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1 Abstract

The goal of this thesis is to explore ways of harvesting energy from a building. To be

more specific, the conversion of mechanical energy into electrical energy using

piezoelectric materials is studied. Applications of piezoelectric materials as

actuators are also explored, with particular interest in the question: what is the

maximum moment that an actuator, whose energy comes from piezoelectricity, can

develop when attached to a beam. As a piezoelectric material cannot generate much

energy, and often requires amplification, the goal is to optimize the circuit linked to

the piezoelectric material to obtain as much power as possible.

Thesis Supervisor: Jerome Connor
Title: Professor of Civil and Environmental Engineering
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3 Introduction to Piezoelectric Materials and their

Properties

3.1 Overall Concept

Nowadays, most of the research in the energy field is to develop sources of energy

for future. With oil resources being over tapped and eventually bound to end, it is

time to find renewable sources of energy for the future. Piezoelectric materials are

being more and more studied as they turn out to be very unusual materials with very

specific and interesting properties. In fact, these materials have the ability to produce

electrical energy from mechanical energy, for example they can convert mechanical

behavior like vibrations into electricity. Such devices are commonly referred to as

energy harvesters and can be used in applications where outside power is unavailable

and batteries are not a feasible option. While recent experiments have shown that

these materials could be used as power generators, the amount of energy produced

is still very low, hence the necessity to optimize them.

3.2 History

The piezoelectric effect was discovered in 1880 by the bothers Pierre Curie and

Jacques Curie. They combined what they knew about pyroelectricity and about

structures of crystals to demonstrate the effect with tourmaline, quartz, topaz, cane

sugar and Rochelle salt. They found out that when a mechanical stress was applied

on these crystals, electricity was produced and the voltage of these electrical charges

was proportional to the stress. The converse effect however was discovered later by

Gabriel Lippmann in 1881 through the mathematical aspect of the theory. These

behaviors were labeled the piezoelectric effect and the inverse piezoelectric effect,
respectively, from the Greek word piezein, meaning to press or squeeze. The first

applications were made during World War I with piezoelectric ultrasonic transducers.

Nowadays, piezoelectricity is used in everyday life. For example, in the car's airbag



sensor where the material detects the change in acceleration of the car by sending

an electrical signal which triggers the airbag [1.

3.3 How it Works?

The nature of piezoelectric materials is closely linked to the significant quantity

of electric dipoles within these materials. These dipoles can either be induced by

ions on crystal lattice sites with asymmetric charge surroundings (as in BaTiO3 and

PZTs, see section Examples of Piezoelectric Materials for more explanations on

these materials) or by certain molecular groups with electrical properties. A dipole

is a vector, often named P, so it has a direction and a value in accordance with

the electrical charges around. These dipoles tend to have the same direction when

next to each other, and they altogether form regions called Weiss domains. The

domains are generally randomly oriented but they can be aligned using the process

of poling, which is a process by which a strong electric field is applied across the

material (see next section How Are They Made?). However not every piezoelectric

materials can be poled. The reason why piezoelectric material creates a voltage is

because when a mechanical stress is applied, the crystalline structure is disturbed

and it changes the direction of the polarization P of the electric dipoles. Depending

on the nature of the dipole (if it is induced by ion or molecular groups), this change

in the polarization might either be caused by a re-configuration of the ions within the

crystalline structure or by a re-orientation of molecular groups [2]. As a consequence,

the bigger the mechanical stress, the bigger the change in polarization and the more

electricity is produced. A traditional piezoelectric ceramic is a mass of perovskite

ceramic crystals, each consisting of a small, tetravalent metal ion, usually titanium

or zirconium (see Figure 1), in a lattice of larger, divalent metal ions, usually lead

or barium, and 0 2-ions. Under conditions that confer tetragonal or rhombohedral

symmetry on the crystals, each crystal has a dipole moment. The change in P

appears as a variation of surface charge density upon the crystal faces, i.e. as a

variation of the electrical field extending between the faces. For example, a 1 cm 3



cube of quartz with 2 kN (500 lbf) of correctly applied force can produce a voltage

of 12500 V [3] [4].

a) b)

* ehz 00

Figure 1: Crystalline structure of a ceramic piezoelectric material b) with and a)
without a dipole P

3.4 How Are They Made?

Piezoelectric materials can be natural or man-made. The most common natural

piezoelectric material is quartz (see next section for more details), but man-made

piezoelectric materials are more efficient and mostly ceramics. Due to their complex

crystalline structure, the process with which they are made is very precise and has

to follow very specific steps. As explained in Electroceramics: Materials, Properties

and Applications [5], to prepare a piezoelectric ceramic, "fine PZT powders of the

component metal oxides are mixed in specific proportions, then heated to form a

uniform powder. The piezo powder is mixed with an organic binder and is formed into

structural elements having the desired shape (discs, rods, plates, etc.). The elements

are fired according to a specific time and temperature program, during which the

piezo powder particles sinter and the material attains a dense crystalline structure.

The elements are cooled, then shaped or trimmed to specifications, and electrodes are

- - -- --___ --_ ----_-_



applied to the appropriate surfaces."

However, piezoelectric material exhibits an electric behavior and acts as a dipole only

below a certain temperature called Curie temperature. Above the Curie point, the

crystalline structure will have a simple cubic symmetry so no dipole moment (see

first sketch of Figure 1). On the contrary, below the Curie point, the crystal will have

a tetragonal or rhombihedral symmetry hence a dipole moment (see second sketch of

Figure 1). As explained earlier in this report, adjoining dipoles form regions called

Weiss domains and exhibit a larger dipole moment as every dipole in the domain

has roughly the same direction, thus a net polarization. The change of direction of

polarization between two neighboring domains is random, making the whole material

neutral with no overall polarization (see first sketch of Figure 2).

(a) random orlenition of polar (b) polmrtzmtion In DC eletic Geld (C) rmenutt polariaaen after
domains primr [ poladation ulecric geld mooved

Figure 2: Method to pole a piezoelectric material

In order for the material to be polarized, it is exposed to a strong and direct current

electric field whose goal is to align all dipoles in the material. Of course this trans-

formation has to be made below the Curie point so that dipoles are present. Thanks

to this polarization, the material gets its dipoles almost aligned with the electric field

and now has a permanent polarization. This permanent polarization is the remanent

polarization after the electric field is removed, due to a hysteretic behavior (Figure

3) and it also gets lengthen in the direction of the field (see second sketch of Figure

1), for the same hysteretic reason[6].

.. .. ............................. ..... 1- 1 ...... .......



Figure 3: Hysteretic curve of polarization

3.5 Examples of Piezoelectric Materials

The most commonly known piezoelectric material is quartz. But piezoelectric mate-

rials are numerous, the most used are :

" Quartz (SiO 2 ) : Quartz shows a strong piezoelectricity due to its crystalline

structure, meaning that when a pressure is applied on a quartz crystal an

electrical polarization can be observed along the pressure direction.

" Berlinite (AlPO4 )

" Gallium orthophosphate (GaPO4 ) : Gallium orthophosphate has almost the

same crystalline structure as quartz, that is why it has the same characteristics.

However its piezoelectric effect is almost twice as important as the one for the

quartz, making it a valuable asset for mechanical application. It is not a natural

element, it has to be synthetised.

" Tourmaline : crystal commonly black but can range from violet to green and

pink.

" Barium Titanate (BaTiO3) : This element is an electrical ceramics, it is usually

replaced by lead zirconate titanate (PZT) for piezoelectricity. It is used for

microphones and transducers.



" Lead Zirconate Titanate (PZT) : It is considered today one of the most eco-

nomical piezoelectric element, hence it is used in a lot of applications.

" Zinc oxide (ZnO)

" Aluminum Nitride (AiN)

" Polyvinylidene Fluoride (PVDF)



4 Device Concept

In order to extract the electrical energy produced by the piezoelectric material, it is

necessary to connect it to a circuit. For a power generator, the goal is to convert

a maximum amount of mechanical energy into electrical energy, that will provide

a great amount of current. Thus a resonant circuit is ideally suited to harvest a

maximum amount of current from the oscillator. In fact, a resonant circuit is only

composed of passive electrical components such as capacitors, inductors and resistors

and does not need an outside source of energy that could disturb the extraction of

energy from the oscillator. Also, such a resonant circuit is analogous to a mechani-

cal system composed of masses and springs, which is what the oscillator is, making

easier the combination with the latter [7]. The field of civil engineering finds applica-

tions with piezoelectric material and has an interest in optimizing them, this area of

study is also known as Motion Based Design. The Motion Based Design methodol-

ogy attempts to satisfy the design requirements of a structure such as displacements

and/or accelerations while assuring appropriate strength capacity. Indeed, by opti-

mally proportioning stiffness and damping throughout a structure and/or through

the use of motion control devices, kinematic constraints of a structure subjected to

a given loading can be approximately realized [8]. One of the most common method

of motion control is the use of Tuned-Mass Dampers (TMD). A TMD is a system

put on top of a building (usually modeled as a mass and a spring) specially designed

so that it moves out of phase with the structure when it is subjected to a loading

such as an earthquake, making the building more stable by significantly reducing the

motion of the building.

The device that is studied in this thesis is a horizontal clamped beam submitted to

oscillation with piezoelectric material at its base (where strain is the highest : so

more current is produced by the material here). This material is linked to a shunting

circuit (see Figure 4 below). The study of such a device might seem irrelevant and

far from what happens in reality but part of the device has a different stiffness due to



Figure 4: Schematic of Piezolectric Power Generator

the presence of piezoelectric material and the frequency of that part of the cantilever

depends on the properties of the shunting circuit, making this part of the device

quite independent and the whole system similar to a main structure with a TMD

attached to it (see section Tuned - Mass Dampers for more details on the subject).



5 Theory

The aim of the theory is to describe mathematically the material behavior. However,

the equations governing piezoelectricity involve entities that cannot be measured ex-

perimentally, thus they need to be converted so that they make sense for experiments

and common use.

5.1 Mathematical Description

A piezoelectric material develops an internal electric field when strained. On the con-

trary, a piezoelectric material experiences strain when an electrical field is applied to

it. These reactions, electrical field and mechanical behavior, can be in either direc-

tions. Meaning that depending on the material, an electrical field in one direction

can lead to a mechanical reaction in any direction. As a result, equations governing

piezoelectricity are usually expressed with tensors. However, to avoid any compli-

cated calculations, one can consider materials which produce an electric field in only

one direction, either parallel or perpendicular to the strain that is applied to it.

Equations thus become (assuming no variation in temperature and low frequencies):

D = d 1 T+ ETE

$= S 2

D : electric displacement

di and d2 : piezoelectric charge coefficients, respectively for the direct piezoelectric

effect and the converse piezoelectric effect

T : mechanical stress

C : permittivity at constant stress

E : electric field

S: mechanical strain

SE : mechanical compliance



These expressions shows the relationship between the mechanical and the electrical

behaviors of those materials. The first equation shows that part of an electrical field

applied to the material is converted into mechanical stress. Likewise, the second

equation shows that part of a mechanical strain applied to the material is converted

into electrical field. One can note that in the absence of electric field E, the second

equation is $ = sEf which is Hooke's Law. Likewise, in the absence of mechanical

stress the first equation is D = cTE, only describing the electrical behavior of the

material. Also, for most materials di and d2 are nearly equal, that is why they are

taken to be both equal to d, hence:

SE- l -k 2 )T- -D

$ = s E 2
-8 E 6 E

k2 EE(T

where k is known as the electromechanical coupling coefficient. It is an indicator of

the effectiveness with which a piezoelectric material converts electrical energy into

mechanical energy, or converts mechanical energy into electrical energy. In the case

where the electric displacement is equal to zero, the formula becomes

$= s 2)S = SE( -k T2

The strain is still proportional to the stress, but the compliance is multiplied by the

term (1 - k 2 ). When k is equal to zero, the equation is simply Hooke's Law, which is

logical as it means that all the energy in the material is strain energy. However one

must know that this expression of k has been obtained considering that the system

is not connected to a circuit. An new expression of k in the case of a system linked

to a circuit is now developed.



5.2 Development of Equations

First, one must think in terms of currents and voltages since these entities can be

measured easily on a circuit, in contrast to the electric displacement and electric field.

To replace the electric displacement and the electric field in the above equations, one

must realize that a constant electric displacement results in zero current hence the

fact that these two entities are linked. Likewise a zero electric field results in a

zero voltage. The following expressions describe mathematically these experimental

results:

V = f E.dx

I =- D daat
with:

I: Current

V: Voltage

x : thickness of the piezoelectric material

A : surface area of the piezoelectric material

E : electric field

D : electric displacement

As a consequence, the applied stress on the material with develop a voltage and

a current in the circuit linked to the piezoelectric material. These expressions can be

simplified and mixed with the previous original equations describing piezoelectric-

ity assuming the electric field E is uniform along the thickness of the material and

the electric displacement D is uniform on the material's surface, and taking Laplace

transform

V(s) =



I(s) = s8 i.b(s)

where s is the Laplace parameter. Still working in the Laplace domain, one can

obtain:

I(s) = s C V(s) + s A d T(s)

d
S(s) = -V(s) + sET(s)

x

with:

C =ACT

where C is also known as the inherent open circuit capacitance of the piezoelectric

material, and then suppressing T(s) and V(s) :

s A eT k2

I(s) - s C (1 - k2 ) V(s) + S(s)
d

S(s) k2 SE I(s) + SE (1 - k2) T(s)
d A s

In the first equation, one can notice that even if the voltage is equal to zero the

current will not be equal to zero, which means that there is a source of current in the

circuit. This source of current is of course the piezoelectric material, submitted to

a mechanical loading. Also, on the contrary to the previous relation between stress

and strain, there is a new term out of phase included in the second equation. In other

words, the simple proportionality between stress and strain is lost as soon as both

electrical and displacements fields are not equal to zero. Finally, when k is equal to

zero, the second equation becomes Hooke's Law, which is logical.

Now putting the above equations in matrix form:

II sC sAd V

S !I SE T



The term in the upper left corner of the above matrix is an admittance, it is the

admittance of the piezoelectric effect. When a circuit of impedance Zext is connected,

its admittance is added to that of the piezoelectric, leading to the following equation:

One can calculate the

ratio of the amount of

The final result is:

I sC+ 1 sAd1V1=1 ZeXt
s J d sE V[TS T s

new k when a circuit is linked to the material by using the

electrical energy produced to the total energy in the system.

k 2 =k 2 sCZext
9en 1 + SCZext

Now replacing k by kgen gives:

= sE(1 -



6 Application in Civil Engineering

6.1 Tuned-Mass Damper

A tuned mass damper (TMD) is composed of a mass, a spring and a damper and

is supposed to reduce the dynamic response of the structure to which it is attached.

The values of the mass, the spring and the damper of the TMD are calculated so that

the TMD will resonate out of phase with the structure when excited by an external

loading. It is basically a damping system that minimizes the displacement of the main

mass with a combination of both its spring and its viscous damping. The concept of

TMD was first set by Frahm in 1909 and was applied to ship hull vibrations. The

theory came later with a paper by Ormondroyd and Den Hartog in 1928 but many

researchers have studied the subject since then, studying the optimum TMD for

single-degree-of-freedom system and extending it to multi-degree-of-freedom systems

[8]. The TMD and the main structure form a two-degree-of-freedom system, if the

structure is modeled as a one-degree-of-freedom system of course. Here the idea

is to provide electricity by attaching piezoelectric material to the TMD, and then

to optimize the system so that a maximum of energy is given to that TMD, thus

producing a maximum of energy. One can see on Figure 5 the system with the TMD

on top of the main structure.



u,+ u + ug'

md

ka cau+ugkd CdjU+U

k uig

Figure 5: Model of the Tuned Mass Damper

The equations governing this system are as follows :

mnd' + Cdad + kdud + mdu = -mdan

m6 + ku - cad - kdUd = p(t) - mug

with:

md damper mass

m main mass

kd spring constant of the damper system

k: spring constant of the main system

Cd : viscous damping of the damper system

Xd displacement of the damper system

x : displacement of the main system

p(t) : load on the main system



The presence of damping induces a phase shift between the response and the ex-

citation. It is more convenient to work with sinusoidal signal, hence excitation is

expressed as

p = p e iw

aig = ag deWt

where j3 and d. are real entities. The real and imaginary parts of a. corresponds to

a cosine and a sinusoidal input, respectively. The response is taken as

'a= ueiwt

'ad ude

where u and ad are complex quantities. Substituting these expressions into the above

equations gives [8]:

[-mdQ2 + Zca + kdlud - mdu - --mda9

-[icdQ + kd]ud + [-mQ 2 + k]u = -mdg +i3

Solving for u and Ud:

= f2 +2p am(1 m)f 2 _ p2 + i2 dpf(1 + M)]

u [ - p2 + i'2 dpf] - g [(I
kD 2  kD2

pp2 __ dm
'ad kD 2

where:

D2 = [1 - p2 ] v 2 - p2] _ p2 f 2 + i2 dpf[1 - p2 (1 + in)]

f 
Wd
W



then converting the solutions to polar solutions :

u -Hie'
k

Ud = -H 3e i63k

agm H2e
k

agm He
k

with :
[f2 _ p2] + [2(dpf] 2

{/[(1 + m)f 2 - p2]2 + [2(dapf(1 + rn)]2

H3  D2

1
H 4 =

ID2|

I|D21 = \ ([1 - p2] [f2 -

tan 63 =

p2] - mp 2f 2 )2 + (2(dPf[1 - p2(1 + rn)])2

61 = ai - 63

62 = a 2 - 63

2(dpf [1 - p2 (1 + i)]

[1 - p2 ] [f 2 _p 2] - p2 f 2

tan 2pf
f 2 - P 2

tani 02  (pf(1 ± m)tan 2 =(1+rm)f 2 _-p2

In the case where there is no ground acceleration, then dg =0 and U = HieS1. Figure

6 shows the variation of H1 when m = 0.05 (which is a realistic value for a TMD)

and f = 1.
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Now that the theory of the TMD has been done, let's combine it with piezoelectricity.

As explained in the section Device Concept, the studied device is a cantilever beam,
with piezoelectric material at its base (where the material is the most strained, hence

producing more electricity) and a mass on its tip, see Figure 8.

width of the beam

piezoelectric material and piezoelectric

base material
1h E'INN t

L aLL 2=(1a)L

u(t) = lgsinl(Qt)

Figure 8: Sketch of the device that is studied

The goal is to study this device behavior when subjected to a harmonic excitation

p(t) = P sin(Qt). The first calculation concerns the stiffnesses of the system, it is

obvious that the system will not have the same stiffness along its length : Li will be

more rigid because of the addition of piezoelectric material. The latter has section

property (EI)1 and L 2 has section property (EI)2. (EI)1 and (EI)2 both depend

on the base material and the piezoelectric material properties. These stiffnesses are

given by the following expressions (see Appendix A):

6(EI)1ki = 6(I )[2as + 6(1 - a)a2 + 6(1 - )

3(EI)2

e i (1 - a)L s

These expressions make sense because if a approaches 1, then the whole beam has



a stiffness of k1 and this quantity approaches 3(EI)1, which is in accordance with

the beam theory, while k2 goes to infinity. One can simplify these expressions so

that they are only functions of Ep, the piezoelectric material Young's modulus, 7,

the ratio of the Young's modulus of the base material to that of the piezoelectric

material, and # the ratio of the thickness of the piezoelectric material h to that of

the base t. After some calculation, one obtain:

ki = 6[7 + (8#3 + 12#2 + 6#)]EI
[2a + 6(1 - a)a2 + 6(1 - a) 2 a]L3

(1 - a)3L

-bt
3

12

Now using the theoretical expressions of piezoelectricity (see section Theory):

= S E k T

with:

k2 =k 2 sC Zext
ge" 1 + SCZext

so:
1 1+SCZX

S -L 1 + (1 _ k2)SCZextIS

Leading to the expression of Ep:

1 1 + SCZext

s E I + (I _ k 2)sCZext



The equation of motion for the mass M can be determined as the system is similar

to the one in Figure 9:

ki k2

Figure 9: Sketch of the modelisation of the device that is studied

So the two springs in series can be modeled by just one spring of stiffness k

1 1 1

k k1 k2

leading to:

k AB EpI
A+B L3

with:

A 6[-y + (8#3 ± 12#2 + 6#8)]
2aY3 + 6(1 - a)a2 + 6(1 - a)2a

B = ( 37
B -(a)3

So the equation of motion is:

Mi, + kx = -MQ 2 igsin(Qt)

Replacing k by its expression as well as A, B and E,:

BI 1 + sCZext M
LsE 1 + (1 _ k2)SCZext

(1 + -- ) Q2dSin(Qt)
A

One can solve the above equation by assuming x = sefft and Zet - R + iQL, in

accordance with the external circuit shown in Figure 4, and knowing that s = iQ in

M(1+ )z
A



the Laplace domain:

BQ2 M(1 BI (1- Q2LC) + i(QRC) BM(+
A L3sE 1 (1- k2 )Q 2 CL + i(1 - k2)QCR]x M +A

Finally, one can obtain :

-M(1 + E) 2 Q2U - (1 - k2 )p2]2 + [(1 - k2)f2 ]2

2 p2 - (1 + B)p 2 (f 2 - p2(l - k 2))] 2 + [(f2P d)(i _ p2 (1 - k2 )(1+ ))]2

ai - a 2

tan a - (1 - k2)P2
(1 - k2 )f 2pgd

f2 _ p2 - (1 + 1)p 2 (f 2 _ p2 (1 - k 2 ))
tana2 = f 2 pd(1 - p2 (1 - k2 )(1 + {))

also written as
B

= -M(1 + _)2 2ugHpe3

Figure 10 shows different plots of H 2 as a function of p with f = 1, { 0.2 and

k = 0.4 for different values of (d

The similarity between the plots shown in Figure 10 and 11 and the plots for the

TMD (Figure 6 and 7) is obvious. The behavior of the piezoelectric generator is

very similar to that of a TMD. Like the TMD, there are several points through

which all curves pass for the piezoelectric generator, no matter the value of (d. The

tuning of the TMD depends on the mass ratio, while for the piezoelectric material it

depends of the ratio 1 + 11. This similarity between these two systems implies that

the method to optimize a piezoelectric system is analogous to the method to tune a

TMD. However, it is hard to see the analogy between the two problems when one first

look at it. In fact, for the TMD problem, the goal is to minimize the displacement of

the main mass while for the piezoelectric material it is to maximize the energy the
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Figure 10: Mathematica file showing a plot of H, as a function of p for Iad=
and 0.4in purple, pink and maroon respectively

Figure 11: Mathematica file showing a 3D plot of Hp as a function of (d and p

0, 0.2
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second system (meaning the shunting circuit) absorbs. But maximizing the secondary

system absorption corresponds to maximizing the second's mass displacement, which,

for a TMD, would correspond to minimize the main system's motion.



6.2 Actuators on Multi-Span Beams

The concept of controlling a structural system to improve its performance and effi-

ciency under varying loading conditions is a relatively new one in the field of struc-

tural engineering. Originally proposed by Yao in 1972, structural control takes the

approach of viewing structures as complex systems in which performance can be de-

termined by observable measurements and controlling actions can be implemented

in order to manipulate that system into behaving desirably (Sangati et al.). There

are three primary methods of control: passive, active and semi-active. Each form of

structural control has advantages as well as shortcomings and there is large poten-

tial for active and semi-active control to truly optimize the behavior of a structural

element or system. There is currently much research in the field of control, both

on how to exert control forces and to evaluate the state of a structure. The task of

controlling a structure, however, becomes more complex when designing for practical

applications as the processes of evaluating data in real-time and optimizing commu-

nication between elements of the control system are subject to limitations of existing

technologies (Lynch). The study of piezoelectric material as actuators is recent and

one of the main issue with this kind of material is that they do not develop enough

energy for large scale structures. However, they remain very promising as they have

a short reaction time. When strained, piezoelectric materials release electricity im-

mediately, and this energy created can be used for the actuators in a very short

amount of time.

To better understand the aim of this section, one should be aware of how actuators

and controlling systems work. A controlling system is generally made up of three

components: the monitoring system, which uses sensors to gather information on a

structure, a controller which uses this data to determine the state of a structure,
and actuators which respond in accordance with the control system protocol to pro-

duce the desired effect on the structure (Sangati et al.) Such a controlling system

requires an understanding of the interactions within the structure in order to cre-



ate an algorithm by which the controller can determine the reaction of actuators.

These control algorithms may either be static (invariant) as they do not change, or

may be adaptive and change over time in order to optimize the control actuation in

the structure. Adaptive control systems therefore have a better ability to deal with

complex variable or unanticipated loads (Connor 410).

Figure 12: Generic Diagram Representation of a Control Algorithm

Figure 12 shows a generic diagram representation of a control algorithm. The struc-

ture experiences some deformations that are represented as the excitation (for ex-

ample a human being walking on a beam), and sensors record the response of the

structure and send the data to controllers that activate (or not) the actuators. The

actuators are made to change the structure and thus minimize the bending moment

that occurs in its core.
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The goal is to use piezoelectric material that would produce electricity with the

deformations of the structure and intelligently use this energy to supply the actuators.

The main problem is that it is quite complicated to get enough energy with classic

piezoelectric materials. They rarely produce the amount of energy required by the

actuators for normal structures. So far, most experiments in this area of study have

been carried out on a small scale.

The changes in bending moment in a simply supported beam were simulated on

Mathematica, for a unit point load running along the beam (see Appendix B for

the code). A study of a simply supported beam was performed to understand the

concept and make it easier to manipulate, before adding several spans and make the

problem indeterminate, and thus more complex and more interesting (see Figure 13).

2.0469 E17~ =k+ ] ! J 771

Figure 13: Mathematica file showing the bending moment in a beam with a unit
point load running along a beam of length L=10 (it is an animated file, a click on
play would animate the feature)

One can see that the maximum moment occurs when the point load is in the middle

6 8 10

.. ........ .. .............. ......................... -........ -- l-I ..........

W



of the beam, which is completely logical.

The first problem encountered for the multi-span beam that it is an indeterminate

problem. So to be able to make the same animation, moment values were computed

from Clapeyron's theorem (theorem of three moments) for an arbitrary position (x)

of the unit load on the beam. With these values, plotting the changes of bending

moments within the beam was not a problem anymore, and the animation was done.

Through the animation, it was possible to determine the maximum bending moment

for the continuous system; it occurs when the point load is close to the mid-span of

the first beam. The maximum value found is: Mmax,=6N-m. The final goal is to lower

these moments so that every moment will not exceed the maximum value times a

factor f, this factor under optimal conditions is typically 0.5. So, for this case, every

moment has to be lower than Mmax * f, yielding a maximum allowable moment of

3N-m in absolute value. This is represented by the blue field on the graph: moments

should not go over this limit, and stay between these two extreme values.

a a

Figure 14: Mathematica file showing the distribution of the bending moments across
the beam with the unit point load positioned at 15 ft from the edge of the beam.

Under optimal conditions, the amplitude of the moments of the actuators can be

determined, so that the bending moments across the beam do not exceed the critical

... ........ ................. - .11,11, I'll, ........ ------



moment of 3N-m.

a

49.2S63 - + Tf]

-10

Figure 15: Mathematica file showing the distribution of the bending moments across
the beam with the unit point load positioned at 49.25 ft from the edge of the beam.

With the bending diagrams, and the maximum bending moment allowed, the ampli-

tude of the actuators according to time can be figured out. On the Figure 16, one

can see the amplitude of the first actuator when the unit point load is situated at

a=5.15.

Then, by adding the bending moments in the beam with those created by the actu-

ators, the final resulting bending moment in the beam can be obtained (see Figure

7).
In the animation, the bending moment stays below the critical moment as predicted,
which is the ideal solution. In fact, the bending moment stays right on the limit most

of the time, thus saving energy for the actuator which gives only the minimum control

force required for the moment to be adequate. One thing that may seem unusual is

that the actuator gives its maximum energy when the load is approximately situated

at a=8.5 ft (according to the graph) and not at a= 15 ft (which is the middle span).

- .- , -.... ....... .......... - ................... -................. ..........
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Figure 16: Mathematica file showing amplitude of the actuators when the unit point
load is situated at a=5.15 ft

Now knowing the bending moments inside the beam, it is possible to know the stress

that occurs on the side of the beam (where the piezoelectric material would be fixed)

through the formula :
Mz

o-=

Thus, with this study one is able to know, for a certain piezoelectric material (mean-

ing a certain k) and for a certain multi-span beam, how much energy can be produced

through piezoelectricity. This energy would be used to activate actuators whose mo-

ments have been figured out and maintain the bending moments below a certain

limit fixed beforehand, according to safety factors and regulations (see Figure 17).

.......... ...... ........... ....................... .. . . ..... ..................



:21A.4 + I

10 O

5-

-10 [

Figure 17: Mathematica file showing the resulting moments after the actuators have
been activated
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7 Conclusion

Piezoelectric materials have many applications in Civil Engineering. Only appli-

cations with Tuned-Mass Dampers and Multi-Span Beams have been developed in

this thesis. On the one hand, Tuned-Mass Dampers have a behavior very similar to

that of an oscillating cantilever beam covered with piezoelectric material and thus

the same method used to tune a TMD could also be used to optimize a piezoelec-

tric system. On the other hand the study of Multi-Span Beams have shown that

piezoelectric material can be used as actuators to create a moment in the beam,

allowing it to support a larger load. Although the magnitudes of piezoelectric volt-

ages, movements, or forces are small, and often require amplification (a typical disc

of piezoelectric ceramic will increase or decrease in thickness by only a small fraction

of a millimeter, for example) piezoelectric materials have been employed in an im-

pressive range of applications. The piezoelectric effect is used in sensing applications,
such as in force or displacement sensors, in transducers to convert electrical energy

into vibrational mechanical energy (often sound or ultrasound), in actuators, such

as for control of multi-span beams and generators. The limiting issues include the

size, weight, and cost of the system. However, since they are compact, simple, and

highly reliable, they are a promising solution.
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A Stiffness Calculations

Here is a sketch of the studied device:

L1= aL L,= (1-a)L

~X1

X2

X3

Figure 18: Sketch of the curve of the cantilever for stiffness calculation

The goal is to calculate the stiffnesses of both its parts. The deflection x can be
split into three quantities as shown in Figure 18.

P(aL)3 P(1 - a)L(aL)2 )L(P(aL)2  P(1 - O)L(aL) P(1 - a)3L3

3(EI)1  2(EI)1  2(EI)1  (EI)1  (EI)2

The first two terms represent the deflection due to the load P and the moment

P(1 - a)L, while the last term represents the deflection due to the load and the
moment but as if the second member was fixed at the intersection of the two sections.
As a result, k1 and k2 are:

- P 6(EI)1
x1  [2a 3 + 6(1 - a)a2 + 6(1 - a) 2a]L 3

P 3(EI)2k2 = (-- )L
X2 (1 - aY)3L3



B Mathematica Code



P :=1
L 10
Manipulate[Plot[{P / L (L -a) x*HeavisideTheta[-x +a], -P / L *a (x - L) * HeavisideTheta[x- a]),

{x, 0, 10), PlotRange - 3], {a, 0, 10)]

2 4 6 8 10

j,4]= L := 30

SMa :=MB * a / L - (a - a^2 / L)
MB:= 4 (a-aA2 /L) (a+L) /(15L)
MC:= -(a-a^2 /L) (a+L) /(15L)

Printed by Mathematica for Students



2 | bending moment. nb

L :=30
Man ipu1ate[P1ot{((4 (a-a^2 / L) (a+ L) / (15 L))/ L - (1-a/ L)) *x*HeavisideTheta[-x+ a,

((4 (a-a^2 /L) (a+L) / (15L) -4 (a-a^2/L) (a+L) / (15L) *a/L+ (a-a^2 /L)) / (L-a)
(x-a) +4 (a-a^2 /L) (a+L) / (15L) *a/L- (a-a^2 /L))*

HeavisideTheta [x - a] * HeavisideTheta [-x + L],
((-(a-a^2 /L) (a+L) / (15L) -4 (a-aA2/L) (a+L) / (15L)) /L (x-L) +

4 (a-a^2 / L) (a+L) / (15 L)) *HeavisideTheta[x-L] *HeavisideTheta[-x+2 L],
(((a - a A2/L) (a+L) / (15L)) /L (x-2L) - (a-a A^2 / L) (a + L) / (15 L)) *
HeavisideTheta[x-2 L] *HeavisideTheta[-x+ 3 L], 3, -3),

{x, 0, 3 L}, PlotRange -+ 14, Filling 4 {5 - {6))], {a, 0, L)]

20 40

Printed by Mathematica for Students



bending moment. nb | 3

L := 30
MB :=(a -L- (a -L) A2 /L) a/ (5L)

MC : = (a - L - (a - L) ^2 / L) a / (5 L)
Ma := (a - L- (a - L) ^2 / L) a / (5 L) - (a - L- (a - L) ^ 2 / L)

Manipulate[Plot[{ (a -L- (a -L) ^2 /L) a/ (5L) /Lx*HeavisideTheta[-x+L],
((((1- (a- L) / L) a/ (5 L) -(1- (a-L) / L)) - (1- (a- L) /L) a / (5 L)) (x- L) +

(a - L - (a - L) 2 /L) a /(5 L)) * HeavisideTheta[x - L] *HeavisideTheta[-x + a],
(((a- L - (a - L) ^2 / L) a / (5 L) - ((a- L - (a - L) ^2 / L) a/ (5 L) - (a- L - (a - L) ^2 / L))) /

(2 L - a) (x - 2 L) + (a - L - (a - L) ^2 / L) a /(5 L)) * HeavisideTheta [x - a]*
HeavisideTheta [-x + 2 L], (- (a - L - (a - L) ^2 /L) a / (5 L) / L (x - 2 L) +

(a - L - (a - L) A2 / L) a / (5 L)) * HeavisideTheta[x - 2 L], 3, -3},
{x, 0, 3 L}, PlotRange -+ 14, Filling+-i {5 -+ {6}} ], {a, L, 2 L} ]

20 60 80

Printed by Mathematica for Students



4 | bending moment.nb

L :3 O
Ma 4 (3L-a- (3L-a) ^2 /L) (3L-a+L) / (15L) * (3L-a) /L- (3L-a- (3L-a)^2/L)
MB 4 (3L-a- (3L-a)^2 /L) (3L-a+L) / (15L)
MC :=-(3L-a- (3L-a)^ 2/L) (3L-a+L) / (15L)

Manipulate[Plot[{-(3L-a- (3L-a)^2/L) (3L-a.+L) / (15L) /Lx*HeavisideThta[-x+L],
((4 (3L-a- (3L-a)^2/L) (3L-a+L) / (15L) + (3L-a- (3L-a)^2 /L) (3L-a+L) / (15L)) /L

(x-L) - (3L-a- (3L-a)^2/L) (3L-a+L) / (15L))*
HeavisideTheta[x - L] *HeavisideTheta[-x + 2 L],

( (4 (3L - a- (3 L -a) ^2 /L) (3 L- a+ L) / (15 L) * (3 L -a) / L- (3L - a- (3L - a) ^ 2 / L) -
4 (3L-a- (3L-a)A2/L) (3L-a+L) / (15L)) / (a-2L) (x-2L) +

4 (3L-a- (3L-a) A2 / L) (3 L - a + L) / (15 L)) *HeavisideTheta [x -
2 L] * HeavisideTheta[-x + a],

((-4 (3 L -a- (3 L- a)^A2 /L) (3 L- a+L) / (15 L) *(3 L-a) / L+ (3 L -a- (3 L-a)^ 2 /L))/
(3L-a) (x-3L)) *HeavisideTheta[x-a] *HeavisideTheta[-x+3L], 3, -3},

{x, 0, 3 L}, PlotRange. 14, Filling {5 +{6}}], {a, 2 L+1,
3 L)]

10 -

5-

40 60 80

-5 -
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bending moment nb 15

Manipulate[
Plot[ [{If [a < L, ( (4 (a -a A^2 / L) (a + L) / (15 L)) / L- (1 - a / L) ) * x* HeavisideTheta [-x + a],

(a -L- (a -L) ̂ 2 /L) a/ (5 L) /Lx*HeavisideTheta[-x+L]], If [a< L,
((4 (a-aA2 /L) (a+ L) / (15L) -4 (a-aA2/L) (a+L) / (15L) *a/L+ (a-a^2 /L)) / (L-a)

(x- a) +4 (a -a^2 /L) (a+ L) / (15L) *a/ L -(a -a^2 / L)) *HeavisideTheta[x- a]*
HeavisideTheta[-x+ L], (a -L- (a -L) ̂ 2 / L) a/ (5 L) /Lx*HeavisideTheta[-x+L]],

If[a<L, ((-(a-a^2 /L) (a+L) / (15 L) -4 (a-aA2 /L) (a+ L) / (15L)) /L (x-L) +
4 (a-a^ 2 /L) (a+L) / (15 L)) *HeavisideTheta[x-L] *HeavisideTheta[-x+2L],

((((1- (a-L) /L) a/ (5L) - (1- (a-L) /L)) - (1- (a-L) /L) a/ (5L)) (x-L) +
(a-L- (a-L)A2/L) a/ (5L)) *HeavisideTheta[x-L] *HeavisideTheta[-x+a]],

If[a<L, ((-(a-a^2/L) (a+L) / (15L) -4 (a-aA2 /L) (a+L) / (15L)) /L (x-L) +
4 (a-a^2 /L) (a+L) / (15 L)) *HeavisideTheta[x-L] *HeavisideTheta[-x+2 L],

(((a- L - (a- L) A2 / L) a/ (5 L) - ((a-L - (a - L) ^2 / L) a / (5 L) - (a-L - (a- L) A2 / L))) /
(2 L - a) (x - 2 L) + (a - L - (a - L) ^2 / L) a / (5 L)) *

HeavisideTheta[x- a] *HeavisideTheta[-x+2 L]], If [a < L,
(((a-a^2 /L) (a + L) / (15L)) /L (x -2L) - (a-a^2 /L) (a+L) / (15L))*
HeavisideTheta [x - 2 L],
(- (a-L- (a- L) A2 / L) a/ (5 L) / L (x - 2 L) + (a- L - (a - L) ̂2 /L) a/ (5 L)) *
HeavisideTheta [x - 2 L]], 3, -3),

{x, 0, 3 L), PlotRange 414, Filling -> {6 {7))], {a, 0, 2 L}]

10 -

5 -

20 40 ~~,60 80

Printed by Mathematica for Students



6 | bending moment. nb

in[101], Manipulate

Plot ItIf [a < L, ( (4 (a - a^ 2 / L) (a + L) / (15 L) ) / L - (1I- a / L) ) * x* HeavisideTheta [-x + a], 0],

If[a< L, ((4 (a-a^2/L) (a+ L) / (15L) -4 (a-a^2/L) (a+ L) / (15L) *a/L+ (a-a^2 /L)) /
(L-a) (x-a) +4 (a-aA2/L) (a+L) / (15L) *a/L- (a-a^2 /L))*

HeavisideTheta[x- a] *HeavisideTheta[-x+ L], 0], If [a< L,
((-(a-a^2 /L) (a+L) / (15L) -4 (a-a^2 /L) (a+L) / (15L)) /L (x-L) +

4 (a -a^ 2 / L) (a+ L) / (15 L) ) *HeavisideTheta[x- L] *HeavisideTheta[-x+ 2 L], 0],
If[a<L, (((a-a^2 /L) (a+L) / (15L)) /L (x-2 L)- (a-a^2/L) (a+L) / (15 L))*

HeavisideTheta[x-2 L] *HeavisideTheta[-x+ 3 L], 0],
If[L < a<2 L, (a-L- (a-L)^2 /L) a/ (5L) /Lx*HeavisideTheta[-x+ L], 0],
If [L < a < 2 L, ( ( ((1 - (a - L) / L) a /(5 L)- (1 - (a - L) L))- (1 - (a - L) / L) a/ (5 L)) (x - L) +

(a - L - (a - L) ̂ 2 / L) a / (5 L)) *
HeavisideTheta [x - L] * HeavisideTheta[- x + a], 0], If [L < a < 2 L,
(((a - L - (a - L) A2 / L) a / (5 L) - ((a - L - (a- L) ^2 / L) a / (5 L) - (a - L - (a- L) ̂ 2 / L))) /

(2L-a) (x-2L) + (a-L- (a-L)^2 /L) a/ (5L)) *
HeavisideTheta[x-a] *HeavisideTheta[-x+2 L], 0], If [L < a< 2L,

(-(a - L- (a -L) ^2 / L) a / (5 L) / L (x - 2L) + (a - L- (a -L) ^2 /L) a / (5 L))*
HeavisideTheta[x - 2 L], 0], If [a > 2 L,

- (3L-a- (3L-a) ̂ 2/L) (3L-a+L) / (15L) /Lx*HeavisideTheta[-x+L], 0], If[a>2L,
((4 (3L-a- (3 L-a)^2 /L) (3 L-a+L) / (15L) + (3L-a- (3L-a)^2 /L) (3 L-a+L) / (15L)) /

L (x-L) - (3 L-a- (3L-a)^2/L) (3L-a+L) / (15L)) *

HeavisideTheta[x-L] *HeavisideTheta[-x+2 L], 0], If [a > 2 L,

S(4a3-L36a2L+89aL2-51L) (2 L-x)
15 L3 , + 4 (3 L- a- (3 L -a)^'2 /L) (3 L - a+L) / (15 L)*

HeavisideTheta [x - 2 L] * HeavisideTheta [-x + a], 0 ,

If[a>2L, ((-4 (3L-a- (3 L-a)^2/L) (3 L-a+L) / (15L) /L+ (1- (3 L-a) /L)) (x-3L)) *

HeavisideTheta[x - a] * HeavisideTheta [-x + 3 L], 0], 3, -3, 10 000 (x - a)},

{x, 0, 3 LI, PlotRange -.14, Filling-4 {13 -4 {14))]. {a, 0, 3 L})

10 -

5

40 60 80

-5

-10 -
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bending moment. nb |7

npo2 Manipulate[Plot [{ If [3.5 < a < L / 2,
- ((4 (a - a^ 2 /L) (a +L) / (15 L) / L- (1 - a/L) ) a +3) / a x *HeavisideTheta [-x +L /2], 0],

If [3.5 < a < L / 2, ( (4 (a - a^2/L) (a+L) / (15L) /L- (1-a/L)) a+3) / a
(x - L) * HeavisideTheta [x - L / 2] * HeavisideTheta [-x + L], 0],

If [L / 2 < a < L - 6, - ((4 (a - a^ A2/L) (a+L) / (15L) /L- (1-a/L)) a+3) / (L-a)
x*HeavisideTheta[-x+L/2], 0], If[L/2 <a< L-6,

((4 (a-aA2 / L) (a + L) / (15 L) / L - (1 - a / L)) a + 3) / (L - a) (x - L) * HeavisideTheta [x -L/2] *
HeavisideTheta[-x+L], 0]), {x, 0, 3L), PlotRange-. 7], {a, 0, L)]

6

4

2

20 40 60 80
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8 | bending moment.nb

Manipulate [Plot[{ ((4 (a -a^ 2 / L) (a+ L) / (15 L)) / L- (1 -a/ L)) *x*HeavisideTheta[-x+ a] +
If [3.5 <a<= L/2, - ((4 (a -a^2 /L) (a+ L) / (15L) /L- (1- a/ L)) a+ 3) / a x*

HeavisideTheta[-x+L /2] *HeavisideTheta[-x+ a], 0] +If [L /2 <a< L- 6,
- ((4 (a -a^ 2 /L) (a+ L) / (15L) /L- (1- a/ L)) a+ 3) / (L- a) x*HeavisideTheta[-x+L/2],
0] + If [L / 2 < a < L - 6, ((4 (a - a^2 / L) (a + L) / (15 L) /L - (1 - a / L) ) a + 3) / (L - a)

(x - L) * HeavisideTheta [x - L / 2] * HeavisideTheta[-x + L] * HeavisideTheta[-x + a] , 0],
((4 (a-aA2 /L) (a+L) / (15L) -4 (a-a^2 /L) (a+L) / (15L) *a/L + (a-a^2/L)) / (L-a)

(x-a) + 4 (a-a^2/L) (a+L) / (15L) *a/L- (a-a^2/L))*
HeavisideTheta [x - a] * HeavisideTheta [- x + L] + If [3. 5 < a <= L / 2,
((4 (a-aA2/L) (a+L) / (15L) /L- (1-a/L)) a+3) / a
(x - L) * HeavisideTheta [x - L/ 2] * HeavisideTheta[-x + L] , 0] +

If [3.5 < a < L / 2, - ( (4 (a - a^2 /L) (a + L) / (15 L) / L - (1 - a / L) ) a + 3) /a
x*HeavisideTheta[-x+L/2] *HeavisideTheta[x-a], 0] +

If[L/2 < a<L-6, ((4 (a-a^2/L) (a+L) / (15L) /L- (1-a/L)) a+3) / (L-a)
(x-L) *HeavisideTheta[x-L/ 2] * HeavisideTheta[-x+L] * HeavisideTheta[x-a], 0],

((-(a-a^2 /L) (a+L) / (15L) -4 (a-aA2 /L) (a+L) / (15L)) /L (x-L) +
4 (a-aa^2 /L) (a+L) / (15L)) *HeavisideTheta[x-L] *HeavisideTheta[-x+2L],

(((a - a^2 / L) (a + L) / (15 L)) / L (x - 2 L) - (a - aA2 / L) (a + L) / (15 L)) *
HeavisideTheta[x-2 L] *HeavisideTheta[-x+3 L], 3, -3),

{x, 0, 3 L), PlotRange - 14, Filling - {5 -+ {6))], {a, 0, L)]
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