MIT OpenCourseWare
http://ocw.mit.edu

18.701 Algebra I

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.701 Practice Quiz 2

1. Let V be the real vector space whose elements are the polynomials of degree ≤ 4, and let $W=\mathbb{R}^{2}$. Let $T: V \rightarrow W$ be the linear transformation defined by $T(f)=\left(f(2), f^{\prime}(2)\right)^{t}$, where f^{\prime} denotes the derivative. Determine the dimension of the kernel (the nullspace) of T.
2. As usual, ρ_{θ} stands for the operator of rotation of the plane through the angle θ about the origin, and r is reflection about the horizonal axis.
(a) Determine the matrix of the composed linear operator $m=r \rho_{\theta}$.
(b) Geometrically, m is reflection about a line. Determine this line.
(c) What are the eigenvalues of m ?
(d) Is m a diagonalizable operator?
3. The rotation through the angle $\frac{\pi}{2}$ about the point $(1,2)^{t}$ can be written in the form $t_{v} \rho_{\theta}$, where t_{v} is translation by the vector v. Determine v and θ.
4. The figure below depicts part of a pattern F that covers the plane \mathbb{R}^{2}. Let G be the group of symmetries of F.
(a) Determine the point group of G.
(b) Let $T_{G}=T \cap G$ be the subgroup of translations in G. Determine the index of T_{G} in G.

$$
\begin{aligned}
& \text { >>>>>>>>>>>>>>>> } \\
& \text { <<<<<<<<<<<<<<<< } \\
& \text { >>>>>>>>>>>>>>>> } \\
& \text { <<<<<<<<<<<<<<<< } \\
& \text { >>>>>>>>>>>>>>>> } \\
& \text { <<<<<<<<<<<<<<<< } \\
& \text { >>>>>>>>>>>>>>>> } \\
& \text { <<<<<<<<<<<<<<<< }
\end{aligned}
$$

5. Let G be the group of symmetries of a regular tetrahedron T, including the orientation-reversing symmetries.
(a) Decompose the set of faces of T into orbits, and describe the stabilizer of a face.
(b) Determine the order of G.
6. Let G be a group of order 20 whose center is the trivial group $\{1\}$. Let x be an element of G of order 4 . What can you say about the order of the conjugacy class of x ?
