Search for contact interactions in dimuon events from pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

Citation: G. Aad et al. (ATLAS Collaboration). "Search for contact interactions in dimuon events from pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector." Phys. Rev. D 84, 011101(R) [2011] [18 pages]. © 2011 CERN, for the ATLAS Collaboration.

As Published: http://dx.doi.org/10.1103/PhysRevD.84.011101

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/66982

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Search for contact interactions in dimuon events from pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

G. Aad et al. *
(Received 22 April 2011; published 1 July 2011)

A search for contact interactions has been performed using dimuon events recorded with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV. The data sample corresponds to an integrated luminosity of 42 pb$^{-1}$. No significant deviation from the standard model is observed in the dimuon mass spectrum, allowing the following 95% C.L. limits to be set on the energy scale of contact interactions: $\Lambda > 4.9$ TeV (4.5 TeV) for constructive (destructive) interference in the left-left isoscalar compositeness model. These limits are the most stringent to date for $\mu \mu qq$ contact interactions.

DOI: 10.1103/PhysRevD.84.011101 PACS numbers: 12.60.Rc, 13.85.Qk, 14.70.Pw

Phenomena beyond the standard model (SM), such as large extra spatial dimensions [1] or quark/lepton compositeness [2], may be described as a four-fermion contact interaction (CI) in the low energy limit. Such an approach is similar to that used by Fermi to describe nuclear β decay [3] long before the discovery of the W boson. One can describe a new interaction at a higher energy scale with an effective Lagrangian of the form [2]

$$\mathcal{L} = \frac{g^2}{2\Lambda^2} \left[\eta_{LL} \bar{\psi}_L \gamma_{\mu} \psi_L \bar{\psi}_L \gamma_{\mu} \psi_L + \eta_{RR} \bar{\psi}_R \gamma_{\mu} \psi_R \bar{\psi}_R \gamma_{\mu} \psi_R + 2\eta_{LR} \bar{\psi}_L \gamma_{\mu} \psi_L \bar{\psi}_R \gamma_{\mu} \psi_R \right],$$

where g is a coupling constant, Λ is the energy scale below which fermion constituents are bound (in the context of compositeness models), and $\psi_{L,R}$ are left-handed and right-handed fermion fields, respectively. The scale Λ is defined by the choices $g^2/4\pi = 1$ and η_{LL}, η_{LR}, $\eta_{RR} = \pm 1$. Different choices of the parameters η_{LL}, η_{LR}, and η_{RR} determine the helicity structure of the new interaction. For example, the analysis presented in this paper applies specifically to the left-left isoscalar model (LLIM) commonly used as a benchmark for contact interaction searches [4]. This model is defined by setting $\eta_{LL} = \pm 1$ and $\eta_{LR} = \eta_{RR} = 0$. With the introduction of a contact interaction, the differential cross section for the process $q\bar{q} \rightarrow \mu^+ \mu^-$ becomes

$$\frac{d\sigma}{dm_{\mu\mu}} = \frac{d\sigma_{DY}}{dm_{\mu\mu}} - \eta_{LL} \frac{F_I(m_{\mu\mu})}{\Lambda^2} + \frac{F_C(m_{\mu\mu})}{\Lambda^4},$$

where $m_{\mu\mu}$ is the final-state dimuon mass. The expression above includes a SM Drell-Yan (DY) term, as well as DY-CI interference (F_I) and pure contact interaction (F_C) terms (see Ref. [5] for a detailed expression). The DY term here incorporates both photon and Z^0 boson contributions. At the largest Λ values that this analysis is sensitive to, both interference and pure contact interaction terms play a significant role.

This paper presents the results of a search for contact interactions in the dimuon channel, taking advantage of the high pp collision energy of the LHC and the capabilities of ATLAS to detect and measure muons. The search strategy focuses on identifying a deviation from the SM in the dimuon mass spectrum, which is expected to be dominated by the DY process. Contributions from a new interaction would undergo either constructive ($\eta_{LL} = -1$) or destructive ($\eta_{LL} = +1$) interference with the DY contribution. If present, a signal would result in a broad deviation from the SM expectation rather than a peak in the mass spectrum. Given current experimental bounds on Λ (see below), such a deviation would appear at masses well above the Z^0 boson peak. Therefore, the measurement requires excellent muon identification and reconstruction at high momentum. A separate paper presents the results of a search for new heavy resonances in the dimuon mass spectrum [6].

Previous searches for contact interactions have been carried out in neutrino scattering [7], as well as at electron-positron [8–11], electron-proton [12,13], and hadron colliders [14–22]. For the channel under study, the best limits in the LLIM are $\Lambda^- > 4.2$ TeV for constructive interference and $\Lambda^+ > 2.9$ TeV for destructive interference, at 95% C.L. [14].

ATLAS is a multipurpose particle detector [23] designed for physics at the TeV scale. Charged particle tracking is provided by an inner detector consisting of a pixel detector, a silicon-strip tracker, and a transition radiation tracker, immersed in a 2 T solenoidal magnetic field. A high-granularity liquid-argon electromagnetic calorimeter surrounds the solenoid. Hadron calorimetry is provided by

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
an iron-scintillator tile calorimeter in the central rapidity range and a liquid-argon calorimeter in the end cap and forward rapidity range. A key detector component for this analysis is the muon spectrometer, which is designed to identify muons and measure both their trajectories and momenta with high accuracy: the design momentum resolution is 10% at momenta transverse to the beam line \(p_T \) of 1 TeV. The muon spectrometer comprises three toroidal magnet systems consisting of eight coils each with a bending power \(\mathcal{B}dE = 1-7.5 \text{Tm} \), a trigger system consisting of both resistive plate chambers and thin-gap chambers, and a set of precision monitored drift tubes and cathode strip chambers with a single-hit spatial resolution better than 100 \(\mu \text{m} \) to accurately measure muon curvature. Precision chambers are continuously monitored by an optical alignment system designed to determine relative chamber positions to an accuracy of 50 \(\mu \text{m} \) or better.

The data sample for this analysis was collected during LHC operations in 2010 and corresponds to a total integrated luminosity of 42 pb\(^{-1} \) collected with stable beam conditions and fully operational inner detector and muon spectrometer systems. Events with muons were selected by requiring the presence of at least one high-momentum muon passing all three rejection levels of the muon trigger system. The \(p_T \) threshold was initially set to 10 GeV but was raised to 13 GeV in the later parts of the data taking due to increasing luminosity.

This analysis follows the same event selection as the search for new heavy resonances. A summary is provided below; see Ref. [6] for a more complete description. Events with a good primary vertex are selected to suppress cosmic-ray events. Muon tracks reconstructed independently in the inner detector and muon spectrometer are combined with a fit to all associated hits, taking the energy loss in the calorimeter into account. The energy loss estimate uses either the parametrized expected energy loss or the energy measured in the calorimeter if this energy significantly exceeds the most probable energy loss. The combined tracks are required to have hits in all inner detector tracking systems, at least one hit in the nonbending plane, and at least three hits in each of the inner, middle, and outer precision chambers of the muon spectrometer. Tracks passing through poorly aligned chambers are rejected. The above hit requirements guarantee a reliable momentum measurement and good modeling by the detector simulation. Muon tracks are required to have \(p_T > 25 \text{ GeV} \), pseudorapidity \(|\eta| < 2.4 \) [24] to be within the acceptance of the inner detector tracking and muon spectrometer trigger systems, and a relative track isolation \(\sum p_T^i / p_T < 0.05 \), where the sum is over all inner detector tracks \(i \) within a \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \) cone of 0.3 around the muon trajectory, to suppress backgrounds from heavy flavor decays. Additional requirements are placed on the impact parameter of the muon track to reduce cosmic-ray backgrounds to a negligible level. Finally, dimuon candidates are formed from all pairs of opposite-charge muons satisfying the above criteria, and the mass of those pairs is required to be greater than 70 GeV. There are 7743 dimuon events passing all selection requirements.

Drell-Yan, \(W + \) jets, and multijet events were generated with PYTHIA 6.421 [25] and MRST2007 LO* parton distribution functions (PDFs) [26]. Diboson (\(WW, WZ, \) and \(ZZ \)) events were produced with HERWIG 6.510 [27] and MRST2007 LO* PDFs. In the case of \(t\bar{t} \), events were generated with MC@NLO 3.41 [28] to compute matrix elements, JIMMY 4.31 [29] to simulate the underlying event, HERWIG 6.510 to model parton showering and hadronization, and CTEQ 6.6 [30] for PDFs. For signal samples, PYTHIA 6.421 was used to produce the DY and CI processes simultaneously in order to properly account for the interference between the two processes. A mass-dependent QCD \(K \) factor corresponding to the ratio between next-to-next-to-leading order [31] and PYTHIA LO* DY differential cross sections was applied to these signal samples as well as pure DY samples. Similarly, a mass-dependent electroweak \(K \) factor was applied to account for higher order electroweak effects due to virtual gauge boson loops [32]. This correction was only applied to the DY cross section since the new physics included in the CI term has unknown couplings to SM gauge bosons. Implicitly, higher order electroweak corrections to the new interaction are included in the value of \(\Lambda \). The QCD (electroweak) \(K \) factor varies between 1.16 (1.04) at low dimuon mass and 0.86 (0.85) at a mass of 2 TeV. The response of the ATLAS detector to these generated event samples was simulated with GEANT 4 [33,34].

Figure 1 shows the dimuon mass distribution for all selected events along with the predicted contributions

![Figure 1](color online). Dimuon invariant mass distribution for all selected events (points) and Monte Carlo simulations (histograms). The red (blue) line corresponds to the distribution expected in the presence of contact interactions with \(\Lambda^- = 3 \text{ TeV} \) (5 TeV) for constructive interference. The dashed blue line corresponds to \(\Lambda^+ = 5 \text{ TeV} \) for destructive interference.
SEARCH FOR CONTACT INTERACTIONS IN DIMUON ...

Table I presents the number of events in different bins of dimuon mass for data and MC simulation. The sum of MC predictions is normalized to the number of data events in the Z⁰ peak mass region between 70 and 110 GeV. It should be noted that, prior to normalization, data and MC event yields agree within the uncertainty in the integrated luminosity. This normalization procedure removes sensitivity to mass-independent uncertainties such as the luminosity uncertainty. The overall acceptance of the selection is estimated to be 36% for simulated DY events in the signal region defined by m_\text{\mu\mu} > 150 GeV.

To estimate the level of agreement between the observed mass spectrum and the SM prediction, a large ensemble of SM-only pseudoexperiments was generated. For each such pseudoexperiment, a binned likelihood was computed to quantify the deviation from the SM expectation. In 56% of these pseudoexperiments, the deviation was found to be more significant than that observed in the data for the signal region, indicating good consistency between the data and the predicted spectrum. This level of agreement is illustrated in Fig. 2, which shows the number of events above a minimum mass m_\text{\mu\mu}^\text{min}. Since no significant deviation is observed in the dimuon mass spectrum, we proceed with setting a limit on the energy scale \Lambda using a Bayesian method. Here, the prior probability distribution is chosen to be flat in 1/\Lambda^2, motivated by the form of Eq. (2). Systematic uncertainties are incorporated in the limit setting by treating them as nuisance parameters (\nu) that are marginalized in the calculation of the posterior probability P. The 95% confidence level limit is then obtained by finding the value \Lambda_\text{lim} that satisfies \int_0^{\Lambda_\text{lim}} P(\theta | \bar{n}, \nu) d\theta = 0.95, where \theta = 1/\Lambda^2 and \bar{n} represents the observed number of events in the mass bins above 150 GeV, with bin boundaries as defined in Table I. Table II shows the expected number of events in each mass bin within the signal

Table I. Expected and observed number of events in the dimuon channel. The errors quoted originate from the limited MC statistics.

<table>
<thead>
<tr>
<th>m_\text{\mu\mu} (GeV)</th>
<th>70–110</th>
<th>110–130</th>
<th>130–150</th>
<th>150–170</th>
<th>170–200</th>
<th>200–240</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>7547 ± 7</td>
<td>98.4 ± 0.8</td>
<td>33.4 ± 0.5</td>
<td>17.2 ± 0.3</td>
<td>12.8 ± 0.3</td>
<td>7.8 ± 0.2</td>
</tr>
<tr>
<td>t\bar{t}</td>
<td>6.0 ± 0.2</td>
<td>2.4 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>1.24 ± 0.04</td>
<td>1.22 ± 0.03</td>
<td>1.03 ± 0.03</td>
</tr>
<tr>
<td>Diboson</td>
<td>10.1 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.56 ± 0.04</td>
<td>0.48 ± 0.04</td>
<td>0.41 ± 0.03</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.14 ± 0.08</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Total</td>
<td>7563 ± 7</td>
<td>101.6 ± 0.8</td>
<td>35.7 ± 0.5</td>
<td>18.9 ± 0.3</td>
<td>14.4 ± 0.3</td>
<td>9.1 ± 0.2</td>
</tr>
<tr>
<td>Data</td>
<td>7563</td>
<td>101</td>
<td>41</td>
<td>11</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m_\text{\mu\mu} (GeV)</th>
<th>240–300</th>
<th>300–400</th>
<th>400–550</th>
<th>550–800</th>
<th>800–1200</th>
<th>1200–2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>5.05 ± 0.11</td>
<td>2.49 ± 0.04</td>
<td>0.99 ± 0.01</td>
<td>0.29 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td><0.05</td>
</tr>
<tr>
<td>t\bar{t}</td>
<td>0.73 ± 0.02</td>
<td>0.37 ± 0.01</td>
<td>0.11 ± 0.01</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.24 ± 0.02</td>
<td>0.16 ± 0.02</td>
<td>0.06 ± 0.01</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>W + jets</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Total</td>
<td>6.02 ± 0.11</td>
<td>3.03 ± 0.05</td>
<td>1.16 ± 0.02</td>
<td>0.33 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td><0.05</td>
</tr>
<tr>
<td>Data</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
region for different scales \(\Lambda \), as used in the calculation of the posterior probability.

Systematic errors are of both theoretical and experimental origins. Because the expected event yields are normalized to the \(Z^0 \) peak region, only momentum- or mass-dependent uncertainties are relevant. Theoretical uncertainties include PDF variations evaluated using the MSTW2008 PDF error set [35] in the absence of a full error set for the MRST2007 LO* PDF. This choice leads to conservative uncertainties in the event yields that grow from 3% at the \(Z^0 \) pole to 6% (9%) at a mass of 1 TeV (1.5 TeV). A cross-check was made by computing cross sections for both MSTW2008 and CTEQ 6.6 PDFs for a wide range of dimuon masses. Differences between the two choices of PDFs were always found to be smaller than the assigned uncertainty obtained from the MSTW2008 PDF set. The QCD \(K \) factor uncertainty in the DY and DY + CI cross sections is taken to be the difference between next-to-next-to-leading order and next-to-leading order DY cross sections as a function of dimuon mass. The electroweak \(K \) factor uncertainty in the DY cross section is taken to be the entire magnitude of the correction relative to the LO cross section. Uncertainties in the QCD (electroweak) \(K \) factor are mass dependent; for example, they amount to 3.0% (4.5%) at a mass of 1 TeV. Uncertainties in the \(\vec{t} \bar{t} \), diboson, and \(W + j \) cross sections have a negligible impact on the limit. Finally, the statistical error of the DY + CI MC (shown in Table II) is included as a source of systematic error and has the largest effect on the limits.

The MC simulation is used to determine all acceptance and efficiency effects. Therefore, detailed comparisons between data and Monte Carlo simulation were performed to make sure that the simulation models the data well for our choice of muon track selection criteria, especially at higher \(p_T \). Experimental uncertainties arise from the slight \(p_T \) dependence of muon efficiencies and from the impact of the intrinsic detector spatial resolution on the momentum resolution. At transverse momenta above 200 GeV, radiative losses due to bremsstrahlung in the detector material begin to affect the muon track pattern recognition.

An uncertainty of 3% per TeV is assigned to the muon efficiency to conservatively account for the small \(p_T \) dependence predicted by the simulation. Muon momentum resolution at high \(p_T \) is most affected by the quality of the muon spectrometer alignment. The latter has been studied with high-momentum cosmic-ray muons traversing the center of the detector. It has also been studied in collision data with muons passing through detector regions with overlapping muon spectrometer chambers, thereby providing independent track fits from the redundant sets of hits in neighboring chambers and allowing the impact of the alignment of adjacent detector regions to be measured. Curvature smearing parameters derived from these studies are found to be \(\delta(q/p_T) = 0.18 \pm 0.04 \text{ TeV}^{-1} \) for \(|\eta| < 2.0 \) and \(\delta(q/p_T) = 0.7 \pm 0.2 \text{ TeV}^{-1} \) for \(|\eta| > 2.0 \), where \(q \) is the charge of the muon track. These parameters reflect the current level of understanding of the detector alignment and are expected to decrease with further data taking. We take the full magnitude of these smearing corrections as the systematic uncertainty in the momentum resolution. Comparison of the inclusive muon momentum spectrum between data and MC simulation does not show evidence for significant non-Gaussian tails in the data.

Using the Bayesian method described above, the expected 95% C.L. lower limits on the scale \(\Lambda \) are found to be 5.1 \pm 0.3 \text{ TeV} and 4.8 \pm 0.3 \text{ TeV} for constructive and destructive interference, respectively. The quoted uncertainty range is estimated with a large set of pseudoexperiments and corresponds to a 68% range around the median value of all the limits obtained from those pseudoexperiments. Systematic errors are already folded into the limit setting procedure and result in a decrease of the limit by about 0.1 TeV. The dominant source of uncertainty originates from the limited signal MC statistics. For the selected data sample, we set the following limits at 95% C.L.: \(\Lambda^+ > 4.9 \text{ TeV} \) for constructive interference and \(\Lambda^- > 4.5 \text{ TeV} \) for destructive interference in the LLIM with a prior flat in \(1/\Lambda^2 \). These values are compatible with the expected limits. If a prior flat in \(1/\Lambda^4 \) is chosen, both limits decrease by 0.3 TeV.

<table>
<thead>
<tr>
<th>(m_{\mu\mu}) (GeV)</th>
<th>150–170</th>
<th>170–200</th>
<th>200–240</th>
<th>240–300</th>
<th>300–400</th>
<th>400–550</th>
<th>550–800</th>
<th>800–1200</th>
<th>1200–2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda^– = 3 \text{ TeV})</td>
<td>19.1 \pm 0.5</td>
<td>15.7 \pm 0.4</td>
<td>11.2 \pm 0.4</td>
<td>8.5 \pm 0.3</td>
<td>7.9 \pm 0.3</td>
<td>6.0 \pm 0.3</td>
<td>6.5 \pm 0.3</td>
<td>5.1 \pm 0.2</td>
<td>3.0 \pm 0.2</td>
</tr>
<tr>
<td>(\Lambda^– = 4 \text{ TeV})</td>
<td>18.8 \pm 0.4</td>
<td>14.3 \pm 0.4</td>
<td>10.0 \pm 0.3</td>
<td>6.5 \pm 0.2</td>
<td>5.0 \pm 0.2</td>
<td>3.0 \pm 0.2</td>
<td>2.3 \pm 0.2</td>
<td>1.45 \pm 0.12</td>
<td>1.08 \pm 0.09</td>
</tr>
<tr>
<td>(\Lambda^– = 5 \text{ TeV})</td>
<td>17.4 \pm 0.4</td>
<td>14.3 \pm 0.4</td>
<td>9.4 \pm 0.3</td>
<td>6.2 \pm 0.2</td>
<td>4.3 \pm 0.2</td>
<td>1.95 \pm 0.13</td>
<td>1.29 \pm 0.11</td>
<td>0.72 \pm 0.08</td>
<td>0.36 \pm 0.06</td>
</tr>
<tr>
<td>(\Lambda^– = 7 \text{ TeV})</td>
<td>17.3 \pm 0.4</td>
<td>13.8 \pm 0.4</td>
<td>9.3 \pm 0.3</td>
<td>6.3 \pm 0.2</td>
<td>3.3 \pm 0.2</td>
<td>1.26 \pm 0.10</td>
<td>0.58 \pm 0.07</td>
<td>0.21 \pm 0.04</td>
<td>0.11 \pm 0.03</td>
</tr>
<tr>
<td>(\Lambda^+ = 2 \text{ TeV})</td>
<td>21.6 \pm 0.6</td>
<td>19.3 \pm 0.6</td>
<td>15.8 \pm 0.5</td>
<td>15.2 \pm 0.5</td>
<td>21.2 \pm 0.6</td>
<td>21.6 \pm 0.6</td>
<td>25.5 \pm 0.6</td>
<td>21.4 \pm 0.6</td>
<td>15.1 \pm 0.5</td>
</tr>
<tr>
<td>(\Lambda^+ = 3 \text{ TeV})</td>
<td>18.6 \pm 0.4</td>
<td>15.2 \pm 0.4</td>
<td>10.1 \pm 0.3</td>
<td>7.2 \pm 0.3</td>
<td>5.5 \pm 0.2</td>
<td>4.6 \pm 0.2</td>
<td>5.3 \pm 0.2</td>
<td>4.3 \pm 0.2</td>
<td>3.1 \pm 0.2</td>
</tr>
<tr>
<td>(\Lambda^+ = 4 \text{ TeV})</td>
<td>18.2 \pm 0.4</td>
<td>14.3 \pm 0.4</td>
<td>8.8 \pm 0.3</td>
<td>6.1 \pm 0.2</td>
<td>3.6 \pm 0.2</td>
<td>2.10 \pm 0.14</td>
<td>1.59 \pm 0.12</td>
<td>1.52 \pm 0.12</td>
<td>0.84 \pm 0.08</td>
</tr>
<tr>
<td>(\Lambda^+ = 5 \text{ TeV})</td>
<td>18.5 \pm 0.4</td>
<td>13.6 \pm 0.3</td>
<td>8.8 \pm 0.3</td>
<td>5.4 \pm 0.2</td>
<td>2.9 \pm 0.2</td>
<td>1.61 \pm 0.12</td>
<td>0.88 \pm 0.09</td>
<td>0.53 \pm 0.07</td>
<td>0.28 \pm 0.05</td>
</tr>
</tbody>
</table>
To conclude, a search for contact interactions has been carried out in a sample of dimuon events recorded by the ATLAS detector in pp collisions from the LHC at $\sqrt{s} = 7$ TeV. No significant deviation from the standard model is observed in the dimuon mass spectrum obtained from a data sample corresponding to an integrated luminosity of 42 pb$^{-1}$. Limits placed on the energy scale Λ are the most stringent to date for $\mu\muqq$ contact interactions.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, YerPhI, Armenia; ARC, Australia; BMWF, Austria; We acknowledge the support of ANPCyT, Argentina; without whom ATLAS could not be operated efficiently. LHC, as well as the support staff from our institutions crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/ GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide.

[24] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis along the beam pipe. The x axis points from the interaction point to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (ρ, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
G. W. Brandenburg,57 A. Brandt,7 G. Brandt,15 O. Brandt,54 U. Bartzler,156 B. Brau,84 J. E. Brau,114 H. M. Braun,174
G. W. Brandenburg,57 A. Brandt,7 G. Brandt,15 O. Brandt,54 U. Bartzler,156 B. Brau,84 J. E. Brau,114 H. M. Braun,174

G. W. Brandenburg,57 A. Brandt,7 G. Brandt,15 O. Brandt,54 U. Bartzler,156 B. Brau,84 J. E. Brau,114 H. M. Braun,174

G. W. Brandenburg,57 A. Brandt,7 G. Brandt,15 O. Brandt,54 U. Bartzler,156 B. Brau,84 J. E. Brau,114 H. M. Braun,174

(Atlas Collaboration)

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3aDepartment of Physics, Ankara University, Ankara, Turkey
3bDepartment of Physics, Dumlupinar University, Kütahya, Turkey
3cDivision of Physics, Gazi University, Ankara, Turkey
4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6Department of Physics, University of Arizona, Tucson, Arizona, USA
7Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
8Department of Physics, Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece
10Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11Institut de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12aInstitute of Physics, University of Belgrade, Belgrade, Serbia
12bInstitute of Nuclear Sciences, Belgrade, Serbia
13Department for Physics and Technology, University of Bergen, Bergen, Norway
14Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15Department of Physics, Humboldt University, Berlin, Germany
16Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18aDepartment of Physics, Bogazici University, Istanbul, Turkey
18bDivision of Physics, Doshu University, Istanbul, Turkey

011101-14
SEARCH FOR CONTACT INTERACTIONS IN DIMUON ...

PHYSICAL REVIEW D 84, 011101(R) (2011)
SEARCH FOR CONTACT INTERACTIONS IN DIMUON . . .

PHYSICAL REVIEW D 84, 011101(R) (2011)

121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 INFN Sezione di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
124 Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa, Portugal
125 Department of Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina, Saskatchewan, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 INFN Sezione di Roma I, Roma, Italy
133 INFN Sezione di Roma Tor Vergata, Roma, Italy
134 INFN Sezione di Roma Tre, Roma, Italy
135 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
136 Centre National de l’Énergie des Sciences Technologiques, Rabat, Morocco
137 Université Cadi Ayyad, Faculté des Sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000, Morocco
138 Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
140 Department of Physics, University of Washington, Seattle, Washington, USA
141 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
142 Department of Physics, Shinshu University, Nagano, Japan
143 Fachbereich Physik, Universität Siegen, Siegen, Germany
144 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
145 Department of Physics, Stockholm University, Stockholm, Sweden
146 The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, Ontario, Canada
159 TRIUMF, Vancouver, British Columbia, Canada
160 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
161 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
162 Science and Technology Center, Tufts University, Medford, Massachusetts, USA
163 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
164 INFN Gruppo Collegato di Udine, Udine, Italy
165 ICTP, Trieste, Italy
166 Dipartimento di Fisica, Università di Udine, Udine, Italy