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ABSTRACT

The upper limit of protein thermostability has been established by examining an assort-
ment of proteins at high temperatures under varying environmental conditions. The general
nature of two of the processes known to cause irreversible thermoinactivation of enzymes in
aqueous solution (90-100 C) has been quantitatively analyzed. At 1000 C and neutral pH,
cystine residues undergo destruction via two distinct mechanisms: B-elimination and disulfide
interchange catalyzed by thiols formed during the B-elimination. The first process is rate-limiting
and has a half-life in the range of 1.0 ± 0.4 hrs and 12.4 ± 3.4 hrs at pH 8.0 and 6.0,
respectively (and around 6 days at pH 4.0). These half-lives have been found to be remarkably
independent of the nature of the protein in over one dozen proteins tested. The thiol-catalyzed
disulfide interchange reaction was also quantitatively characterized using mixed disulfides of
proteins with glutathione.

A mechanistic description of the irreversible thermoinactivation of immobilized glucose
isomerase at the pH-optimum of enzymatic activity (pH 8.0) demonstrated that immobilized
enzymes can be successfully analyzed using the same experimental methodologies employed for
soluble biocatalysts. Ligands (high fructose corn syrup and the competitive inhibitor xylitol)
greatly stabilize the immobilized enzyme at high temperatures. At 900 C in the presence of 2 M
xylitol, irreversible inactivation of immobilized glucose isomerase is almost exclusively caused
by deamidation of its asparagine and/or glutamine residues. At the temperature close to that of
industrial bioreactors (70* C), the time-dependent decay of glucose isomerase activity is brought
about by different processes: oxidation of cysteine residues and/or by heat-induced deleterious
reactions with high fructose corn syrup.

Three unrelated enzymes (ribonuclease, chymotrypsin, and lysozyme) were shown to
display markedly increased thermostability in anhydrous organic solvents compared to aqueous
solution. The mechanism of irreversible thermoinactivation in nonaqueous media (110-145 C)
for these three enzymes was determined to be heat-induced protein aggregation. By using differ-
ential scanning calorimetry, the influence of water content and solvent type (hydrophobic or
hydrophilic) on the thermal denaturation of ribonuclease was established. The products of the
subsequent heat-induced aggregation were also characterized as being both chemically cross-
linked (in part via transamidation and intermolecular disulfide interchange reactions) and
physically associated protein oligomers. These findings suggest that the greatly enhanced
thermostability of ribonuclease in hydrophobic organic solvents is due to the increased
conformational stability of the dehydrated enzyme, and thus demarcates a new upper limit of
protein thermostability compared to aqueous solution.

The findings outlined above are analyzed both in terms of enzyme stabilization and the
general nature of thermophilicity.

Thesis supervisor: Professor Alexander M. Klibanov
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I. INTRODUCTION

The upper limit of protein thermostability is of interest to biochemists and biochemical

engineers alike. Protein thermostability denotes the highest sustainable temperatures of life itself

(bacteria from hot springs and hydrothermal vents at temperatures up to 110 C) since the

temperature optimum of thermophilic enzymes is frequently at or above the optimum for growth

of thermophilic microorganisms (Brock, 1985). Similarly, protein thermostability limits the

operating temperature of many industrial enzymatic processes (Klibanov, 1983) such as the

production of the sweetener high fructose corn syrup via the hydrolysis (a-amylase, 90-110 C),

saccharification (glucoamylase, 50-60 C), and isomerization (glucose isomerase 60-65 C) of

starch (Bucke, 1981); detergent and food processing with lipases and proteases at 40-70' C (Ng

and Kenealy, 1986; Boyce, 1986); and chemical synthesis and stereoselective resolutions via

lipases, proteases and dehydrogenases at 30-60' C (Zaks a a.., 1988c). These enzymatic

conversions are carried out at elevated temperatures due to enhanced reaction rates, increased

solubility of substrates and products, reduced solution viscosity, lessened chance of microbial

contamination, and potentially favorable shifts in the thermodynamic equilibrium (Klibanov,

1983).

By understanding why and how proteins lose their biological activity at high temperatures,

the biochemist gains insight into the behavior of thermophilic organisms (Zuber, 1978; Brock,

1985, 1986). From the biotechnological viewpoint, a mechanistic understanding of enzyme

thermoinactivation is crucial to the biochemical engineer who requires strategies (either

conventional chemical and physical methods or protein engineering) to stabilize enzymes when

used as practical catalysts at high temperatures (Ahern and Klibanov, 1986, 1988; Klibanov and

Ahern, 1987; Mozhaev g gl., 1989; Volkin and Klibanov, 1989b).

When exposed to elevated temperatures, all enzymes eventually lose catalytic activity.

This thermal inactivation process is classified as either reversible or irreversible depending on

whether enzymatic activity is recovered following return to ambient conditions. In accordance
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with the classical work of Lumry and Eyring (1954), the irreversible thermal inactivation of

enzymes can be represented by the scheme:

K kIN a +I (1)

where N is a native, catalytically active enzyme, U is a reversible thermal unfolded enzyme, and I

is an irreversibly thermoinactivated enzyme. The first step is the reversible denaturation of an

enzyme's native conformation, and K is the equilibrium constant between the N and U forms of

the enzyme. Reversible thermal unfolding has been thoroughly studied and its origin and

mechanism are well understood (see literature survey). The subsequent irreversible

thermoinactivation processes, represented by the rate constant, k, involve both covalent and

conformational changes which are specific for individual enzymes. However, recent work in our

laboratory using lysozyme (Ahern and Klibanov, 1984), ribonuclease (Zale and Klibanov,

1986), triose phosphate isomerase (Ahern Z al., 1987) and microbial a-amylases (Tomazic and

Klibanov, 1988a) as model systems, has identified several general, pH-dependent covalent

reactions leading to the irreversible thermal inactivation of enzymes at high temperatures (90-100'

C): destruction of cystine residues, thiol-catalyzed disulfide interchange, oxidation of cysteine

residues, deamidation of asparagine and/or glutamine residues, and hydrolysis of peptide bonds

at aspartic acid residues. Because of the general nature of these reactions, they afford the

opportunity to define the upper limil of protein thermostability.

The objective of this study is to quantitatively investigate both conformational and covalent

thermoinactivation processes in a variety of enzymes under various environmental conditions.

By considering the following questions, we aim to more fully understand and quantitatively

define the upper limit of protein thermostability:



1. What is the general nature of these degradative covalent reactions? What are the pH

dependent rate constants, are these reactions a general phenomenon occurring in all

proteins, and do these reactions depend on the amino acid sequence and the tertiary

structure of a protein?

2. Do these covalent reactions limit the thermostability of practical, immobilized biocatalysts

under operating conditions?

3. Can we define a new upper limit of protein thermostability in nonaqueous environments?

4. By examining the cause(s) and mechanism(s) of irreversible thermal inactivation, what

strategies can we develop to stabilize proteins and enzymes at elevated temperatures?

Specifically, we address the first question by identifying and characterizing thermal destructive

processes in proteins involving disulfide bonds at 100' C (Volkin and Klibanov, 1987). We

examine the second question by ascertaining to what extent these degradative, covalent reactions

limit the thermostability of immobilized glucose isomerase in the temperature range of 70-90* C

(Volkin and Klibanov, 1989a). We answer the third question by determining how

conformational and covalent processes lead to the heat-induced inactivation of enzymes at

extreme temperatures (110- 145' C) in anhydrous organic solvents. These studies will allow us

not only to quantitatively analyze the upper limit of protein thermostability, but to develop

strategies to stabilize both practical biocatalysts and model enzymes in either aqueous or

nonaqueous environments at elevated temperatures.

12



II. LITERATURE SURVEY

Environmental conditions can be altered in a variety of ways (temperature, pH,

denaturants, salts, organic solvents) to cause protein denaturation and subsequent inactivation

(Volkin and Klibanov, 1989b). Perhaps the most extensively examined mode of protein

denaturation is reversible thermal unfolding which has been the topic of investigation for almost

fifty years (Neurath e al., 1944; Anson, 1945; Putnam, 1954; Kauzman, 1959; Joly, 1965;

Tanford, 1968; Timascheff and Fasman, 1969; Tanford, 1970; Pace, 1975; Lapanje, 1978;

Privalov, 1979; Pfeil, 1981; Jaenicke, 1981; Creighton, 1983).

2.1 Reversible Thermal Denaturation

The native, catalytically active conformation of an enzyme is maintained by a delicate

balance of noncovalent forces: hydrogen bonds, hydrophobic, ionic and Van der Waals

interactions. Upon an increase in temperature, heat weakens and disrupts this balance of

noncovalent forces (with the exception of the hydrophobic interaction below 600 C; Tanford,

1968) and the protein molecule unfolds. Since the active center of an enzyme consists of amino

acid residues brought together via the three dimensional structure, this unfolding event

inactivates the enzyme. Upon recooling, the noncovalent bonds reform and the enzyme regains

its native, catalytically active conformation because this combination of secondary and tertiary

structure is thermodynamically favored. The "thermodynamic hypothesis" states that the native

conformation of a protein exists in a given environment such that the free energy of the entire

system is minimized; furthermore, this conformation is determined solely by the amino acid

sequence. This hypothesis is based on the classical experiments of Anfinsen and coworkers who

demonstrated that ribonuclease, once reduced and unfolded in urea, can refold into the native,

catalytically active structure by removal of urea and the reoxidation of sulfhydryl groups (for a

review, Anfinsen and Scheraga, 1975).
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When small, monomeric proteins are reversibly denatured by heat, a two-state

phenomenon is commonly observed where only the folded (N) or unfolded (U) states are

present. Therefore, at 50% unfolding, enzyme molecules are 50% N and 50% U rather than all

molecules being half unfolded. This sharp transition between N and U indicates that

denaturation is a cooperative phenomenon in which the disruption of any significant portion of

the folded structure leads to the unfolding of the entire molecule.

The temperature induced unfolded state of a protein (U) approaches a random coil

configuration but some nonrandom conformations still exist, especially near disulfide bridges

(Tanford, 1968). This fact is not surprising since abolishing all favorable intramolecular

interactions in a chemically diverse polypeptide chain is most unlikely. Biphasic kinetics has

been observed for the reversible thermal unfolding of some proteins, and has been suggested to

show the existence of an unfolding intermediate (Mulkerrin and Wetzel, 1989).

Reversible protein denaturation can be observed by many different experimental

techniques: increase in solution viscosity, decrease in optical rotation and UV absorbance, loss of

enzymatic activity and urea-gradient electrophoresis (Creighton, 1983). In addition, calorimetric

measurements of the specific heat capacity changes within a protein solution versus temperature

allow not only for the detection of reversible thermal unfolding, but the calculation of

thermodynamic parameters which distinguish the folded and unfolded states (Privalov and

Khechinashvili, 1974; Pfeil and Privalov, 1976). Using hen-egg white lysozyme as a model

system, the thermodynamic parameters of reversible thermal denaturation were quantitatively

investigated leading to the following three conclusions: First, the enthalpy change upon

unfolding coincides with the enthalpy change calculated via the temperature dependence of the

equilibrium constant (the van't Hoff equation), therefore, the simplicity of this process agrees

with the two-state hypothesis for single domain proteins. Second, the difference in enthalpy

between the folded and unfolded states of the enzyme is proportional to the content of hydrogen

bonds above 1100 C and the number of the hydrophobic interactions below 1100 C. Finally, the

free energy difference between the folded and unfolded states is no greater than 10-20 kcal/mole.

14



As the temperature increases, the enthalpy and entropy vary similarly and compensate each other,

so that the net free energy change is a relatively small difference between these two factors

(Creighton, 1983). In other words, as the temperature rises, there is a competition between the

folded (stabilizing hydrophobic interactions) and unfolded (destabilizing effect of conformational

entropy) states of a protein molecule.

Most protein denaturation studies have used small, monomeric models (ribonuclease,

lysozyme, bovine pancreatic trypsin inhibitor, and antibody fragments; Anfinsen, 1973) that

completely and reversibly unfold. It should be noted that more complicated, multidomain

proteins show multistate behavior indicating that domains and subunits unfold separately (Pfeil,

1981).

2.2 Protein Folding

The two-state nature of protein denaturation is a convenient model for thermodynamic

analysis at equilibrium, but it does not tell us how refolding occurs or what pathway it follows.

This problem is perhaps the most fundamental question in biochemistry today. Current trends in

"the protein folding problem" have been recently reviewed (King, 1986; Jaenicke, 1987;

Creighton, 1988; King, 1989).

In their classic experiments with ribonuclease, Anfinsen and coworkers showed that

despite the many possible combinations of disulfide pairing, not to mention the countless

possible arrangements of noncovalent bonds, the reduced and denatured enzyme is able to form

all the correct interactions to regain its native, active conformation when reoxidized in the absence

of denaturant. Interestingly, when reoxidation is carried out in the presence of denaturant, the

resultant enzyme is catalytically inactive and contains many if not all reoxidation products

(Anfinsen, 1973). Although all of the catalytic activity is recovered, the process occurs on the

time scale of hours in vitro while the in vivo rate of protein synthesis for an enzyme the size of

ribonuclease (13,700 kD or 124 amino acids) is on the order of minutes. This discrepancy in

15



rates led investigators to look for an enzyme which may catalyze refolding in vivo; a disulfide

interchange enzyme was subsequently isolated from the endoplasmic reticulum of eukaryotic

cells and shown to catalyze the refolding of denatured ribonuclease in vitro (Freedman, 1984).

Many small, monomeric enzymes and proteins have been shown to refold quantitatively

from the denatured state (for a review, Baldwin, 1975; Anfinsen and Scheraga; 1975; Creighton,

1978). However, similar to protein denaturation, the refolding of oligomeric enzymes is a more

complicated, multistep kinetic process. Jaenicke and coworkers have used NAD-dependent

dehydrogenases to examine the folding and association of oligomeric proteins (for reviews, see

Jaenicke and Rudolph, 1983; Jaenicke, 1984, 1987). In a typical experiment, these enzymes are

denatured (by means of denaturants such as guanidine hydrochloride or at acidic pH) and both

the (1) kinetics of refolding and reassociation, and (2) overall yields are then determined either in

the presence or absence of stabilizing salts or ligands. The following conclusions were

developed based on their work with both monomeric and oligomeric enzymes:

The renaturation kinetics of monomeric octopine dehydrogenase resembles other small,

monomeric proteins with rapid formation of a structured intermediate followed by the slow (rate

limiting) reshuffling to the native conformation. The subunit refolding of denatured oligomeric

dehydrogenases displays similar monomeric behavior with a fast folding step (restoring much of

the monomeric secondary structure) and slow reshuffling step to "correctly structured

monomers". These monomers then associate further, as discussed below, to native dimers and

tetramers or non-native aggregates. For dimeric cytosolic and mitochondrial malate

dehydrogenase, the kinetics of association of "correctly structured monomers" to a dimer is either

diffusion controlled or less rapid (two orders of magnitude slower), respectively. In the case of

tetrameric lactate dehydrogenase (LDH), dimer association is rapid followed by a slower tetramer

association with kinetics similar to mitochondrial-malate dehydrogenase. In all cases, although

renaturation kinetics vary considerably, the overall yield is consistently 50 to 70%. The

formation of incorrect side products (aggregation) competes with the slow, first order

renaturation of monomers to "correctly folded monomers". The hypothesis that the competition

16



between aggregation and renaturation pathways occurs at this point in the kinetic scheme is

supported by experiments which show (1) there is complete reactivation of LDH after

denaturation in the presence of structure stabilizing ions, (2) the refolding of dimeric to tetrameric

LDH does not result in aggregate formation, and (3) aggregates show quasi-native characteristics

as determined by circular dichroism.

Although these experiments give useful information about the in vitro folding of

oligomeric enzymes, they do not elucidate in vivo folding pathways. King and coworkers

(1986) have used genetic analysis to understand the in vivo folding pathway of the trimeric tail

spike endorhamnosidase of the P22 virus. Specifically, their goal is to identify specific amino

acid residues which regulate the competition between in vivo kinetic pathways of folded versus

aggregated protein. Their system utilizes a temperature sensitive synthesis mutant protein which

folds into mature mutant spike protein at 300 C, but aggregates by an off-pathway reaction at 400

C. Most of these protein mutants act by (1) blocking an early step in chain folding (prior to chain

association to trimer), and (2) replacing Gly and Thr residues at potential kinetic intermediate

protein "turn" sites. These mutants do not affect the native tail spike protein itself, since at 300 C,

biosynthesis of the native protein is unaffected. This work shows that specific amino acid

residues may promote or hinder the aggregation pathway, thereby implying that aggregation is

not a random, but rather a specific process. Therefore, it may be possible to control its formation

via genetic engineering.

Current interest in the protein folding problem has led to a keen awareness of the

aggregation phenomenon. In addition, biotechnologists have found that during the

overexpression of cloned genes in E. coli , there is a concomitant formation of inclusion bodies

made up entirely of aggregated recombinant protein (Kane and Hartley, 1988; Mitraki and King,

1989). There are two main advantages in producing an insoluble protein product inside the cell:

increased stability towards proteolysis and one-step purification with high yields. Therefore,

protein aggregation may be a useful purification technique, but only if renaturation can be

achieved. Unlike other causes of protein inactivation, aggregation is not necessarily an
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irreversible process. Reactivation of protein aggregates may be possible by breaking up the

intermolecular noncovalent interactions via the use of denaturants, and regenerating native

disulfide bonds via reduction followed by reoxidation in the absence of denaturant (Zettlmeissl j

al., 1979; Rudolph ! al., 1979). Environmental conditions are very important (concentration,

pH, temperature, additives) to overall recovery yields (Light, 1985).

2.3 Irreversible Thermal Inactivation of Proteins

When a protein solution is heated, rapidly cooled, but catalytic activity is not recovered

within a reasonable time, the protein is said to have undergone irreversible thermal inactivation.

Failure of the protein molecule to refold appears to contradict the thermodynamic hypothesis

unless the protein has undergone a covalent or conformational change which prevents refolding.

Two conformational mechanisms leading to the irreversible thermal inactivation of

enzymes have been identified. First of all, there is the previously mentioned protein aggregation

phenomenon which is essentially a two step process. Monomolecular conformational changes

must initially occur leading to reversible protein denaturation (see above) which exposes the

buried, interior hydrophobic amino acid residues to the aqueous solvent. The thermally

denatured protein molecules then associate with one another intermolecularly to minimize the

unfavorable exposure of hydrophobic amino acid residues to the solvent . The aggregation

reaction is therefore a polymolecular process obeying higher order kinetics. Subsequent

chemical reactions may also occur, especially intermolecular disulfide crosslinks (Mozhaev and

Martinek, 1982).

By working with dilute protein concentrations or by using immobilized enzymes,

intermolecular aggregation can be circumvented. In these cases, a second, monomolecular model

for conformational irreversible thermal inactivation has been proposed by Klibanov and Mozhaev

(1978): at high temperatures, an enzyme loses its native, noncovalent bonds; as the temperature

is lowered, non-native interactions may form, which although thermodynamically unfavorable,
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remain for purely kinetic reasons. The protein exists in a metastable conformation and cannot

spontaneously refold to the native conformation at ambient temperatures. This mechanism is

experimentally supported with studies on immobilized trypsin. After heating at high

temperatures, the protein solution was rapidly cooled with loss of virtually all of the enzymatic

activity. The immobilized enzyme was then completely unfolded and reduced in urea followed

by reoxidation of the thiols in the absence of the denaturant; the subsequent recovery of

enzymatic activity was nearly complete, and the authors concluded that immobilized trypsin

inactivates via incorrect structure formation.

Ahern and Klibanov (1985) and Zale and Klibanov (1986) quantitatively accounted for the

processes causing irreversible thermal inactivation of hen egg-white lysozyme at 1000 C and

bovine pancreatic ribonuclease A at 900 C, respectively. The monomolecular rate constant of

irreversible thermal inactivation was determined (protein concentrations were selected so that no

aggregation occurred). Reactivation via the method of Klibanov and Mozhaev provided the rate

constant of incorrect structure formation, a rather minor process for the above two enzymes. The

main inactivation events were identified as pH dependent, covalent changes in the polypeptide

molecule: deamidation of asparagine and/or glutamine residues, hydrolysis of the peptide chain at

aspartic acid residues, and destruction of cystine residues (Table 1). Zale and Klibanov (1986)

further identified the nature of the incorrect structure formation in ribonuclease as thiol-catalyzed

interchange of disulfide bonds where the free thiols were generated as a byproduct of cystine

destruction.

The relationship between reversible and irreversible thermoinactivation in ribonuclease

was investigated quantitatively by Zale and Klibanov (1983). By examining the dependence of k

(the rate constant of monomolecular irreversible thermoinactivation; see equation 1) on pH and

salts and comparing it quantitatively to the literature values for the dependence of K (the

equilibrium constant between native and unfolded enzyme; see equation 1) on the same

parameters, the contribution of reversible unfolding and monomolecular irreversible thermal

inactivation to the overall rate of the observed thermoinactivation process was determined. At
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Rate Constants (hr -1)
Irreversible Thermoinactivation

of Two Model Proteins

pH4 pH6 pH8

Hen egg white lysozyme, 1000 C
(Ahern and Klibanov, 1985)

Directly measured overall process 0.49 4.1 50

Due to individual mechanisms:

Deamidation of Asn/Gln residues 0.45 4.1 18

Hydrolysis of Asp-X peptide bonds 0.12

Destruction of cystine residues 6

Formation of incorrect structures 32

Bovine pancreatic ribonuclease, 90* C
(Zale and Klibanov, 1986)

Directly measured overall process 0.13 0.56 23.4

Due to individual mechanisms:

Deamidation of Asn/Gln residues 0.02 0.15 0.8

Hydrolysis of Asp-X peptide bonds 0.10

Destruction of cystine residues 0.05 2.8

Formation of incorrect structures a 0.31 19.4

Table 1 - The rate constants of irreversible thermoinactivation of lysozyme and ribonuclease:

the overall process and contributions of individual mechanisms to thermoinactivation. a Shown to

be due to thiol-catalyzed disulfide interchange.
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temperatures where K ;> 1, there is a correlation between the stabilities of an enzyme against

reversible unfolding and the overall rate of observed thermoinactivation: the more stable the

enzyme is against the former, the more stable it is against the latter . Conversely, at high

temperatures where K<<1, no correlation is seen, and the overall rate of observed thermal

inactivation depends solely on monomolecular irreversible thermal inactivation processes.

Tomazic and Klibanov (1988 a,b) further examined the relationship between reversible

and irreversible thermoinactivation with studies on the thermostability of several microbial a-

amylases. The differences in thermostability between mesophilic versus thermophilic enzyme at

900 C and pH 6.5 (inactivation was due to a monomolecular conformational process with a half-

life of 2 and 50 minutes, respectively) were found to be due to additional salt bridges in the

thermophilic enzyme which increased the conformational rigidity of the enzyme and thereby

reduced the extent of protein denaturation. When this conformational inactivation process was

suppressed (via additives or pH changes), a-amylase underwent irreversible thermoinactivation

(at 90* C) via deamidation of its asparagine and/or glutamine residues and oxidation of cysteine

residues.

2.4 Molecular Mechanisms of Thermophilicity

The denaturation temperature (Tm) of a wide variety of proteins from animals, plants and

prokaryotes increases with the adaptation temperature of the source organism (Brock, 1985).

Furthermore, the catalytic efficiency (turnover number) of these enzymes under ambient

conditions decreases as the adaptation temperature of the organism increases. Both correlations

are rationalized in terms of the increased conformational stability of thermophilic enzymes

(compared to their mesophilic counterparts) toward reversible unfolding. It is important to re-

emphasize that the net stabilization free energy that maintains the native structure of an enzyme is

on the order of 10-20 kcal/mole. Therefore, relatively few additional (or strengthened) weak

noncovalent interactions (one to two salt bridges, several hydrogen bonds or seven to ten
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methyls within the hydrophobic nucleus) are sufficient to create a thermophilic protein from a

mesophilic one. Indeed, the two types of proteins have similar three dimensional structures and

differ by only a few minor alterations of the amino acid sequence:

(1) Electrostatic interactions- Perutz (1978) compared the three dimensional X-ray crystal

structures of thermophilic and mesophilic ferrodoxins and concluded that the greater heat stability

was due to an extra one to two salt bridges within the thermophilic protein.

(2) Hydrophobic interactions- "The greater the hydrophobicity, the greater the thermostability";

this slogan has been proven to be correct in many comparative studies. However, the positioning

of an amino acid residue within the three dimensional structure of a protein is a balance between

an energy factor (hydrophobic interactions) and a geometric consideration (dense packing;

Stellwagen and Wilgus, 1978). Thus, stabilization depends on the number of hydrophobic

interactions located within the protein interior and not the total content of hydrophobic amino acid

residues.

(3) Binding of metal ions- Additional binding sites for metal ions increases the number of

electrostatic interactions which provides a type of chemical crosslinking. For example,

thermostable a-amylase and thermolysin from Bacillus sterarothermophilus require Ca+2 ions for

stability (Ng and Kenealy, 1986). Interestingly, there is a noticeable lack of cystine residues.

This deficiency of S-S bonds may be attributable to the absence of an organelle system in

prokaryotes (endoplasmic reticulum) or, as discussed in the thesis itself, the heat-sensitive nature

of this chemical linkage.

(4) Overall amino acid composition- There are several noticeable differences in the amino acid

composition of thermophilic proteins when compared to their mesophilic counterparts. First,

thermophilic proteins show an increase in arginine residues at the expense of lysine. Since Arg
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and Lys are usually found on the protein surface, this substitution reduces the unfavorable

solvent contacts by one methylene group while adding more surface area for charged interactions

via the guanidinium moiety. In addition, the pKa of Arg (-12) is approximately two units higher

than Lys (-9.5). Since the pKa drops as the temperature rises, Arg is better able to maintain salt

bridges at elevated temperatures. For example, the thermostability of T4 lysozyme dramatically

decreases (Tm is 100 C lower) by replacing Arg 96 in the native enzyme with His 96 (with an

even lower pKa -7) in the thermolabile mutant (Grutter g L., 1979). In this case, Nature seems

to stabilize existing noncovalent interactions rather than form new ones. Second, polar amino

acids, especially Ser and Thr, are found less frequently in thermophilic proteins perhaps

enhancing hydrophobic interactions within the protein interior by their absence. Finally, the total

number of cysteine residues is reduced or eliminated in thermophilic proteins, however, this

observation is difficult to interpret because the total content of cysteine residues in prokaryotic

enzymes is, in general, lower than other sources (Fahey rd.L ., 1977).

Protein engineering has recently emerged as a powerful tool to address the most

fundamental questions in biochemistry (for reviews, see Smith, 1986; Knowles, 1987; Shaw,

1987) including protein stability (Matthews, 1987a). Both random and site-directed mutagenesis

have been used to engineer greater thermostability in enzymes. One of the most popular

strategies to increase the thermostability of enzymes against reversible denaturation is to utilize

the mechanisms of thermophilicity as described above.

For example, random mutagenesis introduces amino acid substitutions within a protein

sequence randomly followed by a screening procedure to identify mutants with favorable

properties. This technique has been used to identify mutants with increased thermostability in

kanamycin nucleotidyl transferase (Matsumura a 4., 1986) and subtilisin BPN' (Rollence gL a.,

1988). These authors speculate that their stabilization effects are due to the increased

conformational rigidity of the mutant proteins by increasing the number of hydrophobic and

electrostatic interactions. Imanaka and coworkers (1986) produced mutants of neutral protease
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of . stearothernophilua with increased thermostability by replacing amino acid residues in

regions of low homology compared to the mesophilic enzyme.

Site-directed mutagenesis allows for the specific replacement of amino acid residues within

a protein sequence, so that specific alterations can be designed a priori and then examined for a

predictable change in properties. For example, Matthews and coworkers have enhanced the

thermostability of T4 lysozyme by designing mutants containing sequences that either interact

with the a-helix dipoles (Nicholson r iL., 1988) or decrease the entropy of the unfolded state

(Matthews gi jL., 1987b). In addition, they have examined the contributions of specific

hydrogen bonds to the thermodynamic stability of this enzyme (Alber .Q il., 1987), and have

analyzed why changes in secondary structure (site-directed mutagenesis was used to change a

key proline residue in a a-helix) have a surprisingly small effect on the thermal denaturation of

the enzyme (Alber and Matthews, 1987; Alber . il., 1988). Other promising and certainly

interesting approaches to increase enzyme thermostability via site-directed mutagenesis include

the use of linker sequences to fuse two chain molecules into a single polypeptide chain (Kim fd

al., 1989) and to increase metal ion binding affinities (Pantoliano .Q iL., 1988).

2.5 Thermolabile Amino Acid Sequences

2.5.1 Cvstine destruction and thiol-catalyzed disulfide interchange

The destruction of cystine residues is one of the causes of the irreversible thermal

inactivation of lysozyme and ribonuclease at pH 8. Destruction of protein bound cystines in

strongly alkaline media (pH 12-13) is known to occur via a B-elimination reaction to yield

dehydroalanine and thiocysteine (Nashef A gl., 1977; Feeney, 1980; Whitaker and Feeney,

1983). This can be explained by the fact that in the peptide chain, the a-carbon is attached to two

electron withdrawing groups (-CONH- and -NHCO-) which make the a-hydrogen relatively

labile under alkaline conditions. Although debate continues as to the fate of thiocysteine
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RI-SS-Ri + R2 S- <-> RI-SS-R 2 + RIS-

RI-SS-R 2 + R2 S- <-> R2-SS-R 2 + RIS-

Strategies to design more thermostable enzymes by means of protein engineering have also

utilized the introduction of new disulfide bonds (for reviews, see Wetzel, 1987; Creighton,

1988). In particular, cystine residues have been engineered into subtilisin (Wells and Powers,

1986; Pantoliano a . 1987), dihydrofolate reductase (Villafranca ! A., 1983, 1987), T4

lysozyme (Perry and Wetzel, 1984; Wetzel j.., 1988) and X-repressor (Sauer Qj a., 1986;

Stearman f d., 1988). The results obtained in these systems have been, at best, inconclusive.

In the case of subtilisin, very little stabilization against heat-induced autolysis was observed by

the addition of an extra disulfide bond, presumably due to the unfavorable geometries caused by

the introduction of a new crosslink. Similarly, mixed results have been reported with the other

enzymes: X-repressor showed a slight increase in Tm during reversible thermal denaturation, but

no increase in the thermal stability of dihydrofolate reductase was observed. When a disulfide

bond was added to T4 lysozyme, the new cross link may have decreased the rate of irreversible
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(Florence, 1980), dehydroalanine is known to react with several nucleophilic groups in proteins,

especially the e-amino group of lysine to form lysinoalanine (Bohak, 1964). See Figure 1.

After establishing that cystine residues of ribonuclease underwent B-elimination at pH 8

and 900 C, Zale and Klibanov (1986) showed that one of the byproducts (free thiols) catalyze

thiol-disulfide interchange. Although their kinetic studies clearly demonstrated that the disulfide

bonds of ribonuclease had been reshuffled, they could not directly isolate or determine these

scrambled species. Historically, Ryle and Sanger (1955) discovered that at neutral and alkaline

pH, short peptides can undergo a thiol-catalyzed disulfide interchange reaction at 350 C. Thiols

carry out nucleophilic attack on the sulfur atom of a disulfide in the same way as in thiol-disulfide

interchange (Cecil and McPhee, 1959; Torchinsky, 1981):
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Figure 1- The B-elimination reaction of cystine residues in proteins.
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thermoinactivation by creating more compact solution structures than the unfolded,

noncrosslinked molecules (Wetzel f al., 1988).

The information presented in the previous paragraphs concerning the chemical lability of

disulfides questions the wisdom of engineering S-S bonds into proteins to stabilize them under

extreme conditions such as high temperatures at neutral pH values. In this research project, we

will establish the validity and generality of this hypothesis.

2.5.2 Deamidation of asparagine and glutamine residues

The spontaneous, nonenzymatic deamidation of asparagine and glutamine residues is one

of the most common post-translational chemical modifications of proteins (Uy and Wold, 1977;

Harding, 1985). It has been proposed that deamidation serves as a "biological clock" in both

aging and development processes regulating the degradation and clearance of proteins (Robinson

and Rudd, 1974). Not only are specific deamidations well-documented in vivo, but there is an

intriguing correlation between the in vivo half-lives of proteins and their total amide residue

content (McKerrow, 1979). The deamidation of asparagine and/or glutamine residues causes,

solely or in part, the irreversible thermal inactivation of lysozyme and ribonuclease at pH 4 to 8.

The earliest research effort aimed specifically at deamidation was carried out by Robinson

and coworkers who synthesized pentapeptides of sequence (Gly Xxx Asn Xxx Gly) or (Gly Xxx

Gln Xxx Gly) and then measured the rate of amide loss under physiological conditions

(Robinson and Rudd, 1974). Their rate data showed that (i) both asparagine and glutamine

residues deamidate 30 to 2,000 times faster than a simple aliphatic amide; (ii) asparagine

deamidates about ten times faster than glutamine on average; and (iii) the rate of deamidation is

sequence dependent (Wright and Robinson, 1982). In general, polar, charged or lower steric

bulk residues neighboring the asparagine or glutamine residue cause a rate acceleration; however,

there are exceptions to this trend.
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By synthesizing pentapeptide sequences found in cytochrome C, lysozyme, and aldolase,

and measuring their rates of deamidation at 370 C, the sequence-dependent half-lives of

deamidation for these enzymes were determined (Robinson and Tedro, 1973; Robinson jal.,

1974; McKerrow and Robinson, 1974). By comparing these results with the rate constant of

deamidation of the cytochrome C molecule in vitro (Flatmark, 1966), Robinson concluded that

the rate of deamidation is governed not only by the amino acid sequence of a protein, but higher-

ordered structures as well.

Robinson and coworkers (Robinson and Rudd,1974) assumed that deamidation was a

simple hydrolysis reaction and their discussions on the effects of the primary, secondary, and

tertiary structure of the polypeptide chain on deamidation involve formation of hydrogen bonds

which may accelerate this reaction. However, an alternative mechanism can be formulated to

account for the observed deamidation which current experimental evidence strongly favors: the

main chain amide acts as a nucleophile attacking the electrophilic asparagine (or glutamine) amide

causing ring closure to the imide with subsequent hydrolysis to an a/s aspartyl (or a/y glutamyl)

residue (Wold, 1985), as shown in Figure 2. As a general prediction, the asparagine residue is a

somewhat stronger electrophile than glutamine (inductive effect of the electron withdrawing

peptide bond is expressed more effectively over a single methylene versus two methylenes) and

therefore more susceptible to nucleophilic substitutions.

Historically, three studies in the literature support the imide-formation mechanism. First,

it is well known within peptide synthesis circles that peptides of aspartyl esters undergo

intramolecular cyclization under basic conditions leading to a cyclic imide derivative (Bodansky

and Kwet, 1978). It has been demonstrated that both deamidation of dipeptides of Asn-Gly at

room temperature under mildly alkaline conditions (Meinwald r ii., 1986) and cleavage of Asn-

Gly peptide bonds with hydroxylamine (Bornstein and Balian, 1977) proceed via a cyclic imide

intermediate. Second, Buchanan et al. (1962, 1966) and Haley r d. (1967) have noted the

formation of p-Asp-Gly sequences in dipeptides from protein digestions. Finally, it has been

shown (Yuksel and Gracy, 1986) that the in vitro deamidation of triose phosphate isomerase
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Figure 2 - The deamidation of asparagine (and glutamine) residues in proteins.
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under physiological conditions followed a Bronsted plot consistent with a general base catalysis

mechanism. In this study, the deamidation of a single Asn at the interface of the dimer was the

only sequence examined.

Recent studies (Aswad and Johnson, 1987) reveal that the eukaryotic protein carboxyl

methyltransferases (PCMT) exhibits unexpected substrate specificity for sequences containing L-

isoaspartyl residues formed in vivo as the byproduct of the deamidation of protein bound

asparagine residues. This specificity implies that PCMT may play a key role in the in vivo

degradation and repair of proteins damaged by deamidation. Because of these observations,

Geiger and Clarke (1987) conducted an in depth investigation into the nature of the deamidation

reaction in three hexapeptides containing asparagine residues. Their results confirm the

succinimide-intermediate mechanism of deamidation, and they observe both a temperature and

sequence dependence to this reaction (Asn-Gly is particularly labile while Asn-Pro and Asn-Leu

are more stable presumably due to steric considerations). It is worth mentioning that under
strongly acidic conditions deamidation of asparagine and glutamine residues also occurs, but the

mechanism and specificity of this process (simple hydrolysis) are biologically unimportant

(Venkatesh and Vithayathil, 1984).

The major limitation of the aforementioned deamidation studies is utilization of synthetic

peptides to model reactions occurring in folded, biologically active proteins. For example, recent

work (Geiger and Clarke, 1987) has shown at an asparagine containing hexapeptide sequence

found in triose phosphate isomerase (TIM) deamidates via a cyclic imide intermediate with a

measurable half-life under physiological conditions. However, when these results were

compared to the rate of deamidation of this hexapeptide within the folded enzyme molecule

(Yuksel and Gracy, 1986), the protein-bound asparagine sequence turned out to deamidate over

ten times more slowly than the hexapeptide. Clearly, conformational restraints within the protein

account for these entirely different rates of deamidation.

By using neutron diffraction techniques to examine time-aged, deamidated protein crystals

of trypsin (Kossiakoff, 1988), and kinetic studies on the deamidation of a particularly labile Asn-
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Gly sequence in ribonuclease (Creighton, 1989), as well as a protein sequence data base analysis

by Clarke (1987), these recent studies have confirmed that a protein's tertiary structure is a

principal determinant to protein deamidation under ambient conditions. Moreover, work by Lura

and Schirch (1988) has shown that peptide confirmation also affects the deamidation of a Asn

residue in tetrapeptides.

Site-directed mutagenesis is now being used to remove labile asparagine residues from

recombinant proteins. For example, protein engineering was used to remove an asparagine

residue from the dimer interface of triose phosphate isomerase to stabilize the enzyme against

irreversible thermoinactivation (Aherngj al., 1987; Casal r &1., 1987). In addition, recombinant

interleukin- 1-a was stabilized against a specific deamidation by the replacement of an asparagine

residue with an isosteric serine (Wingfield r al., 1987).

2.5.3 Hydrolysis of peptide bonds at aspartic acid residues

In the case of both ribonuclease and lysozyme, hydrolysis of the polypeptide backbone at

aspartic acid residues contributes to the irreversible thermal inactivation of an enzyme under

rather acidic conditions such as pH 3 or 4. Such peptide bond cleavage occurs much faster on

the C-terminal side of aspartic acid residues than on the N-terminal side (Inglis, 1983), as shown

in Figure 3. Tsung and Fraenkel-Conrat (1965) observed that the release of free aspartic acid

residues from tobacco mosaic virus protein is a first-order process with a half-life of six hours in

0.03 N HCl at 1050 C. Marcus (1985) has shown that the Asp-Pro bond is particularly labile

under similar conditions. By studying a series of dipeptides, the undecapeptide physalaemin,

and a 63 amino acid CNBr fragment of pig kidney fructose 1,6-biphosphatase, he established a

half-life of eleven minutes for the hydrolysis of the Asp-Pro bond in 0.015 N HCl at 1100 C,

while other Asp-X bonds had half-lives ranging from 84 to over 1400 minutes under the same

conditions. The greater lability of this particular bond has been attributed to the more basic
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Figure 3 - The hydrolysis of peptide bonds at aspartic acid residues in proteins.
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nature of the proline nitrogen compared to other amino acid residues and to the enhanced a--p

isomerization of aspartic acid when linked to proline (Piszkiewicz and Smith, 1970).

2.5.4 Degradative reactions involving cysteine residues

Cysteine residues undergo autooxidation to form either intra or intermolecular disulfide

bonds or monomolecular products such as sulfenic acid (Torchinski, 1981). These oxidative

reaction are enhanced at higher pH and catalyzed by divalent metal ions especially copper.

During their studies on the thermostability of a-amylase, Tomazic and Klibanov (1988) showed

that cysteine oxidation by molecular oxygen contributed to the thermal inactivation of the enzyme

at 900 C. Similarly, cysteine oxidation caused, in part, the thermal inactivation of T4 lysozyme at

700 C (Perry and Wetzel, 1987).

Cysteine residues can also undergo a heat-induced B-elimination reaction similar to cystine

residues, but at only 3-5% the rate of the disulfide (Whitaker and Feeney, 1983). More

importantly, cysteine residues can catalyze disulfide interchange causing the reshuffling of

disulfide bonds. An unpaired cysteine residue was shown to interrupt correct disulfide bond

pairing in recombinant human fibroblast interferon and interleukin-2. When serine was chosen

to replace the free cysteine, the expressed protein formed correct disulfides and was fully active

(Mark g ad., 1984; Wang Q1 al., 1984). In addition, an unpaired cysteine was also shown to

interfere with native disulfide bond formation in T4 lysozyme (Perry and Wetzel, 1986).

2.5.5 Other reactions

The previous sections have described the most commonly observed degradative reactions

which occur during the heating of proteins in aqueous solution. However, there are many other

less frequently seen reactions which have been identified (Feeney, 1980). For example,

hydrogen peroxide can oxidize methionine residues to its sulfoxide counterpart (Torchinsky,
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1981). Subtilisin was stabilized against this chemical oxidation by removal of a methionine

residue via site-directed mutagenesis (Estell !: 1j., 1985). Racemization of protein-bound amino

acids, especially asparagine and serine residues, occurs at elevated temperatures (Steinberg fj.,

1984; Bada, 1984). Finally, lysine may react with reducing sugars at elevated temperatures to

form a Schiffs base followed by an Amadori rearrangement in a process commonly referred to

as a Maillard reaction (Gottschalk, 1972). This browning reaction is commonly seen during the

processing of food proteins at elevated temperatures (Feeney, 1980).

2.6 Thermostability of Glucose Isomerase

Glucose isomerase functions naturally as D-xylose isomerase catalyzing the isomerization

of xylose to xyulose. This enzyme is widely distributed in microorganisms and plants.

Regardless of source, glucose isomerase is a rather acidic protein (pI values from 4-5) with a

multimeric structure containing monomers (40 kd) which associate into either dimers or

tetramers. The enzyme folds into an eight stranded a/B barrel, similar to triose phosphate

isomerase, but contains a large, relatively unstructured loop that forms extensive interactions

with the other subunit (Farber and Petsko, 1987b; Glasfeld ej ., 1988).

All known D-xylose isomerases can also catalyze the conversion of glucose to fructose

with Km values for glucose 100 fold higher than xylose. In general, all isomerases require the

presence of metal ions (Mn+2, Mg+2 , Co+2) for their catalytic activity. The pH optimum for

enxymatic activity is usually greater than 7. The mechanism of the isomerization reaction is

generally believed to involve a cis-enediol intermediate. Both heavy metal ions and sugar

alcohols (xylitol) are known inhibitors of the enzyme (Anthrim A a., 1979).

The manufacture of the sweetener high fructose corn syrup (HFCS) using immobilized

glucose isomerase is presently the largest commercial enzymatic process with an estimated five

billion tons of HFCS produced in 1984 (Jensen and Rugh, 1987). The commercial production

of HFCS, outlined in Figure 4, involves the breakdown of a corn starch slurry using a-amylase
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and glucoamylase to a dextrose solution. This glucose solution (>95%) is then isomerized to

42% fructose using immobilized glucose isomerase. The high fructose corn syrup solution is

subsequently enriched to 55% fructose via chromatography, a necessary step for many food

applications (for reviews of the process, and the enzymatic and molecular properties of glucose

isomerase, see Anthrim L., 1979; MacAllister, 1980; Chen, 1980; Barker and Shirley, 1980;

Bucke, 1981; Verhoff g al., 1985). Inspection of Figure 4 reveals that all of these enzymatic

processes are carried out at elevated temperatures. Advantages of high temperature enzymatic

conversions include increased reaction rates, reduced chance of microbial contamination, reduced

solution viscosity, increased solubility of substrates and products, and potentially favorable

shifts in the thermodynamic equilibrium (Klibanov, 1983).

The thermodynamics of the conversion of aqueous glucose to fructose have been

thoroughly investigated (Tewari and Goldberg, 1985), and the proportion of fructose increases

as the temperature rises. In fact, if the enzymatic isomerization of glucose could be carried out at

105-110' C, HFCS containing 55% fructose could be directly produced without the subsequent,

costly chromatographic enrichment step. However, currently available glucose isomerases are

not nearly thermostable enough under these conditions. Most industrially employed glucose

isomerases exhibit temperature optima in the range of 80-900 C (in the presence of substrate), but

even at these temperatures, insufficient operational stability precludes their use (Hemmingsen,

1980; Jensen and Rugh, 1987).

The enzyme-catalyzed isomerization of glucose into fructose is carried out in industrial

bioreactors at 60-65' C where the half-life of the immobilized glucose isomerase is on the order

of several weeks (Hemmingsen, 1979; Anthrim gi al., 1979). Enzyme stability is affected not

only by temperature, but also by pH, oxygen, metal ions, microbial contamination and

mechanical problems such as channeling or desorption (Antrim 1 1., 1979). Many papers,

primarily publications about the purification of glucose isomerase from numerous microbial

sources, briefly report thermoinactivation experiments as part of the characterization of the

enzyme: Danno (1970) from Bacillus coagulans, Chen and Anderson (1979) from Streptomyces
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Figure 4 - The commercial, enzymatic production of the sweetener High Fructose Corn Syrup.
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flavogriseus, Kasumi a d. (1982) from Streptomyces griseofuscus, and Suekane ; ald. (1978)

from Streptomygs olivochromogenes and Bacillus stearothermophilus. All of these papers

describe experiments where the enzyme is simply incubated at various temperatures for a set time

period (usually ten minutes), and then assayed for activity. Regardless of the microbial source of

glucose isomerase, the enzyme undergoes inactivation between 70-800 C, and some degree of

stabilization is observed when heated in the presence of divalent cations such as Mg+ 2, Co+2, or

Mn+2. No mechanistic investigations were attempted in any of these studies.

The thermostability of glucose isomerase in more commercially-oriented environments has

been reported by Zittan gi _i. (1975) and Lee e al. (1976) who examined the behavior of

immobilized glucose isomerase in column reactors at various temperatures and substrate

concentrations. Verhoff and Goldstein (1982) investigated the role of diffusional resistance

limitations, while Chen and Wu (1987) studied the effect of substrate concentration, on the

thermal inactivation of immobilized glucose isomerase.

Therefore, despite these numerous studies involving the thermal stability of glucose

isomerases from various microorganisms, the exact mechanism of irreversible thermoinactivation

(i.e., time-dependent decay of catalytic activity) of this enzyme remains obscure. This lack of

fundamental knowledge makes all attempts to stabilize glucose isomerases totally empirical. By

determining the cause and mechanism of irreversible thermoinactivation of glucose isomerase,

we can develop rational strategies to stabilize this enzyme at elevated temperatures.

2.7 Thermostability of Enzymes in Nonaqueuos Environments

2.7.1 Enzymes in neat organic solvents

The recent discovery that enzymes are catalytically active in organic solvents has greatly

expanded the potential for their use as practical catalysts (Klibanov, 1986; Khmelnitsky !: nI.,

1988; Zaks and Russell, 1989; Dordick, 1989; Klibanov, 1989). Perhaps the most neglected

37



aspect of this emerging technology is the stability of enzymes in nonaqueous media (Aldercreutz

and Mattiasson, 1987; Deetz and Rozzell, 1988). It has been reported that enzymes not only

function, but display markedly increased thermostability in organic solvents (see below). These

observations afford the opportunity to quantitatively investigate the cause and mechanism of this

significantly increased thermostability.

Interest in the stability of enzymes suspended in the nonaqueous environment of an

organic solvent is not limited to man-made situations. Many enzymes, such as lipases, esterases,

dehydrogenases and xenobiotic metabolism enzymes like cytochrome P450, function naturally in

hydrophobic environments such as biological interfaces and membranes (Dordick, 1989).

Moreover, the "nonaqueous" environment of protein-protein interactions are commonly found

whenever two proteins interact, such as the binding of the enzyme trypsin to bovine pancreatic

trypsin inhibitor (PTI), the interactions between myosin and actin during muscle contraction, or

the specific contacts of an antibody to a protein antigen. As an example of the milieu of protein-

protein contacts, when the trypsin-PTI interface is formed, 1,130-1,720 A2 of accessible surface

is removed from contact with water. The residues in the interface closely pack and

hydrophobicity is the major factor which stabilizes the association (Chothia and Janin, 1975).

Recent interest in the formation of inclusion bodies during the microbial expression of

recombinant proteins, has raised questions about the physical state of densely packed protein

aggregates (Mitraki and King, 1989). Naturally formed protein complexes such as collagen

involve polypeptide chains which initially associate into triple helices, and then the triple helices

form side by side interactions to create higher order structures called fibrils (Creighton, 1983).

The stability of collagen matrix against thermal denaturation has been shown to be a function of

the amino acid content of the monomers: increasing the total pyrrolidine (proline plus hydroxy-

proline) content, raises the Tm from 22 to 520 C (Josse and Harrington, 1963). Although the

exact mechanism is unclear, polyproline is known to form a "tight" structure in solution while

hydroxyproline is responsible for triple helix formation. Another interesting example of protein-

protein stabilization is the trimer of a 666 residue polypeptide chain which forms the tail spike
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endorhamnosidase of P22 (which is 60% beta-sheet). The native protein is extremely

thermostable requiring temperatures of 80-90* C for denaturation (King, 1986).

Conventional biochemical wisdom holds that enzymes inactivate when exposed to organic

solvents. However, this inactivation occurs via protein denaturation when water-miscible organic

solvents are added to aqueous protein solutions (Lapanje, 1978; Volkin and Klibanov, 1989);

Conversely, when enzyme powders are dispersed in neat organic solvents, they display

markedly enhanced stability, in particular thermostability. For example, Zaks and Klibanov

(1984) report that porcine pancreatic lipase inactivates instantly in aqueous buffer at 1000 C, but

when suspended in 2 M heptanol in tributyrin, the half-life dramatically increases to 12 hours at

1000 C. Furthermore, the thermostability of this enzyme correlates directly with the amount of

water bound to the enzyme after lyophilization, and to the amount of water added to the system

during heating. During their subsequent studies on the enzymatic properties of a-chymotrypsin

in various organic solvents, Zaks and Klibanov (1988) report a "pH memory" effect to the

thermal inactivation of the enzyme where the pH of the buffer (pH 3 vs. 9) during lyophilization

affects its subsequent thermostability (however, this effect may be due to the pH-dependent

denaturation of the enzyme before lyophilization).

The thermostability of chymotrypsin strongly depends on the nature of the solvent; the

enzyme is more stable in hydrophobic solvents than in hydrophilic ones (Zaks and Klibanov,

1988a). Similar results have been reported by Reslow = Al. (1987) for chymotrypsin, Wheeler

and Croteau (1986) for the terpene cyclase, Ahern and Klibanov (1986) and Klibanov and Ahern

(1987) for lysozyme, and Ayala g al. (1986) for ATPase and cytochrome oxidase. Recent work

with mitochondrial F1 -ATPase in toluene-phospholipid-low water systems has shown that as the

water content is increased from 0.04% to 2.5%, the enzyme acquires catalytic activity while

undergoing rapid thermal denaturation (Garza-Ramos r nl., 1989). In addition, the detrimental

effects of ligand-induced activation and polyethylene glycol-derivatization on the thermostability

of subtilisin Carlsberg in organic solvents have been observed by Russell and Klibanov (1988)

and Pasta rd al. (1988), respectively. It should be pointed out that in all these studies
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thermostability was not the major topic of the paper (no mechanistic studies have been

undertaken), but rather reported in order to show the novel properties of these enzymes in

organic solvents.

The equivalency of enzyme molecules within the solid particles suspended in organic

solvents is an important parameter in order to determine whether all enzyme molecules are

exposed to solvent during heating. Sonication of enzyme powders dispersed in organic solvents

reduces the average particle size from 270 to 5 gm, as shown by direct microscopic examination

(Zaks and Klibanov, 1988 a). Furthermore, the active sites of chymotrypsin and subtilisin were

titrated in organic solvents, and up to 70% of the total active sites were shown to be available to

the substrates and hence to the organic solvent. The masking of the remaining sites disappeared

upon dissolving these enzymes in water, lyophilizing, and then resuspending them in organic

solvent (Zaks and Klibanov, 1988 a). In addition, recent work using solid state NMR to

examine the structural integrity of a-lytic protease in organic solvents has found no evidence of

structural heterogeneity in the enzyme population (Burke r nl., 1989; these findings are limited,

however, to the active site of the enzyme). Therefore, most, if not all, of the enzyme molecules

in organic solvent are accessible to the solvent.

The role of water during enzyme thermal inactivation has been reported not only in these

recent studies involving organic solvents. Similar trends have appeared in the literature

describing the thermostability of viruses (Grief and Rightsel, 1968), food proteins (Rockland,

1969), enzyme powders (see below), and recently with pharmaceutical proteins (Hageman,

1988). However, the cause and mechanism of these observations remain unclear. Water is an

essential reactant in the covalent, degradative reactions causing irreversible thermoinactivation of

enzymes in aqueous solution, as well as the solvent which facilitates protein mobility leading to

reversible unfolding, incorrect structure formation and aggregation. Therefore, the increased

thermostability of enzymes in nonaqueous environments may be explained by resistance to these

covalent reactions and/or increased conformational rigidity. Interestingly, Zaks and Klibanov
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(1988b) have recently shown that the conformational flexibility of mushroom polyphenol oxidase

in hexyl acetate markedly increases upon hydration of the organic solvent.

2.7.2 Enzyme powders

Rehydration of enzymes from the dry state has been shown to lead to a greater

conformational mobility, and at a certain water content, enzymatic activity. Most of the work on

water-protein interactions has been conducted with powders or films of model enzymes such as

hen egg white lysozyme (Fujita and Noda, 1978; Baker e al., 1983; Rupley t al., 1983; Poole

and Finney, 1983; Finney and Poole, 1984; Schinkel a 1985; along with general reviews of

water-protein interactions by Kuntz and Kauzmann, 1974; Bryan, 1980; Rupley f. ii., 1980).

The protein hydration process for lysozyme is typically broken down into three well-defined

categories (Rupley _ al., 1983): At a hydration level of 0 to 7% (g/g) H20 (or 0-60 moles of

H2 0 per mole of protein), water is bound primarily to charged groups on the protein surface.

The mobility of the bound water is approximately 100 times less than bulk water and enzymatic

activity is negligible. From 7 to 25% (g/g) H20 (60-220 moles of H20 per of mole protein),

clusters of water molecules form until most of the protein surface is covered. Protein mobility

dramatically increases (as measured by hydrogen exchange) and enzymatic activity becomes

detectable at approximately 20% (g/g) H20. Finally, as the water content increases up to 35%

(g/g) H20 (220 to 300 moles of H20 per mole of protein) and above, uncovered surface patches

on the protein become hydrated, enzymatic activity approaches one tenth of aqueous solution,

protein mobility displays full internal motion and water mobility approaches that of bulk water.

Very little work has been done on the mechanism of thermal inactivation of dry protein

powders (Hahn-Hagerdal, 1986). Mullaney (1966) recorded the kinetics of the thermal

inactivation of powders of ribonuclease and trypsin (the water content was not measured). It

was found that, within experimental error, inactivation could be approximated by first order

kinetics between 165-205' C. Carpenter e dj. (1962) and Bjarnason and Carpenter (1970)
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examined chemical changes occurring in food and pure proteins, respectively, during heating for

24 hours at 115-145' C. They noted a liberation of ammonia and hydrogen sulfide, as well as a

decrease in the lysine and cysteine content. In the latter investigation, they suggest that a

transamidation reaction is responsible for some of these chemical changes. In this study, no

correlation between these reactions and loss of biological activity was attempted.

More recent studies have used differential scanning calorimetry as a tool to study the

temperature-induced conformational changes in the state of a protein (Stein, 1974; Privalov and

Potekhin, 1986). Calorimetry has also been used extensively to examine the effects of various

environmental factors (additives, pH, ionic strength, etc.) on temperature induced unfolding of

biomolecules (Chowdhry and Cole, 1989). This technique measures the excess apparent specific

heat of a system in a continuous manner as a function of temperature at a fixed scan rate (*C/

min), i.e., it determines the difference in energy input required (between a protein sample and a

reference) to keep the two samples at a constant rate of increasing temperature. When a protein

molecule unfolds at its thermal denaturation temperature (Tm), a certain amount of excess energy

is required and a thermal transition peak is recorded on the DSC.

Differential scanning calorimetry has been used to measure the effect of hydration on the

thermal denaturation of enzyme and protein powders: tropocollagen (LeuscherU ai., 1974), B-

lactoglobulin (Ruegg r d., 1975), myoglobin (Hagerdal and Martens, 1976), lysozyme (Fujita

and Noda, 1978; 1979), chymotrypsinogen (Fujita and Noda, 1981) and ovalbumin (Fujita and

Noda, 1981). The common conclusions from these papers are that : (i) enzyme powders are

extremely thermostable in the dry state with Tm values as high as 1300 C, (ii) at hydration levels

between 5 and 40% water (g/g), the Tm (melting temperature) of the protein decreases, while the

net enthalpy change increases with increasing water contents, and (iii) at higher hydration values

such as 40 to 300% water (g/g), both of these parameters approach the level obtained for proteins

in aqueous solution. Since a protein gains conformational flexibility with increasing water

content (Rupley aj al., 1983), the thermal stability of a protein decreases (see results and

discussion); similarly, the increasing flexibility of the protein molecule allows for a greater extent
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of unfolding and increased number of noncovalent bonds being broken resulting in an increased

net enthalpy.

Despite numerous reports of increased thermostability of enzymes in organic solvents, no

mechanistic investigation has yet been carried out to determine the processes that cause

thermoinactivation. Similarly, reports on the effect of hydration on the denaturation of enzyme

powders have not been correlated with either (i) chemical and conformational changes which

cause irreversible thermoinactivation or (ii) thermostability in other nonaqueous environments

such as anhydrous organic solvents.
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III. EXPERIMENTAL SECTION

3.1 Materials

3.1.1 Enzymes and Proteins

All proteins examined for cystine destruction at 1000 C were purchased from Sigma

Chemical Co.(St. Louis, MO): bovine pancreatic insulin, chymotrypsinogen A, trypsinogen, and

ribonuclease A, hen egg-white lysozyme, human transferrin, pepsinogen from porcine stomach

mucosa, papain from papaya latex, chicken egg-white conalbumin and ovalbumin, bovine serum

albumin, and horseradish peroxidase. We have found all of these proteins to be essentially

homogeneous in SDS polyacrylamide gel electrophoresis (see below).

Mixed disulfides of lysozyme (and trypsinogen) with glutathione were prepared

according to the general method of Odorzynski and Light (1979): Proteins were dissolved at 10

mg/ml in an aqueous solution containing 8 M urea, 0.2 M B-mercaptoethanol, and 0.1 M Tris,

pH 8.5, under N2. After incubation overnight at room temperature, the reduced protein was

desalted on a Sephadex G-25 column (2.5 x 40 cm) and immediately lyophilized. Protein

powder was resuspended at 3 mg/ml in an aqueous solution containing 8 M urea, 0.1 M oxidized

glutathione, and 0.1 M Tris, pH 9.5, under N2 for 18 hrs. The mixed-disulfide was then

desalted on a G-25 column and lyophilized.

The hybrid protein containing a mixed disulfide of lysozyme with glutathione (prepared

as mentioned above) contained no free sulfhydryl groups, as established by both

spectrophotometric titration with Ellman's reagent and treatment with iodoacetic acid, followed

by amino acid analysis. Following reduction with sodium borohydride (Brown, 1960), the

former method yielded 15.4 moles of thiols/mole of protein; oxidation of the free thiols with

performic acid (Odorzynski and Light, 1979), followed by acid hydrolysis and amino acid

analysis (see below) of the cysteic acid formed resulted in 15.0-16.3 moles of cysteic acid/mole
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(a) Dialyze 20 ml of cell-free extract (175 mg/ml protein) three times against 0.05 M Tris-

HC1, 10 mM MgSO4, pH 7.5 (250 C) (termed buffer A) overnight at 40 C. Final volume

is 45 ml.

(b) Add solid ammonium sulfate to 70% saturation. Stir at 40 C overnight, followed by

centrifugation and collection of precipitate. Resuspend to 45 ml with buffer A and dialyze

three times against buffer A overnight at 40 C. Final volume is 90 ml.

(c) Apply to DEAE-Sephadex A-50 column (4.5 x 20 cm) equilibrated in buffer A at 0.8

ml/min at room temperature. Elute protein with 1 liter of a NaCl gradient (0 to 0.5 M) in

buffer A.
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of protein. These values are about 90-100% of those predicted by a model in which each of 8

cysteine residues of lysozyme (Imoto d., 1972) is attached to a glutathione moiety. Isoelectric

focusing (see below) of the mixed disulfide revealed a major band and a few minor ones.

Hence, the prepared sample, in addition to the main product (lysozyme-glutathione)8, contained

some hybrid molecules with fewer glutathione moieties where some of the cysteine residues of

lysozyme oxidized to cystines. This conclusion was further confirmed by the number of

glutamic acid residues: amino acid analysis (see below) of the hybrid protein yielded 12-12.5 per

protein molecule, as compared to the theoretical number 13 (8 from 8 glutathione moieties plus 2

glutamic acid and 3 glutamine residues (Imoto r al., 1972) in a lysozyme molecule ). Similar

analysis of a mixed disulfide of trypsinogen with glutathione revealed that almost all 12 cysteines

formed by reduction of trypsinogen were bonded to glutathione moieties.

Glucose isomerase thermostability studies were done with enzyme (D-xylose ketol

isomerase, EC 5.3.1.5) from Streptomyces olivochromogenes which was a generous gift from

CPC International's Moffett Technical Center (Summit-Argo, IL). The cell-free enzyme solution

obtained was subsequently purified to >95% homogeneity according to a modified procedure of

Suekane al. (1978):



(d) Measure protein (OD280) and activity (see next section) and collect peak. Precipitate

enzyme by adding solid ammonium sulfate to 70%. Dissolve precipitate in 10 ml buffer A

and dialyze three times against buffer A overnight at 40 C. Final volume is 40 ml.

(e) Apply 4 ml to G-150 column (2.5 x 85 cm) equilibrated in buffer A at 0.8 ml/min at

room temperature.

(f) Measure protein (OD280) and activity (see next section). By means of OD280 analysis

on FPLC Superose 12 gel filtration column (0.1 ml/min equilibrated in buffer A), collect

fraction of G- 150 peak (3/4 total volume) which indicates single, pure peak of enzyme by

FPLC gel filtration analysis.

(g) Pool samples and dialyze three times against 55% ammonium sulfate in buffer A

overnight at 4* C. Collect crystals, wash with 55% ammonium sulfate in buffer A, then

dialyze against buffer A.

Enzyme was >95% pure as shown by FPLC gel filtration chromatography, SDS-PAGE and

isoelectric focusing (see below). In addition, the amino acid composition was in good agreement

with the (i) calculated value based on the DNA sequence (Farber and Petsko, 1987a) and (ii) the

literature value (Suekane g al., 1978).

The purified glucose isomerase was covalently attached to porous glass beads using a

modified procedure of Weetall (1976):

(a) Amination of beads - incubate control pore glass beads for 45 min, 1000 C in 5% nitric

acid followed by a distilled H20 wash. Add beads (10 g beads to 120 ml solution) to a

10% solution of y-aminopropyltriethoxysilane in H20 (pH 3.45 adjusted with 6 N HCl),

750 C, 3 hr with stirring. Wash the beads with 100 ml of H20 and dry overnight in oven

at 1000 C.
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(b) Enzyme preparation - dialyze enzyme (70 mg per g of beads) three times overnight

against 50 mM borate buffer, pH 8.5 containing 10 mM MgSO4 and 1 M xylose (termed

buffer B).

(c) Glutaraldehyde coupling - add 125 ml of 2.5% glutaraldehyde solution in 50 mM

sodium phosphate buffer, pH 7.0 to 10 g aminated support. Stir for 2 hr at room

temperature (beads become pink). Wash extensively with H20, then wash with buffer B.

Add enzyme to support in smallest possible volume (minimum 1% glucose isomerase),

then incubate overnight at room temperature with turning.

(d) Sodium borohydride reduction - wash enzyme-support extensively with 10 mM

MgSO4 in H20. Add 100 mg NaBH4 to 50 ml of enzyme-support suspension and allow

to stand overnight at 40 C (beads become white). Wash extensively with 10 mM MgSO4

in H20 then store (+ 0.02% sodium azide) at 40 C.

This method afforded 8 to 18 mg of glucose isomerase immobilized on 1 g of the support. The

specific activity of the immobilized enzyme was between 80 and 90% of that of its free

precursor.

All enzymes used to examine protein thermostability in organic solvents were purchased

as dry powders from Sigma Chemical Co: bovine pancreatic ribonuclease A (EC 3.1.27.5) with

a specific activity of 95-100 Kunitz units/mg of protein (type X 11-A), bovine pancreatic a-

chymotrypsin (EC 3.4.21.1) with a specific activity of 58 units/mg protein (Type II), and

chicken egg white lysozyme (EC 3.2.1.17) with a specific activity of 49,100 units/mg protein

(Grade 1). Ribonuclease was found to be homogeneous as determined by SDS polyacrylamide

gel electrophoresis (Laemmli, 1970) and FPLC gel filtration chromatography (see below). In

both cases the enzyme migrates at the expected value of 13.7 kD. The amino acid composition of

ribonuclease (see below) was in good agreement with the literature data (Smyth i al., 1963).

Chymotrypsin and lysozyme were both found to migrate as a single peak at their expected

molecular weight values on FPLC gel filtration chromatography.
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3.1.2 Reagents

The enzymes yeast hexokinase, Leuconostoc mesenteroides glucose-6-phosphate

dehydrogenase, bovine heart lactic dehydrogenase, and bovine liver L-glutamic dehydrogenase

were purchased from Sigma Chemical Co. (St. Louis, MO). Controlled pore glass beads (mean

pore diameter 2100 A, surface area 18 m2/g, a-D(+)-glucose, B-D(-)-fructose, D-(+)-xylose,

NAD+, NADH, ATP, reduced and oxidized glutathiones, picrylsulfonic acid (TNBS), cytidine

2'-3'-cyclic monophosphate, torula yeast ribonucleic acid, N-benzoyl-L-tyrosine ethyl ester

(BTEE) and lyophilized Micrococcus lysoleiktieas cells were also obtained from Sigma.

All anhydrous organic solvents, along with xylitol, -aminopropyltriethoxysilane and

deuterium oxide (D20), were acquired from Aldrich Chemical Co.(Milwaukee, WI); the

anhydrous solvents were removed from their "sure-seal" containers by use of a 22-gauge

stainless steel needle and 5 ml glass syringe as described in the Aldrich packing instructions. The

water content of the solvents was determined by Karl Fischer titration as described below. Karl

Fischer reagents (hydranal-titrant 5 and hydranal solvent) were acquired from Riedel-de Haen.

Reduced glutathione, [glycine-2- 3H]-labelled (1 Ci/mmol), was bought from New

England Nuclear; in order to prepare 3H-labelled oxidized glutathione, 3H-labelled reduced

glutathione was purified from the stabilizer dithiothreitol via the method of Butler el al. (1976):

the glutathione solution was adjusted to pH 2 and extracted three times with a ten-fold excess

volume of ethyl acetate. The purified 3H-labelled reduced glutathione was then diluted with its

"cold" counterpart and oxidized by bubbling 02 overnight through its aqueous solution (pH 8)

containing 10 9M CuCl2, followed by removal of the Cu+2 ions by Chelex ion-exchange

chromatography.

High fructose corn syrup (trade name Isoclear 42), containing 71% (w/w) solids and

consisting of 42% fructose, 52% glucose and 6% oligosaccharides, was a kind gift from Cargill

Co. (Dayton, OH). All other chemicals used in this work were purchased commercially and

were of the highest purity available.
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3.2 Methods

3.2.1 Enzymatic Assays

Free and immobilized glucose isomerase

Both free and immobilized glucose isomerase were assayed by means of a modified

procedure of Visuri and Klibanov (1987): Add enzyme (0.05 mg) to 1 ml of an aqueous solution

of 0.1 M fructose, 0.1 M HEPES, and 10 mM MgSO4 (pH 8.0) in 1.5 ml screw-cap glass vials,

and shake the solution at 250 rpm and 450 C (under these conditions, the rate of non-enzymatic

isomerization of fructose was negligible compared to the enzymatic reaction). Periodically

withdraw samples, inactivate the enzyme with 100 pl of 1 N sulfuric acid, neutralize with 167 1fl

of 1.5 M Tris-base. Assay 800 pl for glucose via the standard hexokinase/glucose-6-phosphate

dehydrogenase method (Bergmeyer a n., 1974) by adding 200 lI of a 5X glucose assay

solution purchased from Sigma Chemical Co.(glucose HK diagnostic kit). In this assay, glucose

is first phosphorylated by ATP in a reaction catalyzed by hexokinase followed by the oxidation

of glucose 6-phosphate to 6-phosphogluconate in a reaction catalyzed by glucose 6-phosphate

dehydrogenase in the presence of NAD+. During this oxidation, NAD+ is reduced to NADH

with a consequent increase in absorbance at 340 nm. To determine the amount of glucose

formed, a standard curve was prepared by using known concentrations of glucose in the assay

solution.

Glucose isomerase activity at different temperatures

Substrate solutions containing 0.1 M fructose, 0.1 M Tris-HCl, and 10 mM MgSO4 were

adjusted at room temperature to the pH values that would result (Good Z al., 1966; Perrin and

Dempsey, 1974) in pH 8.0 at the temperature of the experiment, as determined by our calibration
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curves (see Appendix 1). Subsequently, the solutions were preincubated at different

temperatures with stirring in the range from 600 to 100' C, followed by addition of immobilized

glucose isomerase. Periodically, aliquots were removed, acidified, cooled, and then the initial

rates of the enzymatic isomerization of fructose to glucose at each temperature were measured as

described above. At temperatures above 80' C, where the rate of the non-enzymatic

isomerization became appreciable, it was subtracted from that for the enzymatic reaction.

Ribonuclease

Ribonuclease was primarily assayed according to the procedure of (a) Kunitz (1946), but

also by the method of (b) Crook , _4. (1960) and (c) Stark and Stein as described by Klee

(1966):

(a) 1-5 pLg of enzyme was added to 1.5 ml of 1 mg/ml yeast torula RNA in 0.1 M

sodium acetate, pH 5.0 at room temperature. The initial rate of hydrolysis was measured

by decrease in absorbance at 300 nm over time.

(b) 50-500 gg of enzyme was added to 1.5 ml of a 0.2 mg/ml cytidine 2':3'-cyclic

monophosphate in 25 mM phosphate buffer, pH 7.5 at room temperature. The initial rate

of hydrolysis was followed by monitoring the change in absorbance at 286 nm as a

function of time.

(c) 1-10 gg of enzyme was added to a pH-stat cell containing 3 mg/mi cytidine 2':3'-

cyclic monophosphate in 0.3 M NaCl at room temperature with the pH maintained at 7.0

by automatic titration (Radiometer, ABN 80 autoburette) with 20 mM NaOH. The initial

rate of hydrolysis was followed by recording the base consumption necessary to maintain

pH 7.0 as a function of time.
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Chvmotrvpsin

Chymotrypsin activity was measured according to the method of Hummel (1959): 0.75

ml of 80 mM Tris-HCl pH 7.8, containing 100 mM CaCl2 was added to 0.70 ml of 1 mM BTEE

in 50% (w/w) methanol/water at room temperature. Then 1-5 gg of chymotrypsin was added,

and the increase in absorbance at 256 nm resulting from the hydrolysis of the benzoyl-L-tyrosine

ethyl ester was recorded.

Lysozyme

Lysozyme activity was measured according to the method of Shugar (1952): 1-5 jig

enzyme was added at room temperature to 0.33 mg/ml suspension of Micrococcus lysodeikticus

cells in 100 mM potassium phosphate buffer, pH 7.0. The decrease in turbidity was recorded

over time at 420 nm.

3.2.2 Analytical Determinations

Protein

Protein concentrations were determined by either absorbance at 280 nm (Fasman, 1976)

or the method of Lowry gd al. (1951): 0-50 jig of RNase is added to 2 ml of a solution containing

0.02% sodium tartrate, 0.01% copper sulfate in a 2% sodium carbonate and 0.1 N NaOH

solution. After 10 minutes, 200 l of a 1:1 Folin reagent: H20 (Sigma) solution is added and the

absorbance of the mixture at 700 nm is recorded after 30 minutes. Standard curves were

prepared using known amounts of enzyme.
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In the glucose isomerase studies, protein (both free and immobilized) concentrations were

determined by HPLC amino acid analysis following complete acid hydrolysis as described

below. The amino acid composition of glucose isomerase was in good agreement with the

literature value (Suekane A al., 1978).

Free Sulfhydrvl Groups

Free sulfhydryl groups were determined with 5,5'-dithiobis-2-nitrobenzoic acid (DNTB

or Ellman's reagent) according to the procedure of Riddles j Al. (1983). One hundred

microliters of a 10 mM DNTB solution in 0.1 M aqueous phosphate buffer, pH 7.2, containing 1

mM EDTA was added to 1 ml of a protein solution plus 2 ml of 1 M Tris buffer pH 8, containing

1 mM EDTA and the mixture was incubated at room temperature for 10 minutes. Absorbance at

412 nm was compared to a standard curve prepared using cysteine. Assay was shown to be

unaffected by the presence of 10 ,M Cu+2.

Free sulfhydryl groups in glucose isomerase were determined colorimetrically with

Ellman's reagent or by reduction and carboxymethylation of the enzyme in aqueous solutions of

6 M guanidine-HCl, followed by dialysis, acid hydrolysis, and amino acid analysis. For

immobilized glucose isomerase, the Ellman's reagent titration (one-half volumes) was done with

2.5 mg glucose isomerase with shaking at 250 rpm.

Hydrosulfide

Hydrosulfide (HS-) determination was based on the method outlined by Rabinowitz

(1978): One milliliter samples were removed from a solution of the enzyme that was undergoing

thermoinactivation and immediately added to 0.65 ml zinc acetate solution (2% in water) on ice.

Fifty microliters of 12% sodium hydroxide solution was then added, and the samples were

removed from the ice bath. Dimethylphenylenediamine dihydrochloride (0.25 ml of a 0.1%
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solution in 5.5 N HCl) and FeCl2 (50 ml, 23 mM in 1.2 N HCl) were added, and the tubes

allowed to stand at room temperature for 30 minutes. The absorbance of the samples was

determined at 670 nm and compared to a standard curve using known concentrations of

hydrosulfide. The assay was not affected by the presence of small concentrations of cupric

chloride (corresponding to 10 pM in the sample).

Dehydroalanine

The time course of the appearance of dehydroalanine residues was measured by acid-

catalyzed conversion to pyruvic acid (Bohak, 1964; Patchornik and Sokolovsky, 1964),

followed by enzymatic analysis using lactate dehydrogenase (Shifrin f ., 1959). Samples (one

ml) were heated in 3 N HCl for 1 hour at 1050 C in sealed ampoules and then neutralized with

0.5 ml of 6 N NaOH. To one ml of neutralized sample, 0.25 ml of 1.5 M Tris-HCl, pH 7.4,

and 0.25 ml of 0.5 mg/ml NADH in the same Tris buffer were added along with 25 g1 of lactate

dehydrogenase. The pyruvate concentration was determined spectrophotometrically by

measuring the pyruvate-dependent lactate dehydrogenase-catalyzed oxidation of NADH to NAD+

at 340 nm.

Lysinoalanine

The time course of the appearance of lysinoalanine was measured using conventional

amino acid analysis of acid hydrolysates (see below). An amino acid not found in native protein

samples was observed to elute immediately before histidine in samples from protein solutions

heated at 1000 C at pH 8. This is the same position as that reported by Bohak (1964) for

lysinoalanine. The identity of the new amino acid was confirmed with an authentic sample of

lysinoalanine (Sigma).
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Free Amino Groups

Free amino groups in ribonuclease were measured according to the procedure of Fields

(1972): 800 gi of 0.1 M Na2B407 in 0.1 N NaOH and 20 gl of 1.1 M TNBS (picrylsulfonic

acid) were added to 200 gi of an enzyme solution of appropriate dilution. After 5 minutes, 2 ml

of a 0.1 M NaH2PO4 solution containing 1.5 mM sulfite solution (1.5 ml of 0.1 M Na2SO3 in

98.5 ml of 0.1 M NaH2PO 4 ) was added. The absorbance was measured at 420 nm with N-

acetyl-lysine used as a standard.

In this reaction, sulfite is displaced from the TNBS molecule by an attacking nucleophile,

in this case, the free amino groups on proteins.

Dissolved Ammonia

The time course of ammonia evolution during thermoinactivation of glucose isomerase

was determined by incubating samples of the enzyme in sealed ampoules at varying temperatures

and times. All of the ampoules were cooled to room temperature, opened, and the amount of

dissolved ammonia was then measured enzymatically using glutamate dehydrogenase (Kun and

Kearney, 1974): 0.75 ml of each sample was combined with 0.30 ml of 0.5 M Tris-HCl, pH

8.0, 50 1i of 8 mM NADH in 1% NaHCO3, 0.15 ml of 0.1 M a-ketoglutarate (pH 7.5) and 20

gl of 14 mg/ml glutamate dehydrogenase. The concentration of ammonia in the sample was

reflected in the difference between the initial and final absorbance at 340 nm after a 90 minute

incubation, resulting from the oxidation of NADH to NAD+ coupled with the reductive amination

of a-ketoglutarate. Standard curves were prepared using solutions of known amounts of

ammonium sulfate.

To determine ammonia evolution during the heating of ribonuclease in organic solvents,

enzyme samples (5 mg) were placed into 2 ml of anhydrous nonane in a 10 ml screwcap glass

vial which was sealed with teflon tape and a Teflon/silicone disc (Pierce). After heating and
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cooling, 5 ml of aqueous buffer was injected into the sample to extract the ammonia. Ammonia

concentrations were then determined enzymatically as described above.

Amino Acid Composition

Protein samples were degassed and hydrolyzed in 6 N HCl (Pierce) at 1100 C for 24

hours. The amino acid composition of the hydrolysates was determined using reverse phase

HPLC with a precolumn derivatization (Fernstrom and Fernstrom, 1981). Amino acids

derivatized with o-phthalaldehyde (OPA) were separated on a Waters Associated Microbondapak

C18 column using a sodium phosphate/acetonitrile gradient. The fluorescent amino acid

derivatives were detected using a Waters 420-AC fluorescence detector equipped with a 360 nm

excitation filter and a 455 nm emission filter.

Cysteic acid determinations required an adjustment of the above buffer (pH of buffer A

was changed to 6) in order to resolve cysteic acid from aspartic acid. Lysinoalanine residues

were determined by conventional amino acid analysis with post-column derivatization with

ninhydrin (Hare, 1975); authentic samples of lysinoalanine (Sigma) were used as a standard.

Isoelectric Focusing

Non-equilibrium isoelectric focusing was carried out according to the method of O'Farrell

. IL. (1977) on a Biorad Protean II system. Samples containing approximately 20 jig of protein

were focused for 2.5 hours at 200 V in a 1.5 mm 4% polyacrylamide gel containing 8 M urea

and 5% Ampholine 3.5-10 (LKB) that had been prefocused for one hour at the same voltage.

Gels were soaked in 10% trichloroacetic acid, stained with 0.25% Coomassie Blue R-250 in

methanol: acetic acid:water (50:7:43) and then destained with methanol:acetic acid:water

(40:10:50).
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SDS-PAGE and Gel Densitometry

SDS polyacrylamide gels (1.5 mm), either in the presence or absence of 8 M urea, were

electrophoresed at a constant current according to the method of Swank and Munkres (1971) and

Laemmli (1970), respectively. The Laemmli gel system was carried out on either a Biorad

Protean II or a Pharmacia PhastGel apparatus. SDS-polyacrylamide gels were stained with

Coomassie Blue R-250 as described above. Quantification of protein bands (50-100 g

ribonuclease per lane) in the gel was determined by means of a LKB 2202 UltroScan Laser

Densitometer.

Reduction and Carboxymethylation of Proteins

Protein samples were reduced by preparing a solution containing 1 to 10 mg/ml protein, 6

M GuHCl, and 10 mg/mi dithiothreitol (DTT) in 0.1 M aqueous phosphate buffer, containing 1

mM EDTA, pH 8 under N2 and then incubated overnight at room temperature. Carboxy-

methylation was carried out according to the method of DiBella and Liener (1969): a 100 fold

molar excess (over DTT) of iodoacetic acid neutralized in 2.5 ml 1 N KOH was added to 2 ml of

the above protein solution and kept at pH 9.0, 250 C, in the dark for 30 minutes. The protein

solution was dialyzed overnight vs. deionized water (or desalted on a G-25 column) followed by

lyophilization.

Chemical Modification of Ribonuclease

Ribonuclease was acetylated in the presence of the ligand sodium pyrophosphate as

described by Zale and Klibanov (1986): 20 mg of protein was added to 20 ml of 10 mM sodium

pyrophosphate, pH 6.0, then 20 g1 of acetic anhydride (5 x 4 pl) was slowly added over 30

minutes with the pH maintained at 6.0 by addition of 1 M NaOH. Solution was dialyzed against
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sodium pyrophosphate at pH 6.0 and then three times against distilled water at 4' C overnight,

followed by lyophilization. The native enzyme (reduced and carboxymethylated) contained 10.9

free amino groups (100% of the expected 11 free amino groups in ribonuclease), while the

chemically acetylated enzyme had 3.5 free amino groups (31%). The modified ribonuclease

retained 60-70% of specific activity compared to untreated enzyme.

Lyophilization

For studies on enzyme thermostability in organic solvents, enzyme powders were

dissolved in distilled water (4 mg/ml) and the pH of the solution was adjusted by automatic

addition of 10 mM NaOH on a Radiometer (ABN 80 autoburette) pH stat under N2. Samples

were then snap-frozen with liquid N2 and lyophilized for at least 3 days on a Labconco freeze

dryer at <10 microns Hg vacuum.

Hydration of Ribonuclease Powder

Water content of ribonuclease was adjusted by incubation of the lyophilized enzyme (see

above) for one week at room temperature in a desiccator (under vacuum) filled with various

saturated salt solutions (potassium chloride, potassium nitrate, potassium sulfate) to give a

variety of Aw values (0.84, 0.94, 0.97; Greenspan, 1977) or kept dry under phosphorus

pentoxide. Actual water content of enzyme powder was determined by Karl Fischer titration (see

below).

Gel Filtration Chromatography

For quantitative analysis of aggregation due to heating in organic solvents, protein

samples (1 mg/mi) were injected onto a Pharmacia FPLC Superose 12 column equilibrated in 10
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mM phosphate buffer (pH 7.2) with 0.15 M NaCl at a flow rate 0.1 ml/min. Peak areas were

determined by weight.

Reactivation of "Irreversibly" Thermoinactivated Ribonuclease

Reactivation of thermoinactivated enzyme was carried out as described by Zale and

Klibanov (1986): the enzyme powder was dissolved (after thermoinactivation) in 9 M urea (or 6

M guanidine hydrochloride) containing 70 mM dithiothreitol, 0.1 M Tris and 2 mM EDTA at pH

8.5. After reduction, the enzyme was desalted on a G-25 column equilibrated with 0.1 M acetic

acid. Samples were then reoxidized for 18 hours by the addition (1:1) of a 1.0 mM of both

reduced and oxidized glutathione in 2 mM EDTA, 2 M Tris buffer at pH 9.0. Recovery of

specific activity (over 95% with untreated ribonuclease) was measured using the enzyme assay

described above.

Karl Fischer Titration for Water Content Determinations

The water content of both organic solvents and enzyme powders were determined by

titration via the Karl Fischer method (Laitinen and Harris, 1975; Connors, 1988). Titration was

carried out with Hydranal reagents (Riedel-de Haen) on a Mettler DL18 titrator. The reaction of

water with the Karl Fischer reagent is commonly written as follows although the chemistry is

certainly more complicated than indicated (Connors, 1988):

(1) C5H5 N*12 + C5H5 N*S02 + C5H5 N + H20 ->

2 C5H5 NH+ I- + C5H5 N.S03

(2) C5H5 N*S03 + CH30H -> C5H5 NH+ CH3 S04-
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Detection is carried out by electrometric titration using an amperometric technique with two

platinum electrodes (Connors, 1988).

The water content of enzyme powders in organic solvents was measured using a

modified procedure of Zaks and Klibanov (1988): 15 mg of enzyme powder is added to 5 ml of

organic solvent (water content of each is measured before the experiment) in a preweighed

centrifuge tube. After sonication and a ten minute incubation, the mixture is centrifuged and the

solvent is removed (water content of solvent is determined). The weight of the remaining solvent

saturated protein powder is determined via difference by reweighing the centrifuge tube. Five ml

of anhydrous dimethylsulfoxide (water content already determined) is added to dissolve the wet

powder and the resulting water content of the solution is then determined. A water balance is

calculated on the entire system, as described by Zaks and Klibanov (1988), in order to determine

the water content of the enzyme powder in organic solvent.

Differential Scanning Calorimetry

The thermal denaturation of RNase in organic solvents and as a dry powder was

measured with a Perkin Elmer DSC 7 differential scanning calorimeter. Samples of enzyme

powder (1-5 mg) were (i) added directly or (ii) incubated in an organic solvent, centrifuged and

the bulk solvent was removed; the powder (either dry or solvent saturated) was then placed into

aluminum pans and sealed. An empty aluminum pan was sealed and used as a reference sample.

The scanning range was 25-130* C at a heating rate of 100 C min-1.

3.2.3 Kinetic Studies

Heat-induced B-elimination of cystine residues
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Heat-induced B-elimination of cystine residues was measured on the basis of

disappearance of potential sulfhydryl groups. Protein solutions (10-50 gM) in an aqueous buffer

of a given pH (in the presence or absence of a denaturant) were placed in test tubes, sealed with

serum stoppers, and incubated in a thermostatically controlled glycerol bath at 100* C. Reduction

of cystine to cysteine residues was done according to a modified procedure of Brown (1960):

One-half milliliter of 30 mg/ml sodium borohydride and one drop of antifoam A (Sigma) were

added to 2 ml of a protein solution (pH adjusted to 8) and incubated at 500 C for 60 minutes.

After cooling on ice, 0.5 ml of 3 N acetic acid was added and after 1 hour analyzed for free thiols

as outlined below. B-Elimination of disulfides is known (Whitaker and Feeney, 1983) to

generate free sulfhydryls which distort the kinetics of the disappearance of potential SH groups,

especially at high conversions of the B-elimination reaction. To account for this, in separate

experiments the borohydride was omitted during the measurements, the time course of

accumulation of free thiols was determined, and subsequently subtracted from the data obtained

with NaBH4 present (see above) to yield the net time course of the heat-induced cystine

destruction.

Heat induced thiol-catalyzed disulfide interchange of disulfide bonds

The time course of reshuffling of disulfide bonds in mixed disulfides of trypsinogen and

lysozyme with glutathione was followed by two independent methods. (i) Protein solutions (30

mM) at pH 6 or 8, containing 6 M guanidine hydrochloride and 1 mM EDTA, were heated at

1000 C as described above, then cooled, acidified to pH 3, and desalted on a Sephadex G-25

column equilibrated with 0.1 N CH 3COOH. Protein fractions were pooled, and water was

evaporated in a speed-vac concentrator. The residue was then dissolved in 6 N hydrochloric acid

(Pierce), degassed, placed in sealed ampoules, incubated at 1100 C for 24 hours, and then

subjected to HPLC amino acid analysis (see below). Each -S-S- interchange results in a loss of

one glutathione moiety, i.e., one glutamic acid residue in the subsequent HPLC amino acid
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Heat-induced generation of free thiols

Buffered protein solutions (20-200 gM), containing 6 M guanidine hydrochloride and 1

mM EDTA, were heated at 1000 C as described above, cooled, and assayed for free sulfhydryl

groups with Ellman's reagent. In order to distinguish between low molecular weight and

protein-bound thiols, the protein solutions after heating were passed through an Amicon

ultrafiltration membrane (10,000 MW cutoff), and then both low and high molecular weight

fractions were assayed separately.
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analysis. Hence, the interchange reaction was followed by a reduction in the total number of Glu

in the protein fraction. (ii) Protein solutions (30 LM) at pH 6 or 8, containing 6 M guanidine

hydrochloride and 1 mM EDTA, were heated at 1000 C as described above, cooled, passed

through an Amicon ultrafiltration membrane (molecular weight cutoff of 10,000 daltons),

reduced with NaBH4 (Brown, 1960), acidified to decompose the reductant, and titrated for free

thiols with Ellman's reagent. When 3H-labelled glutathione was used to prepare mixed

disulfides with lysozyme and trypsinogen, the concentration of the tripeptide in the low

molecular weight fraction passed through the ultrafiltration membrane was measured by its

radioactivity.

Alternatively, the disulfide interchange reaction was measured by incorporation of 3H-

labelled glutathione into trypsinogen. A buffered aqueous solution (pH 8.0), containing 50 p.M

trypsinogen and radioactively labelled oxidized glutathione in the presence of 6 M guanidine

hydrochloride and 1 mM EDTA, was heated at 100' C as described above. Periodically, samples

were withdrawn, cooled, acidified, and subjected to gel permeation chromatography on a

Sephadex G-25 column equilibrated with 0.1 M acetate buffer (pH 4.0). The protein fractions

were then analyzed for radioactivity in a liquid scintillation counter.



Irreversible thermoinactivation of glucose isomerase

Free or immobilized glucose isomerase was placed in a thermoinactivation solution whose

pH was adjusted at room temperature to the value resulting in pH 8.0 at the temperature of the

thermoinactivation experiment, as determined by our calibration curves (for Tris buffers; see

Appendix 1). For pH 9 experiments, the pH of a 0.1 M glycine buffers containing 10 mM

MgSO 4 and 2 M xylitol was measured at 250 C (8.6, 9.0, 9.5, 10.0, 10.45). After equilibration

at 90' C, the pH was remeasured to obtain a calibration curve (7.35, 7.7, 8.5, 8.6, 9.0). For

D20 experiments, the pH of a series of D2 0 solutions containing 0.1 M Tris, 10 mM MgSO4

and 2 M xylitol were measured at 250 C (pH values 8.0, 8.59, 8.9, 9.0). After equilibrium at 900

C, the pH of the D20 solutions were remeasured (pH values 6.65, 7.3, 7.60, 7.75). The pH

values were then converted to pD values according to the formula pD = [(meter reading) + 0.4]

as described by Schowen (1978) and pD values of 7.05, 7.7, 8.0, 8.15 were obtained for a

calibration curve.

Enzyme solutions or suspensions were placed in ampoules, sealed, and then incubated in

a thermostatically controlled glycerol bath at a desired temperature. Periodically, samples were

removed, cooled (and washed five times with 0.1 M HEPES buffer at pH 8 containing 10 mM

MgSO4 in the case of immobilized glucose isomerase), and then assayed for enzymatic activity as

described above. In the case of immobilized glucose isomerase, no appreciable leakage (<1%) of

the protein from the support was detected (via Lowry assay) during heating. It should be pointed

out that the irreversible thermoinactivation of immobilized glucose isomerase has an extremely

high activation energy (180 kcal/mol, see text); consequently, even variations as small as 10 C

can affect the observed rate constant of inactivation by as much as two fold.
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Irreversible thermoinactivation of enzymes in organic solvents

One to two milligrams of enzyme powder, which had been lyophilized from a given pH

value as described above, was carefully weighed out and transferred into a glass ampoule. One

ml of organic solvent was added, the ampoule was sealed, followed by sonication for 10

seconds. The samples were then heated for various times in a Temp-Blok Module Heater filled

with glycerine. After allowing the sample to cool to room temperature, the ampoules were

opened and the solvent removed until dryness by evaporation under reduced pressure in a speed-

vac concentrator. Aqueous buffer of 10 mM sodium phosphate, pH 7.2, containing 0.15 M

NaCl (except for chymotrypsin which was resuspended in 1 mM HCl) was then added to give a

1 mg/ml enzyme solution.
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IV. RESULTS AND DISCUSSION

4.1 Thermal Destruction Processes in Proteins Involving Cystine Residues

One of the most popular alterations in protein molecules by means of site-directed

mutagenesis has been the introduction of new disulfide bonds, in particular to enhance enzyme

thermostability and stability against heat-induced autolysis (Wetzel, 1987; Creighton, 1988; see

literature survey). Recent work in our laboratory has elucidated the mechanisms of irreversible

thermoinactivation of two model enzymes, lysozyme (Ahern and Klibanov, 1985) and

ribonuclease (Zale and Klibanov, 1986). In both cases, one the causes of irreversible loss of

enzymatic activity at high temperatures (900 - 100 C) and neutral pH is the destruction of

disulfide bonds (see literature survey). Furthermore, cystine residues in proteins undergo

significant degradation at alkaline pH even at ambient temperatures (Florence, 1980; Whitaker

and Feeney, 1983). These data cast in doubt the wisdom of engineering additional -S-S- bonds

in enzymes when intended for use under extremes of pH or temperature.

In the present study we verified the validity and generality of the foregoing conclusion.

More than one dozen unrelated proteins with different numbers of disulfide bonds were

examined for cystine destruction at extreme temperatures. The reactions destroying cystine

residues, at high temperatures (100 C) and neutral pH (from 4 to 8), are characterized and

quantitatively examined. Their implications for the thermostability of enzymes are also analyzed.

4.1.1 Kinetics of cystine destruction

The objective of this research was to identify and investigate the processes leading to

destruction of cystine residues in proteins at 1000 C in the pH range where most enzymes

function (pH 4 to 8), and to determine the dependence of these processes on the nature of the

protein. Bovine pancreatic insulin was selected as the initial subject: this small (6,000 daltons)
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protein contains 3 cystine residues, no cysteines, and its structure has been thoroughly

characterized (Meienhoffer, 1979). A 50 mM aqueous solution of insulin was incubated at 100'

C and pH 8.0 (0.1 M phosphate buffer). Periodically, aliquots were withdrawn, reduced with

sodium borohydride, and the free sulfhydryl groups formed analyzed with Ellman's reagent.

The open circles in Figure 5 show the data obtained. One can see that the number of potential

thiols (which reflects the number of intact cystine residues in insulin) rapidly decreases with time

of heating. The experimental points closely obeyed the first order kinetic rule (the correlation

coefficient of 0.999); a first order rate constant of 1.04 hr -I was calculated in semilogarithmic

coordinates which corresponded to the half-life of 40 min.

The fact that the destruction of cystine residues in insulin at 1000 C and pH 8 is a first

order process is highly significant. We followed that process to the degree of conversion of

about 90%. Since there are 3 cystine residues in insulin, this means that more than 2.5 of them

(on average) have been destroyed. The excellent agreement observed between the experimental

data and a theoretical curve corresponding to first order kinetics (Figure 5) indicates that the

thermal stabilities of different disulfide bonds in insulin are comparable.

We then investigated the time courses of destruction of cystine residues at 100* C and pH

8 in eleven other natural proteins plus two hybrid ones prepared by us: mixed disulfides of

lysozyme and trypsinogen with glutathione. Most of these proteins formed precipitates upon

heating. Since this aggregation would severely complicate all subsequent measurements, 6 M

guanidine hydrochloride was added to the protein solutions to avoid it. This denaturant should

disrupt non-covalent interactions leading to aggregation, and yet is not expected to appreciably

affect covalent reactions (Klibanov, 1983). The last assertion was experimentally confirmed

(also see below) with insulin: when the protein was heated in the presence of 6 M guanidine

hydrochloride (closed circles in Figure 5), the time course of destruction of cystine residues did

not significantly differ from that obtained in the absence of the denaturant.

Table 2 presents the half-lives (obtained from the first order rate constants) of destruction

of -S-S- bonds in different proteins at 1000 C (in the presence of 6 M guanidine hydrochloride to
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Figure 5 - The time course of the destruction of disulfide bonds in insulin at 100* C and pH 8.0
in the absence (open circles) and in the presence of 6 M guanidine hydrochloride (closed circles).
The experimental protocol is described in the Experimental Section; 50 p.M initial insulin concen-
tration, 0.1 M phosphate buffer. All experiments were carried out in triplicate, and both the
average values and the error bars are given in the Figure 5. The line shown is a theoretical curve
corresponding to the first-order model with the rate constant of 1.0 hr 1.
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prevent protein aggregation) and the correlation coefficients between the experimental results and

the corresponding first order kinetics. These data afford a number of important conclusions.

First, the correlation coefficients obtained (see Table 2) are very high (greater than 0.99 for 12

out of 14 proteins and greater than 0.97 for all). This suggests that, despite a large diversity in

the number of cystine residues in the proteins examined (from 1 to 17), there are no dramatic

differences in the inherent thermal stabilities among different disulfides in each protein. Second,

the rate constants of destruction of cystine residues in fourteen proteins, that vary in terms of

their origin, size, amino acid composition, and sequence, are surprisingly similar: the difference

in k values between the most stable and the most labile protein is only about two fold.

The two-fold difference in k values, along with a correlation coefficient below 0.99 for

first order kinetics, was mainly due to the hybrid proteins (mixed disulfides between protein and

glutathione). Oxidized glutathione, with its y-glutamyl linkage to cysteine, does not have the

same electron withdrawing groups to labilize the a-hydrogen of protein bound cystine; therefore,

one does not expect B-elimination (see next section) to occur as rapidly. Indeed, studies by

Schneider and Westley (1969) show that the destruction of cystine in oxidized glutathione (0.5 N

NaOH, 370 C) proceeds via -elimination, but at a slower rate than the protein-bound cystine of

insulin. We experimentally measured cystine destruction in oxidized glutathione at pH 8 and

1000 C and found it to be similarly slow with a half-life of 126 minutes (corr. coeff. 0.997).

The differences in thermostabilities of disulfide bonds in various proteins are even lower

at pH 6, where the half-life for the most stable one is less than double of that for the most labile

protein (the right part of the Table 2). Again, excellent correlation coefficients (all better than

0.995) were obtained indicating a close adherence to first order kinetics. The half life of the

cystine residue in oxidized glutathione is 13.5 hrs (corr. coeff. 0.995) at pH 6 and 1000 C;

therefore, the detectable differences between oxidized glutathione versus protein bound cystine

diminishes as the rate of -elimination slows down (proportional to the pH value; see next

section).
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pH8 pH6

Number of
Protein -S-S- bonds half-life correlation half-life correlation

(hours) coefficient (hours) coefficient

chymotrypsinogen 5 0.83 0.994 9.6 0.997

conalbumin 15 0.63 0.998 9.8 0.998

insulin 3 0.67 0.999 9.3 0.997

lysozyme 4 0.63 0.997 9.2 0.996

lysozyme-glutathione
mixed disulfide 8 1.42 0.971 10.0 0.996

ovalbumin 1 (4SH) 1.08 0.994 15.8 0.997

papain 3 (lSH) 0.78 0.994 10.0 0.999

pepsinogen 3 0.78 0.998 9.5 0.998

peroxidase 4 0.93 0.996 13.9 0.997

ribonuclease 4 0.67 0.998 13.5 0.998

serum albumin 17 (1SH) 0.90 0.996 9.0 0.999

transferrin 19 0.68 0.994 13.6 0.998

trypsinogen 6 0.62 0.996 9.4 0.999

trypsinogen-glutathione
mixed disulfide 12 1.37 0.973 10.3 0.995

Table 2 - Half-lives of cystine residues, during their destruction by heat-induced B- elimina-
tion, in different proteins at 1000 C. The time courses of B-elimination of disulfide bonds in
proteins were followed as described in the Experimental Section. All protein solutions contained
6 M guanidine hydrochloride to prevent aggregation both at pH 8.0 and at pH 6.0 (0.1 M phos-
phate buffer in both instances). As described in the text, the presence of the denaturant does not
appreciably affect the half lives of cystine residues. All proteins (see Experimental Section for
their origins) were electrophoretically pure. The numbers in parentheses correspond to free
cysteines. All data are taken from Barker et al. (1986). All experimental points were taken in
triplicate, and the first order rate constants, subsequently converted to half-lives, were
determined by linear regression in semilogarithmic coordinates. A degree of conversion in the
heat-induced B-elimination of disulfide bonds was no less than 80-90%.
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One would expect that at 1000 C in the presence of 6 M guanidine hydrochloride no

appreciable secondary or tertiary structure remains (Tanford, 1968). Therefore, the data in Table

2 suggest that thermal stability of disulfide bonds in proteins is not dramatically affected by the

primary structure, i.e., by the cystine residues' neighbors. Two of the fifteen proteins listed in

Table 2 do not noticeably aggregate when heated at 1000 C even without guanidine

hydrochloride. Consequently, we determined the half-lives of thermal destruction of -S-S-

bonds at pH 8.0 in ribonuclease and insulin in the absence of the denaturant and found them to

be 0.65 and 0.70 hours, respectively. These values are nearly identical to those obtained in the

presence of 6 M guanidine hydrochloride (Table 2). Since heating alone does not disrupt all

secondary and tertiary structures in proteins, and the remaining ordered structures tend to

concentrate around disulfide bonds (Tanford, 1968), the data obtained suggest that thermal

stability of cystine residues in proteins is not affected by those remaining elements of ordered

structure. Moreover, the coincidence of the rate constants of destruction of -S-S- bonds in the

absence and presence of 6 M guanidine hydrochloride confirms that, as assumed before, the

denaturant does not affect this covalent reaction.

4.1.2 S-Elimination of cystine residues in proteins

Inspection of Table 2 reveals that destruction of disulfides in proteins at 1000 C is much

slower at pH 6 than at pH 8. The process is slower still at pH 4: for example, for ribonuclease

and insulin the half-lives of thermal destruction of -S-S- bonds at pH 4 are 5.6 and 6.1 days,

respectively. These data indicate that the examined process is catalyzed by hydroxide ions. The

most likely candidate for this process is B-elimination of cystine residues which readily takes

place in dilute alkali at room temperature (Whitaker and Feeney, 1983) and hence can be expected

to occur at 1000 C even at neutral pH (Zale and Klibanov, 1986).

B-Elimination of cystine residues involves a heterolytic cleavage of the -S-S- bond to

form dehydroalanine and thiocysteine residues (Whitaker and Feeney, 1983), as shown
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previously in Figure 1 (see literature survey). Dehydroalanine residues can further react with

nucleophiles, chiefly E-amino groups of lysine residues in proteins to form a new cross-link,

lysinoalanine (Bohak, 1964). Hence, to verify the 8-elimination mechanism, one has to identify

dehydroalanine and lysinoalanine among the products.

Curve g in Figure 6 shows the time course of accumulation of dehydroalanine residues

upon incubation of transferrin (one of the proteins from Table 2) at 100* C and pH 8.0. Curve d

represents formation of lysinoalanine residues during that heating. For comparison, curves a and

h depict the time course of thermal destruction of cystine residues (measured by two independent

methods). One can see that both residues, which are hallmarks of -elimination, are indeed

produced in substantial quantities. Furthermore, the sum of dehydroalanines and lysinoalanines

formed (curve t) approaches the number of cystines destroyed: e.g., after 1 hour of heating the

former two processes combined account for more than three quarters of the cystines lost. A

similar result has been obtained with ribonuclease (Zale and Klibanov, 1986).

The foregoing data strongly indicate that at 100* C and pH 8 disulfides in proteins are

destroyed via the -elimination reaction. Further evidence for this mechanism was obtained

using pepsinogen as a model for cysteine destruction where -elimination has been shown to

occur at 3-5% the rate of cystine residues under alkaline conditions (Whitaker and Feeney,

1983). Pepsinogen's cystine residues were reduced to cysteine residues with dithiothreitol

(DTT). The reduced protein was heated in the presence of 10 mM DTT at 1000 C and pH 8,

desalted on a Sephadex G-25 column, and then assayed for free thiols. The half-life of cysteine

residues was found to be 23.1 hrs (corr. coeff. 0.999) which is 3.4% of value obtained for

cystine destruction in pepsinogen under the same conditions.

4.1.3 Formation of Free Thiols

The thiocysteine residues formed as a result of 8-elimination in protein bound cystines are

rather unstable at alkaline pH and can undergo decomposition via a complex mechanism to yield
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Figure 6 - B-elimination of cystine residues in transferrin at 100* C and pH 8.0. (a and (12 -

time courses of destruction of cystine residues measured on the basis of disappearance of poten-
tial sulfhydryl groups (following reduction) and decrease of carboxymethylated cysteine residues
determined by HPLC amino acid analysis (following reduction, carboxymethylation and acid
hydrolysis), respectively; (.g - time course of accumulation of dehydroalanine residues; (d) - time
course of accumulation of lysinoalanine residues; and (1). - the sum of (.) and (d. (dehydro-
alanines plus lysinoalanines). Conditions: 40 pM initial transferrin concentration, 0.1 M
phosphate buffer containing 6 M guanidine hydrochloride; the experimental protocol is described
in the Experimental Section.
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a mixture of hydrosulfide, elemental sulfur, and cysteine residues (Nashef r gl., 1977; Whitaker

and Feeney, 1983). Curve a in Figure 7 shows the accumulation of free thiols during B-

elimination of cystine residues in lysozyme at 100' C and pH 8.0, while curve b in Figure 7

shows the predicted concentration of thiols based on the kinetics of B-elimination. A likely

reason that less than stoichiometric amounts of thiols are observed after the initial few minutes of

B-elimination (Figure 7) is the destruction or volatilization of persulfide and other sulfhydryl

species.

Similar data were obtained with lysozyme at pH 6.0 and for trypsinogen both at pH 8.0

and pH 6.0: the kinetics of thiol generation were identical for the two proteins with free thiol

formation more rapid at pH 8 than pH 6 (a steady state level of thiols was reached in 20 minutes

at pH 6 vs. 10 minutes as seen in Figure 7), as would be expected from the base-catalyzed

mechanism of -elimination. Moreover, regardless of protein concentration (50-500 pM

lysozyme), the amount of detectable thiols at pH 8, 1000 C were 33% of that predicted from the

kinetics of -elimination at 10 minutes and 5.5% at 20 minutes. In all cases, during the initial

time period, each act of -elimination resulted in one thiol formed. No color was detected when

Ellman's reagent was used to titrate the solution of lysozyme heated in the presence of 10 gM

Cu2+ (which did not appreciably affect the assay); since the latter catalyzes autooxidation of

sulfhydryl groups (Cecil and McPhee, 1959), this result confirms the thiol nature of the products

previously formed.

To elucidate the nature of these thiols, a 50 gM lysozyme solution, which had been

incubated at 1000 C and pH 8.0 for 7.5 minutes, was passed through an Amicon ultrafiltration

membrane with a molecular weight cutoff of 10,000 daltons. Titration of sulfhydryls in both

high molecular weight and low molecular weight fractions revealed that about 70% of the thiols

were protein-bound (presumably, thiocysteines and/or cysteines) and the rest penetrated through

the molecular sieve membrane. At least a portion of the later was a hydrosulfide (HS-): after 7.5

minutes that fraction was about 35%. Very similar values were obtained with a mixed disulfide

of lysozyme and glutathione and with ribonuclease (Zale and Klibanov, 1986).
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Figure 7 - Formation of free thiols during B-elimination of cystine residues in lysozyme at 100*

C and pH 8.0. () - The experimentally determined time course of generation of free SH groups;

(h). - the time course predicted assuming that each B-elimination event results in the production of

a sulfhydryl group. Conditions: 50 pM initial lysozyme concentration, 0.1 M phosphate buffer

containing 6 M guanidine hydrochloride (to prevent protein aggregation); for experimental

procedures, see Experimental Section.
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4.1.4 Thiol-catalyzed disulfide interchange

Having established that when proteins are heated at 1000 C at neutral pH they undergo B-

elimination which yields free thiols, it was then prudent to ascertain whether these thiols can

cause any further damage in protein molecules. Ryle and Sanger (1955) discovered that at

neutral and alkaline pH short peptides can undergo disulfide interchange reaction at 350 C which

is catalyzed by thiols. The latter carry out nucleophilic attack on the sulfur atom of a disulfide in

the same way as in thiol-disulfide interchange (see literature survey). Therefore, we have

undertaken a study into the possibility of such a process in proteins at 1000 C.

A straightforward way to detect a disulfide interchange in a protein is to subject it to

proteolytic digestions, followed by two dimensional paper-chromatographic analysis of the

peptides formed and comparison with those for the native protein. Unfortunately, this

methodology was not feasible in our case because (i) other processes occur in proteins upon

heating (Ahern and Klibanov, 1985; Zale and Klibanov, 1986) that will also change the peptide

patterns, and (ii) more than a single scrambled protein can be expected, making the subsequent

analysis difficult. Thus, we were forced to develop another approach. Trypsinogen (50 pM)

was incubated with 50 pM 3H-labelled oxidized glutathione at 1000 C and pH 8.0. Then the

unreacted glutathione and other low molecular weight products were separated by gel permeation

chromatography, and the radioactivity incorporated into the trypsinogen was measured. It was

found that after a 5 minute incubation, 0.31 moles of glutathione were bound to 1 mole of

trypsinogen. This binding was indeed via a -S-S- bond because (i) when the complex was

rechromatographed, its radioactivity did not change, and (ii) when the complex was

rechromatographed following an overnight incubation with 0.1 M dithiothreitol, its radioactivity

diminished by more than 10 fold. The observed reaction was catalyzed by thiols, and when the

protein and radiolabeled peptide were heated in the presence of a thiol scavenger (100 gM Cu+2 ),

virtually no radioactivity was incorporated into trypsinogen.
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Although the above data unequivocally show that thiol-catalyzed disulfide exchange takes

place at 100* C and pH 8.0, the methodology employed is hardly amenable to a quantitative

investigation. Therefore, an alternative was elaborated. Trypsinogen and lysozyme were

reduced and then glutathione moieties were attached to sulfhydryl groups in each protein. As a

result, hybrid proteins - mixed disulfides of trypsinogen and lysozyme with glutathione - were

prepared. When an act of a disulfide exchange occurs in such a protein, a glutathione moiety is

released which can be readily detected.

Curve a in Figure 8 depicts the time course of the disulfide interchange in the hybrid of

lysozyme with glutathione at 1000 C and pH 6.0 which was measured as follows: 30 p.M

solution of the protein was heated in the presence of 6 M guanidine hydrochloride (to prevent

aggregation), cooled, passed through the ultrafiltration membrane to separate glutathiones

released from the protein, and then the remaining protein was subjected to acid hydrolysis and

amino acid analysis. One can see that the number of glutamic acid residues per protein molecule

(used as an indicator of the number of glutathiones, see experimental section) steadily decreases.

The disulfide interchange process was confirmed by an independent method of measurement

(Figure 8, curve b), where the sulfhydryl groups of the released glutathiones were assayed with

Ellman's reagent following ultrafiltration and reduction with sodium borohydride. Similar

results were obtained for a mixed disulfide of trypsinogen with glutathione (Figure 9). In this

case, a radioactive hybrid protein was prepared by using 3H-labelled glutathione. The release of

glutathione from the hybrid protein could now be determined via a second method - accumulation

of radioactivity in the low molecular fraction over time.

It should be stressed that the process reflected in Figures 8 and 9 (with a half-life of about

10 minutes at pH 6) is almost two orders of magnitude faster than B-elimination under the same

conditions (Table 2), and hence the two processes are entirely different. As shown in Figure 10,

the rate of thiol-catalyzed disulfide interchange in the lysozyme hybrid increased when the pH

was raised from 6 to 8, was inhibited by thiol scavengers such as Cu+2, and was accelerated by

an exogenous sulfhydryl (cysteine). At pH 8.0 and 1000 C both hybrid proteins had half-lives
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Figure 8 - Disulfide interchange in the lysozyme-glutathione hybrid protein at 1000 C and pH

6.0. (i) - Release of glutathione from the mixed disulfide, as measured by amino acid analysis;

(hl - release of glutathione as measured by its accumulation in the low molecular weight fraction.

Conditions: 30 gM lysozyme-S-S-glutathione, 0.1 M phosphate buffer containing 6 M guanidine

hydrochloride (to prevent protein aggregation) and 1 mM EDTA; for experimental procedures,

see Experimental Section and text.
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Figure 9 - Disulfide interchange in the trypsinogen-glutathione protein at 100* C and pH 6.0.
() - Release of glutathione from the mixed disulfide as measured by amino acid analysis; (b. -
release of glutathione as measured by appearance of potential sulfhydryl groups (following

reduction) ( 0 ), or 3H-labelled glutathione ( A ) in the low molecular weight fraction. Condi-

tions: 30 p.M hybrid protein, 0.1 M phosphate buffer containing 6 M guanidine hydrochloride (to

prevent aggregation) and 1 mM EDTA; for experimental procedures, see Experimental Section.
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Figure 10 - Effect of additives on disulfide interchange in the lysozyme-glutathione hybrid

protein at 100* C. (A) Release of glutathione from mixed disulfide at pH 6 ( 0 ) and pH 8 ( @ )

(B) Release of glutathione from mixed disulfide at pH 6 ( M ), in the presence of 1 mM CuCl2
( A ), or 0.1 mM cysteine ( $ ). Experimental conditions were the same as Figure 9. Time

course of release of glutathione was measured by HPLC amino acid analysis as described in

Experimental Section.
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for S-S interchange of about 1.6 minutes, again much faster than B-elimination. This value

(when adjusted for temperature) compares favorably with the one determined by Zale and

Klibanov (1986) where the rate of disulfide interchange was measured indirectly via thermal

inactivation-reactivation experiments. As a final note, the measurements of the B-elimination

process described in the previous section were unaffected by the disulfide interchange as the

latter does not change the total number of potential thiols.

Although these kinetic studies of disulfide interchange quantitatively characterize the

process, the actual order and mechanism of the reaction(s) are difficult to determine for several

reasons: (i) the exact stoichiometry of the thiols produced and destroyed during B-elimination is

not known. (ii) Although B-elimination is a prerequisite step for disulfide interchange, it is not

necessarily the rate-limiting step once it has occurred. In fact, the kinetics of disulfide

interchange in the lysozyme hybrid did not appreciably change over a 100 fold range of protein

concentrations; thus, although more free thiols were present at higher protein concentrations, the

rate of S-S exchange remained constant. (iii) The reaction is clearly not first-order since both B-

elimination, and subsequent reaction(s) involving free thiols, must initially occur before the thiol-

catalyzed disulfide exchange can proceed.

During the heating of the hybrid-protein at 1000 C, the protein-bound cystine residues are

destroyed via B-elimination at high temperatures and neutral pH. This process generates free

thiols which carry out nucleophilic attack on the sulfur atom of a disulfide. The newly formed

protein-bound thiol also acts as a nucleophile toward another protein-bound cystine resulting in

disulfide interchange. This exchange reaction releases a glutathione molecule which can be

measured experimentally allowing us to directly observe the disulfide interchange reaction.

In summary, the data obtained in this work clearly show that at 1000 C and neutral pH,

cystine residues in proteins undergo destruction via two distinct mechanisms: B-elimination and

disulfide interchange catalyzed by thiols formed during the B-elimination reaction. The first

process is rate-limiting and has a half-life in the range of 1.0 i 0.4 hrs and 12.4 i 3.4 hrs at pH

8.0 and 6.0, respectively (and around 6 days of pH 4.0). These half-lives have been found to be

79



remarkably independent of the nature of the protein and hence demarcate the upper limit of

thermal stability of proteins containing cystine residues.

4.2 Mechanism of Thermoinactivation of Immobilized Glucose Isomerase

Recent work in our laboratory has elucidated the mechanisms of irreversible enzyme

thermoinactivation for hen egg-white lysozyme (Ahern and Klibanov, 1985), bovine pancreatic

ribonuclease (Zale and Klibanov, 1986), yeast triose phosphate isomerase (Ahern d.1l., 1987),

and microbial a-amylases (Tomazic and Klibanov, 1988a). In the present work the conceptual

and experimental methodology developed in those studies is applied, for the first time, to an

immobilized enzyme, glucose isomerase from Strptonyc olivochromogenes. Specifically, the

following questions are addressed:

(1) Do the same covalent reactions identified in model enzymes limit the thermostability of

practical biocatalysts under conditions used in commercial biochemical reactors?

(2) What mechanism(s) limit the thermostability of immobilized glucose isomerase under

extreme conditions (90 C) and near bioreactor temperatures (70 C)?

(3) What is the upper limit of glucose isomerase thermostability? Is it possible to directly

isomerize dextrose to 55% fructose at high temperatures in order to bypass the currently

used costly enrichment steps?

4.2.1 Kinetics of thermoinactivation of immobilized glucose isomerase

Glucose isomerase from Streptomyces olivochromogenes appeared to be an attractive and

pertinent subject for our investigation because (i) it is currently used commercially (Enzyme Bio-
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System's G-ZYMETM G993 Glucose Isomerase); and (ii) its physicochemical (Anthrim !I.,

1979) and enzymatic (Suckling, 1985) properties , amino acid sequence (Farber and Petsko,

1987a) and tertiary structure (Farber and Petsko, 1987; Glasfeld rd 21., 1988) are known (see

literature survey), thus facilitating analysis of the experimental data. Therefore, the enzyme was

purified to homogeneity, as discussed in experimental section, and then its behavior at elevated

temperatures was investigated.

Upon heating at 80 to 900 C and pH 8.0 (the pH optimum of catalytic activity), soluble

glucose isomerase (0.1 - 1.0 mg/ml) readily inactivates with concomitant heavy aggregation.

Even the presence of xylitol (1 M), a potent competitive inhibitor of glucose isomerases

(Suckling, 1985), does not prevent the aggregation process. Molecular examination of

aggregated enzymes is extremely difficult (Ahern and Klibanov, 1987). Also, in industry, all

glucose isomerases are currently used in the immobilized form (see literature survey). Therefore,

in order to eliminate heat-induced aggregation (Klibanov, 1983), we decided to continue our

study with the enzyme covalently attached to a solid support. Controlled pore glass (Weetall,

1976) was selected as a model support for immobilization due to its chemical and mechanical

robustness. Upon covalent attachment to aminated porous glass beads via glutaraldehyde and

sodium borohydride, glucose isomerase retains as much as 80 to 90% of its specific activity,

thus making the immobilized enzyme a realistic and meaningful analog of its free predecessor in

that diffusional limitations do not occur.

When immobilized glucose isomerase is incubated in an aqueous buffer (pH 8.0) at 800 C,

it gradually loses its activity with a half-time of 120 minutes. This process closely adheres to the

first order kinetic law (correlation coefficient of 0.98). The thermal inactivation is irreversible,

for no appreciable reactivation was observed following even after a prolonged incubation of the

immobilized enzyme at ambient temperature. Interestingly, the half-life of free glucose isomerase

(0.1-0.5 mg/ml) under the same conditions is 76 minutes. Thus, in contrast to a commonly held

belief, immobilization does not necessarily dramatically stabilize enzymes. Furthermore, since

the free enzyme aggregates upon heating and the immobilized one does not, and yet the two have
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comparable thermostabilities, aggregation is likely to be an accompanying phenomenon, rather

than a cause of irreversible thermoinactivation (Tomazic and Klibanov, 1988a).

The investigation of the behavior of immobilized glucose isomerase at different

temperatures began by examining the temperature dependence of the initial rates of the

isomerization reaction. As shown in Figure 11, two distinct regions of interest can be identified.

First, in the temperature range of 65-85' C, we see an Arrhenius-type increase in the reaction

rate. We chose 700 C as a representative of the "low" temperature region in order to investigate

thermoinactivation near operating conditions. Second, the temperature optimum is reached at 88-

900 C followed by rapid inactivation at higher temperatures. We began our mechanistic

investigation of irreversible thermoinactivation of immobilized glucose isomerase in this "high"

temperature region (900 C).

First, it should be noted that the experiment described in Figure 11 is carried out at low

substrate concentrations (0.1 M fructose). However, high fructose corn syrup (HFCS), used

industrially, is a concentrated sugar solution (2-3 M). Substrates and ligands usually stabilize

enzymes against heat-induced unfolding (inactivation) by shifting the equilibrium between the

native and thermounfolded forms of the enzyme toward the former (Klibanov, 1983; Ahern and

Klibanov, 1987). Therefore, one would expect that in the presence of high ligand

concentrations, such as those in HFCS, glucose isomerase will definitely remain folded in the

vicinity of 90' C. Hence, thermoinactivation experiments conducted at this temperature involve

the essentially folded, catalytically competent enzyme. This mechanistic element complements

our previous work with other enzymes where, in order to observe noticeable thermoinactivation,

studies often had to be done at temperatures where enzymes are (reversibly) thermounfolded.

We found that the enzyme was greatly stabilized in the presence of commercial HFCS

(Figure 12): at 90' C the half-life of immobilized glucose isomerase is 37 minutes, while it is less

than half a minute without the substrate. An even higher thermostability is observed in the

presence of the competitive inhibitor xylitol (2 M): half-life of 77 minutes at 900 C.(Figure 12).

Since the two ligands exert similar effects and it is technically difficult to work with HFCS (high
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Figure 11 - Temperature dependence of the initial rates of fructose (0.1 M) isomerization

catalyzed by immobilized glucose isomerase in 0.1M Tris-HCl buffer (pH 8.0) containing 10

mM MgSO4.
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Figure 12 - Time course of irreversible thermoinactivation of immobilized glucose isomerase at

90' C (pH 8.0) in (a) - 0.1 M Tris-HC containing 10 mM MgSO4; (b) - commercial high

fructose corn syrup containing 0.1 M NaHSO3 and 10 mM MgSO 4; and (g_) - 0.1 M Tris-HCI

containing 2 M xylitol and 10 mM MgSO4.
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viscosity, a constant pH drop, and a gradual formation of colored by-products), xylitol was

employed as a stabilizing ligand in subsequent experiments.

Now that we have established the kinetics, the next step is to determine the molecular

mechanism of irreversible thermoinactivation of immobilized glucose isomerase in the presence

of a ligand (curve c in Figure 12).

4.2.2 Deamidation of asparagine and/or glutamine residues and the irreversible thermo-

inactivation of immobilized glucose isomerase

In considering the possible cause(s) of irreversible thermoinactivation of immobilized

glucose isomerase in the presence of a ligand (pH 8), we can eliminate both cystine destruction

and thiol-disulfide interchange since this glucose isomerase contains no disulfide bonds (Farber

and Petsko, 1987b). Furthermore, hydrolysis of the polypeptide chain at aspartic acid residues

occurs only at acidic pH (see literature survey). We noticed, however, that the half-life of the

enzyme at 900 C (77 minutes) was similar to those for bovine pancreatic ribonuclease A (53

minutes) and Bacillus stearothermophilus a-amylase (80 minutes) brought about by deamidation

of asparagine and/or glutamine residues. Since deamidation has emerged as a major mechanism

of irreversible enzyme thermoinactivation (see literature survey and Appendix B), we tested its

applicability to glucose isomerase.

As shown in Figure 2, the deamidation reaction involves intramolecular cyclization of

aspartyl (or glutamyl) residues under neutral to basic conditions. Formation of a cyclic imide

intermediate requires the main chain amide to act as a nucleophile, attacking the electrophilic

carbonyl moiety of the aspartyl residue with ammonia being released as the leaving group.

Subsequent hydrolysis of the cyclic imide leads to a mixture of a and 13- aspartyl residues.

Glutamine side chains also deamidate but at much slower rates (Robinson and Rudd, 1974).

Furthermore, recent work by Clarke (1987) and Kossiakoff (1988) indicates that the tertiary

structure is a principal determinant of protein deamidation (for details, see literature survey).
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Deamidation results in the evolution of ammonia, and as can be seen in Figure 13, NH3 is

indeed released upon heating of the immobilized enzyme. The ammonia production observed is

due to deamidation of asparagine and/or glutamine residues as opposed to destruction of other

amino acid residues because (i) the amino acid analysis of completely thermoinactivated glucose

isomerase shows no appreciable loss of any amino acids (data not shown), and (ii) exhaustive

heating of both immobilized and free glucose isomerase reveals (Figure 14) that NH 3 evolution

followed first-order kinetics (kdeamidation = 0.066 hr -1 with a half-life of 32 hours and a corr.

coeff. of 0.99) and levelled off in the range between 20 and 25 mole-equivalents per monomer

(or 44 mole-equivalents per dimeric enzyme), i.e., in a reasonable agreement with the total

number of 22 amide residues (asparagine (14) and glutamine (8)) in the monomeric subunit of

the enzyme (Farber and Petsko, 1987a). It was of interest to see if this first-order release of

ammonia was a general process occurring in all proteins when heated at high temperatures. The

results are discussed in Appendix B.

Thus, deamidation of asparagine and/or glutamine residues does occur upon incubation of

immobilized glucose isomerase at 900 C, pH 8.0, and in the presence of 2 M xylitol, but is it

actually the cause of thermoinactivation? As a first step toward answering this question, we

employed the following approach. Previous thermoinactivation studies in our laboratory (see

literature survey) have dealt with inactivation of several free enzymes brought about by heat-

induced deamidation. We combined the data for different enzymes under a variety of conditions

and plotted on the same graph the dependence of the remaining enzymatic activity on the number

of mole-equivalents of ammonia released. As one can see in Figure 15, a common, general trend

emerges. Despite a wide scatter in the data (understandable given the diversity of the

assumptions made and the data sources; see Appendix C), one observes that, upon deamidation

of asparagine and/or glutamine residues in various enzymes, there is a gradual decline in catalytic

activity. Moreover, assuming that the immobilized glucose isomerase follows a similar pattern,

the results depicted in Figure 15 afford a prediction of the range of residual enzymatic activity at

any degree of ammonia evolution, i.e., extent of deamidation. If one combines this information
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Figure 13 - Time course initial release of ammonia during incubation of immobilized glucose

isomerase at 900 C in 0.1 M Tris-HCl buffer (pH 8.0) containing 2 M xylitol and 10 mM

MgS04. Different symbols correspond to different experiments. The number of mole-equiva-

lents of ammonia is expressed per dimeric enzyme.
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Figure 14 - Time course of ammonia evolution during incubation of glucose isomerase at 90' C

in 0.1 M Tris-HCl buffer (pH 8.0) containing 2 M xylitol and 10 mM MgSO4. Long term NH3

release for the immobilized (open symbols) and free (closed symbols) enzyme. The dashed line

represents 44 mole-equivalents of ammonia produced in agreement with the total number of 22

(Asn + Gln) residues per monomer of dimeric glucose isomerase. The number of mole-

equivalents of ammonia is expressed per dimeric enzyme.
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Figure 15 - Modeling of irreversible thermoinactivation of immobilized glucose isomerase due
to deamidation of its (Asn + Gin) residues. The literature data on the dependence of the residual
activity of various enzymes on the number of mole-equivalents of NH3 released during irrever-
sible thermoinactivation caused by deamidation of the amide amino acid residues. Enzymes and
conditions: ( A ) lysozyme, 1000 C, pH 4.0; (@.) lysozyme, 1000 C, pH 6.0; ( $ ) lysozyme,
1000 C, pH 8.0; ((O ) triose phosphate isomerase, 1000 C, pH 6.0; (Ug ) ribonuclease, 900 C,
pH 6.0; ( D ) B.. amyloliquefaciens a-amylase, 900 C, pH 8.0; ( a ) B. stearothermophilus a-

amylase, 900 C, pH 8.0; ( O ) B.. stearothermophilus a-amylase, 900 C, pH 6.5; ( E ) B.
licheniformis a-amylase, 900 C, pH 6.5. See Literature Survey for references and Appendix CI for a more detailed explanation of the modeling.
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with the time course of NH 3 release during heating of immobilized glucose isomerase (Figure

13), then one can estimate the expected pace of thermoinactivation of this enzyme due to

deamidation. The calculated profile (reflected by error bars in Figure 16) turns out to be in

surprisingly good agreement with the experimentally observed time course of irreversible

thermoinactivation of the enzyme. Needless to say, this coincidence does not prove that at 90* C

(pH 8.0, 2 M xylitol) immobilized glucose isomerase thermoinactivates due to deamidation of its

asparagine and/or glutamine residues, but simply demonstrates that it is feasible.

To obtain more definitive proof, we developed a strategy in which the effect of different

environmental factors was investigated concomitantly with the time courses of thermoinactivation

and heat-induced deamidation. We know that both the hydroxide ion concentration (i.e., the pH

value) and water are involved in the protein deamidation reaction (see mechanism, Figure 2).

Therefore, we can manipulate these environmental conditions to affect the rate of protein

deamidation, and then observe the kinetics of irreversible thermoinactivation. Clearly, if the

effects are invariably similar, then a causal relationship must exist between the two; if the effects

are uncoupled, then the two phenomena merely take place simultaneously but are not related.

The first variable parameter employed by us was the pH. As one can see from Table 3,

and perhaps more clearly in the normalized rates in Table 4, a reduction of pH from 8.0 to 7.0

results in a 6.6-fold stabilization of immobilized glucose isomerase and also decreases the rate

constant of its thermal deamidation by 6.8-fold. Conversely, when the pH is raised from 8.0 to

9.0, the half-life of the enzyme drops 15.4-fold, and the rate constant of deamidation also

increases 9.2-fold. In the second set of experiments, H20 is replaced with D20 as the reaction

medium. This substitution leads to a 4.9-fold stabilization of the immobilized enzyme and also

lowers the rate constant of heat-induced deamidation by 5.5-fold. The magnitude of both

changes is in the range of a typical H-D kinetic isotope effect (Schowen, 1978). In addition, the

replacement of H20 with D20 as the reaction medium is known to increase the conformational

stability of proteins (Lewin, 1974; Hattori g al., 1965). Therefore, the above environmental

factors affect thermostability and thermal deamidation of immobilized glucose isomerase in a
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Figure 16 - Modeling of irreversible thermoinactivation of immobilized glucose isomerase due

to deamidation of its (Asn + Gln) residues. The experimentally observed time course of

irreversible thermoinactivation of immobilized glucose isomerase at 90* C in 0.1 M Tris-HCl

buffer ( pH 8.0) containing 2 M xylitol and 10 mM MgSO4 (solid symbols corresponding to

independent experiments) and the time course of irreversible thermoinactivation of the enzyme

predicted on the basis of superposition of the data in Figures 15 and 13 (error bars).
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Table 3 - The effect of various experimental conditions on the kinetics of irreversible thermo-

inactivation and of heat-induced deamidation of immobilized glucose isomerase at 90' C.
Immobilized glucose isomerase was incubated at 900 C in the solutions indicated in the first

column of the Table and periodically assayed for enzymatic activity and for ammonia evolution as

described in the experimental section. The following buffers were used (the pH values listed are

those at 90 C): at pH 8.0 and 7.0, 0.1 M Tris-HCl containing 10 mM MgSO4; at pH 9.0, 0.1M

glycine containing 10 mM MgSO4. aThe first order rate constants of deamidation were

determined on the basis of the evolution of the initial 2-3 mole-equivalents of NH3 per dimeric

enzyme. bAdjusted at 250 C, as described in the Experimental Section, to a pD value that results

in pD 8.0 at 90' C as determined by our calibration curves.
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Half-time of First order rate Half-time for release
Additives, pH thermoinactivation constant of of the initial

(min) deamidation a mole equivalent of
x 10 4 (min-1) NH3 (min)

2 M xylitol, pH 8.0 77 3.8 30

2 M xylitol, pH 7.0 510 0.56 200

2 M xylitol, pH 9.0 5 35 3

2 M xylitol in D20, 380 0.69 160
pD 8 .0 b

none, pH 8.0 < 0.5 11 10

2 M xylitol, 1 M 4 3.8 30
KCl, pH 8.0

2 M xylitol, 1 mM 17 3.8 30
EDTA, pH 8.0



Table 4 - Effect of various experimental conditions on kinetics of irreversible thermo-

inactivation and deamidation of immobilized glucose isomerase at 90'C; values are normalized

to the kinetic data for pH 8, 2 M xylitol as shown in the first row of Table 3.
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Additives, pH Relative half-life of Relative
thermoinactivation rate of deamidation

2 M xylitol, pH 8 1.0 1.0

2 M xylitol, pH 7 6.6 6.8

2 M xylitol, pH 9 0.06 0.10

2 M xylitol in D20, 4.9 5.5
pD 8.0

No ligand, pH 8 0.006 0.40

2 M xylitol, 1 M KCl, 0.05 1.0
pH 8.0

2 M xylitol, EDTA, 0.22 1.0
pH 8.0



substantial and parallel fashion. This finding confirms that at 900 C and pH 8.0 in the presence

of the ligand xylitol (2 M) the immobilized enzyme thermoinactivates due to deamidation of its

asparagine and/or glutamine residues.

As a control experiment, a set of environmental conditions was chosen which will not

affect protein deamidation, but should alter the thermostability of the enzyme. In general, at

every given temperature, irreversible thermoinactivation of an enzyme is caused by a combination

of covalent and conformational processes (Ahern and Klibanov, 1987). Sometimes, one of these

reactions is much faster than the others and hence is predominant, e.g., deamidation in the case

of immobilized glucose isomerase under the conditions listed in the first half of Tables 3 and 4.

However, when experimental conditions are altered, relative contributions of various

thermoinactivation processes also change, for, generally speaking, they are affected to different

extents. For example, inspection of the first line in the second-half of Table 3 reveals that in the

absence of a ligand, enzyme thermoinactivation cannot be attributed to deamidation because it is

too fast: even if each deamidation led to the complete inactivation of the enzyme, the half-life of

the latter would be 10 minutes (third column in Table 3), whereas in fact it is less than 0.5

minutes. Without ligand, immobilized glucose isomerase probably inactivates due to a

conformational process, formation of incorrect (scrambled) structures (Klibanov, 1983). The

ligand xylitol (and presumably HFCS) is not the only factor that can "switch" irreversible

thermoinactivation from one regime to another. For instance, the addition of 1 M KCl (breaks

apart ionic interactions) or 1 mM EDTA (binds magnesium ions), as seen in the last two lines in

Table 3 and Table 4, drastically reduces the thermostability of the enzyme without affecting the

rate of its thermal deamidation. In summary, comparison of the kinetics of inactivation and

deamidation of the initial amide residue indicates, as predicted, that deamidation cannot possibly

be the cause of irreversible thermoinactivation under those conditions, but rather it is likely

brought about by conformational scrambling.
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4.2.3 Oxidation of cysteine residues and the irreversible thermal inactivation of immobilized

glucose isomerase

The literature contains many reports about the oxygen sensitivity of glucose isomerases

(Anthrim r g., 1979); in fact, in industrial bioreactors this problem is routinely dealt with by

pretreating glucose solutions via sparging with nitrogen, adding sodium bisulfite, or evacuating

under reduced pressure. Oxygen sensitivity of enzymes usually stems from oxidation of cysteine

residues (Friedman, 1973), and we explored this possibility in our particular case.

A solution of glucose isomerase reveals no indication of the presence of free thiol groups

when titrated with Ellman's reagent (see experimental section). However, when a strong

denaturant, 6 M guanidine hydrochloride, is added to the enzyme solution, 0.9 ± 0.3 free

sulfhydryl groups per monomer of glucose isomerase are detected. This finding was confirmed

by the reduction and carboxymethylation of the enzyme in a denaturant solution, followed by

dialysis, acid hydrolysis, and amino acid analysis: 1.1 mole-equivalents of carboxymethylated

cysteine residues per monomer were detected. Hence glucose isomerase from Streptomyces

olivochromogenes, in contradiction to a literature report (Suekane r d., 1978), contains one

cysteine residue per monomer, and this amino acid residue is buried in the interior of the enzyme.

We then investigated the stability of the cysteine residue at high temperatures by adopting

the same strategy as previously described for deamidation: (i) does a deteriorative, covalent

reaction occur? and (ii) does it play a role in the thermoinactivation process? As one can see in

Figure 17 (curve a), upon heating at 900 C (in the presence of 2M xylitol) the number of free SH

groups in immobilized glucose isomerase gradually decreases. As expected, this autooxidation

of thiols can be prevented by deoxygenating the solution and adding the 02 scavenger B-

mercaptoethanol (curve b in Figure 17). However, the B-mercaptoethanol/argon treatment has no

appreciable effect on the irreversible thermoinactivation of immobilized glucose isomerase under

the same conditions (Figure 18). Therefore, the two processes are uncoupled, and although

cysteine oxidation does indeed occur and may inactivate glucose isomerase, it does not
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Figure 17 - Time course of air oxidation of immobilized glucose isomerase at 90' C in 0.1 M

Tris-HCl buffer (pH 8.0) containing 2 M xylitol and 10 mM MgSO4 in the absence (a, closed

symbols) or presence (k, open symbols) of 20 mM B-mercaptoethanol placed under argon.

Different symbols correspond to independent experiments. The amount of free sulfhydryl

groups (detected using Ellman's reagent in the presence of 6 M guanidine hydrochloride) is

expressed per monomer of the dimeric enzyme.
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Figure 18 - Time course of irreversible thermoinactivation of immobilized glucose isomerase at

90' C in 0.1 M Tris-HCl buffer (pH 8.0) containing 2 M xylitol and 10 mM MgSO4 in the

absence (g, closed symbols) or presence (b, open symbols) of 20 mM 8-mercaptoethanol placed

under argon. Different symbols correspond to independent experiments.
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significantly contribute to the observed thermoinactivation of the enzyme at 900 C (see Appendix

D). This conclusion is further supported by the observation that effects similar to those

presented in Table 3 and 4 are obtained in the presence of B-mercaptoethanol under argon.

Under these conditions, oxidation of cysteine residues does not take place (Figure 17), but

thermoinactivation due to deamidation still occurs.

4.2.4 Thermoin activation of immobilized glucose isomerase near bioreactor conditions

It has now been shown that at 90' C oxidation of glucose isomerase's cysteine residues is

too slow to substantially contribute to the irreversible thermoinactivation of the enzyme. In order

(i) to assess the situation at a temperature closer to the range employed in industry, and (ii) to

answer the question whether oxidation of the cysteine residue results in the loss of glucose

isomerase activity, we investigated this process at 70' C. As one can see in Figure 19,

incubation of immobilized glucose isomerase under air in the presence of 10 mM Cu2+ results in

complete inactivation of the enzyme after 2 days. Importantly, after a 24 hour incubation, when

the residual enzymatic activity is 22%, 76% of free sulfhydryl groups of the enzyme also

disappear. When the oxidation of cysteine residues is prevented by carrying out thermo-

inactivation under argon and in the presence of 20 mM B-mercaptoethanol, no appreciable loss of

glucose isomerase activity is observed. Hence we can conclude that the two processes are

coupled and there is a causal relationship between them. Interestingly, no inactivation (or

cysteine oxidation) occurs in the presence of xylitol (with or without 10 mM Cu2 +) or in the

buffer devoid of copper ions. These data indicate that the cysteine residue is not very reactive, is

hidden in the interior of the enzyme molecule, and must be exposed in order to be oxidized which

is prevented by the binding of the ligand xylitol.

In order to obtain a better understanding of thermoinactivation in the "low" temperature

region (70 C), we examined the temperature dependence of the rate constant of irreversible

thermoinactivation of immobilized glucose isomerase in the presence of the ligand xylitol (under
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Figure 19 - The time course of irreversible thermoinactivation of immobilized glucose isomer-
ase at 700 C (pH 8.0) in 0.1 M Tris-HCI containing 10 mM MgSO4 under different conditions.
( 0 ) - in the presence of 10 .tM CuCl2; ( 0 ) - in the presence of 20 mM 8-mercaptoethanol
under argon; ( + ) - in the presence of 2 M xylitol without or with (U) 10 tM CuCl2; and (A)
- no additives.
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anaerobic conditions to prevent the possibility of cysteine oxidation). When plotted in Arrhenius

coordinates, these data (line a in Figure 20) yield an activation energy of 180 kcal/mol. This

huge activation energy is totally uncharacteristic of a covalent reaction. In fact, the activation

energy for deamidation of immobilized glucose isomerase under the same conditions is found to

be only 44 kcal/mol (line b in Figure 20). The only logical explanation for this apparent

contradiction is that deamidation of just a few out of the total of 22 amide (Asn + Gln) residues

per enzyme monomer actually leads to inactivation. It is reasonable to assume that those key

amide residues are located in the interior of the enzyme molecule (perhaps near the active center)

and thus are not accessible to the solvent. Consequently, the enzyme molecule must partially

unfold in order for deamidation of those key residues to take place. Hence the temperature

dependence of their deamidation follows the same pattern as enzyme unfolding which is expected

to have a very high activation energy (Ahern and Klibanov, 1987). This is in contrast to the

behavior of the overall deamidation process which presumably mainly reflects ammonia

evolution of the amide residues close to the protein surface. Therefore, the two processes

uncouple in the "low" temperature region (700 C) and deamidation is no longer the cause of

irreversible thermoinactivation.

Similar data on the temperature dependence of both thermoinactivation and deamidation of

immobilized glucose isomerase were obtained in buffer alone without the ligand 2 M xylitol

(half-life values for loss of enzymatic activity were 2,160 , 120, 30, and 0.4 minutes at 750 C,

80' C, 820 C and 900 C respectively; k deamidation values were 4.6, 22, and 110 (x 10 -5 ) minutes

at 700 C, 80' C and 900 C respectively). These data afford similar activation energies compared

to the previous results in the presence of 2 M xylitol: 142 kcal/mole for thermoinactivation and 35

kcal/mole for deamidation. Therefore, the enzyme is less thermostable in the absence of ligand

(about 100 C for both the thermoinactivation and deamidation kinetic data); thus, the ligand shifts

the equilibrium between native and unfolded enzyme towards the latter at elevated temperatures,

but the relationship between thermoinactivation and deamidation does not change.
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Figure 20 - The Arrhenius dependence for the rate constant of (a) irreversible thermoinactiva-

tion and (hk) heat-induced deamidation of immobilized glucose isomerase in deoxygenated 0.1 M

Tris-HCl buffer (pH 8.0) containing 2 M xylitol, 20 mM B-mercaptoethanol, and 10 mM

MgSO4.
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The data presented in Figure 20 afford another important conclusion about "low"

temperature (70 C) thermoinactivation of glucose isomerase. Extrapolation of the rate constant

of irreversible thermoinactivation of immobilized glucose isomerase to 70* C results in a half-life

of the enzyme of 260 years. We obviously could not carry out the experiment for so long but

after 3 months at that temperature (under anaerobic conditions, as attempted in industry, in order

to prevent the possibility of cysteine oxidation) over 90% of enzyme activity is retained.

Moreover, at 650 C, i.e., the temperature of the industrial process (see introduction), the half-life

of the enzyme would be an incredible 20,000 years. Thus, assuming that the ratio of stabilizing

powers of 2 M xylitol to HFCS is the same at 65* C as it is at 90' C (see Figure 12), one would

predict the half-life of immobilized glucose isomerase in a commercial bioreactor to be about

10,000 years which is quite different from the actually observed few weeks. Even if the

extrapolation is not totally valid, the difference between thousands of years and several weeks is

too enormous to be explained by that. It was mentioned earlier (Figure 12) that HFCS undergoes

a pH drop and colored by-product formation at 900 C. Under industrial conditions (650 C in a

packed-bed column with short residence times) these reactions must surely occur, only much

more slowly. Therefore, one is forced to conclude that the irreversible inactivation of

immobilized glucose isomerase in industrial bioreactors is due to oxidation of the enzyme's

cysteines (because total exclusion of oxygen is hardly feasible) or deleterious reactions of the

enzyme with HFCS or impurities, exacerbated by elevated temperatures.

In summary, the results of this study provide a mechanistic description of irreversible

thermoinactivation of immobilized glucose isomerase under biotechnologically relevant

conditions. They demonstrate that thermal inactivation of immobilized enzymes can be

successfully analyzed using the same experimental methodology as that employed for their free

counterparts. The experimentally obtained data show that deamidation of asparagine and

glutamine residues demarcates the upper limit of the immobilized enzyme's thermostability. In

addition, at temperatures near bioreactor conditions (pH 8, 70 C), the loss of glucose isomerase
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activity is brought about by either the oxidation of cysteine residues and/or heat-induced

deleterious reactions with HFCS.

4.3 Thermostability of Enzymes in Anhydrous Organic Solvents

The recent discovery that enzymes can function in organic solvents has greatly increased

the potential for their use as practical catalyts. Perhaps the most neglected aspect of this

emerging technology is the stability of enzymes in nonaqueous media. It has been reported that

enzymes not only function, but display markedly increased thermostability in organic solvents

(see literature survey). These observations afford the opportunity to quantitatively investigate the

cause and mechanism of this greatly increased thermostability.

Five covalent pH-dependent processes leading to the irreversible thermal inactivation of

enzymes have been identified (see introduction): destruction of cystine residues, thiol-catalyzed

disulfide interchange, oxidation of cysteine residues, deamidation of asparagine and/or glutamine

residues, and hydrolysis of peptide bonds at aspartic acid residues. Water is a reactant in all of

these degradative reactions (except for cysteine oxidation). In addition, water is the solvent

which facilitates protein mobility leading to reversible unfolding, incorrect structure formation

and aggregation (see literature survey). Therefore, the substitution of a nonaqueous medium for

water should stabilize enzymes against both conformational processes and covalent reactions that

cause irreversible thermal inactivation. In fact, this rationale may explain the several literature

reports of increased thermostability of enzymes in organic solvents (see literature survey).

In the present study, we investigate the mechanism of irreversible thermoinactivation of

enzymes in anhydrous organic solvents. Bovine pancreatic ribonuclease A (RNase) has been

chosen as a model system because its mechanism of irreversible thermoinactivation in aqueous

buffer has been thoroughly investigated (Zale and Klibanov, 1986). This data base will allow

for direct comparisons between water and nonaqueous systems. Specifically, we aim at

obtaining the answers to the following questions:
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(1) What mechanism(s) cause irreversible thermoinactivation of enzymes in neat anhydrous

organic solvents?

(2) Are these mechanism(s) covalent or conformational? Are conformational reactions

reversible or irreversible? Are the covalent reactions the same or different as compared to

aqueous solutions?

(3) What is the role of water and the solvent (hydrophobic vs. hydrophilic) during

thermoinactivation in nonaqueous media?

(4) What is the upper limit of enzyme thermostability in anhydrous organic solvents?

By elucidating the mechanism(s) of thermoinactivation of enzymes in anhydrous organic

solvents, we can increase our understanding of how and why enzymes inactivate at high

temperatures, and perhaps learn more about enzymes that function naturally in hydrophobic

environments (see literature survey). Furthermore, we can develop strategies not only to

stabilize, but to design (Arnold, 1988) enzymes for nonaqueous environments, thereby

increasing their usefulness as practical catalysts.

4.3.1 Kinetics of irreversible thermoinactivation of enzymes in anhydrous organic solvents

The objective of this research is to identify and characterize the processes that cause

irreversible thermoinactivation of enzymes in anhydrous organic solvents. Bovine pancreatic

ribonuclease A (RNase) was chosen as an initial model enzyme because (i) the structure and

conformational dynamics of this small, monomeric protein have been thoroughly characterized

(Blackburn and Moore, 1982; Richards and Wyckoff, 1970), (ii) the reversible thermal
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denaturation process has been studied extensively (Hermans and Scheraga, 1960; von Hippel

and Wong, 1965) and, (iii) the mechanism of irreversible thermoinactivation in aqueous solution

(900 C, pH range of 4-8) has been elucidated (Zale and Klibanov, 1986).

When ribonuclease is dissolved in aqueous solution at pH 8 and then heated at 900 C, the

enzyme rapidly inactivates with a half-life of 2 minutes (at low protein concentrations to ensure

monomolecular processes, Zale and Klibanov (1986)). As an initial experiment, we lyophilized

ribonuclease from an aqueous solution at pH 8, placed the enzyme powder in a hydrophobic

organic solvent (anhydrous nonane, boiling point of 152* C), and heated the enzyme in sealed

vials for various time periods. The samples were then allowed cool to room temperature, the

solvent removed by evaporation under reduced pressure, and the protein was resuspended in

aqueous buffer (see experimental section). We subsequently analyzed the aqueous solution

(containing protein heated for various time periods in anhydrous nonane) for enzymatic activity

and soluble protein. As shown in Figure 21, ribonuclease displays markedly increased

thermostability compared to aqueous solution; it retains over 95% of its enzymatic activity

following heating for six hours at 1100 C and after prolonged heat treatment was found to have a

half-life of 43 hours. Even upon a 550 C increase in temperature (over that employed in aqueous

solution) to 145* C, the half-life of the enzyme in anhydrous nonane is one hour. As the enzyme

loses enzymatic activity at 1450 C in nonane, there is a concomitant loss of soluble protein as

measured by the Lowry protein assay, e.g. there is less than 50% of the initial amount of protein

in solution after six hours. This observation is confirmed visually by noting the appearance of

macroscopic aggregates.

In order to better quantitate the loss of soluble protein after heating, we subjected the

ribonuclease samples obtained to FPLC gel filtration chromatography. As can be seen in Figure

22, the extent of the loss of the soluble, monomeric ribonuclease peak on the gel filtration

column closely parallels that of the loss of enzymatic activity. Therefore, the Lowry protein

assay measured macroscopic aggregation, while gel filtration chromatography also detected

microscopic aggregates (i.e., dimers, trimers, tetramers, etc.) which, when taken together, then
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Figure 21- Time course of irreversible thermoinactivation of ribonuclease in anhydrous

nonane. (a) at 1100 C; and (b) at 1450 C. The enzyme was lyophilized from aqueous solution at

pH 8.0. The powder was than added to the anhydrous organic solvent (note that enzymes are

insoluble in nonane; Singer, 1962), heated, allowed to cool to room temperature, followed by

removal of the solvent under reduced pressure until dryness. The enzyme was then resuspended

in aqueous buffer (1 mg/ml) and assayed for enzymatic activity (see Experimental Section).
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Figure 22 - Irreversible thermoinactivation of ribonuclease in anhydrous nonane at 1450 C.
( D ) fraction of initial enzymatic activity; ( A ) fraction of soluble, monomeric protein as
determined by FPLC gel filtration chromatography (see Experimental Section). Thermo-
inactivation protocol was the same as for Figure 21.
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account for the loss of all of the enzymatic activity. Thus, ribonuclease undergoes irreversible

thermoinactivation at 1450 C in anhydrous nonane with a half-life of one hour, and that this

process is caused by the loss of soluble, monomeric protein due to microscopic and macroscopic

aggregation.

To ensure that this correlation of loss of enzymatic activity and soluble, monomeric

protein is not a function of the enzyme assay (either the size of the enzyme substrate or the

enzyme aggregate), we reanalyzed samples from the previous experiment with both a large (yeast

RNA) and small (cytidine 2':3' cyclic monophosphate) molecular weight substrate. Figure 23

clearly shows that the kinetics of the loss of enzymatic activity are independent of the size of the

enzyme substrate. Furthermore, when assaying for enzymatic activity via potentiometry (see

experimental section), we can reduce the size of the heat-induced enzyme aggregate by sonication

of the enzyme solution until a very fine dispersion is observed. Since no significant changes in

the kinetics of the loss of enzymatic activity are seen (Figure 23), the heat-induced aggregates do

not trap active enzyme.

After establishing that the mechanism of irreversible thermoinactivation in our model

system (ribonuclease in anhydrous nonane at 145 C) is aggregation, we set out to test the

generality of this observation by examining other enzymes and solvents. First, we chose two

unrelated enzymes whose physicochemical properties are also well established, chicken egg

white lysozyme and bovine pancreatic a-chymotrypsin. Using the same protocol as described

above for ribonuclease, lysozyme and chymotrypsin (both enzymes were lyophilized from pH 8

aqueous solution) were heated at 145' C in anhydrous nonane for various periods of time. As

can be seen in Figure 24A for lysozyme and Figure 24B for chymotrypsin, both enzymes lose

enzymatic activity during heating (with a half-life of 90 and 45 minutes, respectively) and this

loss correlates with an aggregational event. It is worth noting that lysozyme and chymotrypsin

both exhibit markedly increased thermostability compared to aqueous solution where the half-life

for lysozyme is 1 minute at 90* C (Ahern and Klibanov, 1985) and 15 minutes at 550 C for

chymotrypsin (Martinek g al., 1977). Interestingly, when comparing the half-lives of these
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Figure 23 - Irreversible thermoinactivation of ribonuclease in anhydrous nonane at 1450 C as a

function of enzymatic assay conditions. Determination of enzymatic conditions via (i) potentio-

metry both with ( A ) and without ( A ) sonication of the aggregate; and (ii) spectrophotometri-

cally with both a large (yeast RNA, L ) and small (cytidine 2':3' cyclic monophosphate, U )
molecular weight enzymatic substrate. Thermoinactivation protocol was the same as in Figure

21.
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Figure 24 - Time course of irreversible thermoinactivation of chymotrypsin (A) and lysozyme

(B) in anhydrous nonane at 1450 C. ( ] ) percentage of initial enzymatic activity; and ( A )

percentage of soluble, monomeric protein as determined by FPLC gel filtration chromatography.

Thermoinactivation protocol is described in Figure 21.
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three enzymes (at 1450 C in nonane) at equal water contents (13-14% H20 (g/g); see next

section), a range of values is seen from 30 minutes (ribonuclease) to 45 minutes (chymotrypsin)

to 90 minutes (lysozyme). Therefore, the nature of the protein molecule itself affects the kinetics

of this process to a modest degree, and the mechanism of enzyme irreversible thermoinactivation

remains identical.

Several investigators have noted that enzymes are more thermostable in hydrophobic than

in hydrophilic solvents, however, the mechanism of this observation has not been pursued (see

literature survey). We therefore examined the effect of the solvent's physical properties on

enzyme thermostability. For our purposes, organic solvents can be divided into three broad

categories: non-polar, moderately polar and aprotic dipolar solvents. Nonane is an example of

the first type with a high log P value (5.1), a measure of the hydrophobicity of a solvent (the

logarithm of the partition coefficient between octanol and water; Laane d Al., 1987), and a low

dielectric constant (E = 2.0), a measure of the polarity of the solvent (Gordon and Ford, 1972).

We chose anhydrous 1-butanol (log P = 0.8 and E = 17.1) and anhydrous N,N-dimethyl

formamide (DMF) (log P = -1.0 and E = 36.7) as representatives of moderately polar and aprotic

dipolar organic solvents, respectively.

Ribonuclease was placed into both of these hydrophilic solvents, heated and then

analyzed as described previously for nonane. Figure 25A shows the kinetics of the loss of

enzymatic activity and soluble, monomeric protein in aqueous solution after heat treatment in 1-

butanol while Figure 25B is the same experiment in DMF, both at 1100 C. Ribonuclease is

significantly less stable in these anhydrous, relatively hydrophilic solvents (half-life of 5 hours in

butanol and 2 minutes in DMF at 110 C) when compared to anhydrous nonane (half-life of 43

hours at 1100 C), yet ribonuclease is still much more stable in these organic solvents than in

aqueous solution (half-life of 2 minutes at 90 C). Our results show that the thermostability of

ribonuclease in anhydrous organic solvents increases with the hydrophobicity and apolarity of

the organic milieu. Clearly, if these hydrophilic solvents can dissolve water, they can also

hydrogen bond with donors and acceptors in the protein molecule. Thus, not only do
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Figure 25 - Time course of irreversible thermoinactivation of ribonuclease at 1100 C in

anhydrous 1-butanol (A) and anhydrous N,N dimethylformamide (B). ( C ) fraction of

enzymatic activity; and ( A ) fraction of soluble, monomeric protein as determined by FPLC gel

filtration chromatography. Thermoinactivation protocol is described in Figure 21.
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hydrophilic solvents strip water from proteins (see next section), but they can also compete with

the native noncovalent interactions in protein molecule, especially at elevated temperatures; an

effect which may explain the decreased thermostability of ribonuclease in hydrophilic solvents.

The kinetics of the loss of both enzymatic activity and soluble, monomeric protein are not

a simple, first-order exponential processes (typical correlation coefficient of 0.92), but rather a

higher order reaction (see Figure 23). This observation is indicative of an aggregational

phenomenon because protein coagulation is a multi-molecular event. In summary, ribonuclease

undergoes irreversible thermoinactivation in hydrophobic and hydrophilic organic solvents via an

aggregational mechanism and the enzyme's thermostability increases with the hydrophobicity of

the solvent. Moreover, enzyme thermoinactivation in organic solvents (via aggregation) is not

limited to ribonuclease; it is observed with both lysozyme and chymotrypsin. Importantly, for all

of the solvents and enzymes tested, enzyme thermostability is greater in organic solvents than

aqueous solution. The next step in the investigation is to examine the nature of this aggregational

process in greater detail.

4.3.2 Heat-induced protein denaturation in neat organic solvents

The action of heat on proteins can lead to two kinds of conformational changes,

denaturation and/or aggregation (Jaenicke, 1967). These two processes are classically related to

each other as consecutive reactions with heat denaturation as the first step, followed by heat

induced aggregation (Putnam, 1954; Joly, 1965):

N pU -+-o A (3)

where N is a native protein, pU is a partially thermounfolded protein, and A is an aggregated

(inactive) protein. Notice that the denaturation process is typically reversible in aqueous solution
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(see literature survey), while aggregation is an irreversible event (even though reactivation of

conformational aggregates is potentially possible, see next section).

Differential scanning calorimetry has emerged as a powerful tool to examine the first step

in equation (1), protein denaturation, especially in solid samples such as dry enzyme powders or,

in our case, enzymes in nonaqueous media. We began our differential scanning calorimetry

study by using the same model system as before: ribonuclease (lyophilized from aqueous

solution at pH 8) heated in the presence of anhydrous nonane. The spectrum (a) in Figure 26

shows that as the temperature increases from 25 to 900 C, no conformational changes occur in the

protein molecule. However, from 92 to 1040 C a thermal transition is observed with a peak at

990 C. This peak is called the thermal transition temperature (Tm) and it is caused by the excess

heat (enthalpy) required to induce protein denaturation (similar to the excess energy required to

melt ice at 0' C which is called the heat (enthalpy) of melting). This Tm value of 99* C for

ribonuclease powder in anhydrous nonane is significantly higher than the Tm for this enzyme is

aqueous solution (61' C at the optimum pH for conformational stability, von Hippel and Wong,

1965). Spectra (b and c) in Figure 26 are the superposition of two separate control experiments:

(i) the anhydrous solvent nonane itself and (ii) ribonuclease was returned to ambient conditions

after the first denaturation and then reheated. We can see that the enzyme cannot undergo a

second conformational transition after the first thermal transition. Therefore, in contrast to the

situation in aqueous solution, the thermal denaturation process for ribonuclease in organic

solvents is irreversible, i.e., the enzyme cannot refold into its native conformation in neat organic

solvents after returning to ambient temperatures.

Having established that an irreversible denaturation occurs when ribonuclease is heated in

anhydrous nonane, the next step was to determine how different parameters affect the system.

As discussed in the literature survey, the hydration level of protein powders affects their

conformational flexibility, enzymatic activity, and thermostability. In order to determine to what

extent water content affects both the thermal denaturation (Tm) and the subsequent irreversible

thermoinactivation (aggregation) process of dehydrated enzymes in organic solvents,
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Figure 26 - Differential scanning calorimetry thermogram of () ribonuclease (16% H20, g/g,

lyophilized from aqueous solution at pH 8.0) placed into anhydrous nonane; and (b) anhydrous

nonane alone; and (.j) ribonuclease rerun for a second time after the first denaturation. For

experimental conditions, see Experimental Section.
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ribonuclease powders were hydrated to different levels of water content (Leeder and Watt, 1974;

see experimental section). These enzyme powders were then examined by both DSC to

determine their Tm temperature (thermal denaturation) and by kinetic analysis at 1450 C to

determine the rate of inactivation by aggregation.

The results are summarized in Table 5. One can see that as the water content of the

ribonuclease powder increases from 6% to 20%, the transition temperature decreases from 124'

C to 920 C, while the rate of loss of both enzymatic activity and soluble, monomeric protein

increases, as shown by the change in half-life from 120 minutes to less than 4 minutes. These

results clearly show that (i) the loss of enzymatic activity due to heating at 1450 C (column 3) is

due to aggregation and (ii) the increasing water content of the enzyme powder has a detrimental

effect on the thermostability of the enzyme. We observed that the Tm values of RNase in nonane

were exactly the same as the protein powder by itself. In order to better understand the effect of

this hydrophobic solvent on the irreversible thermoinactivation process, we measured the kinetics

of the loss of enzymatic activity for ribonuclease at 1450 C in either nonane, air or argon (Figure

27A). We can see that regardless of the environment, the rates are quite similar (the small

differences between the liquid and gas environments are most likely due to differences in thermal

conductivity). Moreover, the kinetics of disappearance of the soluble, monomeric protein peak

on gel filtration chromatography are also comparable (see Figure 27B). Thus, nonane is

essentially an inert solvent where not only are the Tm values of ribonuclease the same in nonane

as in air, but the kinetics of the thermal inactivation of the enzyme at 1450 C (via an aggregational

mechanism) are identical in anhydrous nonane and molecular gases. Interestingly, the removal

of oxygen does not affect this process indicating that oxidative reactions do not contribute to the

aggregational phenomenon.

We have seen that both the thermal denaturation temperature and kinetics of aggregation

at 1450 C for ribonuclease at a given water content are the same in the hydrophobic solvent

nonane and in dry powders. These findings suggest that the effect of the water content of

ribonuclease powder on enzyme thermostability is the same for these two environments. As
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Table 5 - The effect of water content of ribonuclease powder on both protein denaturation and
irreversible aggregation during heating in anhydrous nonane. (a) The amount of protein-bound
water was determined by Karl Fisher titration. (b) The thermal transition temperature was
established via differential scanning calorimetry. (c) The kinetics of enzyme thermoinactivation
at 1450 C was measured by loss of both enzymatic activity and soluble, monomeric protein (see
Experimental Section) (d) Tm value of ribonuclease in aqueous solution at optimum pH for
conformational stability (von Hippel and Wong; 1965).
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enzyme powder a temperature, Tm (,C) b 1450 C (minutes) c

6 124 120

11 111 50

13 106 30

16 99 10

20 92 <4
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Figure 27 - Irreversible thermoinactivation of ribonuclease at 1450 C in different inert
environments. (A) Loss of enzymatic activity when heated in anhydrous nonane ( L ), argon
( E ), and air ( O ). (B) Fraction of soluble, monomeric protein as determined by FPLC gel
filtration chromatography, when heated in anhydrous nonane ( t ), argon ( E ), and air ( 0).
Thermoinactivation protocol is described in Figure 21.

1 18

A

A

p
A

A
I * I * I

B
ol

a

Aa



discussed in the literature survey, using a variety of experimental techniques, it has been shown

that the hydration of dry enzyme (lysozyme) powders proceeds in three stages (Rupley l

1983): From 0 to 7% H20 g/g (0 to 60 water molecules per protein molecule), water forms

clusters around charged surface residues with little protein motion and no enzymatic activity.

Between 7 to 25% H20 g/g (60 to 200 water molecules per protein molecule), water begins to

cover most of the protein surface, there is significant protein mobility and concomitant detection

of enzymatic activity. Finally, at 38% H20 g/g (over 300 water molecules per protein molecule)

the protein molecule becomes fully hydrated and gains up to 10% of the enzymatic activity of that

in aqueous solution. Similarly, it has been shown that as the water content of lysozyme powders

increases from 5 to 40 % H20 g/g, the thermal transition temperature decreases from 1300 C to

the value in aqueous solution, near 70' C (Fujita and Noda, 1978).

Therefore, we hypothesize that increased protein mobility due to hydration of the enzyme

powder (where water acts as a molecular lubricant capable of forming multiple hydrogen bonds)

causes the observed decrease in the thermal stability of ribonuclease in nonane. The relationship

between the conformational flexibility and thermal stability of an enzyme is based on the classic

findings on the molecular mechanisms of thermophilicity, where an increased number of (or

strengthened) noncovalent interactions are found in thermostable proteins compared to their

mesophilic counterparts (i.e., rigidification; see literature survey). It has also been shown that

there is a direct correlation between amide proton exchange rates (flexibility) and the denaturation

temperature in proteins related to bovine pancreatic trypsin inhibitor (Wagner and Wuthrich,

1979). Furthermore, molecular modeling studies on the "flexibility indices" of a variety of well

defined proteins have been calculated, and shown to increase as the thermostability of the protein

decreases (Vihinen, 1987).

The effects of both hydrophobic and hydrophilic organic solvents on the thermal

denaturation of ribonuclease was analyzed by means of differential scanning calorimetry. Using

ribonuclease powder containing 16% H20 (gig), it was found that the transition temperatures

(Tm) for the enzyme powder itself, and the enzyme powder in anhydrous hydrophobic solvents
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such as nonane, toluene and dibutyl ether were virtually identical (Tm = 990 C, 100* C, 1020 C

and 1010 C, respectively; however, the size of the peaks did decrease in some cases compared to

the enzyme powder itself). Moreover, when anhydrous nonane was saturated with water, the

Tm of ribonuclease (13% H20 (gig), see Table 1) shifted downward from 1060 C to 1020 C

implying that excess water partitions from the hydrophobic organic solvent to the enzyme

causing greater mobility (see above). Therefore, we can see that anhydrous hydrophobic

solvents do not affect the thermal transition temperature of the enzyme powder in any substantial

way.

Conversely, when the same ribonuclease powder was placed into anhydrous, hydrophilic

solvents such as 1-butanol or DMF, no thermal transition peaks were observed. Why are

thermal transition peaks observed in hydrophobic solvents but not in hydrophilic ones? It has

been shown that differences in enzyme activity in hydrophobic versus hydrophilic solvents are

due to water partitioning between the solvent and the enzyme (Zaks and Klibanov, 1988 b;

Halling, 1989). In hydrophobic solvents water partitions to the enzyme; conversely, in

hydrophilic solvents the opposite is the case (in both situations an equilibrium is established

between protein-bound and free water). Therefore, in anhydrous, hydrophilic organic solvents,

water is stripped from the protein and partitions to the solvent. If water is added to a hydrophilic

solvent, the enzyme regains water and enzymatic activity concomitantly (Zaks and Klibanov,

1988 b). Interestingly, when 3% H20 was added to 1-butanol, a thermal transition for

ribonuclease was detected on the DSC with a peak at 83-850 C.

We directly measured the water content of ribonuclease after incubation in both

anhydrous butanol and 3% H20-butanol (see experimental procedures). The water content of

ribonuclease powder (15% H2 0 g/g) decreased to 1.3% (g/g) in anhydrous butanol and

subsequently increased to 3.1% (g/g) in the water-butanol solution. Thus the solvent does strip

water from the enzyme and the enzyme does regain water in 3% H20-butanol. These water

content values are very similar in magnitude to those reported previously for enzymes in organic

solvents (Zaks and Klibanov, 1988 b; Yamane j 1l.., 1988). The penetrating action of the
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hydrophilic solvents could have several consequences which may explain the peculiar behavior

of the thermal transition of ribonuclease in hydrophilic solvents: (i) creation of a heterogeneous

population of enzyme molecules which do not undergo one, unified thermal transition, (ii) the

enzyme molecules are not able to unfold to same extent as before, or (iii) perhaps a fewer number

of noncovalent bonds can be broken. Either way, upon the addition of water to hydrophilic

solvents, the enzyme molecules regain water (and presumably greater flexibility) which may

account for the observed thermal transition on the DSC.

Ribonuclease has been shown to be extremely thermostable in anhydrous nonane by

differential scanning calorimetry with Tm values far greater than in aqueous solution. Anhydrous

hydrophobic solvents do not affect the Tm of ribonuclease when compared to the protein powder

itself; in fact, the kinetics of irreversible thermoinactivation of ribonuclease are the same when

suspended in nonane or heated as powders under air or argon. An increase in the water content

of the ribonuclease powder facilitates both thermal denaturation and the aggregation process in

nonane, suggesting that water acts as a molecular lubricant which increases the conformational

flexibility of the protein (as is the case for enzyme powders). Finally, hydrophilic solvents are

much more interactive than hydrophobic ones; they clearly strip water from ribonuclease and

therefore can also hydrogen bond to the protein molecule itself. This effect may be responsible

for the decreased thermostability of ribonuclease in hydrophilic organic solvents (see previous

section) and the observed effects of hydrophilic solvents on the thermal denaturation of the

enzyme.

4.3.3 Characterization of heat-induced aggregates in neat organic solvents

Using the identical model system as before, ribonuclease (lyophilized from aqueous

solution at pH 8) in anhydrous nonane at 1450 C, we set out to further characterize the nature of

the irreversible aggregation reaction (the second step of equation 1) by: (i) determining whether

the aggregate can be solubilized and perhaps reactivated, (ii) ascertaining whether the aggregation
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process is chemical or physical in nature, and finally, (iii) drawing further comparisons between

the processes leading to irreversible thermoinactivation of ribonuclease in organic solvents and

aqueous solution.

The protocol for reactivation of thermally-induced conformationally altered monomers

and aggregates has been elaborated by Klibanov and Mozhaev (1978) and Rudolph A al. (1979),

respectively: inactive enzyme is solubilized in a high concentration of strong denaturants

containing a reducing agent. The enzyme is then reoxidized in the absence of denaturant with a

redox buffer and analyzed for activity. As can be seen in Figure 28, ribonuclease (6% H20 g/g)

heated in anhydrous nonane for various times could not be reactivated by this protocol. In fact,

despite different denaturants (6M guanidine hydrochloride or 9M urea), reducing agents (B-

mercaptoethanol or dithiothreitol) and pH values (8.5 or 2.0), enzymatic activity could not be

recovered, even though the heat-treated enzyme had been solubilized by these treatments.

In order to better understand why the solubilized enzyme aggregate could not be

reactivated, the heat-treated protein was analyzed first by SDS-polyacrylamide gel electrophoresis

and second for degradative, covalent reactions involving protein bound amino acid residues.

This strategy is based on the investigation of the irreversible thermoinactivation of ribonuclease

in aqueous solution where several pH-dependent reactions which contribute to the thermal

inactivation of ribonuclease were identified: polypeptide hydrolysis at aspartic acid residues,

deamidation of asparagine and/or glutamine residues, and cystine destruction and thiol-catalyzed

disulfide interchange (Zale and Klibanov, 1986).

Ribonuclease was heated in anhydrous nonane at 1450 C for 4 hours (6%- H20 g/g; see

Figure 28), allowed to cool to room temperature, and the solvent was subsequently removed.

The aggregate was dissolved in a buffered 9 M urea solution followed by the addition of a

reducing agent and 1% SDS. The sample was then subjected to SDS-polyacrylamide gel

electrophoresis (see experimental section). As can be seen in the top half of Table 7, when not

exposed to heat treatment in organic solvent, the enzyme migrates as a single band as expected.

However, heat-treated enzyme shows high molecular weight bands at the dimer, trimer, and
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Figure 28 - Attempted reactivation of ribonuclease after irreversible thermoinactivation of the
enzyme at 1450 C in anhydrous nonane. ( E] ) Loss of enzymatic activity when heated in
anhydrous nonane; and ( A ) Attempted reactivation of the heat-induced aggregate via
solubilization in 6 M guanidine hydrochloride solution containing 0.1 M Tris, 2 mM EDTA and
70 mM dithiothreitol at pH 8.5, followed by desalting and then reoxidation of the enzyme in a
redox buffer as described in the Experimental Section.
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higher molecular weight positions. It is now clear why the reactivation experiment failed.

Despite denaturants, reducing agents, and detergents (SDS), the enzyme molecules remained

associated thereby implying that intermolecular, covalent crosslinks may exist.

The same native and heat-treated enzyme (as described above) were also dissolved in 6 N

hydrochloric acid, followed by acid hydrolysis and amino acid analysis (see experimental

procedures). Within experimental error, we found that no amino acids in ribonuclease were

destroyed after heating for 4 hours at 1450 C in anhydrous nonane (see Table 6). This result

confirms the conformational nature of the thermoinactivation process (except possibly for

deleterious reactions not detected by amino acid analysis; see below). Interestingly, one of the

degradative, covalent reactions known to cause irreversible thermoinactivation of ribonuclease in

aqueous solution, B-elimination of cystine residues (Zale and Klibanov, 1986), is not occurring

since no changes were observed in the total number of cysteine residues before and after heat

treatment (Table 6).

Furthermore, no peptide hydrolysis could be detected since low molecular weight bands

were not detected on SDS-urea polyacrylamide gel electrophoresis (MW range of 2-20 kd)

These lower molecular weight breakdown fragments of ribonuclease are clearly visible after heat

treatment in aqueous solution (pH 4). Interestingly, in contrast to the pH dependent aqueous

solution thermoinactivation, ribonuclease does not show a pH-dependence toward

thermoinactivation in organic solvents at 145' C (the effect of the pH of the aqueous solution

from which ribonuclease is lyophilized, pH 4, 6 and 8), although the enzyme is perhaps slightly

stabilized at lower pH values as shown in Figure 29 (all enzyme preparations had 8% H20 g/g).

The next step was to analyze the heat treated RNase for ammonia evolution which, in

aqueous solution, is a product of a deamidation reaction. Figure 30 shows that upon heating at

145' C in anhydrous nonane, heat-treated ribonuclease (6% H20 g/g) does indeed release

ammonia at an initial rate of 0.2 mole-equivalents per hour. However, we hypothesized that

these high molecular weight bands seen on SDS-PAGE may be related to the observed ammonia

evolution by a transamidation-type reaction. It was suggested by Bjamason and Carpenter
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Table 6- Amino acid analysis of ribonuclease. (a) Amino acid composition as reported in the

literature (Smyth et al., 1963); ribonuclease does not contain a Trp residue and proline cannot be

detected by this method (however, this amino acid is unaffected by 1450 C, 27 hours in a powder

of bovine serum albumin (Bjarnason and Carpenter, 1970). (b) Ribonuclease lyophilized from

aqueous solution at pH 8.0. (c) same as previous sample except placed in anhydrous nonane

followed by evaporation of the solvent under reduced pressure. (d) same as previous sample

except enzyme was heated in anhydrous nonane for 4 hours. (e) Determined spectrophoto-

metrically prior to acid hydrolysis with Ellman's reagent (see Experimental Section).
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Figure 29 - Irreversible thermoinactivation of ribonuclease at 145' C after lyophilization from

aqueous solution at different pH values. (A) Loss of enzymatic activity at pH 8 ( 0 ), pH 6
(L ), and pH 4 ( 0 ). (B) Loss of soluble, monomeric protein as determined by FPLC gel

filtration chromatography at pH 8 ( O ), pH 6 ( t ), and pH 4 ( E ). Thermoinactivation

protocol is described in Figure 21.
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(1970) that ammonia evolution from heat-treated bovine serum albumin may be due to a

transamidation reaction:

O 0

ASN - CH2 - C\ ASN - CI-- C \
NH (4)

LYS - (CH2 4

LYS - (CH2)4- NH 2  NH 3

Note that this reaction is also undetectable by acid hydrolysis followed by amino acid analysis,

since hydrolysis regenerates a lysine and aspartic acid residue. In order to test this possibility,

we chemically modified the lysine residues of ribonuclease using acetic anhydride. We then

examined the effect of chemical derivatization of the lysine residues of ribonuclease on both

ammonia evolution and protein aggregation as seen on SDS-PAGE during heating in anhydrous

nonane. This comparison will determine if ammonia evolution via a transamidation reaction is at

least partially responsible for the observed intermolecular crosslinks.

Both unmodified and acetylated ribonuclease (water content 13% H20 (gig); see Table 5)

were heated for various times at 1450 C in anhydrous nonane, and these enzymes were found to

lose enzymatic activity and soluble, monomeric protein (aggregate) comcomitantly, and at the

same rate (half-life of 30 minutes). However, after four hours the unmodified ribonuclease had

released 1.0 equivalents of NH 3 while an equal amount of acetylated enzyme had evolved only

0.42 equivalents NH 3. Thus, the derivatization of 70% of the lysine residues had reduced

ammonia evolution by almost 2.5 fold while not affecting the kinetics of thermoinactivation.

Clearly, some of the evolved ammonia in this experiment is due to a transamidation reaction, but

this reaction is secondary in the inactivation mechanism.

We then solubilized the heat-treated unmodified and acetylated ribonuclease (parallel

samples from the ammonia experiment) in a denaturant solution in both the presence and absence

of a reducing agent. The addition of a reducing agent is expected to break apart any

intermolecular S-S bonds (if present) and therefore reduce the size of the aggregates. These
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Figure 30 - Kinetics of ammonia evolution from ribonuclease (lyophilized from aqueous

solution at pH 8.0) in anhydrous nonane at 1450 C. Different symbols represent independent

experiments. Number of equivalents of ammonia released were determined by heating the

enzyme in a sealed vial, cooling to room temperature, followed by extracting ammonia into an

aqueous solution and measuring its concentration enzymatically as described in the Experimental

Section.
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samples were then subjected to SDS-polyacrylamide gel electrophoresis (after the addition of 1%

SDS ), stained with coomassie blue, and then quantitatively analyzed by gel densitometry.

The results of this experiment are summarized in Table 7. The first row of Table 7

clearly shows that the unmodified ribonuclease (unheated) migrated as a single native band in

both the absence and presence of reductant. However after heat treatment, the unmodified

enzyme shows a higher percentage of the native band upon the addition of a reducing agent (45%

vs 60% plus a noticeable reduction in the amount of higher molecular weight species), thereby

implying the presence of thiol-crosslinked aggregates. The same basic effect is seen for the

acetylated enzyme (65% vs 90% native band for unreduced and reduced, respectively). This

observation could be confirmed visually since the heat-treated unmodified ribonuclease remained

as a visible aggregate in the denaturant solution until 70 mM dithiothreitol was added.

As seen in Table 7, the heat-treated acetylated protein shows a higher percentage of native

band than the heated, unmodified enzyme either under nonreducing (45% vs 65%) or reducing

(60% vs 90%) conditions. We can see that chemical modification of the lysine residues of

ribonuclease does indeed reduce the amount of intermolecular crosslinking, and in combination

with the ammonia evolution data, these findings show a transamidation reaction must be

occurring. Therefore, 90% of the native band on SDS-PAGE (Table 7) can be restored by the

combination of acetylation (which blocks transamidation) and reducing agent (which breaks apart

any disulfide interchange crosslinks). Hence, the aggregates of ribonuclease, caused by heat

treatment in anhydrous nonane at 1450 C, are partially chemically-crosslinked and at least some

of the observed ammonia evolution is due to a transamidation reaction.

At this point, we reattempted our reactivation experiment with acetylated (instead of of the

unmodified enzyme as described earlier) ribonuclease because the heat-treated acetylated enzyme

no longer contained the covalent crosslinks causing microscopic aggregation as seen on SDS-

PAGE. The unmodified and acetylated enzyme were both heated for 4 hours at 145 *C in

anhydrous nonane (until only 10% of the initial enzymatic activity remained) and then reactivated

as described previously. Surprisingly, the acetylated protein did not regain 90% of its enzymatic
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Table 7 - Gel densitometry analysis of SDS polyacrylamide gel electrophoresis of ribonuclease

before and after heat treatment in anhydrous nonane at 1450 C. (a) Thermoinactivation protocol

was to place enzyme in organic solvent (either with or without a subsequent four hour heat treat-

ment) followed by evaporation of solvent under reduced pressure. (b) Enzyme samples were

then solubilized in 0.1M Tris-HCl, pH 8.5, containing 9 M urea and 0.03% EDTA with or with-

out 70 mM dithiothreitol, had 1% SDS added, and were subjected to SDS polyacrylamide gel

electrophoresis. The protein bands were stained with coomassie blue, and then analyzed by gel

densitometry (see Experimental Section). (c) Acetylated ribonuclease had 70% of lysine groups

blocked with retention of 60-70% of enzymatic activity (see Experimental Section).
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% native band on % dimer, trimer,
ribonuclease samples a SDS-PAGE b higher MW bands on

SDS-PAGE b

Unmodified enzyme

no heat

unreduced 98 2
with reducing agent 100 0

heated at 1450 C, 4 hours

unreduced 45 12, 6, 37
with reducing agent 60 24, 3, 13

Acetylated enzyme c

no heat

unreduced 95 3,2
with reducing agent 100 0

heated at 1450 C, 4 hours

unreduced 65 20, 10, 5
with reducing agent 90 8, 2,0



activity as expected, but rather only 32% (the unmodified enzyme did not reactivate at all, as had

been seen before).

In order to understand why the heat-treated acetylated enzyme failed to fully reactivate

(32% activity instead of 90%), we prepared heat-treated samples of both unmodified and

acetylated ribonuclease (as described above), dissolved them in a buffered 9 M urea solution

containing a reducing agent and then subjected them to analysis by means of FPLC gel filtration

chromatography equilibrated in the same denaturant solution (protein samples were

carboxymethylated to prevent any potential reoxidation of thiol groups). We found that, after

heat treatment, the unmodified protein had only 10% of its native peak in direct correspondence

to its remaining enzymatic activity, while the acetylated protein showed 35% of the native peak

(also corresponding to its remaining 32% of initial enzymatic activity). Thus, the denaturant

solution alone does not break up the physically associated heat-induced aggregates of the

acetylated enzyme (only 32% of the aggregate) to the same extent as the treatment during SDS-

PAGE analysis which allows for recovery of 90% of the native protein within the SDS

containing polyacrylamide gel (addition of 1% SDS and 5 minutes at 100 C). Unfortunately, we

could not use this SDS-treatment during the reactivation experiment because the removal of SDS

is extremely difficult since the detergent irreversibly binds to proteins (Helenius and Simons,

1975).

In summary, three unrelated enzymes (ribonuclease, chymotrypsin, and lysozyme) were

shown to display markedly increased thermostability in anhydrous organic solvents compared to

aqueous solution. The mechanism of irreversible thermoinactivation in nonaqueous media for

these three enzymes was determined to be heat-induced protein aggregation. The products of the

subsequent heat-induced aggregation were also characterized as being both chemically

crosslinked, in part due to transamidation and intermolecular disulfide interchange reactions, and

physically associated protein oligomers. Bovine pancreatic ribonuclease A was chosen as a

model enzyme to establish the influence of water content and solvent type (hydrophobic or

hydrophilic) on thermal denaturation (see next section).
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V. SUMMARY AND CONCLUDING REMARKS

The motivation for this study was to quantitatively establish the upper limit of protein

thermostability by analyzing both conformational and covalent thermoinactivation processes in a

variety of enzymes and proteins under different environmental conditions. Previous work in our

laboratory had identified five pH dependent, covalent reactions that caused irreversible

thermoinactivation of enzymes at high temperatures: cystine destruction, thiol-catalyzed disulfide

exchange, cysteine oxidation, deamidation of asparagine and glutamine residues, and peptide

bond hydrolysis at aspartic acid residues (see introduction). Because of the general nature of

these reactions, they afforded the opportunity to define the upper limit of protein thermostability

in aqueous solution. The introductory section of the thesis raised four questions which, once

answered, would not only establish the upper limit of protein thermostability, but also suggest

strategies to stabilize enzymes for use as practical catalysts at elevated temperatures.

The first objective was to determine the general nature of these degradative, covalent

reactions by examining them in a variety of proteins at high temperatures. Two of these

processes, cystine destruction and disulfide interchange, were quantitatively characterized in over

a dozen proteins. All proteins studied undergo heat-induced B-elimination of cystine residues in

the pH range from 4 to 8 at 1000 C. The time course of this process closely follows first order

kinetics indicating that the stability of a disulfide bond is not significantly affected by its position

in the polypeptide chain. Moreover, the first order rate constants of B-elimination of -S-S- bonds

at 1000 C are remarkably similar for different proteins: 0.8 ± 0.3 hr -1 and 0.06 ± 0.02 hr -1 at

pH 8 and 6, respectively. Thus, this process is relatively independent of both the primary

structure and elements of higher structure remaining in proteins at 1000 C. The B-elimination of

disulfide bridges produces free thiols which were found to be both protein-bound and low

molecular weight species including hydrosulfide. These byproducts cause yet another

deleterious reaction in proteins: heat-induced disulfide interchange. This reshuffling of -S-S-

bonds, which is much faster than B-elimination was also quantitatively characterized (half-life of
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10 minutes at pH 6 and 2 minutes at pH 8) using mixed disulfides of lysozyme and trypsinogen

with glutathione.

Similar experiments were carried out on ten different proteins at pH 4, 100* C, in order to

determine the rate constants of overall deamidation of proteins (Appendix B). Along with our

findings on the thermal stability of immobilized glucose isomerase at pH 8, and data from other

enzymes previously examined in our laboratory, it was established that protein deamidation at

90-100' C is a pH dependent process occurring in over a dozen different proteins (half-lives of 8

± 3 hours at pH 8, 41 ± 9 hours at pH 6, and 132 ± 50 hours at pH 4; see Appendix B). The

remaining deteriorative, covalent reactions (cysteine oxidation and peptide bond hydrolysis) have

also been characterized either through work described herein on the mechanism of

thermoinactivation of immobilized glucose isomerase or by analysis of recently published reports

on peptide and protein behavior at elevated temperatures (see literature survey).

The general nature of these heat-induced, degradative covalent reactions in proteins is

summarized in Table 8. These data on the overall rates of protein thermoinactivation processes

show that for each reaction, labile amino acid residues are more or less equally reactive

regardless of the nature of the protein. Although a few particularly labile sequences have been

identified (deamidation of Asn-Gly and peptide hydrolysis at Asp-Pro; see literature survey),

none of the neighboring sequences next to these labile amino acids are observably more stable

towards the degradative reactions observed at 90-100' C. The thermoinactivation of enzymes

due to these "weak links" is a general phenomenon observed in over half a dozen enzymes (see

literature survey). Since cysteine, asparagine, glutamine, and aspartic acid residues are common

to proteins regardless of structure or function, these data allow for the prediction of the maximum

expected thermal stability of any protein at high temperatures in the pH range of 4-8. We can see

from Table 8 that, at the optimum pH, these covalent reactions limit the integrity of the protein

molecule to several hours at temperatures of 90- 100' C, and therefore, demarcate the upper limit

of protein thermostability in aqueous solution.
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Covalent reactions shown to cause irreversible
thermoinactivation of enzymes

Time for 50%
modification

(hours)

B-elimination of cystine residues in twelve different proteins at
100* C (Volkin and Klibanov, 1987)

pH 4 144

pH6 9-16

pH 8 0.5- 1.4

Thiol-catalyzed disulfide interchange at 1000 C in mixed disulfides
of lysozyme and trypsinogen with glutathione (Volkin and Klibanov, 1987)

pH 6  0.17 (10 min)

pH 8  0.04 (2 min)

Cysteine oxidation at pH 8 in a-amylase (Tomazic and Klibanov, 1988a)
and immobilized glucose isomerase (Volkin and Klibanov, 1989a)

700 C 14

900 C 0.5- 1.5

Deamidation of asparagine and glutamine residues in proteins
(Appendix B) and peptides (Geiger and Clarke, 1987)

ten different proteins (1000 C, pH 4) 132

five different proteins (900 C, pH 6 - 6.5) 41

six different proteins (900 C, pH 8) 8

Asn-Gly hexapeptide (1000 C, pH 7.4) 0.15 (9 min)

Asn-Pro; Asn-Leu hexapeptide (1000 C, pH 7.4) 5 - 8

Hydrolysis of peptide bonds at aspartic acid residues in proteins
(Zale and Klibanov, 1986) and peptides (Marcus, 1985)

Asp121- Ala122 in ribonuclease (900 C, pH 4) 26

Asp-Pro dipeptide (1000 C, pH 2) 0.18 (11 min)

Asp-Phe; Asp-Ser dipeptide (1000 C, pH 2) 1.8 - 2.2
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Thermophilic microorganisms need catalytically active enzymes at high temperatures and

Nature accomplishes this goal by preventing reversible denaturation via the incorporation of

additional or strengthened noncovalent interactions (see literature survey). It was of interest to

inquire if Nature knows of the rules characterized herein concerning the mechanism of the

irreversible thermoinactivation of enzymes, i.e., the slow loss of catalytic activity over prolonged

periods of time. Analysis of protein sequences and bulk compositions of thermophilic versus

mesophilic microorganisms (Barker g nl., 1986) shows no such correlation except perhaps in the

case of cystine destruction. As concluded by Hochachka and Somero (1984), "...comparisons

of proteins from different species, including those of thermophilic bacteria living near the boiling

point of water, have not found evidence for widespread utilization of incorporation of additional

disulfide links for structural stabilization." However, this deficiency of S-S bonds may be

attributable to the absence of an organelle system in prokaryotes (endoplasmic reticulum) or, as

discussed in the thesis itself, the heat-sensitive nature of this chemical linkage.

The mechanism of irreversible thermoinactivation of enzymes is of concern to those

interested in stabilizing enzymes as practical catalysts at elevated temperatures for prolonged

periods of time. Nature probably does not concern itself with the irreversible thermoinactivation

of enzymes because it may be easier to simply accelerate the rate of proteolytic degradation and

protein biosynthesis (Zale and Klibanov, 1986). Nevertheless, it is quite possible that in tightly

folded thermophilic proteins, the thermolabile amino acid residues located in the protein interior

will be less accessible to water (required for these degradative reactions). Therefore, thermophilic

proteins may be more thermoresistant than their mesophilic counterparts to both reversible and

irreversible thermoinactivation when heated at temperatures at or below their melting temperature

(Zale and Klibanov, 1986; Tomazic and Klibanov, 1988b).

The remaining objectives of this research project were dedicated to the topic of

stabilizing enzymes as practical catalysts at both elevated and extreme temperatures. First, the

irreversible thermoinactivation of immobilized glucose isomerase from Streptomyces

olivochromo genes was mechanistically investigated at the pH-optimum of enzymatic activity (pH
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8.0) in order to ascertain to what extent these deteriorative, covalent reactions limit the

thermostability of this practical biocatalyst under both extreme temperature (90 C) and near

bioreactor conditions (70 C). The enzyme-catalyzed isomerization of glucose into fructose is

carried out in industrial bioreactors at 60-65* C where the half-life of the immobilized glucose

isomerase is on the order of several weeks. Most industrially employed glucose isomerases

exhibit temperature optima in the range of 80-90' C (in the presence of substrate), but even at

these temperatures, insufficient operational stability precludes their use (see literature review).

Ligands (high fructose corn syrup and the competitive inhibitor xylitol) greatly stabilize the

immobilized enzyme at high temperatures. At 90' C in the presence of 2 M xylitol, irreversible

inactivation of immobilized glucose isomerase is almost exclusively caused by deamidation of its

asparagine and/or glutamine residues. This covalent reaction demarcates the upper limit of

thermal stability for the enzyme. Additional experiments show that at the temperature close to

that of industrial bioreactors (70 C), the time-dependent decay of glucose isomerase activity is

brought about by different processes: oxidation of cysteine residues and/or by heat-induced

deleterious reactions with high fructose corn syrup or its impurities. Thus the cause of

irreversible thermoinactivation of this enzyme depends on the temperature regime.

The next objective of this research project was to establish the mechanism of enzyme

thermoinactivation at extreme temperatures (110- 145 C) in nonaqueous environments. The

recent discovery that enzymes can function in organic solvents has dramatically expanded the

range of reactions possible via biocatalysis. Perhaps the most neglected aspect of this emerging

technology is the stability of proteins in nonaqueous media (see literature survey). The results of

this study provided a mechanistic description of the irreversible thermoinactivation of three

unrelated enzymes (ribonuclease, chymotrypsin, and lysozyme) in anhydrous organic solvents.

They demonstrated that enzymes display greatly increased thermostability in anhydrous organic

solvents compared to aqueous solution. The loss of enzymatic activity due to heating in

hydrophobic and hydrophilic organic solvents at 110-145' C correlates with the loss of the

soluble, monomeric protein as caused by heat-induced aggregation. The heat-induced aggregates
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of ribonuclease were also characterized as being both physically associated and chemically

crosslinked in nature, in part due to transamidation and intermolecular disulfide interchange.

Using bovine pancreatic ribonuclease A as a model protein, it was established that

enzymes are more thermostable in hydrophobic solvents (shown to be essentially inert) than in

hydrophilic ones (shown to strip water from the enzyme). Using differential scanning

calorimetry, we were able to quantitatively analyze the conformational thermostability of enzymes

in neat hydrophobic organic solvents. It was determined that the thermostability of RNase in

nonane decreases as the water content of the enzyme powder increases. It has been shown that

water acts as a molecular lubricant thereby increasing conformational flexibility of enzymes in the

dry state (Rupley QJ al., 1983). Our findings suggest that RNase is conformationally rigid in

hydrophobic organic solvents due to lack of water, and therefore, similar to the increased rigidity

of thermophilic enzymes (see literature survey), more thermostable in organic solvents than in

aqueous solution.

By understanding the causes and mechanisms of enzyme thermoinactivation, we can

develop strategies to stabilize enzymes at elevated temperatures. A summary of these general

strategies is shown in Table 9 which include both conventional chemical and physical methods

and newer technologies such as protein engineering and the screening of thermophilic

microorganisms. The experimentally obtained data from this project on the mechanisms of

irreversible thermal inactivation of enzymes offer specific solutions to the particular cases

examined. For example, since it is likely that the cleavage or reshuffling of -S-S- bonds will

inactivate an enzyme, one should conclude that it is unwise to genetically engineer new cystine

residues in enzymes that are to work at high temperatures for prolonged periods of time. In other

words, although additional disulfide bonds stabilize proteins against reversible thermal unfolding

(by reducing the entropy of the unfolded state, see Anfinsen and Scheraga, 1975), they may not

be as useful against irreversible thermoinactivation and, in fact, their introduction results in new

"weak links" in the enzyme molecule.
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Effectors Comments

Intrinsic stability

1. Mesophilic vs. thermophilic enzymes Rigidification of enzyme conformation

2. Site-directed mutagenesis Replacement of labile amino acid residues

Additives

1. Specific Shift N <-> U toward the native form

2. Nonspecific Neutral salts and polyhydric compounds

3. Competitors Outcompete enzyme for inactivating agent or

remove catalyst of deteriorative reaction

Immobilization

1. Partitioning and diffusional effects Change microenvironment around enzyme

2. Multipoint attachment of enzyme Rigidification of enzyme conformation or

circumvent protein aggregation

Chemical modification

1. Cross-linking reagents Rigidification of enzyme conformation

2. Alter ionic state Add, neutralize, or change charged residues

3. Introduce steric hindrances Inhibit interactions with other macromolecules

Table 9 - Examples of approaches to minimize irreversible thermoinactivation of enzymes as

described by Volkin and Klibanov (1989b).
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The studies on immobilized glucose isomerase showed that deamidation of asparagine

and glutamine residues demarcates the upper limit of the immobilized enzyme's thermostability.

Therefore, it will be very difficult, if not impossible, to carry out isomerization reactions at 100*-

1050 C to bypass the chromatographic enrichment of HFCS to 55% fructose. The conclusions of

this work also have important implications for those wishing to produce more thermostable

glucose isomerases for use in current industrial bioreactors. Random mutagenesis or screening

of new microorganisms may yield enhanced stabilities by rigidifying the native form of the

enzyme, but only by chance. Site-directed mutagenesis can be helpful if used to replace the

enzyme's cysteine residue with a non-oxidizable, isosteric amino acid. Another rational

approach to more heat-resistant glucose isomerases involves elucidation of the reaction of the

enzyme with HFCS and/or impurities (pH drop, reaction with impurities, or Maillard reaction

(Gottschalk, 1972; Whitaker, 1983), followed by designing a strategy for avoiding that reaction.

It has been shown that when an enzyme is heated at or below its melting temperature, the

thermal stability of the protein molecule is a function of its conformational stability, i.e.,

resistance against reversible thermal denaturation (see literature survey). In fact, this relationship

was seen during our studies with immobilized glucose isomerase. This enzyme was shown to

have a thermal denaturation temperature of 88* C (in 0.1 M fructose), and when heated at 90* C

(in the presence of 2 M xylitol), to inactivate by means of deamidation of its asparagine and/or

glutamine residues. However, when heated well below its thermal unfolding temperature, 700 C,

deamidation no longer caused thermoinactivation presumably because the labile (or affecting

catalytic activity) interior amide residues were no longer exposed to solvent. Water is the solvent

which facilitates protein mobility leading to reversible unfolding, incorrect structure formation

and aggregation (see literature survey). Therefore, the substitution of a nonaqueous medium for

water should stabilize enzymes against both conformational processes and covalent reactions that

cause irreversible thermal inactivation. The experimentally obtained data suggest that enzymes

are indeed far more thermostable in anhydrous organic solvents not only due to their

conformational rigidity in the dehydrated state, but also because of their resistance to most of the
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the covalent reactions known to cause irreversible thermoinactivation of enzymes in aqueous

solution.

In aqueous solution, the driving force in the transition between the unfolded and folded

form of a protein molecule is an entropic effect where interactions between the solvent and

hydrophobic regions of a protein molecule are minimized by the formation of tertiary structure

(Creighton, 1983). The question then arises as to why enzymes remain in their catalytically

active conformation and do not unfold in anhydrous organic solvents, where such interactions

will be drastically reduced? Zaks and Klibanov (1988 a) suggested that enzymes would indeed

prefer to unfold in organic solvents, but are prevented from doing so by the intramolecular

noncovalent forces of the native conformation which, in the absence of the "molecular lubricant"

water, kinetically trap the enzyme placed into organic solvents. Moreover, protein-protein

interactions were shown not to be the reason for the stability of proteins in organic milieu, since

immobilized chymotrypsin had the same activity as the free enzyme in organic solvents.

Our thermostability findings support this "kinetically trapped" hypothesis of enzyme

stability in organic solvents. Similar to the thermal denaturation of enzyme powders, we

observed a significantly higher thermal transition temperature for RNase in (hydrophobic)

organic solvents than in aqueous solution as measured by differential scanning calorimetry.

However, at a certain temperature there was enough heat added to overcome both the kinetic

barriers of the dehydrated enzyme and the intramolecular noncovalent forces that hold together

the enzyme molecule. The enzyme molecule then denatured, and this transition was shown to be

irreversible, i.e., the molecule did not refold into its native conformation after the first heat-

induced unfolding in organic solvents.
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VI. SUGGESTIONS FOR FUTURE RESEARCH

Future work in the area of enzyme thermostability will require increasingly more

sophisticated techniques and equipment in order to better understand the relationship between

reversible protein denaturation and the subsequent irreversible thermoinactivation events. The

application of two methodologies, namely protein engineering and biophysical spectroscopic

characterization, to the study of irreversible thermal inactivation of enzymes will be proposed

based on the results from this research project.

First, we have established the general nature of the covalent reactions that cause

irreversible thermoinactivation of enzymes at high temperatures. Specific residues have now

been identified and can be replaced by protein engineering techniques in order to increase the

thermal stability of practical biocatalysts when used at elevated temperatures. For example, site-

directed mutagenesis may be used to replace the labile cysteine residue in glucose isomerase with

an isosteric amino acid such as serine or alanine. This strategy eliminates the current protein

engineering protocol, dubbed by Knowles (1987) as "gee-whiz" mutagenesis, where an amino

acid residue is replaced and the consequences are subsequently determined. Similarly, other

"hot-spots" such as Asn-Gly and Asp-Pro may be changed in order to stabilize proteins or

peptides at moderate temperatures or for short times at high temperatures. Ironically, despite our

interest in enzyme stabilization, the results from this work indicate that the long term stabilization

of enzymes at high temperatures (for example, glucose isomerase at 900 C to isomerize dextrose

directly to 55% fructose) is not possible since replacement of all asparagine and glutamine

residues is likely to cause severe loss of activity or solubility in the mutant protein.

Protein engineering techniques (both random and site-directed mutagenesis) have been

successfully used to increase the stability of enzymes against reversible thermal denaturation in

aqueous solution (see literature survey). It would be of interest to attempt to increase the

conformational stability of enzymes in organic solvents during exposure to elevated

temperatures. Site-directed mutagenesis may prove helpful to understand which noncovalent

interactions within the protein molecule affect the stability of enzymes in organic solvents. For
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example, modification of surface residues may affect the amount of bound water while changes

in the interior of the molecule could increase hydrophobic and electrostatic interactions as well as

hydrogen bonding.

Results from this work, along with data from the other enzymes examined in our

laboratory, indicate that at temperatures above the thermal transition temperature of a protein, all

asparagine and glutamine residues are more or less equally labile (Appendix B). When proteins

are exposed to elevated temperatures which are at or below the Tm of the protein, there is a

correlation between reversible thermal denaturation (conformational rigidity) and irreversible

thermoinactivation processes, i.e., the tertiary structure of a protein affects the reactions which

cause irreversible thermoinactivation of enzymes at moderate temperatures. In fact, recent work

has shown that deamidation of asparagine residues in enzymes under physiological conditions is

controlled by the tertiary structure of the protein molecule (see literature survey). It would be of

interest to determine the role of the tertiary structure as a determinant of the covalent reactions

occurring during the irreversible thermoinactivation of enzymes in aqueous solution at moderate

temperatures.

For example, the effect of the protein tertiary structure on the destruction of S-S bonds

could be examined. Differential scanning calorimetry was used to measure the thermal

denaturation temperatures of RNase in this study. In addition, there are many optical

spectroscopic techniques which can monitor heat-induced changes in the conformation of a

protein (both tertiary and secondary structure) such as circular dichroism, fluorescence, UV

absorbance, and infrared and Raman spectroscopy. The last technique is particularly valuable

since it not only can measure protein thermal denaturation, but it can specifically monitor

disulfide bonds. Therefore, the effect of the changes in the secondary and tertiary structure of a

protein due to thermal denaturation could be correlated to both the temperature dependence of the

-S-S- bond signal and the kinetics of cystine destruction via the B-elimination reaction.
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Figure A- The temperature dependence of the pH of 0.1 M Tris-HC buffer containing 10 mM

MgSO4 (either with or without 2 M xylitol). Buffers were prepared at room temperature, and

then equilibrated at various temperatures in a thermostatically controlled glycerol bath. The pH

value was directly recorded at the elevated temperature, and were in reasonable agreement with

published temperature correlations for Tris-HCl buffer itself (Perrin and Dempsey, 1974).
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Appendix B - Rate constants of overall deamidation of proteins at 90-100* C, pH 4-8

The deamidation of asparagine and glutamine residues has emerged as one of the major

mechanisms of irreversible thermoinactivation of enzymes at high temperatures. This

degradative reaction has been shown to cause, solely or in part, the thermoinactivation of

lysozyme at 1000 C, ribonuclease at 900 C, triose phosphate isomerase at 1000 C, several

microbial a-amylases at 900 C, and immobilized glucose isomerase at 900 C (see literature

survey). Because of the generality of this deleterious reaction, these amino acid residues are

"weak links" in the protein molecule and demarcate the upper limit of protein thermostability.

The deamidation reaction involves the intramolecular cyclization of asparagine (and

glutamine) residues under neutral to basic conditions. Formation of the cyclic imide intermediate

requires the main chain amide to act as a nucleophile attacking the electrophilic carbonyl moiety

of the asparagine residue with the concomitant release of ammonia. This reaction is pH

dependent with enhanced rates at higher pH values. The subsequent hydrolysis of the cyclic

imide leads to a mixture of a and B-aspartic acid residues.(see literature survey).

The question naturally arises, are there any sequence dependent environments during the

deamidation of either Asn or Gln residues at elevated temperatures? It has been recently shown

that the first order rate constant of deamidation of three Asn containing hexapeptides show a

marked sequence dependence at 1000 C (pH 7.4) where a labile sequence of Asn-Gly deamidates

30-50 times faster than two bulkier (Pro and Leu) peptide sequences (Geiger and Clarke, 1987).

This work did not examine peptides containing either Gln residues or other Asn sequences. The

earliest research effort aimed at the deamidation of many different sequences of Asn and Gln was

carried out by Robinson and coworkers who synthesized pentapeptides of sequence (Gly Xxx

Asn Xxx Gly) or (Gly Xxx Gln Xxx Gly) and then measured the rate of amide loss under

physiological conditions (Robinson and Rudd, 1974). Their rate data showed that (i) both

asparagine and glutamine residues deamidate 30 to 2,000 times faster than a simple aliphatic

amide; (ii) asparagine deamidates about ten times faster than glutamine (on average) with half-
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lives of 6-507 and 96-3400 days, respectively; and (iii) the rate of deamidation is sequence

dependent (Wright and Robinson, 1982). In general, polar, charged or lower steric bulk

residues neighboring the asparagine or glutamine residue cause a rate acceleration (there are

exceptions to this trend). However, the authors state (Robinson and Rudd, 1974),"... It is

evident from these experiments that deamidation is strongly temperature dependent and that this

dependence is a function of the peptide sequence." Thus, this appendix addresses the question

of what is the sequence dependence of protein deamidation at elevated temperatures?

Instead of synthesizing the many possible combinations of peptides containing Asn and

Gln residues to examine of sequence dependencies, we decided to simply incubate pure proteins

(over a dozen) containing numerous Asn and Gln residues, and then measure the kinetics of

overall deamidation at high temperatures. If deviations from first order kinetics are observed,

then there must be a range of sequence-dependent deamidation sites as has been reported for

pentapeptides of Asn and Gln at 370 C (Robinson and Rudd, 1974).

By examining the time course of the deamidation reaction in the pH range of 4-8 in pure

proteins at extreme temperatures (90'- 100 C), we are looking at a temperature regime above the

thermal denaturation temperature (Tm) of most proteins (Bull and Breese, 1973 a,b). Therefore,

we do not anticipate any significant tertiary structure effects on the deamidation reaction at these

temperatures. In contrast, under physiological conditions, recent studies have confirmed that a

protein's tertiary structure is a principal determinant to protein deamidation (using neutron

diffraction techniques time-aged, deamidated protein crystals of trypsin were examined

(Kossiakoff, 1988), kinetic studies were carried out on the deamidation of a particularly labile

Asn-Gly sequence in ribonuclease (Creighton, 1989), as well as a protein sequence data base

analysis by Clarke (1987)). By determining the variation in the rate constant of deamidation

amongst different proteins at elevated temperatures, we can directly determine the effect of

remaining higher ordered structure on protein deamidation at elevated temperatures.

As an initial experiment, the kinetics of the deamidation of insulin, a small, well-

characterized protein containing three asparagine and three glutamine residues, were determined.
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Insulin was dissolved in sodium acetate buffer (0.1 M) at pH 4, placed into glass ampoules,

sealed, and then heated for various times at 1000 C. The protein solution was then cooled,

opened, and the concentration of dissolved ammonia was determined by means of a chemical

assay described by Forman (1964). As shown in the accompanying Figure B, ammonia is

indeed released upon the heating of the protein solution, and this evolution of NH 3 closely

follows first order kinetics (corr. coeff. 0.99) with a corresponding half-life for the overall

deamidation process of 70 hours. As this reaction proceeds to completion, it levels off at the

expected amount (six mole equivalents) which is the total number of asparagine and glutamine

residues in the insulin molecule.

We then repeated this experiment at pH 4 and 100' C with nine other proteins, and the

results are summarized in the top half of Table B. Regardless of whether the protein remained

soluble or aggregated during 300 hours of heat treatment, the release of ammonia followed first

order kinetics (corr. coeff. of 0.99 in most cases and 0.97 or better for all proteins examined)

with a range of half-lives between 70-183 hours. After the exponential release of ammonia, a

very slow, linear increase in the detectable amounts of ammonia was observed with some of the

proteins after 300 hours of heating at 1000 C, pH 4. In order to understand why this

phenomenon was occurring, we subjected all ten heat-treated (for 300 hours) proteins to amino

acid analysis (see experimental section), and it was found that no other amino acids were

destroyed with the exception of small amounts of histidine (10-20%); this amino acid, along with

arginine, have been shown to be labile and susceptible to ammonia release during the extended

heat treatment of food proteins (Ledward, 1979). Therefore, the rapid, exponential release of

ammonia must be due to the deamidation of asparagine and glutamine residues, while the slow,

linear increase during exhaustive heating is due to the destruction of other amino acids.

The time course of overall deamidation in proteins follows first order kinetics, which

implies that at extreme temperatures protein-bound asparagine and glutamine residues are more or

less equally labile. This result is contrary to the behavior of Asn and Gln containing penta-

peptides under physiological conditions where asparagine deamidates faster than glutamine
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Figure B- The time course of the release of ammonia from insulin at 100~ C and pH 4. The

experimental protocol is described in Appendix B: 50 p.M insulin in 0.1 M acetate buffer. The

dashed line represents the total number of Asn + Gln residues per insulin molecule. The solid

line is a theoretical curve corresponding to the first order kinetic model with a rate constant of

0.0099 hr -1. Different symbols represent separate experiments.
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enzyme Deamidation half-life (hrs) visible aggregate during
at pH 4 and 100* C heat treatment?

ribonuclease 148 no

lysozyme 97 no

trypsinogen 183 yes

chymotrypsinogen 90 yes

transferrin 113 no

ovalbumin 100 yes

papain 83 yes

soy bean trypsin inhibitor 100 yes

bovine serum albumin 75 yes

insulin 70 no

enzyme Deamidation half-life (hrs) Deamidation half-life (hrs)

at pH 6-6.5 at pH 8

ribonuclease at 90' C 38 5
(Zale and Klibanov, 1986)

lysozyme at 100* C 25 6
(Ahern and Klibanov, 1985)

three different microbial
a-amylases at 900 C 32 - 43 7.7 - 8.2
(Tomazic and Klibanov, 1988a)

glucose isomerase at 900 C - 10.5

glucose isomerase with
2 M xylitol at 900 C 33
(Volkin and Klibanov, 1989a)

Table B- The kinetics of the release of ammonia from proteins at 90-100' C at pH 4, 6 and 8.

All half-life values are calculated from first order kinetic rate constants fitted to the experimental

data as explained in Figure B.

164

--- i



residues (Robinson and Rudd, 1974). Apparently, any structural or conformational restraints on

the deamidation of glutamine versus asparagine residues (see literature survey) are overcome at

such high temperatures.

These data on the rates of overall deamidation in a variety of proteins also show that there

is no significant fraction of amide residues in proteins that are observably more stable towards

the deamidation process at 90-100' C, and thus it establishes the upper limit of the thermal

stability of amide residues in proteins at high temperatures. The Asn-Gly sequence has been

shown to be labile (Geiger and Clarke, 1987; the only known deamidation "hot-spot" due to its

conformational flexibility), but it occurs no more frequently in proteins than would be expected

from the bulk amino acid composition (Clarke, 1987). Therefore, this hot-spot was not detected

in our system because these proteins contain, on average, over 20 amide side chain residues, and

therefore, one labile sequence (if present at all) would not be distinguishable from the numerous

other sequences. Nevertheless, these findings show that the vast majority of asparagine and

glutamine residues are, on average, equally labile with no pronounced sequence dependence at

90-1000 C.

The next step in this investigation was to examine the pH dependence of the heat-induced

deamidation. As shown in the bottom half of Table B, the rate of overall deamidation in proteins

(in the case of a-amylase calculated from the initial release of ammonia) increased with higher pH

values, as would be expected from the cyclic intermediate mechanism (see literature survey). For

example, the half-life of the overall deamidation of lysozyme at 1000 C decreases from 97 to 25

to 6 hours as the pH changes from 4 to 6 to 8, respectively. Similar trends are seen with the

initial release of ammonia from immobilized glucose isomerase at pH values of 7, 8, and 9 (see

Table 3). The overall time course of ammonia evolution from glucose isomerase at pH 8 and 900

C (Figure 14) closely follows first order kinetics (corr. coeff. 0.99) as had been observed

previously for proteins at pH 4.

Despite the wide variety of proteins examined, the half lives of overall deamidation in

proteins are quite similar with variations of only 2-3 fold within each pH regime. Since
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temperatures such as 90-100* C are above the thermal denaturation temperature of most proteins,

there are no significant amounts of remaining tertiary structure to limit protein deamidation as is

observed under physiological conditions. It has been shown that immobilized glucose isomerase

thermally denatures at 880 C at pH 8 (see Figure 11). As can be seen on the last two lines of the

bottom half of Table B, the deamidation of glucose isomerase proceeds at a rate similar to

completely thermounfolded enzymes such as lysozyme and ribonuclease. However, when the

ligand xylitol (2 M) is added, it stabilizes the enzyme against thermal denaturation at 900 C by

shifting the equilibrium between folded and unfolded enzyme toward the former (see Figure 12).

Interestingly, the ligand simultaneously inhibits (by three fold) the rate of the deamidation in

glucose isomerase at 900 C, implying that the remaining elements of the enzyme's tertiary

structure have only a modest effect on the deamidation process. This modest effect is most likely

due to the increased amount of conformational flexibility due to thermal motion at 90' C, which

overcomes any remaining structural restraints on the deamidation process.

In summary, we have established that protein deamidation at 90- 1000 C is a general

process occurring in over a dozen different proteins. The observed time course of this reaction

follows first order kinetics implying that the vast majority of asparagine and glutamine residues

are more or less equally labile (no sequence dependence) at such extreme temperatures. In

addition, this reaction is pH dependent, and as expected from the mechanism of protein

deamidation, the process is faster at higher pH values. Furthermore, despite the wide diversity

amongst the proteins examined, the rate constants of overall deamidation in proteins are very

similar with half-lives of 8 ± 3 hours at pH 8, 41 ± 9 hours at pH 6, and 132 ± 50 hours at pH

4. Thus, the remaining elements of higher ordered structure do not significantly affect the

deamidation of proteins when heated above their thermal denaturation temperature.
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APPENDIX C - Calculation of irreversible thermoinactivation of enzymes due to

deamidation: strategy, assumptions, and technical problems

Sections (i) through (iv) describe how to calculate irreversible thermoinactivation of enzymes due

to deamidation including all assumptions made for any particular enzyme. Part (v) is a

discussion of why this protocol could not be applied to glucose isomerase. Finally, part (vi)

briefly explains why the data in Figure 15 contains so much scatter.

(i) Determination of Distribution of Deamidated Species - After thermoinactivation of an

enzyme solution, the distribution of mono, di, tri, etc. deamidated species is determined

via isoelectric focusing. Since deamidation results in the transformation of a neutral

species (Asn) to a charged one (Asp), separation by means of charge differences is then

possible. The quantitative determination of the relative amounts of each species is done

by gel densitometry. For triose phosphate isomerase, the distribution of deamidated

species was calculated via decrease in native band intensity instead of the increase in

secondary bands due to differences in the binding of the coomassie blue stain.

(2) Specific Activity of Each Deamidated Species - Proteins from the stained bands in the

isoelectric focusing gel are then extracted from the gel; the protein is refolded and assayed

for enzymatic activity. This procedure works well for small, monomeric proteins, but is

difficult with oligomeric ones which cannot quantitatively refold from the denatured state.

Therefore, for a-amylases, average values of decrease in specific enzymatic activity per

successive deamidation must be used as shown in Table C:
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Specific Activity (% of Native)
Number of amide residues hydrolyzed

0 1 2 3

Ribonuclease 100 65 38 19

Lysozyme 100 52 ----21-----

Cytochrome C 100 60 20

Triose phosphate 100 66

isomerase

Table C- Specific activity of deamidated proteins as described by Ahern et al., 1987.

(iii) Normalization by Molecular Weight - The literature data was normalized to account for

differences in molecular weights between the small protein molecules listed above and a-

amylases. For example, when 1 out of 17 amide residues deamidates in ribonuclease, a

35% of the specific activity is lost. Therefore it was assumed that for B.

stearothermophilus a-amylase to undergo a comparable loss of specific activity, 2.4 out of

40 amide residues had to deamidate.

(iv) Inactivation Due to Deamidation-- The time course of thermoinactivaton due to deamidation

is calculated by multiplying the specific activity (part ii) by the percent distribution of each

species (part i) followed by summation of these activities at each time point:

total species
Activity at time (t)= X (specific activity) x (% distribution)

(v) Glucose Isomerase - The strategy outlined above (used to determine inactivation due to

deamidation) could not be applied to this enzyme because (1) isoelectric focusing with an

immobilized enzyme is impossible, and (2) soluble glucose isomerase is an acidic protein
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(p1 of 4.0), thus the initial few deamidations do not change the net charge of the protein

sufficiently to allow for separation of deamidated species by means of isoelectric focusing,

and (3) this dimeric enzyme does not quantitatively refold from the denatured state.

(vi) Scatter in Modelling Data (Figure 15) - Since it is not clear which of the assumptions

listed above are more realistic, in the interests of fairness and objectivity, Figure 15

incorporates the data resulting from all of them (sections i-iii). We were not interested in

minimizing the scatter in order to beautify the figure. The only objective was to obtain a

"ball park" estimate.

169



Appendix D- Cysteine Oxidation and Amide Deamidation at 90* C vs. 700 C

The data presented in this work showed that both deamidation of a key asparagine and/or

glutamine residue and oxidation of a cysteine residue cause thermal inactivation of glucose

isomerase. However, the relative contribution of each degradative reaction to the thermal

inactivation of glucose isomerase changes at different temperatures. For example, let us first

examine the irreversible thermoinactivation of glucose isomerase at 90' C. The rate of loss of

enzymatic activity can be expressed with the following rate equation:

vinact. = vdeamidation + vcysteine oxidation (1)

According to the first-order rate equation (a parallel reaction system; Smith, 1981), we can

rewrite equation (1) as:

dE
Sdt - kdE + kcoE

where E is the molar concentration of enzyme, and kd and kco are the rate constants of

deamidation and cysteine oxidation, respectively. We can now rearrange the equation as follows:

dE
Sdt (kd + kco) E

dE
E - (kd4 + kco) dt

then integrate both sides of the equation,

f -E - (kd + kco) fdt
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In E = - (kd + kco) t + C

and solve for the integration constant and rearrange,

at t = 0, E = Eo; therefore, C = In EO

Eoin Eo - - (kd + kco) t

by exponentiating each side of the equation, we can develop an expression which describes the

remaining concentration of active enzyme at any time t:

E = Eo exp - (kd + kco) t (2)

Figures 13 and 17 show that the half-life for deamidation and cysteine oxidation is 30

minutes (kd = 0.023 min -1) and 90 minutes (kco = 0.0077 min -1), respectively. Since the ratio

of kd/kco = 3, we should see, according to equation 2, a 1.25 fold (or 25%) stabilization of

glucose isomerase when heated at 900 C under reducing conditions. However, no apparent

stabilization was observed experimentally (see Figure 18). Although individual experiments

could detect a slight stabilization (1. 10-1.15 fold), this minor effect can no longer be seen when

these individual experiments are graphed together as shown in Figure 18. This "masking" is due

to the high activation energy of the thermal inactivation process (Figure 20), where differences as

small as 10 C between individual experiments can affect the experimentally observed rate of

thermal inactivation by two fold. In summary, our experimental techniques were not sensitive

enough to detect this anticipated stabilization at 90' C. Conversely, during the irreversible

thermoinactivation of glucose isomerase at 70' C, the enzyme molecule is more folded (Figure
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11) thereby shielding the key amide residue from the solvent and preventing its deamidation (see

text); therefore, under these conditions, cysteine oxidation dominates the inactivation process as

shown in Figure 19. Thus the cause of irreversible thermoinactivation of immobilized glucose

isomerase depends on the temperature regime.
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