning can play an epigenetic role

in pre-transcriptional gene regulation. Specifically, regions of the DNA that wrap

around nucleosomes are less accessible and more closed to transcription factors. On

the other hand, the regions of DNA that link the nucleosomes are more accessible and

open to transcription factors. The state of the DNA being more or less accessible due

to nucleosome positioning is often referred to as an 'open chromatin state' or 'closed

chromatin state,' respectively. In general, it has been shown that chromatin states

are often correlated with the transcription state of the corresponding genes; they can

act as instructions for the genes present in the surrounding DNA, or they can record

the 'history' of the transcriptional state.

The naming mechanism of histone modifications provides an implicit description

about the modification. There are five major classes of histones, and the name of the

histone modification starts with the class of histone (e.g. 113). This is followed by

the single-letter amino acid abbreviation, such as K for Lysine, and the number of

the position of the amino acid in the protein. The final part of the naming procedure

is the type of modification that was applied to the amino acid, such as Me3 for

trimethylation.

1.2.3 Post-transcriptional regulatory mechanisms

The general model for gene expression is transcription (DNA to mRNA) followed

by translation (mRNA to protein). Transcription occurs through the production of

complementary RNA to the DNA of the gene, as each DNA nucleotide has a com-

plementary RNA nucleotide: Adenine DNA nucleotides are paired with Uracil RNA

nucleotides, Thymine DNA nucleotides are paired with Adenine RNA nucleotides,

Cytosine DNA nucleotides are paired with Guanine RNA nucleotides, and Guanine



DNA nucleotides are paired with Cytosine RNA nucleotides.

While the classic model is that translation from RNA into proteins follows tran-

scription, post-transcriptional regulation sometimes prevent this from happening.

Post-transcriptional regulation, as the name implies, is control of gene expression

at the RNA level, in between the transcription and translation of the gene; this can

be done through modifying the stability of the transcript or regulating the act of

translation.

There are various methods of post-transcriptional regulation. One common mech-

anism is the binding of RNA-Binding Proteins or regulatory RNA to the 5' or 3'

untranslated regions (UTRs) of the RNA transcripts. For example, AU-rich elements

(regions rich in Adenine and Uracil nucleotides) in the 3' UTR often serve as bind-

ing sites for proteins that can either stabilize or destabilize the transcript. On the

other hand, regulatory sequences in the 5' UTR can more directly affect translation

through prevention or initiation, as it is an important area for initiation of translation.

Additionally, a common example of regulatory RNA is microRNA (miRNA) binding

sites in 3' UTR, as miRNAs and their respective RNA-induced Silencing Complexes

(RISCs) can be responsble for post-transcriptional silencing through either degrada-

tion or translation prevention.

RNA-Seq data aims to measure the amount of RNA present by isolating the RNA

in cells, fragmenting and isolating it, amplifying it, and then sequencing it. Aligning

the sequences back to the reference genome gives the numbers of RNA 'reads' that

were found for each position in the genome. However, since this is an experimental

process, there is a possibility for signatures or biases in the resulting data that can

provide scientific insights about post-transcriptional regulation, as well as factors

should be accounted for in other applications of this data.

1.2.4 Model organisms for understanding human biology

Studying model organisms, such as yeast and mice, in addition to studying humans,

has proven to be an incredibly powerful technique. As there are obvious ethical

limitations on human experimental techniques, studying these model species with a



larger toolbox of techniques can reveal biological findings that can then be confirmed

in humans. Similarly, if the interactions of factors in human are too complex to im-

mediately unravel, some model organisms, such as yeast, provide similar but simpler

systems that are a crucial stepping stone for understanding humans.

1.3 Summary of research Contributions

For this thesis, I leveraged high-throughput datasets for three studies of gene regula-

tion. The initial project used the yeast genome to predict positioning of nucleosomes,

the complexes of histones attached to DNA. The second project was a study of how

epigenetic modifications play a role in the monoallelic and monogenic olfactory re-

ceptor gene regulation in mice. Lastly, I characterized a signature of functional,

protein-bound RNA in transcriptome data, which I could use in the future for de

novo discovery of functional regions.

1.3.1 Nucleosome positioning

As mentioned above, nucleosome positioning has been shown to play a critical role in

gene regulation, DNA repair and replication, and recombination. Large-scale analysis

of nucleosome positions have been carried out in multiple organisms, but the underly-

ing factors contributing to these placements remain poorly understood. Many factors

such as the frequencies of short k-mers and the periodic repeats of GC and AT rich

dinucleotides have been associated with nucleosome positioning, but their significance

has often been questioned, and models developed based on these features give only

modest performance.

I evaluated the hypothesis that nucleosomes are regulated in different ways across

varying functional classes of DNA. As yeast is the organism with the most thor-

ough and cleanest annnotations and sequencing, I used pre-existing yeast data for

our methods; I can immediately apply our findings in yeast to other similar organ-

isms, such as mice and human, both in terms of feature importance and prediction

methods. I divided nucleosome-bound and nucleosome-free regions sequences from



Saccharomyces cerevisiae into 4 functional subclasses - coding, noncoding, promoter,

and centromere/telomere groups.

Based on the existing literature, the features I chose to use were the frequency

of all k-mers of length less than or equal to 6, as well as scores to measure the

occurrence of periodic GC and AT rich dinucleotides. For feature selection, we used

F-scores to approximate the 20 most important features for discriminating nucleosome

positioning in each class and trained SVMs on data with only those 20 features.

We found that SVMs trained on specific subclasses gave, on average, at least

1.89% better performance over an SVM trained on a more general set of sequences.

Further analysis of our models suggests that their discriminatory power mostly lies

in the periodicity features, which are the three features that measure the repeating

signatures of AT and GC rich dinucleotide repeats. These are by far the most dis-

criminating features across all of our subsets, according to the F-scores, and models

composed of only these features perform nearly as well as our initial models.

We have also shown, however, that different k-mer frequencies appear to be se-

lected more frequently in some subclasses than in others. Additionally, though our

periodicity features had high f-scores across all classes relative to the other features,

the actual values of the scores varied greatly between the classes. Combined, these

facts suggest that a few very strong, general characteristics whose effects are relatively

universal may dominate nucleosome positioning; these few characteristics also likely

mask weaker function-specific signatures of positioning.

1.3.2 Epigenetic regulation of olfactory neuron specification

As multicellular organisms develop from an initial single zygote into a complex system,

cellular differentiation turns less specialized cells into more specialized cells. For

example, pluripotent cells are unspecialized, and therefore, have the potential to

differentiate into any cell type in the organism. Differentiation changes a cell's size,

shape, activity, and other physical characteristics, largely through the strict regulation

of gene activity.

Olfactory receptor neurons, the neurons responsible for our sense of cell, are one



type of specialized cell that has a strict 'one neuron - one receptor' rule: specifically,

each olfactory neuron expresses exactly one olfactory receptor (OR) gene, while all

the other OR genes are silenced. This means that each olfactory neuron has the

genetic capacity to detect any odor molecules, but the receptors are regulated so

every neuron actually detects exactly one smell. The chosen olfactory receptor gene

that is expressed in the neuron largely defines the functional essence of that neuron.

The combined power of all the olfactory neurons is what enables the brain to detect a

wide variety of smells. In this project, we idemtified the regulatory role of epigenetic

modifications for the monogenic expression of olfactory receptor genes in mice.

Olfactory receptor gene regulation is especially crucial in mice, as their sense

of smell is even more discriminating than humans; mice have over 1300 olfactory

receptor genes (approximately 5% of their genes), while humans have only about 900

OR genes. Furthermore, mice are biologically very similar to humans, so findings in

mice can often be generalized to holding in humans as well. Clearly, however, mice

provide advantages over humans due to limits on data collection for humans. The

lifespan of mice, as well as the increased experimental power provided by such a model

organism, made it a clear choice to use mice for this study.

We found that in the mouse olfactory epithelium, OR genes are specifically and

sensitively correlated with the histone modifications H3K9me3 and H4K20me3; these

marks were much less present in our control tissue, liver. We also found that other

familes of chemoreceptors, such as vomeronasal receptors and formyl peptide receptors

were also marked than the same histone modifications, although at a lesser degree.

As a result, the cell-type and developmentally dependent deposition of these marks

along the OR clusters is, most likely, reversed at a single OR allele during OR choice,

to allow for monogenic and monoallelic OR expression. In contrast to the current

view of OR choice, our data suggest that OR silencing takes place developmentally

before OR expression, indicating that it is not the product of an OR-elicited feedback

signal; this can be considered a conservative starting state for this strict regulatory

mechanism. Overall, this suggests a new role for chromatin-mediated silencing as the

molecular foundation upon which singular and stochastic selection can be applied.



1.3.3 Post-transcriptional regulation of RNA

Studies have increasingly found that post-transcriptional regulation plays a crucial

role in many scenarios of gene regulation. Furthermore, there is increasing availability

of high-throughput datasets of various human cell lines. In this project, we combine

these two factors to use deep human RNA-Seq data to study post-transcriptional

regulation across. Specifically, we hypothesized that protein-bound RNA regions

may be less accessible in the RNA-Seq protocol, resulting in an artificially reduced

signal for protein-bound regions.

To approximate protein-bound regions of RNA, we investigate conserved regions

of 3' and 5' UTRs. This is based on the fact that the majority of protein-bound post-

transcriptional regulation takes place in the 3' and 5' UTRs, as well as the fact that

conservation often implies functional importance, which is present in protein-binding

regions of the genome. The technique we use to study these specific types of re-

gions are aggregating RNA-Seq signal across the distinct instances of these conserved

regions.

The study of aggregate plots in different conditions gives insights to transcription

in different environments. For example, we can compare conserved regions in 3' UTRs

and 5' UTRs. We can also aggregate the data in different ways - either by looking

at the arithmetic sum or the geometric sum of the RNA-Seq counts. Additionally,

since we have data for 20 different tissue types, we can search for any tissue-specific

differences in signal. Furthermore, we can require a minimum window size for each

conserved region, and varying this window size allows us to see how this affects the

signature in the plot. Lastly, since conserved regions across the genome will vary in

size, we must somehow account for these differences: options are to align based on the

start or the end of the region, as well as to align in the center but scale the different

regions so they can be aligned end-to-end.

Our preliminary findings show a promising signature of a dip at the alignment

point, especially in the 3' UTR when aligned to the ends of the conserved regions.

We also see a significant correlation between the general slope of the plots and the



alignment point. We also generally see a distinct signal between the 3' UTR and

5' UTR regions, which makes some sense, since they often regulate with distinct

mechanisms.

These findings are mainly applicable in two ways. First of all, they lay the foun-

dation for de novo prediction of genetic regions that are transcribed into functional,

protein-bound RNA regions. Secondly, these experimental artifacts must be taken

into account and corrected for when RNA-Seq data is used for other studies.



Chapter 2

Nucleosome positioning

In a joint project with graduate student Nathan Haseley, I used a supervised ma-

chine learning technique, Support Vector Machines (SVMs), to produce classifiers

that predict whether a DNA sequence is in a nucleosome-binding or linker region and

investigate the factors contributing to nucleosome positioning in various functional

genomic regions. Specifically, I divided all nucleosome-bound and nucleosome-free

regions of DNA from the yeast genome into 4 subclasses: centromeric and telomeric

regions, promoter binding sites, protein-coding genes, and non-coding regions. I chose

to use SVMs because they are a straightforward technique of supervised learning to

produce a classifier from training data. Additionally, they have been shown to be

moderately successfully in previous papers concerning nucleosome positioning[52].

I measured 5462 features for each sequence and used subsets of data from each class

to select the 20 most significant features. I used both a linear and radial basis kernel to

build classifiers based on our training data. The accuracy of our models was evaluated

using cross-validation, as well as testing on labeled test sets, when sufficient data

was available. I compared these subclass-specific (centromeric/telomeric, promoter,

coding, non-coding) models to a general model, constructed in the same manner,

using a training set composed of data from all four classes of genomic sequences. By

calculating the accuracy of the subclass-specific model and general model on class-

specific test sets, I showed that our subclass-specific modes perform slightly better in

all cases.



I then further investigated the features chosen in our subclass-specific SVMs to

better understand why they were more accurate than the general model. Finally, by

investigating the features selected for each subset of data, as well as the accuracy

of the models, I gained some insight into how different features can play different

functional roles for nucleosome positioning.

2.1 Background

2.1.1 Problem Statement

DNA in eukaryotic cells is organized into a highly compact and structured form known

as chromatin. This process is mediated by interactions with histone octamers, which

bind with DNA to form nucleosomes. DNA segments of approximately 147 base

pairs in length are wrapped around each histone octamer, and the 'free', unattached

DNA in between nucleosomes are called linker regions, and are generally 10-50 bp

in length[30]. This system of DNA packaging permits cellular DNA, which can be

meters long, to fit into the nucleus, which is usually only a few micrometers in di-

ameter. Significantly, nucleosomes have been shown to play critical roles in gene

regulation both by sequestering specific DNA sequences, and by interacting with pro-

tein complexes[37, 82].

Nucleosome placement in vivo is far from random. Many nucleosomes have ex-

tremely stable positions that seem to hold across a variety of cellular conditions, while

other nucleosomes seem to migrate in response to specific signals[60]. There are also

more general trends, such as how promoter regions have been shown to be highly

enriched on linker sequences, permitting optimal access of transcription factors[60].

The importance of nucleosome placement is recognized for many reasons. Nucle-

osome placement seems to influence DNA transcription, repair, recombination, and

replication[84]. Furthermore, the incorporation of nucleosome binding site informa-

tion has been shown to improve the identification of transcription factor binding site

and other regulatory motifs[63]. It has also been suggested that understanding nu-



cleosome positioning may shed light on novel selective forces operating on DNA[78].

Finally, nucleosomes have been reported to be involved in the regulation of tissue-

specific transcripts in humans[40]. An understanding of the mechanisms used to con-

trol these placements would provide key insight into mechanisms of cellular genetic

regulation[61] and genomic processes.

2.1.2 Previous Work

Nucleosome positioning remains a puzzle, though it has been thoroughly studied

from many perspectives. Previous work has shown that some contributing factors

are nucleosome-protein interactions, sequence specificity, and steric interactions with

other histones[60, 63, 64, 84]. The majority of nucleosome prediction methods cur-

rently available rely on signature sequence characteristics, including the enrichment

of particular k-mers that influence the flexibility of DNA[63, 84] and the periodicity

of nucleosome-bound DNA fragments[81]. Recurrent patterns of AT and GC rich

dinucleotides have been reported every 10-11 nucleotides in many nucleosome-bound

sequences, corresponding to a single turn in the DNA helix. It has been suggested

that these primarily sequence-based methods account for the majority of factors in-

fluencing nucleosome positioning based on the high level of agreement between in

vitro nucleosome maps (created without the influence of proteins) and known in

vivo maps[63]. Despite this, and the amount of analysis that has gone into analyzing

nucleosome-bound sequences, these classification methods show only modest improve-

ment over a null model which identifies every nucleotide as a nucleosome bound site.

2.1.3 Approach: function-specific SVMs

I hypothesized that one failing in previous models that they have been binary in

nature; that is, all nucleosome-bound DNA sequences were treated as if they were

functionally equivalent and regulated by the same mechanisms. I did not believe that

this assumption is warranted. Intuitively, it seems that nucleosomes near functional

elements, such as transcription factor binding sites, are more likely to be regula-



tory in nature. Therefore, their position may be governed by different interactionsor

mechanisms than nucleosomes that play a more structural role. Furthermore, it has

recently been shown that histone-modifying proteins tend to target specific subsets

of histones and produce different sets of epigenetic modifications[81]. These tags may

lead to different protein interactions and affect the sterics of DNA binding.

I therefore felt that it was necessary for nucleosome positioning to be evaluated

in a functional, as opposed to structural, context. I decided to evaluate coding re-

gions, noncoding regions, transcription factor binding sites, and structural regions

(centromeric and telomeric regions) separately, using a robust supervised learning

SVM approach to improve prediction performance and identify factors important in

nucleosome positioning in each of these contexts. These specific regions were cho-

sen because they represent a variety of functional contexts and histone modification

patterns.

Model organism choice: yeast

Budding yeast, also known as Saccharomyces cerevisiae, was a clear choice for this

study. Yeast provides two crucial advantages: it is one of the most cleanly annotated

and deeply sequenced organisms, and due to the ease with which experimental tech-

niques can be used on yeast, there was already publicly available experimental data

for nucleosome positions.

2.1.4 Datasets used: annotation and nucleosome positions

Nucleosome positions

Nucleosome bound and free regions of DNA from across the Saccharomyces cerevisiae

genome were taken from the "reference set" of nucleosome positions described by Jiang

et al[33]. This data set was compiled based on agreement between six different experi-

mental datasets measuring nucleosome positioning using different technologies, and it

is the most comprehensive set of nucleosome locations available for the yeast genome.

I filtered these DNA sequences, eliminating regions with nucleosome occupancy less



than 50% (as described by Jiang et al), to remove ambiguities. Additionally, I ig-

nored all hypothetical nucleosomes and all linker regions shorter than 10bp, reasoning

that very short linker regions could bias our feature selection (see below) and that

these regions may exist primarily because of steric interactions between nucleosomes

instead of any sequence specific signals that I could detect with our SVM. All re-

maining nucleosome-bound and nucleosome-free sequences were sorted into coding,

noncoding, promoter, and structural subsets as described below and used as input for

our various SVMs. The resulting number of nucleosome-bound and nucleosome-free

sequences in each subset is given in Table 2.1.

Nucleosome-bound _ Nucleosome-free
,Coding - ~ 39756 38598

_ _ .11087
romoter 10680

Noncoding 6396 6690
-Structural 669619

Table 2.1: Number of Nucleosome-bound and nucleosome free regions of DNA per
subset. All subsets were derived from annotations in the SGD. An approximately
equal number of nucleosome-bound and nucleosome free regions are present in each
subset. As is expected, based on the contents of the yeast genome, most DNA re-
gions fall within coding sequences, with very few being present in structural elements

(centromeres and telomeres).

Annotation data

I used information from the Saccharomyces Genome Database[11] to parse the entire

Saccharomyces cerevisiae genome into coding, noncoding, promoter, and structural

regions. Any sequences contained in verified, protein-coding ORFs were considered

to be coding. All sequences located within 1000 bases upstream of a verified, protein-

coding ORF were classified as promoters. Structural regions were composed of both

annotated centromere and telomere sites. Noncoding sequence included all regions

not classified as coding or promoter regions that also did not contain putative protein

coding or RNA coding genes. All other regions, such as those coding tRNA genes

were ignored for this study.



2.2 Methods

2.2.1 Feature types and selection

K-mer and periodicity features

There is a surprising amount of disagreement in literature concerning the factors that

affect nucleosome positioning, and even how critical genetic sequence is in this process.

Most research supporting the prevalence direct sequence signatures concur that the

frequencies of relatively short k-mers and the periodic occurrence of GC and AT rich

regions are important for controlling the ability of a given sequence to bend around

and interact with histone proteins. Despite this agreement, the relative importance

of these features, including which k-mers should be used, is less certain. Because of

these ambiguities and our suspicion that specific k-mers may especially serve as sites

of protein interaction, and therefore, might have function-specific importance, I did

not want to rely exclusively on previously published literature to select our specific

features.

First, I systematically considered all the possible k-mers from k=1 to 6, and

created a feature to represent the frequency of each k-mer. The value six was a

somewhat arbitrary limit, chosen to include most of the specific k-mer instances that

have been used in previous studies while still maintaining a reasonable limit for the

number features I had to consider. For each k-mer feature, I generated a representative

value x using the following formula:

n * 4kx = I

where n represents the number of occurrences of that k-mer in the sequence, and 1

is the length of the sequence. This was to give our scores a rough probabilistic inter-

pretation; with four possible nucleotides (Adenine, Cytosine, Guanine, and Thymine),

the probability of a given k-mer given a random sequence of length k is fracl4k. The

division by 1 serves as a normalization for length, which was necessary because nu-

cleosome free sequences tend to be much shorter than nucleosome bound sequences.



Each of these k-mer features was mapped to an feature 'index': for example, the

1-mers were mapped to the values 0-3 while the 6-mers were mapped to the values

1364 through 5459.

Additionally, I considered three features that measure in the periodicity of the

sequence. It has been suggested that nucleosome bound sequences often contain both

patterns of AT-rich dinucleotides repeating with a frequency of approximately 10.3

nucleotides (the length of a single turn of a DNA helix) and GC-rich dinucleotides

with the same frequency but at an off-set of five base pairs from the AT-rich repeats.

Therefore, I performed a pair-wise comparison of AT-rich and GC-rich dinucleotides

found in each given sequence. One feature, 5460, represented the number of pairs

of AT-rich dinucleotides that were approximately a multiple of 10.3 bps away from

one another. Another feature, 5461, represented the same frequency for GC-rich

dinucleotides, while a third feature, 5462, represented the number of pairs of GC-rich

and AT-rich dinucleotides that were approximately a multiple of 5 base pairs away

from each other. The actual formula used was:

n

16 * 1

where x is the value calculated for the feature, 1 is the length of the sequence,

and n is the number of times the respective dinucleotides were found at the expected

frequency. Again, I normalized the counts by dividing by sequence length and multi-

plying by 16, since the probability of finding pairs of AT-rich or GC-rich dinucleotides

at expected frequencies is j * @= A.

Feature selection: Fisher information metric

Although I initially considered a huge number of potential features (5500) for max-

imum coverage, I had to choose the most discriminating features for our SVM, as

complexity quickly increases with the number of features. Due to the large amount of

data, I chose to use a relatively rudimentary information analysis technique to rank

the features, rather than a variant of feature subset selection. Specifically, I calcu-



lated a Fisher information metric for each of our features, with the implementation

provided with the software package LIB SVM[8]. Fisher scores represent how discrim-

inative each feature is for classifying between positive and negative examples. That is

for a set of data points, let y and a.2 be the mean and variance for the data set, while

p+, P-, o2, and .2. are the means and variances for the specified feature values of

the set of nucleosome-bound sequences and nucleosome-free sequences, respectively.

Then, the formula for the Fisher statistic for a specific feature is shown below:

F =n+(p+ - pt)2 + n-(p - )2

n+pt+ 2 + n-p_2

While this metric did not allow us to capture discriminatory power that lied in

combinations of our features, it made the feature selection computationally feasible

and straightforward. Even using this greedy approach, I was limited to running

feature selection on subsets of 1000 sequences of our data due to the cost of computing

F-scores. Separate feature selection was performed for each of the five models - one

for each of the four subclass-specific models, and one for the general model. The 20

features with the top-ranking F-scores were chosen to be used for training and testing

each model.

2.2.2 Kernel types and parameter selection

Kernel types: radial basis and linear kernel

I chose to initially use both a radial basis and a linear kernel. In theory, the radial basis

should always result in lower training error; however, that is only true assuming one is

able to find the optimal cost parameter (penalty for an incorrect classification). Since

the programs that chose parameters and trained the SVM utilized simplifications that

resulted in not searching the entire space, the radial basis kernel was not guaranteed

to perform better. Furthermore, since the RBF kernel is much more complex, it

is more prone to overfitting. Lastly, using both kernels provides an opportunity to

consider the trade-off between shorter processing times and decreased accuracy.



Parameter selection

For the radial basis kernel, I chose the cost parameter with the help of a program

(grid.py) from LIB SVM. The program took the training sets for each class, each

with its twenty most important features as input. The program outputted the ideal

parameter values for cost found from its limited search space; specifically, it considered

powers of 2 as the possible values.

Scaling feature values

The authors of LIB SVM also recommended that the feature values for training data

be scaled so that they fall between -1 and 1. Therefore, all training data sets were

scaled, and the parameters used for the scaling was stored in a range file so that the

test data could be scaled the same way. The scaling increased the speed of the SVM

model generation.

2.2.3 Training, Cross Validation, and Accuracy

Training with cross validation

The training sets of 3000 sequences with selected and scaled features were used to train

a SVM model with both radial basis and linear kernels with the provided programs

(svm-train from LIB SVM and LIB LINEAR, respectively). I obtained 5-fold cross

validation results for each of the models; this means that I subdivided the training

dataset into 5 separate subsets, and each subset took turns being the 'hold-out' set,

where training was performed on the other 4 subsets, and the hold out set was used

for testing validation.

Testing and performance measures

Additionally, I used test sets of 3000 sequences that were non-overlapping with the

training sets, when enough data was available, to calculate testing accuracy. I quan-

tified performance by overall accuracy (what percent of sequences were classified cor-

rectly), sensitivity (what percent of nucleosome-bound sequences were classified as



nucleosome-bound) and specificity (what percent of nucleosome-free sequences clas-

sified as nucleosome-free).

2.3 Results and Discussion

2.3.1 Feature selection

I selected features based on the Fischer scores, and the scores for the features of

each subclass are shown in Figure 2-1. Features 5460, 5461, and 5462, the features

measuring the periodicity of AT and GC rich dinucleotides, were by far the most

significant features in each class, though the score magnitude and relative rankings

change across sub-classes. In comparison to the periodicity features, the F-scores for

our k-mer features are all very small, but a comparison of the k-mer features is shown

in Figure 2-2. The results show that there does seem to be a slight bias towards

shorter k-mers, which would be expected from the literature. The significance of

these values will be addressed further shortly.

Feature selection was one aspect of our study that could have easily been improved.

In the future, I would like to run feature selection again on larger subsets of our data.

Additionally, I could also use F-scores to eliminate the weakest features, and then

use subset selection methods to choose the best subset of features together. While I

did not expect all the k-mer feature f-scores to perform so poorly in comparison to

the periodicity features, it was more difficult than expected to identify features that

have sub-class specific importance. However, as shown later, I still believe there is a

function-specific signal in these f-scores, but that it is overshadowed by the universal

dominance of the periodicity features.

After feature selection, I w able to use larger subsets for the remainder of the

study, since the decrease in number of features reduced the complexity so drastically.

Therefore, for the rest of the project (parameter selection, training, and cross val-

idation), I used a subset of 3000 sequences for each of the noncoding, coding, and

promoter regions as training sets. For the fourth class, telomeric and centromeric
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Figure 2-1: F values for all features. Note the difference in scale. Features 5460, 5461,
and 5462, which represent AT rich dinucleotides with a period of 10.3 nucleotides,
GC rich dinucleotides with a period of 10.3 nucleotides, and alternating AT, GC rich
dinucleotides with a period of 5 nucleotides respectively, dominate the F scores in all
subsets.
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Figure 2-2: F-values for kmer features only. Lines denote the demarcation between
differing values of k. 1-mers are shown on the left, while 6-mers are displayed on the
right. While these values do not score nearly as well as our repeat scores, they show
significant differences between our subsets.



regions, I had less than 3000 sequences to begin with, so I used the entire data set,

leaving no sequences for a test set.

2.3.2 Training, Cross Validation, and Testing

Training with 5-fold cross validation

I trained our SVM models on datasets of 3000 sequences with 5-fold cross validation.

I obtained the resulting cross-validation accuracy, shown in Table 2.2.

Subset-specific model RBF kernel CV accuracy Linear kernel CV accuracy
Promoter 85.47% 81.67%

Coding 90.83% 90.03%
Noncoding 90.57% 85.37%
Structural 92.33% 82.12%

Table 2.2: Cross-validation accuracy of subset specific SVMs on training data. Sep-
arate SVMs were trained to distinguish between nucleosome-bound and nucleosome-
free regions of DNA in promoter, coding, noncoding, and structural (telomere and cen-
tromere) regions of the genome. These were tested on subsets of 3000 pre-categorized
DNA sequences. The 5-fold cross validation accuracies are shown above.

Testing performance

For the three data sets with sufficient data (noncoding, coding, and promoter re-

gions), I also created test datasets of 3000 sequences. After selecting and scaling the

feature values in the exact same way as was done for the training set, I calculated the

predictive performance of the model on the test set: the results are shown below in

Tables 2.3 and 2.4. Due to the small number of structural sequences, a test set of

3000 could not be withheld for the structural sub-class. The results show strong per-

formance from all the models, for both sensitivity and specificity, though the models

are better at correctly identifying nucleosome-bound sequences. This performance is

much better than the 50% accuracy expected by chance.



Subset-specific model RBF kernel testing accuracy Linear kernel testing accuracy
Promoter 85.47% 81.67%

Coding 90.90% 90.23%
Noncoding 90.17% 86.53%
Structural* N/A N/A

Table 2.3: Percent accuracy of subset specific SVMs on testing data. Separate SVMs
were trained to distinguish nucleosome-bound and nucleosome-free regions of DNA
in promoter, coding, noncoding, and structural (telomere and centromere) regions of
the genome. These were tested on subsets of 3000 pre-categorized DNA sequences,
none of which were in the original training data. The percent of correct classifications
on the training set is shown above. *Structural set was not tested on a full set of size
3000 because of limited data availability

Subset-specific model Sensitivity Specificity
Promoter 97.7% 82.18%

Coding 98.7% 81.7%
Noncoding 97.2% 72.97%
Structural* N/A N/A

Table 2.4: Sensitivity and Specificity of subset-specific RBF SVMs. Sensitivity and
specificity were calculated for promoter, coding, noncoding, and structural specific
SVMs. Sensitivity is a measure of the models ability to detect nucleosome-bound
regions. Specificity is a measure of the number of nucleosome-free sites identified. As
can be seen, our models are much more effective at correctly identifying nucleosome-
bound sequences, though both are detected far better than would be expected by
chance. *Structural set was not analyzed because of limited data availability



2.3.3 Kernel and parameter selection

Kernel selection

Due to the fact that every subset-specific model with the RBF kernel performed

better on the test set than every linear model, I can conclude that the radial basis

models generalize better. That is, even though the complexity penalty based on the

VC-dimension would give a lower bound for the linear kernel, it is evident that the

overall generalization error of the radial basis model is still smaller. Therefore, the

linear models bound must be much tighter than the radial basis models bound, so

the generalization guarantee is not a good metric, in this case, for model selection.

It is clear from the testing accuracies that the RBF kernel model will result in

more accurate predictions. However, since the linear kernel is less complex than

the RBF, it should hypothetically result in faster running times by the programs.

In this case, run-time was not an issue because I used both LIB-SVM and its sister

library, LIB-LINEAR; LIB-SVM was optimized for the RBF kernel and LIB-LINEAR

was optimized for a linear kernel. Interestingly enough, this meant that LIB-SVMs

programs ran slower for the linear kernel than the RBF kernel (while the RBF kernel

was not an option for LIB-LINEAR). Runtimes for training of LIB-SVM with a RBF

kernel and LIB-LINEAR with a linear kernel were comparable for practical reasons;

though LIB-LINEAR was consistently faster, averaging less than a second, LIB-SVM

only took 2-3 seconds on average.

Since the generalization error of the RBF kernel was smaller and runtimes were

comparable, the RBF kernel was a better choice for our purposes; when SVMs are

mentioned in the rest of the paper, they are implied to be the models associated with

the RBF kernels.

Cost parameter selection

The cost parameter for the radial basis kernel was calculated by searching for the op-

timal value over a limited search space, as discussed in the previous methods section.

The resulting values found are shown below in Table 2.3.3



Subset-specific data Cost parameter
Promoter 8192

Coding 8192
Noncoding 32768
Structural 2048

Table 2.5: Cost parameters found for subset-specific training sets.

2.3.4 Classification performance comparisons

Comparison with previous work

Our SVM methods of predictions far exceed the accuracy that would be achieved by

random chance (note the near equal composition of nucleosome-bound and nucleosome-

free sequences of DNA in our subsets from table 1). This, of course, brings up the

question as to how I did compared with other classifiers and predictors that have been

developed. Unfortunately, this is not an easy question to answer. Our classifier does

much better than the majority of predictors available[52, 63, 84] , but a significant

contributor to this performance is likely that I simplified the problem by using DNA

sequences that are already divided into nucleosome-bound and nucleosome-free seg-

ments. I only had to assign a label to each sequence, not the positions where state

changes occurred. The majority of computational methods used to predict nucleo-

some positioning score the probability that a given stretch of DNA occupied by a

nucleosome and then use some type of HMM or other process to trace an optimal

path of nucleosomes through a large segment of DNA. Thus, their methods are far

more relevant for predictions in unknown sequences. I am mostly interested in us-

ing SVMs to probe how factors that affect nucleosome positioning vary among DNA

sequences and thus felt that trying to predict state transition locations was an unnec-

essary complication, especially considering the time frame of our project. I, therefore,

decided to construct a general model, using the same procedures described above, to

determine the effectiveness of our class-specific classifiers.



Comparison between subclass-specific and general models

By comparing the general model to our function-specific models, I can quantify the

improvement gained from dividing the genome into our classes before building the

models. I therefore constructed a subset of 1000 DNA regions (nucleosome-bound

and nucleosome-free) composed of equal numbers of promoter sequences, coding se-

quences, noncoding sequences, and structural sequences. Feature selection was per-

formed, as described above. A general model was trained, using an RBF kernel on

a subset of 3000 sequences, created in a similar manner. The cross-validation used

during training estimates that the accuracy of this general model is 88.3%, with a

cost parameter of 2. I then tested this general model on the subsets used to test our

other classes. The accuracies are shown in Table 2.6 below. Again, the structural

set was not included in this table because no independent test set was available to

validate this sample.

As Table 2.6 shows, sub-setting DNA segments into promoter, coding, noncoding,

and presumably structural classes provided a small but clear benefit to predictions.

This improvement cannot be the result of over fitting to the subset-specific models,

since the test sets and training sets were independent for those models. Therefore, I

can conclude that the subset-specific models performed better because the nucleosome

positioning within each class must be more similar than the positioning of other

classes. The improvement derived from sorting our genomic information could occur

in 2 ways: either the features that are influential in nucleosome positioning vary

between our genomic classes, or the weight of each feature varies between the classes.

To try to better understand the differences between our general and linear models, I

proceeded to look deeper into our feature selection results below.

2.3.5 Function-specific features

Our feature selection scores can be used to better illuminate the performance our

predictive models and determine the likely overlap between significant features across

the classes. In performing this analysis, however, potential problems with our scores



Subset-specific model Accuracy on Test Set Benefit of testing on subset
Promoter 83.7% 1.77%

Coding 89.7% 1.43%
Noncoding 87.7% 2.47%

Table 2.6: Test set accuracy of subset specific SVMs on a general test set: I developed
class-specific SVM models that were trained to distinguish nucleosome-bound and
nucleosome-free DNA sequences in promoter, coding, and noncoding regions. I tested
the accuracy of these models on a general set of nucleosome-bound and nucleosome-
free sequences and measured the decrease in accuracy from class-specific subsets (see
table 4). Note that all models performed better on class specific test sets. This
suggests that some form of class-specific regulation.

must be considered. In retrospect, given the small amount of variability between the

F-scores of the various k-mers that I used, the sample size of 1000 is a likely source of

error. To quantify the significant features between our classes accurately, I must first

verify that our feature selection within a class is reproducible. To this end, I selected

our promoter subset as the class most likely to contain biologically relevant k-mers

and repeated the F-score analysis on 5 independent subsets, each time taking the 20

most significant features; the second column of table 7 counts the number of times

each feature was selected as significant. A similar tabulation was done across our

different classes (column 3). The reproducibility of our feature selection is quite low.

Based on these results, I cannot confidently assert set of significant k-mers within each

class. Given more time, I would repeat our feature selection with different methods

and larger sample sizes. Even better methods and a larger sample size, however, may

not clarify our analysis. Biologically, the lack of reproducibility could also indicate

that many of the kmers contribute relatively equally to nucleosome positioning. If

this is the case, vary large sample sizes, even beyond the scope of what I have for our

project, may be required to adequately and reproducibly select the most significant

set of k-mers.

Dominance of periodicity features

Despite possible shortcomings, however, some results are still apparent from our data.

Features 5460, 5461, and 5462 were the top three features in all promoter subsets,



strongly suggesting that this is a biologically relevant signal. Furthermore, despite

the relatively low F-values, 3 features were present in at least 4 out of 5 promoter

subsets (frequency of C, CTG, and AT). All of these sequences were relatively short

(ki=3) and contain definite GC content biases. Thus they are similar to kmers that

have been shown to be significant in previous studies8. Additionally it appears as

though I may be observing some region-specific feature differences. Although I do not

have the statistical power to point to specific features, there appears to be far more

overlap between our various promoter subsets then there are between different classes,

as shown in Table 2.7. Many of the features that repeatedly occurred among promoter

subsets were not repeated across different functional categories (AT frequency across

4 promoter subtypes but in none of the other classes, CC was significant in 3 promoter

subsets but in none of the other classes, and 5 other features were significant in two

of the promoter subsets but in none of the other classes). It is also worth noting that

our overlaps between classes may be artificially inflated. Between the various classes

that I compared, all overlapping features occurred between the promoter class and

the noncoding class (with the exception of the periodicity features). Biologically, this

is interesting as the actual regions responsible for gene regulation within promoters

are small and likely dispersed throughout the sequence. Thus, our promoter regions

likely contain many regions that could be more accurately classified as noncoding.

With the exception of feature 16 (frequency of TA) which occurred in the coding,

noncoding, and promoter classes, none of the other classes overlapped at all. This

cannot be merely the result of sequence bias in our different classes, as the F-score

specifically measures the ability of a feature to distinguish between nucleosome-bound

and nucleosome-free sequences. Given these results, despite our inability to select

specific, significant k-mers, it appears quite clear that I am seeing the signatures of

class-specific feature selection.

Function-specific features

The very slight improvement in performance for our SVMs given by subsetting our

data made us suspect that functional differences controlling nucleosome localization



Number of subsets Number of features within different Number of features across different
promoter subsets functional categories

1 59 61
2 5 2
3 1 1
4 2 3
5 4 N/A

Table 2.7: Significant Features Across Subsets within a Class and Between Different
Classes. 5 independent subsets of size 1000 were taken from our promoter nucleosome-
bound and nucleosome-free genetic sequences and the F-statistic for each feature was
measured. Features were sorted by the number of subsets in which they ranked among
the top 20 features (column two). In column three features were sorted by how often
they ranked among the top 20 features between subsets taken from coding, noncoding,
promoter, and structural genomic regions. The large number of features occurring
in one subset among promoter subsets is likely due to the relatively small number
of samples used to do feature selection. Note, however, that the variability between
different genomic regions is larger than that within the promoter subsets.

in promoter, coding, noncoding, and structural regions may be disguised by the strong

role of features 5460, 5461, and 5462 in all of our subsets. I therefore wished to see if

these features were dominating our models as much as the F-score may suggest (figure

1). To this end I retrained our SVMs using only the periodicity features to indicate if

our k-mer features played a significant role in our predictions. The accuracy of these

models, based on cross validation are shown in table 8.

As can be seen in Table 2.8, models composed of only of features 5460, 5461, and

5462 (which measure dinucleotide periodicities) perform almost as well as our models

including 17 additional features. This adds credence to the explanation described

above that nucleosome positioning may be dominated by a few features common to

most, if not all, genomic regions. This also explains how general predictors can work

as well as they do even if region specific kmers play a role. Furthermore it is worth

noting that the improvements of our initial models over our general model corre-

late strongly with the benefit of kmer sequences in each class (Pearson's R =.9867).

While this is extremely tentative with only 3 points, it may suggest that the general

model performed worse, in part, because it did not pick up on region specific k-mer

frequencies that are important for nucleosome localization.



Subset-specific model Cross-Validation Accuracy Benefit from k-mer sequences
Promoter 84.4% 1.07%

Coding 90.2% .63%
Noncoding 87.4% 3.17%
Structural 89.6% 2.73%

Table 2.8: CV Accuracy of SVMs without kmers. SVMs were trained and tested
on the same subsets as before, but only with the use of periodicity features. It can
be seen that adding k-mer based parameters only slightly enhanced the accuracy of
predictions. Values are all based on cross-validation.

2.4 Contributions

In this project, I have learned that I can slightly improve predictive performance by

leveraging annotation data on DNA fragments to allow for function-specific nucleo-

some positioning prediction. However, the dominant sequence features are features

that capture the periodicity of alternating AT and GC-rich dinucleotides that corre-

sponds with a single turn in the DNA helix. This suggests that using only sequence

information for nucleosome positioning prediction may miss other important factors.

Finally, I provided evidence that there is likely function-specific kmers that influ-

ence nucleosome positioning, though this signal is overshadowed by dominance of

universally-important periodicity features.
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Chapter 3

Epigenetic regulation of olfactory

neuron specification

In olfactory neurons, there is a strict rule that each neuron must express exactly one

allele of one of the 1300 olfactory receptor genes. However, the mechanism behind

this monogenic expression is not yet fully understood. In this project, I found that

in the olfactory epithelium of mice, olfactory receptor genes are marked in a highly

dynamic fashion with the molecular landmarks of constitutive heterochromatin. The

cell-type-dependent deposition of H3K9Me3 and H4K2OMe3 along the clusters of OR

genes is differentiation-dependent, and it is most likely reversed during the process

of OR choice for monogenic and monoallelic expression. In contrast to the current

view of olfactory receptor choice, which suggests that the silencing of the OR genes

results from a feedback signal initiated by OR gene expression, our data suggests that

OR silencing takes place before OR expression. This implies a new molecular role of

chromatin-mediated silencing as the foundation upon which singular and stochastic

selection can be applied, shown here in OR genes, but generally applicable.



3.1 Introduction

3.1.1 Problem Statement

Olfactory receptor (OR) genes are the genes that code for the receptors that detect

smells. OR gene regulation is a topic of general interest, as OR genes are regulated

in an unusual way: specifically, in each olfactory neuron, exactly one OR gene is

expressed, while all the other OR genes must be silenced. This means that while each

neuron has the genetic capacity to detect any smell, the receptor genes are regulated

so every neuron actually detects exactly one smell. The combined power of all the

neurons enable detection of a variety of smells.

The sense of smell is especially important to mice, as they are scavengers by

nature, and they must take advantage of their powerful sense of smell to find food.

Furthermore, mice are a well-studied model organism for humans, with many genetic

similarities that allow findings in mice to often be applied to humans. Of course,

with more experimental options for mouse than for human, it made mice an obvious

choice for our study.

This project was a partnership with Prof. Stavros Lomvardass group of UCSF's

Neuroscience Department, and we worked to discover and understand what the mech-

anism is behind monoallelic and monogenic olfactory receptor gene regulation in mice.

Specifically, I performed computational analysis of genome-wide experimental data

of epigenetic modifications (ChIP-chip data).

3.1.2 Background and previous work

Olfaction

Olfactory perception, or the sense of smell, takes place through the detection of

volatile chemicals in the olfactory epithelium; the detection of these chemicals is

then transmitted to the brain, which processes the information. In contrast to other

sensory systems, olfaction requires a large family of 1000 OR genes olfactory recep-

tor (OR) genes, and these genes undergo a strict "one neuron-one receptor" rule.



That is, olfactory sensory neuron (OSN) are responsible for the detection of odors

through olfactory receptors, and in each OSN, exactly one allele of one OR gene is

expressed[6, 12]. This means that each olfactory neuron can detect exactly one kind

of odor, dependent on which of the 1000 olfactory receptors is expressed. Once OSNs

detect the chemicals, they transmit signals through their axons to the olfactory bulb,

the region of the brain involved in olfaction. The axons of olfactory neurons that

express the same receptor meet up in the same glomerulus, a spherical structure in

the olfactory bulb[48, 56, 74]; this is possible because the ORs play a role both in

odor detection, as well as guiding the axons to the proper glomeruli, effectively deter-

mining the OSN's identity in this way[1, 20, 66, 76]. As ORs are important in both

the wiring and physiology of olfaction, their proper expression is especially crucial.

The monoallelic and monogenic expression of OR genes is a difficult task: exactly

one allele must be expressed at high levels, while the other 1000 genes must be kept

silent. The repression of the non-chosen OR genes must be extremely effective, since

even a low level of transcription would result in thousands of inappropriately expressed

OR molecules, due to the high number of OR genes; each individual receptor type

would have low representation, the total OR activity of non-chosen alleles could be

comparable to the activity of the chosen allele, possibly resulting in sensory confusion.

Previous work on olfactory regulation

In the mouse, about 1400 olfactory receptors are expressed in total in the main ol-

factory epithelium (MOE); they appear to be organized in a spatial and temporal

fashion determined by positional clues[55, 58, 73]. Within each zone of expression,

however, there are still several hundred alleles that could be expressed; only one of

these alleles is actually transcribed in a seemingly stochastic fashion[67]. Previous

experiments have implied that the production of OR protein elicits a feedback signal

that prevents the expression of any other OR alleles, while stabilizing the expression

of the chosen OR[41, 65, 68]. Additionally, the OR coding sequence seems to play

an important role in the OR regulation, as there has been evidence to show that the

coding sequence represses heterologous promoters[49]. Furthermore, both enhancers



and promoters contain regulatory information[59, 65]. In the past, the Lomvardas lab

had shown that a specific enhancer, the H enhancer, interacts with active OR alleles,

suggesting that this enhancer might be instructive for OR expression[46]. However,

genetic ablation of the H enhancer only disrupted the expression of three proximal

ORs, which makes it unlikely that it is singularly responsible for orchestrating OR

choice[22, 51]. Therefore, the overall molecular mechanisms responsible for monoal-

lelic and monogenic gene regulation are still unknown.

Chromatin-mediated silencing

Chromatin-mediated silencing is an effective form of transcriptional repression, and

transcriptionally inactive chromatin is known as heterochromatin. Facultative het-

erochromatin is chromatin of silenced genes, and it is generally represented by hy-

poacetylation and di-methyl or tri-methyl groups on lysine 27 and/or dimethyl groups

on lysine 9 of histone H3[72].Since facultative heterochromatin often silences genes

in some environments and not in others, it is dynamic and appears to be develop-

mentally regulated[3, 19]. On the other hand, constitutive heterochromatin is usually

found in structural regions, such as pericentromeric and telomeric repeats, and it

remains tightly packed during the cell cycle and stable during differentiation[21, 62].

3.1.3 Approach

In our project, we tested the hypothesis that chromatin-mediated silencing prevents

the expression of OR genes in the sensory neurons. The Lomvardas lab generated

Chromatin ImmunoPrecipitation on chip (ChIP-chip) data, which provides genome-

wide data for presence of epigenetic modifications, as well quantitative PCR (qPCR)

validation at specific locations. I computationally analyzed ChIP-chip data for quality

control, normalization, identification of regions with histone marks, and statistical

quantification of significance. Furthermore, the Lomvardas lab performed additional

experiments to explain and validate our findings.



3.2 Methods

3.2.1 ChIP-chip experiments

As aforementioned, Chromatin ImmunoPrecipitation on chip, abbreviated as ChIP-

chip, is a technique that can be used to find what regions of the genome have a certain

histone modification, among other uses. The ChIP portion of the protocol isolates

out DNA that is bound to specific types of histones. In ChIP-chip experiments,

the isolated DNA sequences are then washed over a microarray chip that contains

a matrix of probes, which are complementary DNA fragments; this allows for the

identification of the isolated DNA sequences that match the probes. Based on the

coloring of the cells on the chip, one can identify the intensity of the signal for each

probe. By mapping each probe sequence back to the genome, one can estimate how

likely it is that the chosen histone modification was present across the genome.

3.2.2 Data processing, normalization, and quality control

Quality control

Since ChIP-chip is an experimental method, the possibility of experimental problems

is always a threat. Therefore, I generated graphs to assess the quality of each set

of data in a number of ways, through a standard set of techniques[71]. Since ChIP-

chip data gives both an amount for ImmunoPrecipitation (IP) - which is the type

of DNA the protocol specifically pulled down - and 'input' - which is our control, I

can compare the data distributions between the two. Ideally, one hopes for a normal

distribution for both the IP and input data, so I plotted the distributions of the two

types of data and observed if they look approximately normal. To better quantify

how 'close' to normal the distributions are, I used quantile-quantile plots (also known

as Q-Q plots), which compares the actual distribution with the normal distribution

based on their respective quantiles. Additionally, I generated a 'MA' plot of the ratio

of IP/input (on the y-axis) against the average of IP and input signal. This checks

if our data has the common problem where ratios of IP/input tend to increase with



increasingly strong average signals. Therefore, the ideal average of the cloud of points

would be horizontal line, where the average ratio does not change with the average

signal. Finally, I calculated the standard deviation for various signal intensities, again

checking for major skews.

Dataset normalization

Since ChIP-chip data is an experimental method, noise will inevitably be present

in the data; this requires normalization within one set of data, as well as across

multiple sets of data, as they are being compared to one another. I chose to try a

number of different number of normalization techniques, trying to determine which

best corrected for our experimental noise and bias. I used pre-existing normaliza-

tion methods such as quantile normalization, which is a conservative normalization

that fits the experimental data to a standard distribution, variance stabilization and

normalization[31], which normalizes for the varying intensities of microarrays, and

global normalization[80], which uses the median and standard deviation of log inten-

sity ratios to correct the data for comparison across datasets.

Additionally, I developed a tailored form of normalization to suit our use of repli-

cates and data states, which I call 'weighted global normalization;' this method was

similar to the standard global normalization, except that it weighted the data for

each of the states (H3K9me3 in OE, for example) equally, in spite of how many repli-

cates there are for a given state. Specifically, each sample of data is subtracted by

its median and divided by its mean absolute deviation (MAD), as in usual global

normalization. Then, the weighted global median and weighted global MAD is cal-

culated by first finding the average median and average MAD within each state, and

then averaging these values across all four states. Then, analogous to global nor-

malization, these 'weighted global' statistics are used to scale all the dataset values

back through multiplication of the data by the weighted global MAD and addition of

the weighted global median. Since I expect each state to have a similar distribution,

this allows each state to weight the global distribution similarly, even if certain states

have more replicates than others. The formula for weighted global normalization is



shown below, with Xi representing the post-normalized log ratio for dataset i; IP is

the original immunopreciptation signal and inputi is the original input signal, while

mi and di are the median and mean absolute deviation, respectively, for dataset i.

Xi = (log.1 - mi)(-)dg +rng
5 nputi di

m9 and dg are the weighted global median and MAD, as described above. That

is, let m, and d, represent the average mean and MAD for a single state, where n, is

the number of replicates for state s. Then, in the formula, one sums over all i's for

i E S where S is the set of indices of the datasets in the state s.

Emi
n,

E di

n

Then, the weighted global median m, and dg are calculated as follows, given that

ng is the total number of states:
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3.2.3 Detection of heterochromatin domains

I chose to detect heterochromatin domains through two general approaches: sliding

window and hidden markov models (HMMs).

Sliding window approach

Since ChIP-chip data gives us an analog signal rather than a digital one, the data

must be interpreted into regions that have the presence of the histone modification

and regions that do not. Many techniques can be used to turn the probe data into



finite binary peaks of enrichment. One powerful method for this is the sliding window

approach[34], which slides a window of fixed size across the genome, averaging over

the probes present in that window; if the resulting average meets the enrichment

threshold, that window is considered a peak.. Variations on this general approach

have been developed for specific experimental data: for example, the Model-based

analysis of 2-color arrays[70] (MA2C) specifically corrected for sequence-specific biases

based on GC probe content. Another consideration was the recent suggestion of large

regions of chromatin k9 modifications, or LOCKs[79]; we hypothesized we might find

large regions of modifications, or heterochromatin domains, as OR genes are often

already clustered together in the genome. Therefore, while most research usually

focuses on finding peaks via peak-calling, I specifically checked for large regions of

enrichment, or what I call blocks. This was accomplished by using both the MA2C[70]

and LOCKs[79] protocol, but adjusting the parameters for our data and goals. In the

LOCKs methods, averaging was performed across 500 base pair windows, while the

minimum block size was 10,000. In the MA2C pipeline, we used 2 sets of parameters:

one to find smaller 'peaks,' and the other to find broader 'blocks.' For the peaks, we

used a window to be 500 bp, with a FDR < 5%, while the 'blocks,' were found by

using a window of 10kb, with the minimum number of probes in a window being 20,

and the maximum gap of being 1,000 base pairs.

Hidden Markov Model approach

I also used Hidden Markov Models (HMMs) to detect domains of histone modifica-

tions. A HMM is a statistical model where there are various states and probabilities

of transitions and emissions. In this context, the emission was the intensity of the

ChIP-chip signal, and there were either two or three states: enriched and repressed

was used for the two-state HMM, or enriched, neutral, or repressed was used for the

three-state HMM. However, since I did not know which areas were enriched or not, I

had to use unsupervised learning with random initializations to train the model, and

then find the assignment of states to the signal that maximizes the probability of it

being produced by the model.



3.2.4 Clustering and ranking

Gene representation

To represent each OR gene, I chose to follow a protocol previous used to identify

histone modifications at human enhancers[29]. Specifically, for each gene and mod-

ification, I centered a 10k basepair window at the translation start site. Each 2kb

window consisted of 20 buckets of 100 basepairs each, where every probe's log g

was added to the appropriate bucket, and all values in a bucket were averaged, includ-

ing data from replicate experiments. Since there were many modifications, the values

for each modification H4K20me3 in OE tissue, H3K9me3 in OE tissue, H3K9me3 in

liver tissue, and H4K20me3 in liver tissue - were concatenated.

Clustering

Once I had generated the representation for each gene, I chose to use a standard

k-means clustering algorithm[15] to group genes based on their signal; this allowed

us to identify potential patterns in signal across the four states. Cluster 3.0[15] was

used to group the genes into four clusters. By tracking which genes were OR genes,

I was able to calculate how many OR genes and non-OR genes were in each cluster,

and whether there were patterns in histone enrichment for different subclasses of OR

genes.

Ranking

I also ranked the genes by average enrichment for the histone modifications in ol-

factory epithelial tissue, to see which genes had the most enrichment for these het-

erochromatic marks. This was done by taking the 20 buckets for each OE state

(H3K9me3 in OE and H4K20me3 in OE) and averaging across all 40 buckets, and

then simply ranking the genes from highest average value to lowest average value.



3.3 Results

Our data show that, in the olfactory epithelial tissue, an unusual form of heterochro-

matic silencing is present at OR genes. Our ChIP-on-chip experiments show a very

strong signal for H3K9me3 and H4K20me3 both specifically and sensitively at OR

genes in MOE tissue. The cell-type and differentiation-dependent presence of these

trimethyl histone modifications at clusters of OR genes results in compacted and in-

accessible heterochromatic macrodomains. Surprisingly, these heterochromatic marks

are found developmentally before OR transcription, implying that it is not the prod-

uct of a feedback signal from OR expression. At an active OR allele, I see a significant

reduction for the H3K9me3 and H4K20me3 modifications, with a strong signal in-

stead for the H3K4me3 histone modification, often associated with active gene expres-

sion. Lastly, I found that insertion of a reporter transgene within a heterochromatic

macrodomain results in OR-like expression of this transgene instead of ubiquitous

expression, as the transgene is silenced in most of the olfactory neurons. With this

evidence, we believe that stochastic escape from heterochromatic silencing might be

the basis of monogenic and monoallelic OR gene expression.

3.3.1 Quality control

While most of the data sets were, unsurprisingly, not ideal distributions, they gen-

erally could be shown to have no major problems. An example of the quality plots

that were generated for a single set of data are shown below in Figure 3-1.

3.3.2 Whole-genome analysis of H3K9me3 and H4K20me3

in MOE tissue

Using the gene representation described in the methods section, I was able to observe

the presence of histone marks at genes all across the genome. Using heatmaps to

represent enrichment with red and absence with green, I could organize the genes by

chromosomal positions. For example, in Figures 3-2, 3-3, and 3-4, I show the genes
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Figure 3-1: Figure 1: Quality control plots are shown for a sample array, 39849902,
which represented liver tissue with the trimethyl k9 modification. IP indicated the
immunoprecipitated DNA; Input shows the control. First row shows distributions (a
normal distribution is expected); the second row demonstrates how close to normal
the distribution is (the red line is perfectly normal). The bottom left plot shows the
log ratio (M) of IP over input against average signal (A) of IP and input, where each
dot is a probe; the ideal trend is the horizontal blue line. The bottom right plots the
standard deviation (sd) against rank of signal intensities; the ideal trend is again a
horizontal line.



in chromosomes 2, 7, and 9, in chromosomal order, with the rows that correspond

to OR genes represented in blue, while other chemoreceptor genes are indicated in

orange. This is an effective way to qualitatively study the correlation between the

heterochromatic marks and OR genes, as OR genes are positionally clustered together

in a few chromosomes, especially in the presented chromosomes.

It is immediately obvious that the histone modification enrichment is specifically

and sensitively correlated with OR genes in MOE tissue, as can be especially seen

in the OR clusters in Figures 3-2 and 3-3. Most genes, independently of their tran-

scription status, appear to be devoid of both modifications in both tissues. However,

in the MOE, there is significant enrichment for H3K9me3 and H4K20me3 on ORs.

Additionally, it should be noted that the presence of these marks is present in a tissue-

specific manner; that is, the correlation is very strong in OE tissue (left columns) and

much less strong in our control liver tissue (right columns). Vomeronasal receptor

(VR) genes, which encode receptors that detect pheromones, are also enriched for

H3K9me3 and H4K20me3 in the MOE, as can be seen in Figure 3-3 by the genes

marked with orange. ORs and VRs are hypomethylated in the liver in agreement

with published observations that report the complete absence or the low abundance

of these marks on OR genes in numerous cell types[7, 27, 38].

Additionally, as can be seen in Figure 3-4, there is also some enrichment for

H3K9me3 and H4K20me3 non-OR chemoreceptor genes, although it is not strong as

the enrichment at OR genes. Specifically, clusters of Vomeronasal Receptor (VR)

and Formyl-Peptide Receptor (FPR) genes shown in Figure 3-4 reveal presence of

heterochromatic markers similar to that of OR genes, but at a slightly lower level.

3.3.3 Heterochromatic signature for chemoreceptors

Using the aforementioned method for clustering, I performed an unsupervised 4-means

clustering on the genes in chromosome 2 to identify potential epigenetic signatures of

OR genes. The results of the signals in the 4 clusters are shown below in Figure 3-5.

The clusters roughly correspond to tiers of strength of enrichment for the histone

marks.
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Figure 3-2: Genome-wide mapping of H3K9me3 and H4K20me3 reveal a tissue-
dependent heterochromatinization of the ORs in the MOE. ChIP-on-chip experiments
with antibodies against H3K9me3 and H4K20me3 using native chromatin prepara-
tions from the MOE and liver. The log2 ratio of IP/input was calculated and used
for the construction of the heatmaps presented here. Positional heatmaps of chromo-
somes 2 is shown here. Each row represents one gene in 100 bp windows from -1kb
to +1kb of the TSS. Four states are shown as adjacent columns: OE-H4K20me3,
OE-H3K9me3, liver-H4K20me3, and liver-H3K9me3. OR genes are indicated in blue,
while other chemoreceptor genes are indicated in orange.
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Figure 3-3: Positional heatmap of chromosome 7, as described above for chromosome
2.
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Figure 3-4: Positional heatmap of chromosome 9, as described above for chromosome
2.
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Figure 3-5: Result of unsupervised 4-means clustering on chromosome 2

By tracking which genes were OR genes, I was able to identify that OR genes

were strongly clustered together, as shown in Table 3.1. Almost all the OR genes are

present in the 2 clusters that correlate with significant enrichment for histone modi-

fications; furthermore, the cluster with the strongest signal is nearly solely composed

of OR genes. All these findings show that the H3K9me3 and H4K20me3 modifica-

tions are strongly associated with OR genes. The similarity between the pattern of

epigenetic marks on OR genes indicates that these histone modifications are likely

involved in OR gene regulation.

Type of genes Cluster 0 Cluster 1 Cluster 2 Cluster 3
OR genes 33 15 161 163

non-OR genes 895 649 9 71

Table 3.1: Distribution of OR genes and non-OR genes in clusters. OR genes are
almost universally grouped into the clusters representing high enrichment for histone
modifications.
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After studying the clustering of the OR genes based on histone modification en-

richment, it quantitatively confirmed that the 'pattern' for OR genes was simply a

strong presence for the heterochromatic marks, as suggested qualitatively by Fig-

ures 3-2, 3-3, and 3-4. Therefore, I ranked the all genes in mouse based on the

average signal intensity of H3K9me3 and H4K20me3 as previously described in the

methods to see how strongly genes enriched for the histone modifications correlated

with OR genes. To present the data in a visually comprehensive manner I included

only every 15th mouse gene in the presentation, although the analysis was performed

for all the genes. In Figure 3-6, on the left, 1,000 randomly selected genes are ranked

in descending order based on their average enrichment values for the two modifica-

tions. OR genes, depicted by blue lines at the side of the heatmap, are clustered

on the very top, showing that they are the most enriched genes for H3K9me3 and

H4K20me3 in the MOE. In a zoomed-in view of the top 1,000 genes in Figure 3-6 on

the right, OR genes constitute the majority of genes with significant enrichment for

both trimethyl-marks. Using the rank-sum test, I calculated a p-value of less than

10-7 for the OR genes having such a high level of enrichment. Notably, as shown also

in Figure 3-3, type I OR genes that are organized in a unique cluster on chromosome

7 have the lowest enrichment values among ORs.

Most of the non-OR genes that are enriched for H3K9me3 and H4K20me3, rep-

resented by orange lines in Figure 3-6 are also chemoreceptors, namely VRs and

Formyl-Peptide receptors (FPRs), which matches our previous findings from Figure 3-

4. These VR and FPR genes are generally clustered in extremely AT-rich isochores

and likely follow the same regulatory logic as ORs, which explains their similar, but

lower-level, heterochromatinization(18, 42, 57]

3.3.4 Heterochromatic macrodomains cover OR clusters in

MOE tissue

I identified regions across the genome with a strong signal for the histone modifications

H3K9me3 and H4K20me3 with both the sliding window and hidden markov models,
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Figure 3-6: Ranking of genes based on enrichment for heterochromatic marks from
strongest to weakest, using the previously described gene representation. The p-value
for OR genes ranking so highly is less than 10-7 with the rank-sum test.
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but I found the sliding window approach to be much more appropriate for our data.

Hidden Markov Models

I analyzed the data with Hidden Markov Models (HMMs) as described in the methods.

However, with our data, I did not have success with unsupervised HMMs, as the

maximum probability assignments resulted in each state having approximately the

same proportion of the genome assigned to it ( 50% for 2-state HMMS or 33% for

3-state HMMs). Though this increased the sensitivity for classifying OR genes as

enriched, specificity was very important to us, due to the size of the genome, so these

results did not correspond with biological significance. Furthermore, when I adjusted

the initialization parameters to make the enriched state have a lower probability, as

this would increase specificity, the unsupervised learning struggled with a lack of data

for the enriched state. Therefore, since I found much more biologically meaningful

results with both sliding window techniques, discussed below, I chose not to use the

HMM analysis for this study.

Sliding Window

Using both the MA2C[70] and LOCKs[79] protocol, we were able to identify large do-

mains of histone modifications. Furthermore, it was clear that these heterochromatic

macrodomains covered clusters of OR genes in MOE tissue.

Since the two protocols had different benefits and drawbacks, as described in the

methods, we decided to use both of them on our data and compare the results, with

both algorithms set up to find broader range 'blocks.' From our results, visualized in

Figure 3-7 with the Integrated Genome Browser[50), it was clear that both methods

found very similar domains of histone modification; this was very promising as it told

us that the biological signal from the data was so strong that the small technical

differences in protocols did not strongly affect our findings.

Since both protocols produced such similar results, we chose to continue the anal-

ysis using only the results from the MA2C algorithm. As hinted at in Figure 3-7, we

found that in the MOE, the 'peaks' for the two histone modifications were strongly



Figure 3-7: Blocks (in blue) were found from ChIP-chip for trimethyl K20 modifica-
tions in OE tissue with the LOCKs protocol (first row) and the 'blocks' parameters
for the MA2C protocol (second row). Mouse genes are shown in green (from mm8
reference), with positive strand on top, and negative strand on bottom. The range of
the image is on chromosome 2, spanning from about 84 Mb - 94 Mb, while the blocks
range from 85 Mb 90.2 Mb, which matches with a cluster of 300 OR genes.

clustered together in broadly enriched genomic regions throughout the OR clusters in

an almost continuous arrangement (Figure 3-8). Therefore, we modified the param-

eters to find broad 'blocks' of enrichment, as described in the methods, and we con-

firmed that H3K9me3 and H4K20me3 form heterochromatic macrodomains (blocks)

that cover megabases of clustered OR genes in the MOE (Figure 3-8). Quantitatively,

we found that 1376 ORs fall in H4K20me3 blocks and 1109 ORs fall in H3K9me3

blocks, out of a total of about 1441 annotated OR genes, which corresponds to a

p-value < 10-7.

Again, as expected, the low signal for H3K9me3 and H4K20me3 in the liver tissue

resulted in very few peaks and blocks on the OR genes in the liver (Figure 3-8);

furthermore, the few peaks or blocks that were found were not close together, and

ChIP-qPCR confirmed that their enrichment for the histone marks was, in fact, very

low. It is unsurprising that there were a few spurious peaks or blocks found, since

these sliding window algorithms somewhat base their enrichment threshold relative

to the signal in the entire dataset; therefore, if there was a low signal all across

the genome in liver, then peaks and blocks would be called for regions that showed

stronger enrichment than the rest of the genome in liver, but that still corresponded

.......................................... ...........



to low enrichment when compared to the strong enrichment at OR genes in OE tissue.

We further validated our ChIP-chip results by quantitative PCR (qPCR) for mul-

tiple OR gene clusters in both tissues. Whereas ChIP-chip can give a noisy signal

across the entire genome, ChIP-qPCR can give a more precise signal for a very specific

location. qPCR for representative genes, as boxed in 3-8 are shown in Figure 3-9.

We also noted that the borders of the heterochromatic marks strongly coincided

with the borders of OR loci, as shown in Figures 3-8 and 3-10. The reported binding

of CTCF outside of OR clusters [35] or other insulating elements [16], may play a

role in the borders of OR heterochromatin aligning with OR clusters. Additionally,

the data shows that the presence of transcriptionally active non-OR genes in an OR

cluster interrupts the heterochromatin blocks, until the next OR gene reconstitutes

the heterochromatin (Figure 3-10). On the other hand, transcriptionally inactive non-

OR genes in OR clusters are partially covered by the histone modifications, which

implies that in the absence of a competing need for transcription or insulating activity,

the heterochromatin can extend over non-OR genes within an OR cluster.

3.3.5 Further experimental validation

To further study and validate the findings of the ChIP-chip and ChIP-qPCR data,

the Lomvardas lab performed more experiments to investigate the relation between

the heterochromatic histone modifications and the OR genes in OE tissue.

Characterization of OR heterochromatin

To determine if the histone modifications present at OR genes in MOE tissue resulted

in functional differences of the chromatin, the Lomvardas lab analyzed the accessi-

bility of the DNA at different loci. This was accomplished through the treatment of

nuclei from MOE and liver tissue with DNaseI to cleave the DNA, and then measur-

ing the amount of DNA at specific loci with qPCR. As demonstrated by Figure 3-11,

we found that OR genes in MOE tissue were much less digested, and therefore, most

likely less accessible, than transcriptionally active genes, while silent non-OR genes
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Figure 3-8: OR clusters in the MOE are surrounded by tissue-specific heterochromatic
blocks of H3K9me3 and H4K20me3. Ma2C analysis of our ChIP-on-chip data viewed
on the UCSC genome browser. This figure shows part of the biggest OR cluster
located on chromosome 2, which contains 240 genes and spans a 5MB region. The
thin blue (H3K9me3) or red (H4K20me3) bars represent significant peaks (FDR <
5%) identified in the MOE by MA2C using standard parameters (window=0.5 kb,
min number of probes= 5, max gap=0.25 kb); the thick blue or red bars represent
the blocks identified with parameters for the identification of large-scale enrichment

(window=10 kb, min number of probes= 20, max gap= 1kb). In the liver, there are

only a few, sporadic H3K9me3 peaks and blocks (purple). Boxed genes have qPCR
data in the following figures.
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Figure 3-9: Results from H3K9me3 and H4K20me3 ChIP-qPCR analysis using native
chromatin preparations from MOE and liver. The Ptprj gene stands at the border
of the OR cluster which coincides with the border of the heterochromatic block.
Its intron that is most proximal to the OR cluster is enriched for H3K9me3 and
H4K20me3k, while its most distal intron is free of these modifications. Zfp560 serves
as positive control.
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Figure 3-10: Part of an OR cluster on chromosome 11 is interrupted by a small
group of transcriptionally active non-OR genes, marked in green. Genes marked by
red rectangles do not have detectable transcripts, and they heterochromatic blocks
extend over these genes.



had intermediate accessibility. In liver, OR loci were similar to other genes in terms

of DNase I accessibility. These findings were also supported by other methods, such

as southern blot analysis with a degenerate OR probe (not shown here).

DNase I assay in MOE
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Figure 3-11: The ORs acquire a highly compacted chromatin structure in the MOE.
DNase I accessibility assay with nuclei from both MOE and liver is presented here.
Nuclei were treated with DNase I, DNA was isolated at various time points (2 to 40
min) and equal amounts were used for qPCR. The amount of DNA measured at each
interval was expressed as a fraction of the DNA present at 2 min of enzyme treatment
and was plotted over time. We assayed several ORs as well as genes that are active
or inactive in the MOE or liver, and their mean is shown here, with representative
data from one experiment. In MOE, the ORs appear to be more resistant, suggesting
they are less accessible.

OR silencing independent of OR expression

Since the MOE tissue is composed of multiple cell types[17], we performed experi-

ments to confirm that our results in OE tissue actually reflected the state of the OSNs

specifically. For this purpose, the Lomvardas lab performed fluorescence-activated

. .... ...... .. .



cell sorting (FACS) experiments followed by ChIP-qPCR. That is, we isolated ma-

ture OSNs from OMP-IRES-GFP mice and, as seen in Figure 3-12, the OR genes

tested have high levels of enrichment for both H3K9me3 and H4K20me3 in OSNs.

Each OR gene was expressed in 0.1% of the OSNs, which supports the idea that the

majority of OR genes would need to be silenced.

*=mK~me3
mature OSNs (OMP-GFP+) ,

2

0

Figure 3-12: ChIP-qPCR assays for H3K9me3 and H4K20me3 in sorted cell popu-
lations from the MOE. GFP+ cells (mature OSNs) were isolated with FACS from
OMP-IRES-GFP mice and were used for ChIP-qPCR experiments. Golf, Tbp and
Omp are active genes in these cells that are used as negative controls, while Zfp560
and major satellite repeats are used as positive controls. Olfr690 is a type I OR.

Additionally, to determine whether the heterochromatic silencing was indepen-

dent of or a result of OR expression, we sorted sustentacular cells from the MOE[9];

sustentacular cells are present in OE tissue and have common developmental ances-

tors with the OSNs, but they do not express ORs. As shown in Figure 3-13, we found

similar levels of H3K9me3 and H4K20me3 in the sustentacular cells as in the OSNs,

suggesting that marking of OR genes with H3K9me3 and H4K20me3 occurs in the

absence of OR expression. This raises the possibility that trimethylation of lysines 9

and 20 takes place before OR activation.

To further investigate the possibility of heterochromatic silencing before OR ex-

pression, we performed ChIP-qPCR analysis in progenitor cells, starting with the

most multipotent cells of the MOE, the HBCs[39]. Our results, as shown in Fig-

ure 3-14, indicate that there is no enrichment for H3K9me3 and H4K20me3 on OR

........ . ...... . . ......... ...... ..... . ... ...... ........



*H13K9me3

4- Sustentacular (Sus4+) M onses

1 3

C 2

0

lb- N
Figure 3-13: ChIP-qPCR with isolated sustentacular cells. Cbr is transcribed in these
cells and is used as a negative control.

genes, although there is a strong signal for H3K9me2 (not shown), suggesting that in

this multipotent cell, ORs are repressed via mechanisms that differ from repression in

OSNs. Additionally, we checked the chromatin state of OR genes in other progenitor

cells from the MOE that are negative for OMP, ICAM-1, iLR, and SUS4; the result

was that the enrichment for H3K9me3 and H4K20me3 appeared to be as high as in

the OMP+ cells in Figure 3-15, even though, according to RT-PCR, this population

does not express ORs (Figure 3-16). Again, this suggests that the trimethylation of

OR genes occur developmentally before OR expression.

To study a cell population that is more well-defined, we studied a Neurogenin1-

GFP (Ngnl-GFP) BAC transgenic reporter mouse from GENSAT[28]. RT-PCR anal-

ysis showed that these cells represent a mixed population of progenitors and immature

neurons (not shown). We found that Ngn1+ cells had 8-fold lower mRNA levels than

the mature OSNs for 1185 OR genes (not shown), and, importantly, in the Ngn1+

cells, 95% of OR genes have transcript levels similar to the transcript levels of silent

genes (data not shown). Therefore, the low levels of OR mRNA in these cells likely

reflects a small percentage of contaminating mature OSNs. When we performed FACs

and ChIP-qPCR on the Ngn1+ cell population, we found high levels of enrichment

for H3K9me3 and H4K20me3 on OR genes, demonstrating similar heterochromatic

.. ............ ...... ..... . ........ .. -- - -___ -- . ....... .... . .
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Figure 3-14: ChIP-qPCR experiments with isolated HBCs.

immature neurons
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Figure 3-15: ChIP-qPCR with immature neurons and progenitors from the MOE
isolated by collecting cells that are quadruple negative for OMP-, ICAM-, iLR- and
Sus4-.
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Figure 3-16: RNA isolated from combined OMP-GFP+, sustentacular and basal cells,
or quadruple negative cells was used in qRT-PCR reactions with primers for different
ORs. Actin was used as endogenous control.

signature with the mature OSNs (Figure 3-17). This confirms our belief in the con-

tamination of the population; if only the few cells that exhibited expression of OR

genes had contributed signal for the histone modifications, then the trimethylation

signal would have also been 8-fold lower in the Ngn1+ cells. Therefore, the ChIP-

qPCR data from the quadruple negative cells and Ngn1+ cells are consistent with

H3K9me3 and H4K20me3 having been deposited on OR genes before OR expression.

We wanted to test the significance of the transition from di-methylation to tri-

methylation at the OR genes during MOE differentiation, so we performed southern

blot analysis on ICAM1+, Ngnl+ and OMP+ cells. Figure 3-18 demonstrates that

the differentiation of HBCs to Ngnl+ cells coincides with increased protection from

DNase I digestion, suggesting that this epigenetic transition results to a less accessible

OR chromatin structure retained in mature OSNs.

Epigenetic switch accompanies OR choice

To investigate the state of the single active OR allele in OSNs, we used FACS to

select neurons expressing the olfactory receptor P2 from P2-IRES-GFP knocked-in

mice. We isolated 40,000 GFP+ and GFP- neurons, which, respectively, do and do

not express the P2 allele, from P2-IRES-GFP heterozygote mice, and we performed

.... ... ....... ..... .... .............. .. .. ........
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Figure 3-17: ChIP-qPCR analysis of the GFP+ cells that were isolated by FACS from
Ngnl-GFP mice and were used for ChIP experiments for H3K9me3 and H4K20me3.

ChIP-qPCR for H3K9me3 and H4K20me3 on them. As seen in Figures 3-19 and

3-20, the enrichment for H3K9me3 and H4K20me3 is significantly reduced on the

active OR allele, in comparison to the strong presence of the marks on P2 where it is

not the active allele. Though the presence of these marks was reduced on the active

allele, they were not completely removed; control experiments indicate that this is

due to 30% contamination of the population, which is unsurprising since we were

selecting for an extremely rare population ( 0.05% of total cells in the MOE).

Next, we performed a double FACS experiment to obtain a purer population; the

GFP+ cells were sorted again, resulting in a > 95% GFP+ population, using MOR28-

IRES-GFP heterozygote knock-in mice ,as they provide more GFP+ cells. As seen

in Figure 3-21, ChIP-qPCRs from this extremely pure population provides strong

evidence that H3K9me3 is absent from the transcriptionally active allele, MOR28.

To further probe the epigenetic state of the single active allele, we performed

ChIP-qPCR on P2 for H3K4me3, a histone mark commonly associated with ac-

tive promoters[25] that has a mutually exclusive distribution with H3K9me3 and

...... ... ...... ___ __ - - 11-1 - - - - __ --- - __ - -- --__ -1
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Figure 3-18: ICAM+ cells, Ngn1+ cells and OMP+ cells were sorted from the MOE
tissue of adult mice. Their nuclei were extracted, digested with DNase I, and analyzed
by agarose gel electrophoresis and Southern blot with a degenerate OR probe or a
ribosomal probe.

H3K9me3 ChlPs in p2-GFP+ cells

T

4T

6 H3K3me3 chiPs In p2-GFP- Cells

4-2~i i
Figure 3-19: GFP is hypomethylated on H3K9 (left) in the GFP+ cells, where it is
transcribed, but not in the GFP- cells (right), where this P2 allele is inactive. The
inactive allele, amplified specifically by the p2WT primers, shows high enrichment for
H3K9me3 in both GFP+ and GFP- populations. Omp and Tbp are used as negative
and Zfp560 and repeats (major satellite) as positive controls.
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Figure 3-20: H4K20me3 ChIPs with P2-GFP sorted cells.
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Figure 3-21: As above, but the GFP+ cells from the MOR28-IRES-GFP heterozygous
mice were subject to a second round of FACS to yield a > 95% pure population, which
were then used for H3K9me3 ChIPs.
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H4K20me3[54]. As expected, H3K4me3 cannot be detected on OR promoters using

chromatin preparations from the whole MOE (data not shown), but in Figure 3-22

there is enrichment for H3K4me3 only on the P2 promoter and CDS in the GFP+

population. This supports the idea that selection of the P2 allele is associated with

the removal of H3K9me3 and H4K20me3. Although H3K4me3 is strongly present the

active P2 allele, it is missing from the neighboring P3 and P4 genes 3-22, despite the

sequence similarity between these genes and their expression in the same zone.

H3K4mm3 CNPs
4

.Op2CDS

C 2 r 8p3pum

r177pror.

p2-GFP+ p2-GFP-

Figure 3-22: We repeated the same ChIP-qPCR experiment with an antibody against
H3K4me3. There is significant enrichment for H3K4me3 throughout the P2 gene, but
not on the neighboring P3 gene or a distant OR gene (Olfr177) in the GFP+ cells.
As expected, there was no H3K4me3 on the P2 gene, or any other OR gene, in the
GFP- cells. Values are the mean of triplicate qPCR, while error bars represent the
SEM.

Heterochromatic marks induce silencing and OR-like expression

Our data suggested that heterochromatinization of OR loci was universally repressing

the OR genes, so to test this hypothesis, we examined a transgenic mouse, where a

OMP-LacZ transgene had been inserted proximal to a singular OR gene. Unlike

numerous other OMP-LacZ or OMP-GFP independent transgenes that are expressed

in the majority of olfactory neurons[49, 75], this transgene was silent in 99.9% of the

neurons and has a sporadic and mostly zonal expression reminiscent of that of the

neighboring OR[53].
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Mapping the exact insertion site of this transgene revealed that it resides approxi-

mately 55kbs from Olfr459, as shown in Figure 3-23. ChIP-qPCR experiments showed

that the insertion site is heterochromatinized in both the wild type and transgenic

mice, as shown in Figures 3-24 and 3-25; ChIP-qPCR also indicates that the reporter

is itself marked by H3K9me3/H4K20me3 in an tissue-specific fashion, in contrast to

the endogenous OMP promoter, which is unmethylated (Figure 3-25).

a
01fr459 A B OMP4aCZ C

Figure 3-23: Graphic representation of the Olfr459 locus and the OMP-LacZ insertion
site located 55 kb away. Positions marked A, B, and C depict assayed regions in the
qPCR analysis below.
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Figure 3-24: ChIP-qPCRs with chromatin from the MOE of wild type mouse show
that the Olfr459 is enriched for H3K9me3 and H4K20me3. Both modifications appear
to extend to the insertion site.

To examine whether the insertion of the OMP transgene resulted in monoallelic

expression, we compared the number of #-gal+ cells between homo- and heterozy-

gous mice. As seen in Figure 3-26, OMP-LacZ homozygotes have approximately 1.8

fold more #-gal+ cells than heterozygotes, consistent with a monoallelic expression

pattern. Finally, to test whether the transgene is under the transcriptional control
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Figure 3-25: ChIP-qPCR analysis of the MOE and liver from OMP-LacZ positive
animals. Both H3K9me3 and H4K20me3 show MOE-specific deposition on Olfr459,
the OMP-LacZ transgene, and the regions proximal to these loci.

of the proximal OR locus, we crossed this transgenic mouse to the Emx2 knockout

mice, as Emx2 is required for the expression of Olfr459[47]. We found that reporter

expression is abolished in the transgenic - Emx2 knockout offspring, suggesting that

this transgene conforms to the regulatory logic of the neighboring OR (not shown).

3.4 Contributions

In sum, our data strongly suggests that the presence of histone modifications H3K9me3

and H4K20me3 result in chromatin-mediated silencing of Olfactory Receptor (OR)

genes developmentally before OR expression. The transcriptional activity of a single

OR allele in an olfactory neuron is likely then made possible through the de-repression

of that allele, with the repressive marks replaced with the active histone modification

H3K9me2. This transcriptional activity then most likely triggers the previously-

supported feedback signal that prevents the de-repression of any other OR alleles in

that neuron.
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Figure 3-26: X-gal stains of lateral whole mounts of the nasal cavities from hemizy-
gote and homozygote OMP-LacZ animals. N, number of biological replicates. The
calculated p-value was less than 10-4, as calculated by the Students t-test.
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Chapter 4

Post-transcriptional regulation of

RNA

Though mRNA is the classic example of RNA, other types of functional RNA have

been shown to play an increasingly important role in gene regulation. For example,

the discovery of hundreds of long intergenic non coding RNAs (lincRNAs)[26 and

enhancer RNAs (eRNAs) [36] has given increasing evidence of the important role of

post-transcriptional regulation. Post-transcriptional regulation of RNA often occurs

through binding to the RNA, either with protein-RNA interactions or RNA-RNA

interactions. Past attempts at identification of binding sites for post-transcriptional

have had moderate success through use of sequence information[36].

Here, I search for signatures of functional RNA regions through RNA-Seq data,

rather than sequence information. RNA-Seq measures the amount of transcribed

RNA present across the genome, and I believe that this protein-RNA or RNA-RNA

binding for post-transcriptional regulation can leave a signature in the RNA-Seq data.

In this project, I computationally identified signatures of human RNA-Seq data for

RNA regions of post-transcriptional regulation based on aggregate plots aligned for

conserved regions of 3 UTRs and 5 UTRs. By comparing across different tissues,

average types, alignment points, and UTR regions I found specificities for different

conditions.



4.1 Introduction

4.1.1 Problem Statement

Animal genomes encode a variety of RNAs, including both protein-coding and non-

coding RNA (ncRNA). Recently, thousands of instances of one class of ncRNAs, long

intergenic non-coding RNAs (lincRNAs), have been identified[26]. Experimental re-

sults implicate lincRNAs as major contributors in the regulation of gene expression[32],

but their mechanism of action is not known. Additionally, post-transcriptional reg-

ulation is a prevalent mechanism for gene regulation, as large amounts of mRNA

are never translated into proteins. Lastly, the technique of transcriptome sequenc-

ing, or RNA-Seq, has become popular since its inception, due to the importance of

measuring levels of RNA at high coverage with a reasonable cost. In this project, I

combined these findings by leveraging biases in RNA-Seq data to identify signatures

for RNA regions involved in post-transcriptional binding. This will allow us to even-

tually pursue de novo detection of function RNA regions. Furthermore, this provides

information on what biases to expect to see in RNA-Seq regions, so future studies

can more accurately use RNA-Seq data.

4.1.2 Related work

Dr. Loyal Goff, who works with both Kellis and Rinn laboratories, is currently

working to develop an RNase assay. This assay will identify DNA that codes for

protein-bound RNA, as these RNA are candidate functional regions involved in post-

transcriptional modifications. The protocol for this assay will be to cross-link the

RNA with proteins, digest the RNA that is not protected by proteins, uncross-link

the RNA-protein complexes, reverse transcribe the remaining RNA, and sequence

and align the resulting cDNA.



4.1.3 Approach

However, as this novel protocol presents many biological obstacles, I developed a

novel computational method for Transcriptome Sequencing (RNA-Seq) data analysis

to study protein-bound RNA. The Broad Institute had previously generated RNA-

Seq data across 16 human tissues, I was able to directly use this data. RNA-Seq

experiments measure levels of RNA transcription by using reverse transcription, but

RNA bound to proteins will be 'protected' from reverse transcription, which should

result in reduced levels of RNA-Seq reads in these regions. Since conservation gener-

ally signals functional importance[2], I identified an RNA-Seq 'signature' of functional

RNA by examining aggregate plots of RNA-Seq signal at conserved 3' and 5' UTR

regions of the genome.

4.2 Methods

4.2.1 RNA-Seq

RNA-Seq is a technique that takes advantage of next-generation sequencing technolo-

gies to profile the transcriptome[77]. In the past, genomic tiling microarrays were com-

mon to approximate the transcriptome, as they were high throughput and relatively

inexpensive, and could reach a high resolution with specialized chips[14, 83, 4, 10].

However, drawbacks of genomic tiling microarrays include assumptions about the ge-

nomic sequence, problems of cross-hybridization and complicated normalization[77].

Other sequence-based approaches before RNA-Seq included Sanger sequencing of

cDNA, but this approach was low throughput, expensive, and not quantitative[5, 24].

However, RNA-Seq has quickly become the dominant method of transcriptome

profiling. The technique is to convert a population of RNA into a library of cDNA

fragments; by sequencing the resulting cDNA in a high-throughput manner with

either single-end or paired-end sequencing, one can obtain reads between 30 and 400

bp. The alignment of these sequenced cDNA fragments to the genome results in a

genome-wide quantitative measure at the single-nucleotide level for the amount of



transcript present.

Advantages of RNA-Seq include single-base precision, no need for previous knowl-

edge about the genomic sequence, low background signal, less RNA sample, a larger

possible range of expression, high reproducibility, and lower cost[77].

In the available RNA-Seq data, the 16 human tissues profiled were adipose,

adrenal, brain, breast, colon, heart, kidney, liver, lung, lymph node, ovary, prostate,

skeletal muscle, testes, thyroid, and white blood cell.

4.2.2 Conservation

Many different conservation scores have been generated with varying methods and are

publicly available. Existing examples are phastCons[69], GERP[13], PhyloCSF[43],

and SiPhy[23]. Because I was looking for conserved elements in 3' and 5' UTR

regions, rather than coding regions or single-nucleotide resolution scores, I chose to

use SiPhy[23] with analysis of 12-mers.

SiPhy[23], or SIte-specific PHYlogenetic analysis, uses a probabilistic model for

aligned sequences to describe molecular evolution by taking advantage of deeply se-

quenced clades and biased substitution patterns. For our purposes, I used human

(hg18) elements found with SiPhy using 12mers across 30 mammals as generated

for the 29 mammals paper[44] currently in review. Furthermore, since I am looking

specifically in 3' UTRs and 5' UTRs regions, I only kept conserved elements that

overlapped with 3' UTRs and 5' UTRs, and we distinguished between elements for

each UTR, as they have functional differences.

4.2.3 Aggregate plots

An aggregate plot takes a number of regions across the genomes and aggregates, or

stacks, the information at each region on top of one another. This can be accomplished

by taking the arithmetic or geometric mean across the regions, dependent upon the

type of signal you are looking for and the expected distribution of signal across the

regions.



One of the main decisions that must be made for aggregate plots is how to align

the regions so that they are comparable. They can either be centered at comparable

relative locations, or they can be scaled to match each other in size. However, care

must be taken so that artifacts are not created in the plots through selection of the

regions or alignment.

Aligning the conserved elements by their end points or start points shows a clear

distinction between the relative positions that are conserved or unconserved, correct-

ing for strand orientation. However, the use of all the found elements could result in

an artificial signal due to a large discrepancy between the number of elements avail-

able at varying distances from the alignment point. Therefore, I chose to use varying

window sizes for our plots, filtering out any elements that were shorter than the half

of the window size. Therefore, the end result is aggregate plots from a range of rel-

ative positions of -window to window where the relative position of 0 represents the2 2

alignment point, and negative positions are upstream of the alignment point, while

positive positions are downstream. The filtering of conserved elements ensures that

across the entire window, the same number of conserved elements should be aggre-

gated, except for bases where RNA-Seq reads are not available, due to factors such

as repetitive sequences.

For the aggregation of the data over many regions, the use of an geometric or

arithmetic mean could be appropriate. While the arithmetic mean is a more straight-

forward average that assumes every read is weighted equally, regardless of which

conserved element it is associated with, the geometric mean will minimize the weight

of reads that come from elements with many reads associated with; this could help

avoid dominance of the aggregate plot by a few elements that were sequenced at

abnormally high levels.

In summary, the parameters that must be determined for each aggregate plot are

1) the tissue type the RNA-Seq data came from; 2) the selection of conserved regions

overlapping either the 3' UTR or the 5' UTR; 3) the window size; 4) the use of a

geometric or arithmetic mean; and 5) the alignment point of the start or end of the

conserved region.



4.3 Results

By comparing across the different parameters, patterns and signatures appear in the

aggregate plots. A small subset of plots is presented below in Figure 4-1 for brief

comparison. On the whole, varying window sizes and cell types tended to result in

consistent plots, given that the other parameters were held constant. However, the

alignment point and chosen UTR made a significant difference in the shape of the

plot.

4.3.1 Window sizes

Investigating plots with varying window sizes seem to indicate that the appropriate

window size varies dependent on the other parameters. For example, in the 5' UTR

conserved regions aligned by the end points, the signal is relatively consistent across

window sizes, but it is certainly strongest and clearest with small window sizes, as

shown below in Figure 4-2. The zoomed-out window and noise makes it difficult to

interpret the plot with a window of 800bp, while the window of 50bp makes the dip

at the alignment point obvious.

However, in another representative example, with 3' UTR conserved regions aligned

by end points, as shown in Figure 4-3, the signals seem to significantly vary across

different window sizes. The small window sizes seem to merely indicate a downward

trend, while the larger window sizes seem to show a dip. One possible explanation

for that is that the type of binding happening in the 3' UTRs is occurring with larger

proteins or complexes that result in broader dips, while 5' UTRs, as shown in 4-2,

are being affected by smaller regions of binding. However, this is probably not the

case, as 5' UTRs have a median size of about 150 nt[45]. Therefore, due to this fact

and the variation across window size, it is unclear whether the signal is biological and

simply only shows up with certain computational measurements, or if it is merely an

artifact of the methods. For these scenarios, it would be very useful to integrate our

findings with experimental validation to make that important distinction.
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Figure 4-1: RNA-Seq aggregate plots at a 500 bp window with varying parameters.
RNA-Seq data measures the amount of transcribed RNA present across the genome.
These plots allow for the identification of signatures of human RNA-Seq data for
functional, protein-bound RNA regions based on aggregate plots aligned for conserved
regions of 3 UTRs and 5 UTRs. By comparing across different tissues, average types,
alignment points, and UTR regions, I found specificities for different conditions.
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Figure 4-2: RNA-Seq aggregate plots with varying window sizes, for adipose tissue,
using a geometric mean with conserved elements overlapping 5' UTRs. Window sizes

represented are 50bp, 100bp, 500bp, 600bp, and 800bp, from left to right, top to

bottom.
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Figure 4-3: RNA-Seq aggregate plots with varying window sizes, for adipose tissue,
using a geometric mean with conserved elements overlapping 3' UTRs. Window sizes
represented are 50bp, 100bp, 500bp, 600bp, and 800bp, from left to right, top to
bottom.

4.3.2 Cell types

Generally, the signatures between different tissue types seem quite similar, as can be

seen below in Figure 4-4 this is not surprising, as the conserved regions identified

were not tissue-specific, so functional regions for specific tissues most likely either

would not be included or would be overshadowed by the general conservation signal.

Interestingly, however, it can be noted that, though the shape of the plot is consistent,

the absolute values generated for the mean fall in differing ranges, suggesting that

tissue-specific variances in level of transcription or sensitivity for RNA-Seq data may

exist.

4.3.3 Alignment point

Somewhat surprisingly, the point of alignment made a big difference in the shapes of

the aggregate plots. One obvious trend is that aligning at start points results in a

generally positive slope in the aggregate plot, while aligning at end points results in

nomaized_PuAdipos_log_3UTR_1000-nd100 100.x

nonaied_ 61aIp- oselg_3UTR_1000_and_400_400.txtnomnad_outWdpose log_3UTR_100_end_250_25.txt
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Figure 4-4: RNA-Seq aggregate plots with varying cell types. Cell types represented
are adipose, adrenal, brain, breast, colon, heart, kidney, liver, lung, lymph node,
ovary, prostate, skeletal muscle, testes, thyroid, and white blood cell, from left to
right, top to bottom. The plots were generated with a geometric mean for conserved
elements overlapping 5' UTRs.
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a generally negative slope, as shown in Figure 4-5; this indicates that in general, the

conserved parts of the plot have a higher amount of sequencing, since the alignment

at start points result in right half of the plot falling in the conserved region, while

alignment at end points results in the left half of the plot falling in the conserved

region. However, it is notable that this trend seems to be much stronger with the 3'

UTR aggregate plots aligned at the end point and 5' UTR aggregate plots aligned at

the start points than with the 5' UTR-end and 3' UTR-start plots.
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Figure 4-5: RNA-Seq aggregate plots with both start and end alignment points, for
both 3' and 5' UTRs. The data shown is for adipose tissue, using a geometric mean
with conserved elements.
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4.4 Future work

4.4.1 De novo discovery of functional regions

In the future, I plan to leverage the signatures found here in end alignments of 3'

UTRs and start alignments of 5' UTRs to computationally detect similar signatures

in the RNA-Seq across the genome as potential regions for functional binding. I will

develop statistics to quantify how closely a window of RNA-Seq data matches the

signature, and use these statistics to identify novel functional regions.

4.4.2 Validation with RIP-Seq data

Integration with experimental RIP-Seq data will improve the power of the signature

identification, as well as provide validation of our findings. The RIP-Seq protocol

has been successfully developed and tested, so the resulting data should be available

soon. Hopefully, the RIP-Seq data will immediately validate our current signatures

for protein-bound regions, as I can simply substitute our conserved regions for en-

riched regions from the RIP-Seq data. If the signatures for regions in the RIP-Seq

data diverge from the signatures of the conserved regions, we can further investigate

what varying signals each might target. Furthermore, we can use the experimen-

tally identified regions to validate the accuracy of regions identified through de novo

discovery of functional regions.

4.4.3 Identification of bias in RNA-Seq method

Preliminary findings suggest that RNA-Seq has a bias for lower levels of transcription

for functional RNA regions, most likely due to inaccessibility as a result of protein

binding. In the future, I can validate this both with RIP-Seq, as described above,

and with transcriptome data from micro-array experiments. The comparison of tran-

scriptome data from RNA-Seq with targeted microarray data will also determine if

the signal is a result of biological changes in transcription levels (if the levels of tran-

scription are similar) or if it is a protocol-specific bias (if we only see the signature in



RNA-Seq data).

4.5 Contributions

In this project, I compared the transcription of different types of regions and identified

a signature of conserved functional regions. Using this signature, I will be able to

perform de novo discovery of functional regions and identify whether there is a bias

in the RNA-Seq method. These insights increase our understanding of genome-wide

transcription, and the identification of specific novel functional regions improve the

annotation of the genome, influencing the development and conclusions of future

studies. The identification of any protocol-specific bias will also influence future

studies that use RNA-Seq data, as they can leverage the conclusions to correct or

target data.
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Chapter 5

Conclusion

5.1 Contributions

The research presented here has contributed to our understanding of gene regulation

and development in the following ways:

" the unveiling of the mechanism of silencing that serves as a foundation for a

crucial process of olfactory neuron specification,

* the discovery of an unusual form of tissue-specific heterochromatic silencing

associated with histone marks H3K9me3 and H4K20me3,

" the identification of universal periodicity features and function-specific k-mers

important in nucleosome positioning,

e the improvement of supervised prediction of nucleosome positioning through

the subdivision of functional regions,

" a comparison of signatures for RNA regions of post-transcriptional modifica-

tions,

" the platform for de novo prediction of functional RNA regions,

* and a, potential RNA-Seq specific experimental bias.



5.2 Further work

Further research that builds on the work presented here will be very valuable. For

the nucleosome positioning project, the quantification of the presence of function-

specific k-mers would give insight into known and novel motifs for pre-transcriptional

modifications. Current work regarding the olfactory receptor gene regulation project

is already being performed to determine the controlling factors that give rise to the

abrupt and strategically located borders of the heterochromatin, such as motifs, nucle-

osome positioning, binding sites for the transcriptional repressor CTCF, counteracting

chromatin modifications, or other insulator elements. Furthermore, the Lomvardas

lab is also looking for motifs in the coding regions of the olfactory receptor genes, as

that may be the nucleation site for the heterochromatin. Lastly, for the signature of

functional RNA regions, the integration of RIP-Seq data will play a crucial role in

validating our findings; these signatures will then be used for the discovery of novel

functional RNA regions.

5.3 Conclusion

The work presented in this thesis studies the regulation of gene expression in dif-

ferent ways. We studied three organisms with varying degrees of complexity, with

each project pinpointing different stages and mechanisms of gene regulation and uti-

lizing different experimental and computational techniques. Through these studies,

we made both general and specific discoveries that apply experimentally and com-

putationally. While there is still much to be learned about epigenomics and gene

regulation, we are hopeful that, with the progress we have made in these studies,

as well as ever-improving experimental protocols and computational approaches, our

understanding of these complex systems will continue to grow in both depth and

quantity, ultimately improving medical techniques and the quality of human life.



Bibliography

[1] G. Barnea, S. O'Donnell, F. Mancia, X. Sun, A. Nemes, M. Mendelsohn, and
R. Axel. Odorant receptors on axon termini in the brain. Science, 304:1468, Jun
2004.

[2] D. P. Bartel. MicroRNAs: target recognition and regulatory functions. Cell,
136:215-233, Jan 2009.

[3] B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff,
B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil,
S. L. Schreiber, and E. S. Lander. A bivalent chromatin structure marks key
developmental genes in embryonic stem cells. Cell, 125:315-326, Apr 2006.

[4] P. Bertone, M. Gerstein, and M. Snyder. Applications of DNA tiling arrays to ex-
perimental genome annotation and regulatory pathway discovery. Chromosome
Res., 13:259-274, 2005.

[5] M. S. Boguski, C. M. Tolstoshev, and D. E. Bassett. Gene discovery in dbEST.
Science, 265:1993-1994, Sep 1994.

[6] L. Buck and R. Axel. A novel multigene family may encode odorant receptors:
a molecular basis for odor recognition. Cell, 65:175-187, Apr 1991.

[7] S. E. Celniker, L. A. Dillon, M. B. Gerstein, K. C. Gunsalus, S. Henikoff, G. H.
Karpen, M. Kellis, E. C. Lai, J. D. Lieb, D. M. MacAlpine, G. Micklem, F. Piano,
M. Snyder, L. Stein, K. P. White, and R. H. Waterston. Unlocking the secrets
of the genome. Nature, 459:927-930, Jun 2009.

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001.

[9] X. Chen, H. Fang, and J. E. Schwob. Multipotency of purified, transplanted
globose basal cells in olfactory epithelium. J. Comp. Neurol., 469:457-474, Feb
2004.

[10] J. Cheng, P. Kapranov, J. Drenkow, S. Dike, S. Brubaker, S. Patel, J. Long,
D. Stern, H. Tammana, G. Helt, V. Sementchenko, A. Piccolboni, S. Bekiranov,
D. K. Bailey, M. Ganesh, S. Ghosh, I. Bell, D. S. Gerhard, and T. R. Gingeras.
Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Sci-
ence, 308:1149-1154, May 2005.



[11] J. M. Cherry, C. Ball, S. Weng, G. Juvik, R. Schmidt, C. Adler, B. Dunn,
S. Dwight, L. Riles, R. K. Mortimer, and D. Botstein. Genetic and physical
maps of Saccharomyces cerevisiae. Nature, 387:67-73, May 1997.

[12] A. Chess, I. Simon, H. Cedar, and R. Axel. Allelic inactivation regulates olfactory
receptor gene expression. Cell, 78:823-834, Sep 1994.

[13] G. M. Cooper, E. A. Stone, G. Asimenos, E. D. Green, S. Batzoglou, and
A. Sidow. Distribution and intensity of constraint in mammalian genomic se-
quence. Genome Res., 15:901-913, Jul 2005.

[14] L. David, W. Huber, M. Granovskaia, J. Toedling, C. J. Palm, L. Bofkin,
T. Jones, R. W. Davis, and L. M. Steinmetz. A high-resolution map of tran-
scription in the yeast genome. Proc. Natl. Acad. Sci. U.S.A., 103:5320-5325,
Apr 2006.

[15] M.J.L. de Hoon, S. Imoto, J. Nolan, and S.Miyano. Open source clustering
software. Bioinformatics, 20(9):1453-1454, 2004.

[16] J. Dickson, H. Gowher, R. Strogantsev, M. Gaszner, A. Hair, G. Felsenfeld, and
A. G. West. VEZF1 elements mediate protection from DNA methylation. PLoS
Genet., 6:e1000804, Jan 2010.

[17] C. D. Duggan and J. Ngai. Scent of a stem cell. Nat. Neurosci., 10:673-674, Jun
2007.

[18] C. Dulac and R. Axel. A novel family of genes encoding putative pheromone
receptors in mammals. Cell, 83:195-206, Oct 1995.

[19] E. Ezhkova, H. A. Pasolli, J. S. Parker, N. Stokes, I. H. Su, G. Hannon,
A. Tarakhovsky, and E. Fuchs. Ezh2 orchestrates gene expression for the stepwise
differentiation of tissue-specific stem cells. Cell, 136:1122-1135, Mar 2009.

[20] P. Feinstein, T. Bozza, I. Rodriguez, A. Vassalli, and P. Mombaerts. Axon
guidance of mouse olfactory sensory neurons by odorant receptors and the beta2
adrenergic receptor. Cell, 117:833-846, Jun 2004.

[21] B. D. Fodor, N. Shukeir, G. Reuter, and T. Jenuwein. Mammalian Su(var) genes
in chromatin control. Annu. Rev. Cell Dev. Biol., 26:471-501, Nov 2010.

[22] S. H. Fuss, M. Omura, and P. Mombaerts. Local and cis effects of the H element
on expression of odorant receptor genes in mouse. Cell, 130:373-384, Jul 2007.

[23] M. Garber, M. Guttman, M. Clamp, M. C. Zody, N. Friedman, and X. Xie.
Identifying novel constrained elements by exploiting biased substitution patterns.
Bioinformatics, 25:54-62, Jun 2009.



[24] D. S. Gerhard, L. Wagner, E. A. Feingold, C. M. Shenmen, L. H. Grouse,
G. Schuler, S. L. Klein, S. Old, R. Rasooly, P. Good, M. Guyer, A. M. Peck,
J. G. Derge, D. Lipman, F. S. Collins, W. Jang, S. Sherry, M. Feolo, L. Mis-
quitta, E. Lee, K. Rotmistrovsky, S. F. Greenhut, C. F. Schaefer, K. Buetow,
T. I. Bonner, D. Haussler, J. Kent, M. Kiekhaus, T. Furey, M. Brent, C. Prange,
K. Schreiber, N. Shapiro, N. K. Bhat, R. F. Hopkins, F. Hsie, T. Driscoll,
M. B. Soares, T. L. Casavant, T. E. Scheetz, M. J. Brown-stein, T. B. Usdin,
S. Toshiyuki, P. Carninci, Y. Piao, D. B. Dudekula, M. S. Ko, K. Kawakami,
Y. Suzuki, S. Sugano, C. E. Gruber, M. R. Smith, B. Simmons, T. Moore, R. Wa-
terman, S. L. Johnson, Y. Ruan, C. L. Wei, S. Mathavan, P. H. Gunaratne, J. Wu,
A. M. Garcia, S. W. Hulyk, E. Fuh, Y. Yuan, A. Sneed, C. Kowis, A. Hodgson,
D. M. Muzny, J. McPherson, R. A. Gibbs, J. Fahey, E. Helton, M. Ketteman,
A. Madan, S. Rodrigues, A. Sanchez, M. Whiting, A. Madari, A. C. Young,
K. D. Wetherby, S. J. Granite, P. N. Kwong, C. P. Brinkley, R. L. Pearson,
G. G. Bouffard, R. W. Blakesly, E. D. Green, M. C. Dickson, A. C. Rodriguez,
J. Grimwood, J. Schmutz, R. M. Myers, Y. S. Butterfield, M. Griffith, 0. L.
Griffith, M. I. Krzywinski, N. Liao, R. Morin, R. Morrin, D. Palmquist, A. S.
Petrescu, U. Skalska, D. E. Smailus, J. M. Stott, A. Schnerch, J. E. Schein, S. J.
Jones, R. A. Holt, A. Baross, M. A. Marra, S. Clifton, K. A. Makowski, S. Bosak,
and J. Malek. The status, quality, and expansion of the NIH full-length cDNA
project: the Mammalian Gene Collection (MGC). Genome Res., 14:2121-2127,
Oct 2004.

[25] M. G. Guenther, S. S. Levine, L. A. Boyer, R. Jaenisch, and R. A. Young. A
chromatin landmark and transcription initiation at most promoters in human
cells. Cell, 130:77-88, Jul 2007.

[26] M. Guttman, . Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte,
0. Zuk, B. W. Carey, J. P. Cassady, M. N. Cabili, R. Jaenisch, T. S. Mikkelsen,
T. Jacks, N. Hacohen, B. E. Bernstein, M. Kellis, A. Regev, J. L. Rinn, and
E. S. Lander. Chromatin signature reveals over a thousand highly conserved
large non-coding RNAs in mammals. Nature, 458:223-227, Mar 2009.

[27] R. D. Hawkins, G. C. Hon, L. K. Lee, Q. Ngo, R. Lister, M. Pelizzola, L. E. Edsall,
S. Kuan, Y. Luu, S. Klugman, J. Antosiewicz-Bourget, Z. Ye, C. Espinoza,
S. Agarwahl, L. Shen, V. Ruotti, W. Wang, R. Stewart, J. A. Thomson, J. R.
Ecker, and B. Ren. Distinct epigenomic landscapes of pluripotent and lineage-
committed human cells. Cell Stem Cell, 6:479-491, May 2010.

[28] N. Heintz. Gene expression nervous system atlas (GENSAT). Nat. Neurosci.,
7:483, May 2004.

[29] N. D. Heintzman, G. C. Hon, R. D. Hawkins, P. Kheradpour, A. Stark, L. F.
Harp, Z. Ye, L. K. Lee, R. K. Stuart, C. W. Ching, K. A. Ching, J. E.
Antosiewicz-Bourget, H. Liu, X. Zhang, R. D. Green, V. V. Lobanenkov, R. Stew-
art, J. A. Thomson, G. E. Crawford, M. Kellis, and B. Ren. Histone modifica-



tions at human enhancers reflect global cell-type-specific gene expression. Nature,
459:108-112, May 2009.

[30] K. E. Van Holde. Chromatin. Springer-Verlag, 1988.

[31] W. Huber, A. von Heydebreck, H. Sultmann, A. Poustka, and M. Vingron. Vari-
ance stabilization applied to microarray data calibration and to the quantification
of differential expression. Bioinformatics, 18 Suppl 1:96-104, 2002.

[32] T. Hung and H. Y. Chang. Long noncoding RNA in genome regulation: prospects
and mechanisms. RNA Biol, 7:582-585, 2010.

[33] C. Jiang and B. F. Pugh. A compiled and systematic reference map of nucleosome
positions across the Saccharomyces cerevisiae genome. Genome Biol., 10:R109,
2009.

[34] W. E. Johnson, W. Li, C. A. Meyer, R. Gottardo, J. S. Carroll, M. Brown, and
X. S. Liu. Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad.
Sci. U.S.A., 103:12457-12462, Aug 2006.

[35] T. H. Kim, Z. K. Abdullaev, A. D. Smith, K. A. Ching, D. I. Loukinov, R. D.
Green, M. Q. Zhang, V. V. Lobanenkov, and B. Ren. Analysis of the vertebrate
insulator protein CTCF-binding sites in the human genome. Cell, 128:1231-1245,
Mar 2007.

[36] T. K. Kim, M. Hemberg, J. M. Gray, A. M. Costa, D. M. Bear, J. Wu,
D. A. Harmin, M. Laptewicz, K. Barbara-Haley, S. Kuersten, E. Markenscoff-
Papadimitriou, D. Kuhl, H. Bito, P. F. Worley, G. Kreiman, and M. E. Green-
berg. Widespread transcription at neuronal activity-regulated enhancers. Nature,
465:182-187, May 2010.

[37] R. D. Kornberg and Y. Lorch. Twenty-five years of the nucleosome, fundamental
particle of the eukaryote chromosome. Cell, 98:285-294, Aug 1999.

[38] J. L. Larson and G. C. Yuan. Epigenetic domains found in mouse embryonic
stem cells via a hidden Markov model. BMC Bioinformatics, 11:557, 2010.

[39] C. T. Leung, P. A. Coulombe, and R. R. Reed. Contribution of olfactory neural
stem cells to tissue maintenance and regeneration. Nat. Neurosci., 10:720-726,
Jun 2007.

[40] V. G. Levitsky, 0. A. Podkolodnaya, N. A. Kolchanov, and N. L. Podkolodny.
Nucleosome formation potential of eukaryotic DNA: calculation and promoters
analysis. Bioinformatics, 17:998-1010, Nov 2001.

[41] J. W. Lewcock and R. R. Reed. A feedback mechanism regulates monoallelic
odorant receptor expression. Proc. Natl. Acad. Sci. U.S.A., 101:1069-1074, Jan
2004.



[42] S. D. Liberles, L. F. Horowitz, D. Kuang, J. J. Contos, K. L. Wilson, J. Siltberg-
Liberles, D. A. Liberles, and L. B. Buck. Formyl peptide receptors are candidate
chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. U.S.A.,
106:9842-9847, Jun 2009.

[43] M. Lin, I. Jungreis, and Manolis. Kellis. Phylocsf: a comparative genomics
method to distinguish protein-coding and non-coding regions., 2010. Available
from Nature Precedings.

[44] K. Lindblad-Toh, M. Garber, 0. Zuk, M.F. Lin, B.J. Parker, S. Washietl,
P. Kheradpour, J. Ernst, G. Jordan, E. Mauceli, L.D. Ward, C.B. Lowe, A.K.
Holloway, M. Clamp, S. Gnerre, J. Alfoldi, K. Beal, J. Chang, H. Clawson,
F. Di Palma, S. Fitzgerald, P. Flicek, M. Guttman, M.J. Hubisz, D.B. Jaffe,
I. Jungreis, D. Kostka, M. Lara, A.L. Martins, T. Massingham, I. Moltke, B.J.
Raney, M.D. Rasmussen, A. Stark, A.J. Vilella, J. Wen, X. Xie, M.C. Zody,
Broad Institute Sequencing Platform, K.C. Whole Genome Assembly Team,
Worley, C.L. Kovar, D.M. Muzny, R.A. Gibbs, W.C. Baylor College of Medicine
Human Genome Sequencing Center, Warren, E.R. Mardis, Weinstock G.M.,
R.K. Wilson, E. Washington University Genome Center, Birney, E.H. Margulies,
J. Herrero, E.D. Green, D. Haussler, A. Siepel, N. Goldman, K.S. Pollard, J.S.
Pedersen, E.S. Lander, and M. Kellis. A high-resolution map of evolutionary
constraint in the human genome based on 29 eutherian mammals. In review.

[45] H. Lodish, A. Berk, C. Kaiser, M. Krieger, M. Scott, A. Bretscher, H. Ploegh,
and P. Matsudaira. Molecular Cell Biology. W.H.Freeman, 6th edition.

[46] S. Lomvardas, G. Barnea, D. J. Pisapia, M. Mendelsohn, J. Kirkland, and
R. Axel. Interchromosomal interactions and olfactory receptor choice. Cell,
126:403-413, Jul 2006.

[47] J. C. McIntyre, S. C. Bose, A. J. Stromberg, and T. S. McClintock. Emx2
stimulates odorant receptor gene expression. Chem. Senses, 33:825-837, Nov
2008.

[48] P. Mombaerts, F. Wang, C. Dulac, S. K. Chao, A. Nemes, M. Mendelsohn,
J. Edmondson, and R. Axel. Visualizing an olfactory sensory map. Cell, 87:675-
686, Nov 1996.

[49] M. Q. Nguyen, Z. Zhou, C. A. Marks, N. J. Ryba, and L. Belluscio. Prominent
roles for odorant receptor coding sequences in allelic exclusion. Cell, 131:1009-
1017, Nov 2007.

[50] John W. Nicol, Gregg A. Helt, Steven G. Blanchard, Archana Raja, and Ann E.
Loraine. The integrated genome browser: free software for distribution and
exploration of genome-scale datasets. Bioinformatics, 25(20):2730-2731, 2009.



[51] H. Nishizumi, K. Kumasaka, N. Inoue, A. Nakashima, and H. Sakano. Deletion
of the core-H region in mice abolishes the expression of three proximal odorant
receptor genes in cis. Proc. Natl. Acad. Sci. U.S.A., 104:20067-20072, Dec 2007.

[52] H. E. Peckham, R. E. Thurman, Y. Fu, J. A. Stamatoyannopoulos, W. S. No-
ble, K. Struhl, and Z. Weng. Nucleosome positioning signals in genomic DNA.
Genome Res., 17:1170-1177, Aug 2007.

[53] M. Pyrski, Z. Xu, E. Walters, D. J. Gilbert, N. A. Jenkins, N. G. Copeland, and
F. L. Margolis. The OMP-lacZ transgene mimics the unusual expression pattern
of OR-Z6, a new odorant receptor gene on mouse chromosome 6: implication for
locus-dependent gene expression. J. Neurosci., 21:4637-4648, Jul 2001.

[54] K. Regha, M. A. Sloane, R. Huang, F. M. Pauler, K. E. Warczok, B. Melikant,
M. Radolf, J. H. Martens, G. Schotta, T. Jenuwein, and D. P. Barlow. Active
and repressive chromatin are interspersed without spreading in an imprinted gene
cluster in the mammalian genome. Mol. Cell, 27:353-366, Aug 2007.

[55] K. J. Ressler, S. L. Sullivan, and L. B. Buck. A zonal organization of odorant
receptor gene expression in the olfactory epithelium. Cell, 73:597-609, May 1993.

[56] K. J. Ressler, S. L. Sullivan, and L. B. Buck. Information coding in the olfactory
system: evidence for a stereotyped and highly organized epitope map in the
olfactory bulb. Cell, 79:1245-1255, Dec 1994.

[57] S. Riviere, L. Challet, D. Fluegge, M. Spehr, and I. Rodriguez. Formyl peptide
receptor-like proteins are a novel family of vomeronasal chemosensors. Nature,
459:574-577, May 2009.

[58] D. J. Rodriguez-Gil, H. B. Treloar, X. Zhang, A. M. Miller, A. Two, C. Iwema,
S. J. Firestein, and C. A. Greer. Chromosomal location-dependent nonstochastic
onset of odor receptor expression. J. Neurosci., 30:10067-10075, Jul 2010.

[59] A. Rothman, P. Feinstein, J. Hirota, and P. Mombaerts. The promoter of the
mouse odorant receptor gene M71. Mol. Cell. Neurosci., 28:535-546, Mar 2005.

[60] G. R. Schnitzler. Control of nucleosome positions by DNA sequence and remod-
eling machines. Cell Biochem. Biophys., 51:67-80, 2008.

[61] D. E. Schones, K. Cui, S. Cuddapah, T. Y. Roh, A. Barski, Z. Wang, G. Wei, and
K. Zhao. Dynamic regulation of nucleosome positioning in the human genome.
Cell, 132:887-898, Mar 2008.

[62] G. Schotta, M. Lachner, K. Sarma, A. Ebert, R. Sengupta, G. Reuter, D. Rein-
berg, and T. Jenuwein. A silencing pathway to induce H3-K9 and H4-K20
trimethylation at constitutive heterochromatin. Genes Dev., 18:1251-1262, Jun
2004.

100



[63] E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thastrom, Y. Field, I. K. Moore,
J. P. Wang, and J. Widom. A genomic code for nucleosome positioning. Nature,
442:772-778, Aug 2006.

[64] M. R. Segal. Re-cracking the nucleosome positioning code. Stat Appl Genet Mol
Biol, 7:Articlel4, 2008.

[65] S. Serizawa, K. Miyamichi, H. Nakatani, M. Suzuki, M. Saito, Y. Yoshihara, and
H. Sakano. Negative feedback regulation ensures the one receptor-one olfactory
neuron rule in mouse. Science, 302:2088-2094, Dec 2003.

[66] S. Serizawa, K. Miyamichi, H. Takeuchi, Y. Yamagishi, M. Suzuki, and
H. Sakano. A neuronal identity code for the odorant receptor-specific and
activity-dependent axon sorting. Cell, 127:1057-1069, Dec 2006.

[67] B. M. Shykind. Regulation of odorant receptors: one allele at a time. Hum. Mol.
Genet., 14 Spec No 1:R33-39, Apr 2005.

[68] B. M. Shykind, S. C. Rohani, S. O'Donnell, A. Nemes, M. Mendelsohn, Y. Sun,
R. Axel, and G. Barnea. Gene switching and the stability of odorant receptor
gene choice. Cell, 117:801-815, Jun 2004.

[69] A. Siepel, G. Bejerano, J. S. Pedersen, A. S. Hinrichs, M. Hou, K. Rosenbloom,
H. Clawson, J. Spieth, L. W. Hillier, S. Richards, G. M. Weinstock, R. K. Wilson,
R. A. Gibbs, W. J. Kent, W. Miller, and D. Haussler. Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Res., 15:1034-
1050, Aug 2005.

[70] Jun Song, W. Evan Johnson, Xiaopeng Zhu, Xinmin Zhang, Wei Li, Arjun Man-
rai, Jun Liu, Runsheng Chen, and X. Shirley Liu. Model-based analysis of
two-color arrays (MA2C). Genome Biology, 8(8):R178+, August 2007.

[71] Tobias Straub. Basic analysis of nimblegen chip-on-chip data using bioconduc-
tor/r, Apr 2009.

[72] P. Trojer and D. Reinberg. Facultative heterochromatin: is there a distinctive
molecular signature? Mol. Cell, 28:1-13, Oct 2007.

[73] R. Vassar, S. K. Chao, R. Sitcheran, J. M. Nunez, L. B. Vosshall, and R. Axel.
Topographic organization of sensory projections to the olfactory bulb. Cell,
79:981-991, Dec 1994.

[74] R. Vassar, J. Ngai, and R. Axel. Spatial segregation of odorant receptor expres-
sion in the mammalian olfactory epithelium. Cell, 74:309-318, Jul 1993.

[75] E. Walters, M. Grillo, A. B. Oestreicher, and F. L. Margolis. LacZ and OMP
are co-expressed during ontogeny and regeneration in olfactory receptor neurons
of OMP promoter-lacZ transgenic mice. Int. J. Dev. Neurosci., 14:813-822, Nov
1996.

101



[76] F. Wang, A. Nemes, M. Mendelsohn, and R. Axel. Odorant receptors govern the
formation of a precise topographic map. Cell, 93:47-60, Apr 1998.

[77] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for tran-
scriptomics. Nat. Rev. Genet., 10:57-63, Jan 2009.

[78] T. Warnecke, N. N. Batada, and L. D. Hurst. The impact of the nucleosome
code on protein-coding sequence evolution in yeast. PLoS Genet., 4:e1000250,
Nov 2008.

[79] Bo Wen, Hao Wu, Yoichi Shinkai, Rafael A. Irizarry, and Andrew P. Feinberg.
Large histone h3 lysine 9 dimethylated chromatin blocks distinguish differenti-
ated from embryonic stem cells. Nat Genet, 41(2):246-250, Feb 2009.

[80] Ernst Wit and John D. McClure. Statistics for microarrays: design, analysis
and inference. John Wiley & Sons.

[81] Q. Wu, J. Wang, and H. Yan. Prediction of nucleosome positions in the yeast
genome based on matched mirror position filtering. Bioinformation, 3:454-459,
2009.

[82] J. J. Wyrick, F. C. Holstege, E. G. Jennings, H. C. Causton, D. Shore, M. Grun-
stein, E. S. Lander, and R. A. Young. Chromosomal landscape of nucleosome-
dependent gene expression and silencing in yeast. Nature, 402:418-421, Nov
1999.

[83] K. Yamada, J. Lim, J. M. Dale, H. Chen, P. Shinn, C. J. Palm, A. M. Southwick,
H. C. Wu, C. Kim, M. Nguyen, P. Pham, R. Cheuk, G. Karlin-Newmann, S. X.
Liu, B. Lam, H. Sakano, T. Wu, G. Yu, M. Miranda, H. L. Quach, M. Tripp,
C. H. Chang, J. M. Lee, M. Toriumi, M. M. Chan, C. C. Tang, C. S. On-
odera, J. M. Deng, K. Akiyama, Y. Ansari, T. Arakawa, J. Banh, F. Banno,
L. Bowser, S. Brooks, P. Carninci, Q. Chao, N. Choy, A. Enju, A. D. Goldsmith,
M. Gurjal, N. F. Hansen, Y. Hayashizaki, C. Johnson-Hopson, V. W. Hsuan,
K. Iida, M. Karnes, S. Khan, E. Koesema, J. Ishida, P. X. Jiang, T. Jones,
J. Kawai, A. Kamiya, C. Meyers, M. Nakajima, M. Narusaka, M. Seki, T. Saku-
rai, M. Satou, R. Tamse, M. Vaysberg, E. K. Wallender, C. Wong, Y. Yamamura,
S. Yuan, K. Shinozaki, R. W. Davis, A. Theologis, and J. R. Ecker. Empirical
analysis of transcriptional activity in the Arabidopsis genome. Science, 302:842-
846, Oct 2003.

[84] G. C. Yuan and J. S. Liu. Genomic sequence is highly predictive of local nucle-
osome depletion. PLoS Comput. Biol., 4:e13, Jan 2008.

102


