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Abstract
Measurements of the mass and surface charge of microparticles are employed in the characterization
of many types of colloidal dispersions. The suspended microchannel resonator (SMR) is capable of
measuring individual particle masses with femtogram resolution. Here, we employ the high
sensitivity of the SMR resonance frequency to changes in particle position, relative to the cantilever
tip, to determine the electrophoretic mobility of discrete particles in an applied electric field. When
a sinusoidal electric field is applied to the suspended microchannel, the transient resonance frequency
shift corresponding to a particle transit can be analyzed by digital signal processing to extract both
the buoyant mass and electrophoretic mobility of each particle. These parameters, together with the
mean particle density, can be used to compute the size, absolute mass, and surface charge of discrete
microspheres, leading to a true representation of the mean and polydispersity of these quantities for
a population. We have applied this technique to an aqueous suspension of two types of polystyrene
microspheres, to differentiate them based on their absolute mass and their surface charge. The
integrated measurement of electrophoretic mobility using the SMR is determined to be quantitative,
based on comparison with commercial instruments, and exhibits favorable scaling properties that
will ultimately enable measurements from mammalian cells.

Colloidal dispersions have a broad range of technological applications, including paints,
pharmaceuticals, foods, photographic emulsions, ceramics, drilling muds, inks, and photonic
crystals.1–5 Many of these applications require very precise control over colloidal stability and,
hence, interparticle interactions, which are dependent on the physicochemical properties of the
particles themselves. Therefore, quantitative measures of particle properties (such as the size,
mass, and surface charge) are often valuable, with regard to designing systems and
manufacturing processes for these applications. Measurements of particle size and surface
charge are routinely performed using light scattering techniques such as phase-analysis light
scattering (PALS).6 This technique estimates the size and electrophoretic mobility of particles
by measuring their average Brownian motion and their motion in an applied electric field,
respectively. While applicable to a wide variety of colloidal systems, PALS reports size and
mobility values that represent averages over multiple particles. Hence, accuracy in estimating
the particle's charge, which is dependent on both the size and the mobility, can suffer from
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errors that are made in ensemble average measurements of these two parameters, both of which
may be multimodal for a complex population.

Various approaches for measuring size and electrical properties of single particles have been
explored, such as the Coulter principle and mass spectrometry. Carbon nanotube-based Coulter
counters are able to measure discrete-particle mobility and size, but compromises must be made
between the signal-to-noise ratio (SNR) of the mobility measurement and that of the size
measurement, because they have inherently different optimum orifice lengths.7 Measurement
of the particle charge-to-mass ratio via time-of-flight mass spectrometry has been integrated
with direct charge measurement using a Faraday disk; however, because the sample must be
dried, the measured charge may not accurately reflect that experienced in the desired dispersion
medium for a given application.8

It has been shown recently that the mass of single nanoparticles can be measured with high
precision using a suspended microchannel resonator (SMR).9 With this method, particle mass
is measured as the change in resonance frequency of a hollow cantilever as a suspended
microparticle transits the fluid-filled microchannel running through it (see Figure 1A). The net
frequency shift is proportional to the buoyant mass of the particle. In addition, as the particle
travels through the cantilever, the resonance frequency of the SMR is highly sensitive to its
position along the cantilever's length. Here, we have exploited this property to accurately
quantify the electrophoretic mobility of polystyrene microspheres traveling through the SMR
while being subjected to oscillatory electric fields (see Figure 1B). We demonstrate that
recorded resonance frequency time courses that correspond to particles traveling through the
SMR while undergoing oscillatory electrophoresis can be analyzed to extract both the particle's
buoyant mass and electrophoretic mobility. Measurement of these two parameters, combined
with the particle's density, allows the absolute mass and surface charge of individual particles
to be computed. We have used this technique to show that integrated single-particle mass and
surface charge measurement enables differentiation of complex particle mixtures that is not
possible using either measurement alone.

The technique has been demonstrated by analyzing a mixture of polystyrene microspheres with
nominal diameters of 1.96 and 2.20 μm and a density of 1.05 g/cm3 in SMRs with a channel
height of 3 μm. The electrophoretic mobilities of particles and the electro-osmotic mobility of
the channel are estimated using the Helmholtz–Smoluchowski formula, because of their large
sizes, relative to the double layer thickness, which is estimated to be 2.6 nm under the present
buffer conditions. In this approximation, the particle velocity and electro-osmotic flow velocity
are given by

(1a)

and

(1b)

where ε is the permittivity of the buffer, η the buffer viscosity, E the electric field strength,
ζp the zeta potential of the particle, and ζw the zeta potential of the channel wall.10 Because
the polystyrene microspheres and the silicon dioxide channel surfaces are both negatively
charged under the present buffer conditions, the electrophoretic and electro-osmotic forces on
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a particle oppose each other. Particles that are subjected to a sinusoidal electric field (E = E0
sin(ωt)) will oscillate with a spatial amplitude that is proportional to their relative zeta potential:

(2)

where the sign of the spatial amplitude (A) indicates whether the motion is aligned with the
field (positive sign) or opposed to it (negative sign). If the channel wall's zeta potential and the
electric field parameters are known, then one can determine the particle's zeta potential from
eq 2 by measuring the spatial amplitude. From the particle's measured zeta potential and
volume, the surface charge can be estimated using the Loeb formula for a monovalent binary
ionic solution:

(3)

where a is the particle's diameter, κ the Debye–Hückel parameter, e0 the electron charge, kT
the thermal energy, and ζp the zeta potential of the particle.11

To determine the spatial amplitude A, which is described in eq 2, we model the resonance
frequency of the SMR, f(t), in response to an oscillating particle that drifts through the channel
at a constant velocity υd, as determined by the pressure gradient. Thus, the axial position x of
the particle along the channel is given by

As the particle passes through the channel, the induced frequency shift is described by a
nonlinear function, f(x), which is zero at the base and has a maximum at the apex. Although
this function is not known, we can estimate the rate of change of the resonance frequency,
which is given by

(4)

The first term in this chain-rule expansion corresponds to the local sensitivity of the resonance
frequency to changes in particle position, whereas the second term represents the instantaneous
particle velocity. Because the spatial amplitude, which is typically on the order of 10 μm, is
small, compared to the cantilever length of 200 μm, we can approximate the first term by the
value it would have in the absence of oscillation. Practically, this approximation is made by
band-stop filtering the frequency time course data, f̃(t), at the oscillation frequency. Because
the position of the particle is not known, we estimate the spatial derivative by dividing the time
derivative by the drift velocity:
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The drift velocity is approximated by the baseline width of the peak in the band-stop-filtered
frequency signal, and the height of the peak is used to compute the particle's buoyant mass.
The calibration of the device, in terms of the proportionality between resonance frequency and
added mass, has been reported elsewhere.9 The second term in the expansion, the particle's
instantaneous velocity, is given by

Substituting these expressions into eq 4 yields

A band-pass filter centered at the oscillation frequency is applied to both sides of this
approximation, eliminating the low-frequency first term on the right-hand side. The order of
differentiation and filtering on the left-hand side can be reversed because both operations are
linear and time-invariant, which facilitates evaluation of the numerical derivative. Rearranging
this relationship, in terms of the spatial amplitude, yields the following expression:

(5)

These operations provide a practical means by which to estimate the spatial amplitude of
oscillation (A(t)) from the raw resonance frequency data (f̃(t)).

Experimental Section
To integrate electrophoretic mobility measurement capabilities into the SMR, modifications
were needed both at the device and system level (see Figure 2). At the device level, the silicon
channel walls were electrically passivated with a thermal oxide layer to support electric fields
in the fluid for electrophoresis. However, this passivation oxide can break down if the cantilever
is driven to resonance using the electrostatic approach that has been used previously.12 Because
the cantilever contains a microchannel, using the cantilever as an electrode in the drive circuit
creates a large ground plane behind the walls of this microchannel, which is separated from
the fluid by only the passivation oxide thickness. The need for large potential differences in
the fluid to drive electrophoresis then results in large voltages being developed directly across
the oxide which cause breakdown of the oxide, as observed by electrolysis of the fluid. This
situation is avoided if the bulk silicon is allowed to float its potential to match the local fluid
voltage. Therefore, in the present work, actuation was performed by means of a piezoelectric
crystal external to the device (Model PL022, Physik Instrumente GmbH & Co. KG, Karlsruhe/
Palmbach, Germany). This crystal's 4 mm2 footprint is small enough that it can make direct
contact with the device's 145 mm2 bottom surface without interfering with the optical lever
beam. Contact force is adjusted by means of a set screw embedded in the manifold that seals
the external tubing against the device's fluid access ports on its top surface. Electrodes for
electrophoresis were also integrated at the system level, to minimize complications due to
electrolysis. This was accomplished using a custom manifold that incorporated both platinum
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wire electrodes and air pressure control elements that are needed to achieve precise control
over the particle drift velocity.

Device Passivation
Electrical passivation of the device was accomplished by growing 800 Å of thermal oxide on
all silicon surfaces that contact the fluid. Dry thermal oxide was grown at 850 °C for 15 min,
followed by a 42-min wet oxidation and a 30-min dry oxidation at the same temperature. This
oxide has been determined to support electric fields up to 1650 V/cm in the fluid before it
breaks down and shunts current through the bulk silicon.

Device Actuation
Because the piezoelectric drive transducer employed here for actuating the SMR has a much
higher capacitance than the micropatterned drive electrode used in the electrostatic scheme, a
power amplifier stage was added to the feedback loop. A limiter truncates the optical lever
output signal for input to an Apex PA-94 amplifier (Cirrus Logic, Inc., Austin, TX), the output
voltage of which is divided between a current-limiting resistor and the piezoelectric crystal
load. This circuit allows the highly capacitive load to be driven with sufficient current to actuate
the device at the resonance frequency of 183 kHz with minimal distortion of the phase.

Material Preparation
Dyed polystyrene particles suspended in deionized water, with nominal diameters of 2.20 and
1.96 μm, obtained from Thermo Fisher Scientific, Inc. (Waltham, MA) and Corpuscular, Inc.
(Cold Spring, NY), respectively, were resuspended together in 14 mM phosphate-buffered
saline (pH 7.8) to concentrations of 6.8 × 106 and 2.5 × 107 mL−1, respectively. These
concentrations were chosen to compensate for the higher nonspecific binding of the second
particle type to the silicon oxide surfaces of the device channel walls, to produce approximate
parity in the number of transits for the two particle types.

Particle Measurement Protocol
As reported previously, the mean particle density for a population can be inferred by measuring
the mean particle buoyant mass in at least two media that have different densities.9 Knowledge
of the mean density then allows the buoyant mass measurement to be converted to either a
volume or an absolute mass. In this work, particle volumes and absolute masses were computed
from the measured buoyant masses using a particle density of 1.05 g/cm3, which is specified
by the manufacturer. However, the instrumentation used to make the integrated measurements
described here also has all the capabilities needed to measure particle density. The particle
suspension was loaded into a pressurized reservoir that was connected to one bypass channel
of the SMR while a reservoir supplying the other bypass channel was filled with the same
buffer without particles (see Figure 2). Air pressure regulators connected to the two reservoirs
and valves at the outlets of the bypass channels determined the direction and rate of flow
through the sensor. For integrated measurements, both outlet valves were closed, and the
regulators were adjusted to produce a flow rate of ∼10 pL/s through the suspended
microchannel, which corresponded to a linear particle velocity of ∼400 μm/s. Larger velocities
were determined to yield insufficient data for particle mobility measurement, whereas smaller
velocities caused greater interactions between particles and the channel walls, which interfered
with mobility measurement. Electrophoresis was induced by applying a sinusoidal potential
with a frequency of 10 Hz and amplitude of 125 Vp between electrodes that were contained in
the two reservoirs.
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Determination of Electric Field
Because the two sample reservoirs are connected to the device through tubes and valves that
have unknown internal geometries, determining the electric field in the suspended
microchannel required further system characterization. A Keithley Model 237 source-measure
unit (Keithley Instruments, Inc., Cleveland, OH) was connected to the reservoir electrodes and
averages over at least 20 current measurements made at 200 ms intervals were tabulated for
19 different voltages between 1 V and 100 V to determine the ionic conductance of the overall
system. Reservoirs made from pipet tips were then connected directly to the surface of an
identical device with epoxy, so that the conductance of the device alone could be measured in
the same way. These two conductances were compared, to determine how voltages applied to
the electrodes are divided between the device itself and tubing external to it. Because
dimensions internal to the device are determined by well-characterized microfabrication
processes, the division of voltage between the suspended microchannel and the bypass channels
could be computed from known geometries to give a quantitative figure for the electric field
experienced by a particle inside the sensor. It was determined that a sinusoidal voltage of 125
Vp applied to the electrodes for particle electrophoresis produced a voltage of 48.4 Vp across
the 828-μm-long microchannel that connected the two bypasses, corresponding to a maximum
electric field of 585 V/cm.

Results and Discussion
Channel-Wall Zeta Potential Measurement

The zeta potential of the channel wall was determined using a bidirectional buffer exchange
technique. The running buffer used to make particle mobility measurements was loaded into
one reservoir, and the same buffer, diluted by 10% with deionized water, was loaded into the
other reservoir. Both buffers were mixed with trace amounts of 500-nm-diameter dyed
polystyrene particles (Thermo Fisher Scientific, Inc., Waltham, MA), which are too small to
cause a significant resonance frequency shift but large enough to provide a visible measure of
fluid flow, using a fluorescence microscope. Pressure regulators connected to the two reservoirs
were adjusted to give the smallest pressure-driven flow rate possible. This was accomplished
by closing the output valves of both bypasses and observing the time required for a tracer
particle to travel through the suspended microchannel. When the bypass pressures were
balanced, the output valves were opened to allow flow in the bypasses again and create a clean
boundary between the two buffers. The output valves were then closed again and a voltage of
20 V was applied between electrodes in the two reservoirs for a time period long enough to
exchange the two buffers via electro-osmotic flow. The time needed for the interface between
the two buffers to travel the length of the suspended microchannel was measured as the time
needed for the resonance frequency of the SMR to shift between two values corresponding to
the densities of the two buffers (see Figure 3). The length of the channel divided by this
transition time then provided an estimate of the electro-osmotic velocity. However, because
this velocity contains a small pressure-driven component, the voltage applied to the electrodes
was immediately reversed following the first buffer exchange, so that a second measurement
could be made in the opposite direction. Averaging the two net velocity measurements then
cancels out the effect of the pressure gradient and leaves only the electro-osmotic component.
The wall zeta potential was computed from the average velocity using eqs 1a and 1b. This
procedure was repeated 13 consecutive times over a period of 3 min and the results were
averaged to provide an estimated wall zeta potential of −39.0 ± 1.5 mV. The trend toward lower
zeta potentials is believed to be caused by diffusive mixing of the two buffers at their interface,
which has a tendency to increase the time needed to register a density shift and, hence, reduces
the measured electro-osmotic velocity. The variance in zeta potential measurements is most
likely due to the presence of nonspecifically bound particles, which could modulate the
pressure-driven component of the flow.
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Signal Processing
The transient resonance frequency time courses that correspond to particle transits were
analyzed to extract the buoyant mass and spatial amplitude of oscillation, as described
previously. This analysis, as conducted using the MATLAB computing environment and
illustrated in Figure 4, generally consists of computing time courses that represent the
numerator and denominator expressions of eq 5 and comparing them to estimate the spatial
amplitude. (Detailed algorithms used to compute particle charge and mass are given in the
Supporting Information.) However, some practical issues must be considered in the application
of eq 5 to the data. The resonance frequency signal exhibits a steady 10-Hz oscillation, even
when the cantilever contains no particles (see Figure 4A). To eliminate this coupling, a sinusoid
is fit to a baseline segment of the band-pass filtered frequency signal, and the resulting fit is
subtracted from the entire time course. The phase from the fit is then used to construct the
modulating sinusoid in the denominator of eq 5. Because the differentiation step in the
numerator term amplifies high-frequency noise present in the raw frequency signal, a Savitzky–
Golay smoothing filter is applied, in addition to the band-stop filter. The spatial amplitude is
estimated by dividing local extrema of the numerator and denominator time courses (see Figure
4B). Because the resonance frequency is not sensitive to changes in the particle's position near
the cantilever's tip, the spatial amplitude exhibits a reduced SNR during this brief event. As a
result, several points must be ignored in the spatial amplitude time course; however, this is
acceptable for typical particle transits that last more than a second and produce over 20
measures of spatial amplitude.

Particle Zeta Potential and Charge Measurement
In one experiment, 51 particle transits were observed over the course of 20 min and the resulting
data were analyzed to determine their spatial amplitudes and buoyant masses. These spatial
amplitude data, together with the estimates of electric field and wall zeta potential described
earlier, were used to compute the zeta potentials of each particle, according to eq 2, and the
resulting histogram is shown in Figure 5A. To validate these measurements, suspensions of
the same particles were measured using two commercial PALS-based zeta potential
instruments: the Brookhaven Instruments ZetaPALS and the Malvern Zetasizer Nano ZS90
(see Figure 5B). Particles were measured at the same concentrations and under the same buffer
conditions as those for the SMR, with the only difference being that the two particle types were
measured separately on the commercial instruments, whereas they were measured as a mixture
using the SMR. For the Brookhaven instrument, the data reported for each particle type
represent the average and standard deviation of three consecutive runs, each of which is
comprised of 10 PALS measurements. The corresponding data for the Malvern instrument are
the result of five runs of 15 measurements. The error for the SMR measurement reflects the
estimated instrument uncertainty, taking into account the standard deviations of the spatial
amplitude time courses and the wall zeta potential measurements. In a separate experiment that
was conducted on a different day, 101 particles were analyzed, and the difference in mean zeta
potentials for the two particle types was determined to be the same (within instrument
uncertainty).

Using eq 3, particle surface charge is estimated from the measured zeta potential and size for
each particle. Although both the size and mass of each particle are known, the mass is a more
effective parameter for differentiation, because it varies as the cube of the size and, hence, has
greater resolution. Plotting the absolute masses of individual particles against their measured
zeta potential or charge, as shown in Figure 6, reveals additional information about the
population. Both scatter plots reveal two subpopulations of the more negative of the two particle
types, which is not evident in the zeta potential data alone. We interpret these to be monomers
and dimers of this particle type, because one subpopulation has a mean mass that is
approximately double that of the other one at the same zeta potential. The observation that this
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type of particle has a tendency to aggregate more than the other type in the mixture is supported
qualitatively by the observation that these particles exhibited higher nonspecific binding to the
channel walls. The mass-charge scatter plot illustrates how these subpopulations are more
readily differentiated on the basis of charge. This feature results from the fact that the more
massive dimer particles also possess a larger net charge, which is consistent with their larger
surface area. Although in the case of our two chosen particle types, there are three distinct
subpopulations in the mass data alone, the potential for overlap in this dimension is evident.
For example, if the mean mass for the more neutral of the two particle types had been
approximately double that of the more negative type, it would have obscured the dimer
subpopulation for that type. Therefore, it is expected that integrated measurement of both the
surface charge and mass distributions will provide advantages in the differentiation of complex
particle mixtures.

The SNR of the mobility measurement technique described here is inherently dependent on
the mass of the particle being measured. This can be seen from eq 4, in that a larger mobility
signal, as measured by the total rate of change of the resonance frequency, can be obtained
either by increasing the first term in the expansion, which is proportional to particle mass, or
the second term, which is proportional to the particle's relative zeta potential. The uncertainty
in position for particles of the type examined here, computed as the length of the cantilever
divided by the SNR of the net frequency shift, is ∼2 μm. Because these particles have typical
spatial oscillation amplitudes of 10 μm, the SNR for the spatial amplitude is on the order of 5.
This is the limiting source of error in the measurement of mobility, because the SNR for the
electro-osmotic mobility measurement is an order of magnitude larger. Because mass is
proportional to the cube of diameter, the SNR for the mobility measurement decreases rapidly
for smaller particles, if all other parameters are held constant. Furthermore, the system is
physically limited by the small dimension of the suspended microchannel, which is 3 μm in
the current device. As the size of particles approaches this value, it is expected that interactions
with the channel walls will begin to dominate their trajectory through the sensor, preventing
accurate mobility quantitation. On the other hand, the SNR of both mass and mobility improve
if particles of greater density are examined. For example, gold nanoparticles as small as 300
nm and silica nanoparticles as small as 900 nm could be detected with the same SNR as the
2.2-μm polystyrene particles described here, assuming that they possess the same
electrophoretic mobility.

The throughput of the technique is currently limited by the algorithm used to extract the
mobility from the raw data. The curve fit to the oscillatory background signal requires a window
of 1 s just prior to a particle transit, during which no particles are present inside the sensor. As
a result, particle concentrations were kept low so that this analysis could be performed in an
automated fashion without errors. Elimination of this background signal could theoretically
increase the particle throughput to its current SNR-limited value of 1 Hz. Another limitation
on throughput results from the settling of particles. A certain amount of time is needed to adjust
the system to achieve a flow rate through the device suitable for mobility measurement. During
this time, the concentration of particles in the reservoirs decreases considerably, because of
settling, sometimes reducing the throughput of particles below the desired level.

Conclusions
We have demonstrated that the suspended microchannel resonator (SMR) provides a means
of quantitatively differentiating mixed aqueous suspensions of polystyrene microspheres on
the basis of particle mass and electrokinetic surface charge. Because the technique measures
individual particles, it has the potential to provide information that is obscured by other
techniques that are based on ensemble average measurements. Furthermore, knowledge of both
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the mass and charge of individual particles in a complex mixture allows them to be more
effectively differentiated than either parameter by itself.

The present instrument is based on an SMR device that is limited to particles that have diameters
of <3 μm. However, a manufacturing process for devices that have a channel height of 15 μm
is currently being investigated. Although larger devices would suffer from decreased mass
sensitivity, this effect would be more than offset by the gain in added mass for larger particles.
For example, the spatial resolution of a mammalian cell with a size similar to the channel height
in this new device is expected to be as low as a few tens of nanometers. In addition, as the
oxide passivation process is refined to produce thicker films having higher uniformity, larger
electric fields could potentially be supported. These changes and the corresponding increases
in the SNR for mobility measurement will provide new opportunities, such as the ability to
measure particle mobility under physiological buffer conditions, which, in turn, will allow
biological specimens such as cells to be measured. We also intend to investigate the possibility
of moving a single cell through the SMR multiple times using an additional electric field
component, which would allow the surface charge of the cell to be monitored as a function of
time.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Cut-away view of the fluid-filled suspended microchannel through which particles travel
(top). This channel is a tunnel through the inside of the resonant cantilever structure. A transient
resonance frequency time course is shown (bottom) for a 2.2-μm polystyrene particle that drifts
through the sensor under a small pressure gradient. The height of the peak is proportional to
the particle's buoyant mass. (b) If an oscillating electric field is applied longitudinally to the
channel, particles will oscillate at the same frequency, because of a combination of
electrophoresis and electro-osmotic flow. Spectral analysis of the resulting resonance
frequency time course can be performed to extract the particle's electrophoretic mobility.
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Figure 2.
(a) Schematic diagram of the instrument. The SMR resonance frequency is measured in a
feedback loop, using optical lever readout and piezoelectric actuation. The rate and direction
of fluid flow through the sensor is controlled electronically (via a pair of air pressure regulators
connected to two reservoirs that supply the sensor's two bypass channels) and manually (using
valves at the bypass outlets). (b) Detailed schematic of the sensor. In the normal mode of
operation, outlets of the bypasses are closed at the valves and reservoir pressures adjusted to
determine the particle drift velocity.

Dextras et al. Page 11

Anal Chem. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Channel wall zeta potential is measured using a bidirectional buffer exchange technique. Panel
(a) shows the resonance frequency time course for a single cycle in which the more-dense
buffer first replaces the less-dense buffer via forward EOF, followed by the opposite buffer
exchange, which is caused by reversal of the EOF voltage. The vertical lines indicate the times
at which the interface between the two buffers enters/leaves the suspended microchannel. The
overall time course for the experiment (13 cycles) is shown in the inset. In panel (b), the wall
zeta potential determined from the measured electro-osmotic velocities is plotted against the
approximate time of measurement in the overall time course.
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Figure 4.
Analysis of a resonance frequency time course for the transit of a 2.2-μm polystyrene particle
subject to a 10-Hz electric field with a peak field strength of 585 V/cm. In panel (a), the raw
data (black line) are filtered to separate the components of the signal due to drift and oscillatory
motion of the particle. A band-stop filter recovers the drift component (blue line). The height
of this peak determines the particle's buoyant mass, and its width determines the drift velocity,
vd. In panel (b), the spatial amplitude of oscillation of the particle is estimated using eq 5. Peak
values of the time courses corresponding to the numerator expression (red line, shown here
before scaling by vd/ω) and denominator (blue line) are divided to produce the spatial amplitude
time course (shown in the inset).
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Figure 5.
(a) Histogram of 51 single-particle zeta potential measurements made on a mixture of 2.20-
and 1.96-μm polystyrene particles using the SMR. (b) Mean zeta potentials measured for the
two particle types using the SMR and two commercial instruments.
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Figure 6.
Scatter plot of the absolute mass of 51 particles from a mixture of 2.20- and 1.96-μm
polystyrene particles versus (a) their zeta potential and (b) their electrokinetic surface charge,
as computed by eq 3.
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