
A Hybrid Parallel Framework for Computational

Solid Mechanics

by

Piotr Fidkowski

S.B., Civil Engineering, Massachusetts Institute of Technology (2009)

S.B., Aeronautics and Astronautics, Massachusetts Institute of Technology (2009)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 19, 2011

Certified by. .
Raúl A. Radovitzky

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Eytan H. Modiano

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

A Hybrid Parallel Framework for Computational Solid

Mechanics

by

Piotr Fidkowski

Submitted to the Department of Aeronautics and Astronautics
on May 19, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

A novel, hybrid parallel C++ framework for computational solid mechanics is de-
veloped and presented. The modular and extensible design of this framework allows
it to support a wide variety of numerical schemes including discontinuous Galerkin
formulations and higher order methods, multiphysics problems, hybrid meshes made
of different types of elements and a number of different linear and non-linear solvers.
In addition, native, seamless support is included for hardware acceleration by Graph-
ics Processing Units (GPUs) via NVIDIA’s CUDA architecture for both single GPU
workstations and heterogenous clusters of GPUs. The capabilities of the framework
are demonstrated through a series of sample problems, including a laser induced cylin-
drical shock propagation, a dynamic problem involving a micro-truss array made of
millions of elements, and a tension problem involving a shape memory alloy with a
multifield formulation to model the superelastic effect.

Thesis Supervisor: Raúl A. Radovitzky
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to recognize and thank all the people that contributed ideas and sup-

port to help make this work possible. I thank my advisor, Professor Radovitzky for

his advice and direction. Many of the designs in this work were born out of lively

white-board discussions with my colleagues, and I would like to thank Julian Rimoli

for countless contributions, as well as the members of my research group, Michelle

Nyein, Lei Qiao, Andrew Seagraves, Brandon Talamini, and Mike Tupek. I must

especially thank Lei Qiao for developing the superelastic material model and aiding

me in understanding and implementing it. The GPU work presented here was done

at Argonne National Lab, and would not have been possible without the aid of my

mentors Pavan Balaji and Jeff Hammond.

I wish to acknowledge the support of my parents and brothers, as well as the

support of the friends who made my house in Cambridge a second home. I am

additionally thankful to my friends throughout Boston and beyond for providing

plenty of diversions outside of research.

This work was made possible in part by the Computational Science Graduate

Fellowship provided by the U.S. Department of Energy and administered by the Krell

Institute, under grant number DE-FG02-97ER25308.

5

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Background . 14

1.2.1 Finite element method . 14

1.2.2 Modern finite element codes 16

1.3 Scope and outline . 20

2 Object-Oriented Framework 23

2.1 Objectives . 23

2.2 Topology and meshes . 25

2.2.1 Interface . 25

2.2.2 Simplicial complex structure for topology 27

2.2.3 Implementation . 28

2.3 Finite elements module . 31

2.3.1 Fine grained vs. coarse grained containers 31

2.3.2 Interface . 34

2.3.3 Implementation . 36

2.4 System of equations and fields . 37

2.4.1 Interface . 37

2.4.2 Implementation . 38

2.5 Solvers and integrators . 41

2.5.1 Interface . 41

2.5.2 Serial and parallel solver implementation 42

7

3 GPGPU Acceleration 49

3.1 Motivation . 49

3.2 Serial FEM with CUDA . 51

3.3 CUDA + MPI Hybridization . 59

3.4 Seamless integration of GPGPU acceleration 65

4 Numerical Tests and Application Problems 69

4.1 Laser induced shock . 70

4.2 Wave propagation in a micro-truss array 73

4.2.1 Mesh generation . 75

4.2.2 Wave propagation analysis . 77

4.3 Superelastic bar under tensile load 80

4.3.1 Material model . 81

4.3.2 Implementation of the coupled system 82

4.3.3 Results for static loading . 83

5 Summary and Conclusions 87

A Generation of BRep for micro-truss 91

8

List of Figures

2-1 The main classes in the mesh and topology module. 26

2-2 A simple cell complex . 28

2-3 Class hierarchy for virtual overhead test 33

2-4 Virtual call performance results . 34

2-5 Primary classes and relationship in the elements module. 35

2-6 Interface to systems module . 38

2-7 Relevant classes for system output . 40

2-8 Class heirarchy for SparseMatrix . 43

2-9 Aluminum sandwich panel buckling 47

2-10 Parallel direct solver strong scaling 47

3-1 Data dependencies for residual calculation. 55

3-2 Memory structure for GPU and CPU. 57

3-3 Explanation of global memory coalescing 58

3-4 Strong scaling properties of the CPU version of our code. 61

3-5 Synchronization step for distributed memory parallel algorithm. . . . 62

3-6 Hybrid parallel decomposition of a mesh 62

3-7 MPI communication maps . 63

3-8 Strong scaling for MPI+CUDA code 65

4-1 Overview of laser induced shock experimental setup. 70

4-2 Coarse mesh used for investigating laser induced shock propagation. . 71

4-3 Laser shock trajectory comparison . 73

4-4 Laser shock speed comparison . 74

9

4-5 Laser shock pressure profiles . 74

4-6 Assembly of microtruss mesh unit from individual leg mesh. 76

4-7 Boundary representation for a truss leg with geometric parameters. . 76

4-8 Micro-truss scaling test with 256 units 77

4-9 Top view of wave propagation in 5x5 micro-truss array. 78

4-10 Side view of wave propagation in 5x5 micro-truss array. 79

4-11 Evolution of martensite volume fraction. 85

A-1 labeled BRep for micro-truss leg . 94

10

List of Tables

2.1 Topology memory and CPU usage . 29

3.1 Performance comparison of the GPU code 59

3.2 Relative times of hybrid synchronization steps 64

4.1 Parameters for water material model 71

4.2 Parameters for micro-truss material 79

4.3 Parameters for shape memory alloy material 83

11

12

Chapter 1

Introduction

1.1 Motivation

In recent years, computational science has become one of the primary pillars of scien-

tific research, alongside theory and experimentation. A number of different techniques

and technologies have been developed to advance the state of the art in simulation.

In the particular case of the finite element method, many computer codes were devel-

oped in Fortran in the 1970s to solve the continuous Galerkin finite element problem.

However, many of these codes were written to solve one specific application, and few

are flexible enough to handle the newest schemes and technological improvements

such as GPU parallelization [1]. These limitations of code structure make it diffi-

cult to integrate the latest research that is required to solve ever larger and more

complicated problems.

Computationally understanding complex material phenomena such as fracture,

plasticity, and impact requires a combination of new numerical methods and improved

computing power. Discontinuous Galerkin formulations have recently shown promise

in brittle fracture problems [2], and also have beneficial conservation properties for

wave propagation. The desire to accurately and efficiently capture wave interaction

in impact and fracture problems motivates the need for higher order elements. Solv-

ing thermoelastic problems or problems involving superelastic materials can require

coupled, multi-physics approaches with multiple unknown fields and equation sets

13

on possibly different interpolations. Introducing length scales in plasticity can be

accomplished through the use of strain gradients, which have higher order continuity

requirements and may involve coupled systems of PDEs. Pushing the state of the

art in computational solid mechanics will require us to take advantage of all of these

numerical schemes, and will require new algorithms and data structures to handle the

interactions.

Beyond these numerical technologies, we also need increased computational power

to properly resolve the length and time scales in our problems. Modeling intricate

geometries such as a human brain for blast problems requires a large number of degrees

of freedom. Resolving the proper length scales in plasticity problems can require

very refined meshes. Many modern finite element codes parallelize over distributed

memory clusters to allow for solution on larger meshes or to reduce computation time.

Recently, however, shared memory multicore technology such as Graphics Processing

Units (GPUs) have gained prominence due to their impressive arithmetic ability and

high power efficiency. Taking advantage of the potential speed increases offered by

these new technologies requires new parallel algorithms. We ultimately envision a

simulation capability where the limit in problem size is given by the available hardware

and not by the scalability of the software architecture.

The main purpose of this thesis is to address this need and opportunity in com-

putational solid mechanics and develop an extensible, object-oriented finite element

framework with the goal of efficiently supporting new technologies and being modular

enough to be extensible to unanticipated new methods.

1.2 Background

1.2.1 Finite element method

Ultimately, any computer code for the finite element method is a translation of the

mathematical formalism in the numerical scheme to a computer program. Differ-

ent mathematical concepts have implementations as various functions, variables and

14

classes. As a reference for our later discussion of finite element frameworks, we will

briefly review the overall mathematical structure for a static problem. Further details

can be found in numerous references, including [3, 4].

We would like a numerical method to solve the general variational formulation

a(ū+ ug, v) = l(v), ∀v ∈ V , (1.1)

where V is a suitable space of functions over our domain Ω that vanish on the Dirichlet

portion of ∂Ω. The solution is separated into a function ug that satisfies the Dirichlet

boundary conditions and ū ∈ V . We also assume that the forms a and l are linear in

v.

1. Construct a discrete approximation Ωh to the original problem domain Ω.

2. Determine a finite element triangulation Th for the domain Ωh, and for each

element K ∈ Th establish a map ϕK from the reference element to the element

domain in Ωh.

3. Choose a function space on each K ∈ Th, thus establishing an approximate

function space Vh to the original function space V(Ωh). Given N degrees of

freedom, we have that Vh = span(v1, v2, ..., vN) for the N basis functions vi.

4. Approximate both forms a and l by new forms ah and lh that integrate over the

approximate domain Ωh.

5. Approximate ug by ugh and ū by ūh ∈ Vh. Express ūh as a linear combination

of our basis functions:

ūh(x) =
N
∑

a=1

ūha
va(x) (1.2)

6. Approximate v by vh and express by a combination of basis functions as above.

Simplifying, we find:

ah(
N
∑

a=1

ūha
va(x) + ug, vi) = lh(vi), i = 1, 2, ..., N, (1.3)

15

where this system of equations is either linear or nonlinear depending on the

character of the form ah.

7. Solve the system of equations (1.3) via a linear or nonlinear solver for the

unknown coefficients uha
. These coefficients determine a functional form for

our solution function by the formula in (1.2)

This structure applies for the general finite element method applicable to fluid

mechanics, magnetism, solid mechanics, and many other partial differential equations.

The particular case of computational solid mechanics adds additional complexity due

to the highly non-linear character of the form a as well as the need to describe the

evolution of history variables such as damage or plastic strain of material points. In

addition, fracture problems involve complex topological considerations in an attempt

to model the developing fracture surface.

1.2.2 Modern finite element codes

The finite element method is a widely used tool in computational science, and has

been researched and developed for the last 40 years. The original finite element codes

were largely written in imperative, procedural languages such as Fortran. Although

these codes achieved high numerical performance, they were not designed with mod-

ularity and extensibility in mind. Even today, some current finite element packages

in wide use still have core functionality derived from these original codes, possibly

translated from Fortran to C, but with the same design principles. Much progress

has been made in improving the parallel performance of finite element codes on large

distributed memory clusters. Sandia Labs has developed the SIERRA framework [5],

which provides a foundation for several computational mechanics codes, including the

explicit code Presto and the quasi-static Adagio. The SIERRA framework provides

basic services for parallel multiphysics applications, including mesh refinement, load

balancing and communication based on MPI. However, these codes can not yet han-

dle accelerator technologies such as computing on GPUs. In addition, many other

new schemes such as discontinuous Galerkin, xFEM, and particle methods such as

16

peridynamics or Smooth Particle Hydrodynamics are only available in very specific

new research codes.

The need to integrate all of these features within a single package requires a com-

plete rethinking of the code design and software architecture, as well as the adoption

of modern languages and software engineering practices. Object-oriented languages

such as C++ provide an acceptable compromise between flexibility and performance

as evidenced by the prevalence of C++ in modern codes [1, 6, 7]. Functional, declar-

ative languages (such as OCaml, Haskell, Scheme) are also an appealing environment

for writing Finite Element codes. In the first place, mathematical formulations can

translate almost directly to code. Secondly, since declarative languages specify what

must be done, and not how to do it, they are well suited to parallelization. Un-

fortunately, the most strict functional languages will not allow side-effects, such as

an update of an array in place. An early attempt in the Miranda language showed

promise in the clean translation of mathematical formalisms to code, but also revealed

the severe performance penalties [8]. However, other functional languages like Haskell

have facilities for creating mutable types and may prove more promising.

Most modern C++ finite element codes follow a fairly similar overall structure

of classes, which naturally relate to intuitive mathematical objects and operations in

the finite element method. Thus, there is a class corresponding to the geometrical

mesh for the problem domain, classes corresponding to individual elements, classes

corresponding to mathematical solvers, and finally classes corresponding to post-

processing and output. The primary differences lie in the boundaries between what

the various class definitions encompass and their interactions with each other. We

will explore several modern finite element codes by examining their various strategies

for determining these boundaries.

One of the first objects involved in a finite element code is an object for meshing

and topology. One of the earliest papers on object-oriented design principles for

the finite element method [9] provides a MESH class to store all coordinates values

and the connectivity information. The class designs in this paper are a fairly direct

translation of Fortran design principles, as the MESH class simply wraps the old

17

coordinate array and connectivity table in a C++ class. This object is an active

part of calculations, and is passed as a parameter to solvers. Unfortunately, such a

design limits a single mesh to be used with a specific type of element, which may

not be desirable for multi-physics problems that reuse the same mesh for different

equation sets. More recent codes choose to separate the concepts of geometry and

degrees of freedom, and define a Mesh as the geometry and topology of the domain

as well as a finite element FunctionSpace object for storing degree of freedom and

element information (deal.II [1], DOLFIN,[7]). Other codes provide this separation

in principle, if not in name, by including the connectivity map within the Element

class (libMesh [6]).

The core class of an object-oriented finite element code is the Element class. The

exact responsibilities of the Element differ from code to code. In deal.II the Element

corresponds to a mathematical reference element and provides a polynomial function

space along with the associated node functionals on a certain reference domain. The

class interface provides methods to determine shape function values and gradients, as

well as an enumeration of degrees of freedom per vertex, line, quad and hex (deal.II

is designed with hypercubes in mind as the reference domain for elements) [1]. A

similar approach is found in libMesh with their FEBase class for matrix routines and

quadrature and derived classes for different function spaces [6]. In both programs,

the actual assembly of the system matrix and residual vector is left up to the user.

The library code provides iterators for looping over the elements and then shape

function values, gradients and jacobians for each element. This allows the library to

be used for generic equation sets. However, this approach is not as well suited for

solid mechanics since we require a framework for dealing with various material models

as well as storage capability for quadrature fields like damage parameters and plastic

strains.

One of the advantages of programming a finite element code in C++ is that we can

make use of the language’s features for inheritance in objects. An abstract Element

class can derive into more specific elements and virtual function calls can be used to

delegate responsibility to the correct element. Unfortunately, virtual function calls

18

add a layer of indirection that impacts performance. In addition, storing data in local

arrays allocated per element can lead to memory fragmentation. One solution is to use

templates as a method for delegation instead of inheritance, a solution implemented in

libMesh. Specific types of finite elements are implemented as template specializations

of a templated FE class, thus removing the overhead of virtual function calls. A

disadvantage of this approach is that different types of elements cannot be put into

the same container. Template code can also be more difficult to read and maintain

than standard inheritance, and also has an impact on compilation time.

Another approach for improving element performance that has been recently gain-

ing traction is automatic code generation. Given a mathematical expression for the

forms in the variational formulation, specific C++ element code for matrix and right

hand side assembly can be generated. Using this method allows the application writer

to rapidly develop fast finite element solvers for a variety of equations using scripting

languages such as Python or specialized languages for specifying mathematics. The

DOLFIN code uses this approach and has a large library of elements for use in solv-

ing the specified equations [7]. Although this approach allows for the rapid solution

of relatively simple PDEs, it is not appropriate for computational solid mechanics

since complex material models that include plasticity, viscoelasticity, etc. cannot be

expressed in such a simplified form. In addition, more difficult equations may require

specific strategies for stabilization, such as the solution of variational forms in a dis-

continuous function space. The extra stabilization terms that must be added to the

form a for different PDEs are the subject of much ongoing research and cannot be

easily determined by an automated system.

The original finite element codes would have elements specialized for solving a

specific equation, such as linear elasticity. Modern codes are more flexible, but differ

on how they handle storing and calling the equations to be solved. Automatic code

generators such as DOLFIN or FreeFEM++ [10] have the equations specified by the

application writer in a scripting language, and then include them in the assembly

routines of their generated element code. The code developed by Besson [9] focuses

specifically on solid mechanics, and thus the equation set is the standard field equa-

19

tions for non-linear elasticity, with a constitutive model specified by a material model

object attached to an element. More general codes such as deal.II leave the writing

of the actual element assembly to the application, and thus have no equation specific

code. libMesh takes a compromising approach and provides a hierarchy of System ob-

jects that provide the link between elements and equation sets. The assembly routine

and associated equation integration is implemented in this System object.

The final step in any finite element method involves the time integration and or

solution of a (non-)linear system of equations. In an implicit method, this solution

process will require one or more linear solves of a matrix equation. All the previously

mentioned codes include some notion of a base Solver class, with inherited solvers for

nonlinear problems and time integration. This Solver directs the assembly of any lin-

ear system of equations and applies appropriate boundary conditions. Many different

software packages are available for the solution of a linear system of equations. Most

modern codes include an abstract interface to a LinearSolver class that operates on a

SparseMatrix and a Vector for the right hand side. Inherited from this LinearSolver

base class are different solvers that can interface to packages such as PETSc [11],

MUMPS [12], WSMP [13], etc. Abstracting the solver interface in this manner allows

the application writer to choose the most effective solver for the particular problem.

In addition, the SparseMatrix class is often an abstract class that has inherited classes

for different implementations of sparse matrix storage formats.

1.3 Scope and outline

The remainder of this thesis describes the design and development of a finite element

framework flexible enough to implement the technologies discussed in the preceding

pages. In Chapter 2, we examine overall code design and discuss the interface and

implementation of the various C++ classes involved. Chapter 3 focuses on GPU com-

puting and further explains our motivation for exploring GPU acceleration. There

we also present serial and hybrid parallel GPU assembly algorithms and compare

computational efficiency to our CPU implementation. Finally, Chapter 4 presents

20

several benchmark problems to showcase the abilities of our code to solve real prob-

lems. These include a laser induced shock problem, a wave propagation problem in

micro-truss arrays and finally a demonstration of our multiphysics capability with a

superelastic material under tensile load.

21

22

Chapter 2

Object-Oriented Framework

2.1 Objectives

As stated in the introduction, the original motivation for developing an object-

oriented finite element framework is our desire to solve large, complex problems with

novel methods and technologies. The limitations of existing codes have prevented us

from achieving the full potential of the theoretical schemes available. With this mo-

tivation in mind, there are several objectives for the new code that drove our design

decisions.

The first objective is to support more general physical problems than finite elastic-

ity. We do not want any implicit assumptions about the nature of our unknown field,

such as whether it is a displacement field or its dimension. In addition, we do not

want the physical law that we are solving hard coded into our elements. For example,

if we simply generalize the unknown field but still retain the traditional elements and

material model of computational solid mechanics, we limit ourselves to solving the

equation:

A(ui, ui,j , ...)ij,j + bi = 0 (2.1)

where A is a tensor field and a function of the unknown field u (and its derivatives)

and b is an applied force. The flexibility gained by generalizing the physics from

this equation will allow us to solve more general problems, such as coupled thermal

23

elasticity or superelasticity. At the same time, we do not want the performance

penalties associated with an overly general structure. In addition, we want to make

developing new applications as simple as possible, and thus our code should offer

facilities for quickly setting up and solving common problems, such as finite elasticity.

The second objective is to provide support for a variety of different types of ele-

ments, with a focus on space efficiency for hybrid meshes and easy extensibility. By

leveraging the object oriented features of C++, we aim to make adding new elements

as simple as possible for future development. However, we also want to ensure that we

do not sacrifice speed through generality. We envision a simulation capability where

the limit in problem size is given by the available hardware and not by the scalability

of the software architecture. Therefore, great care must be taken in designing general

interfaces to avoid performance penalties for problems scaling to billions of degrees

of freedom and hundreds of thousands of processing units.

A third objective is seamless support for emerging parallel hardware, such as mas-

sively parallel multi-core CPUs and GPUs. We want to design our element assembly

operations in such a way that synchronization and offloading to GPUs is easy to im-

plement in a manner that does not interfere with the structure of the code. Ideally,

the application programmer using our framework should not worry about where the

code will end up being run, whether on a single computer, a cluster, or a cluster

of GPU nodes. In addition, future developers of the framework should not have to

maintain two completely separate code branches for GPU functionality and CPU

functionality.

Finally, we want to design our solution procedure in a modular way such that

it supports a wide variety of solver packages. The ubiquity of linear equations in

computational science has led to development of a wide variety of software packages

for solving linear systems, such as the aforementioned PETSc [11], MUMPS [12], and

WSMP [13]. Each solver has its own strengths and specialties, and an application

writer should be able to choose the appropriate solver for their system at compile

time based on their needs and the availability of libraries on the current platform. To

enable such flexibility, our framework must have a modular interface to a variety of

24

solver packages and matrix storage types.

In the following sections, we will describe how these objectives drove the design

of the major modules in our code. Within each section, we will offer some motivation

for the scope of the module, and then describe the interface to application writers as

well as the internal implementation.

2.2 Topology and meshes

In the background section of the introduction, we described the finite element method

in a series of steps. Each code module in our framework is designed to implement one

or more of these steps and then interface with the subsequent module. The topology

and meshing module deals with step 1 and step 2 of the outlined finite element process:

1. Construct an approximation Ωh to the original problem domain Ω.

2. Determine a finite element triangulation Th for the domain Ωh, and for each

K ∈ Th establish a reference map ϕK .

The topology and meshing module imports a coarse finite element mesh from a

file, constructing the appropriate topological information for the given geometrical

information and connectivity map. It then provides an interface to access all of this

information through iterators over geometric objects, allowing for the construction of

the reference maps and element function spaces in the next step.

2.2.1 Interface

In the design of this module, we differentiate between the ideas of geometry and

topology within a mesh. The geometry of the mesh deals with the embedding of

the mesh in space, and currently only stores the nodal coordinates. The topology

of the mesh deals with intrinsic topological structure of the various elements of the

mesh, and is completely divorced from coordinates. The traditional connectivity map

falls under the category of topology. Our framework uses the concept of a simplicial

25

Figure 2-1: The main classes in the mesh and topology module.

complex to store topological information and compute incidence relationships between

different topological entities.

An overall view of the main classes in the mesh and topology module is shown

in Figure 2-1. The Mesh class is essentially a container for a MeshGeometry and

MeshTopology, and provides procedures for loading a mesh from a file. The most

important interface to the user is the set of iterators show in the right hand side of the

diagram. These iterators are inspired by the work done in Logg, 2009 [14], although

our underlying implementation uses a very different representation for the topology.

Iterating over the mesh is done through classes derived from a base MeshIterator,

with specific iterators for vertices, edges, faces, etc. The iterator also contains a

corresponding class derived from the base MeshEntity, which provides an interface

to the topological object pointed to by the iterator. This internal MeshEntity is

updated as the iterator is moved along the mesh.

Similar to the approach in Logg’s paper, our syntax for creating and using a

MeshIterator is different from the usual STL syntax for iterators. Specifically, iter-

ators are not assigned from a begin() function, but rather constructed from either

a Mesh or a MeshEntity. Constructing an iterator on a mesh simply iterates over all

the vertices, edges, faces, etc. on the mesh. Constructing an iterator on an entity in a

mesh computes the appropriate incidence relationship and iterates over all entities of

26

Listing 2.1: Demonstrating the use of mesh iterators

// adding midpoints to a mesh

for (EdgeIterator edge(mesh); !edge.end(); ++edge) {

Vertex v1 = edge ->Start ();

Vertex v2 = edge ->End();

for (int i = 0; i < dim; ++i)

coordinates(new_node ,i) = 0.5*(v1.coordinates ()[i]+

v2.coordinates ()[i])

for (CellIterator cell(*edge); !cell.end(); ++cell) {

// add new node to connectivity table for given cell

}

}

the specified dimension incident to the given entity. In addition, the end condition is

done by directly querying the iterator as opposed to comparison to a special sentinel

end iterator. This is done because the end condition can vary greatly depending on

the calculated incidence relationship. To illustrate these ideas, an example from the

library code is shown in Listing 2.1.

2.2.2 Simplicial complex structure for topology

Computing incidence relationships requires topological information about the mesh.

For our underlying structure, we use the concept of a cell complex. To elucidate the

central ideas, we will briefly summarize simplicial complexes, which are a specific case

of cell complexes.

Before we define a simplicial complex, we must define a simplex, or more specifi-

cally an n-simplex. An n-simplex is an n-dimensional polytope, which is defined as

the convex hull of a set of n+ 1 points. For example, a triangle is the convex hull of

3 points and a tetrahedron is the convex hull of 4 points.

Following the definition in [15], a Simplicial Complex K is a set of simplices in

Rd such that:

1. The faces of a simplex C ∈ K are elements of K.

2. Given two simplices C1, C2 ∈ K the intersection of C1 and C2 is a either empty

27

a +
1

b

c

d

e

2 3
−

0

0
4

0

0

00

0

0

+

+

+

+

−

−

−

−

0

0

A

B

a b c d e
+

0 −0
0 0+ +

− +2 3

4

1

a

c

b

ed
B

A

Figure 2-2: A simple cell complex composed of two adjacent 2-simplices, with vertices
(numbers), edges (lower case letters) and faces (upper case letters). A table row indi-
cates a boundary and a column indicates a coboundary. The signs signify incidence
with orientation, while a 0 signifies no incidence.

or a common face of both cells, and an element of K.

The boundary of a cell C ∈ K is the set of faces of C. The coboundary of C is

the set of cells in K for which C is an element of their boundary. We can introduce

the notion of orientation by assigning a sign to each element in the boundary or

coboundary of an element C. These concepts are depicted and further described in

Figure 2-2.

While the simplicial complex is restricted only to simplices, the more general

cell complex can be formed from any convex polytopes [16]. Thus, our topological

data structure can handle hybrid geometries containing quads, hexes, and any other

element made from a convex polytope.

2.2.3 Implementation

The current MeshGeometry class does little more than store the coordinates of the

nodes in a single array. The MeshTopology class provides most of the interesting data

structures required for the implementation of the iterator interface. The underlying

data structure for storing topological information is an implementation of the cell

complex described in the previous section.

The actual incidence tables for a typical mesh are very sparse, and we instead store

only the oriented boundary and coboundary lists for all the cells. In our implementa-

28

Table 2.1: Memory usage and topology construction times for our meshing module.
The loaded mesh is unstructured and 3D.

Elements Memory [MB] Load Time [s]
1920 0.4 0.01
43940 7.9 0.35
160000 28.1 1.41
1097440 189.6 11.20

tion, a cell in the cell complex is a struct with a vector of integers for its boundary

and a vector of integers for its coboundary. These integers provide a 1-based index for

the cells making up the boundary and coboundary, and the sign of the integer indi-

cates orientation. The entire cell complex topology stored in MeshTopology is simply

a vector of vectors of cells for each dimension. The MeshTopology class provides

access to the actual vectors of cells for each dimension, but the preferred method to

access mesh topology is through the iterator interface.

When a MeshIterator is created for a MeshEntity structure, we need to compute

the incidence relationship for all entities of the dimension of the iterator touching the

given mesh entity. The MeshEntity class provides a function Incidence, shown in

Listing 2.2.

Memory usage is a concern when we are storing such extensive topological infor-

mation. Benchmarks for the memory usage and topology construction time of the cell

complex implementation is shown in Table 2.1. Topology information is constructed

from the mesh connectivity table, as would be provided by the output of meshing

software. The current performance is acceptable, considering that no effort was put

in place to optimize the code, and thus there is much room for future improvement in

the topology construction time. Most importantly though, the topology import time

appears to scale linearly with the number of elements, which gives confidence in the

overall algorithm. Extrapolating from this table, we could in theory load a 20 million

element mesh on a single 4 GB memory node.

29

Listing 2.2: Compute an incidence relationship

vector <int > Incidence(Cell cell , int incidence_dim)

{

// temporary storage for incidence at every dimension

vector <set <int >> incidence;

// lower dimensional incidence

if (cell.dim > incidence_dim) {

for (face in cell.boundary)

incidence[cell.dim -1]. insert(face.id());

for (int i = cell.dim -1; i > incidence_dim; --i)

for (id in incidence[i])

for (face in Cell(id).boundary)

incidence[i-1]. insert(face.id());

}

// higher dimensional incidence

else if (cell.dim < incidence_dim) {

for (face in cell.coboundary)

incidence[cell.dim +1]. insert(face.id());

for (int i = cell.dim +1; i < incidence_dim; ++i)

for (id in incidence[i])

for (face in Cell(id).coboundary)

incidence[i+1]. insert(face.id());

}

// equal dimensional incidence

else {

for (face in cell.boundary)

for (coface in face.coboundary)

incidence[cell.dim]. insert(coface.id());

}

return vector(incidence[incidence_dim]);

}

30

2.3 Finite elements module

The next module in our new framework involves the actual finite element method

and collections of elements. Following our mathematical outline, the steps handled

by the finite element module are:

3. Choose a function space on each K ∈ Th, thus establishing an approximate

function space Vh to the original function space V(Ωh). Given N degrees of

freedom, we have that Vh = span(v1, v2, ..., vN) for the N basis functions vi.

4. Approximate both forms a and l by new forms ah and lh that integrate over the

approximate domain Ωh.

Before describing the interface and implementation of the elements module, we will

consider the performance implications of various element containers as that will drive

our later design decisions.

2.3.1 Fine grained vs. coarse grained containers

The advantages of using an object-oriented language for developing our finite element

code would be lost if we did not make full use of features like inheritance via class

derivation and polymorphism via virtual methods. The elements themselves make

perfect candidates for inheritance due to the hierarchical nature in their structure.

Basic 1st and 2nd order tetrahedra can derive from a continuous Galerkin abstract

element that implements some of the shared functionality such as generalized residual

assembly. In addition, all elements can inherit from a base abstract Element class

that determines the interface for handling allocation and assembly. Then, we can put

all of our elements into a single container and take advantage of virtual function calls

to save us from cumbersome switch statements. Such behavior is present in many

older C codes as well, implemented through structs and function pointers, whereas in

C++ the language provides built in support for these constructs.

Unfortunately, calling virtual functions has an overhead. Two extra memory

fetches are required, one to get the class virtual table (vtable) address and one to

31

get the call address of the virtual function. For a non-virtual function, the call ad-

dress can be resolved at compile time. As an aside, we note that this penalty is not

additive for extra layers of inheritance. For example, if we have a class C deriving

from a class B that derives from a base class A, a virtual method defined in all the

classes will incur the same penalty when called on a C object as when called on a B

object. Usually, the overhead of a virtual method call is negligible - unless there are

millions of virtual method calls in a loop like in a finite element code. An additional,

and perhaps greater, concern is heap fragmentation. For example, if we have an ele-

ment object for each element in the mesh, and each of these classes allocates its own

arrays for storing shape function values, stresses, etc., then these arrays may become

scattered through the memory heap. Running an assembly sequentially across the

elements will then incur a great penalty due to poor cache behavior from random

access into the heap.

To quantify the impact of this overhead, we ran a performance test on a toy

application designed to model possible finite element container implementations in

C++. This application provides a simple class hierarchy (Figure 2-3) to model the

possible inheritance structure of elements in a finite element program. The abstract

class Element defines an interface to the virtual function Expensive that performs

a simple mathematical operation (different for each element) on the array of data

in the element, producing a single double as a result. We are interested in running

Expensive on a large set of data, with an array of different Elements to perform the

operation. Three possible implementations have been produced. The fine grained

implementation has a single Element class for every calculation element and also

allocates the data array within the element. The pool implementation is similar to

fine in that there is an Element object for each calculation element, except that the

data array is allocated for all elements ahead of time and individual elements index

into this coherent array. Finally, the coarse grained implementation uses aggregating

element sets, where a single class presents an interface to many elements of the same

type. The data for a single element type is stored as a pool within this set.

We ran the test program for 1,000,000 elements evenly distributed among the four

32

Figure 2-3: Class hierarchy for virtual overhead test application. The virtual function
Expensive() performs an expensive calculation on an array of data.

different types and varying data sizes per element. The test was run on a 64-bit

machine, with the code compiled by gcc with -O3 optimization enabled. Each test

was run 100 times, with the fastest and slowest times thrown out. The timing results

are presented in Figure 2-4a. Surprisingly, both fine grained implementations have

the same performance. The fragmentation penalty we expected does not exist in this

simple test. However, caching behavior is extremely complex and difficult to pre-

dict, and this demo program is not necessarily representative of real world behavior.

The coarse grained implementation has the best performance for all data sizes. The

penalty for the virtual function call is approximately 20% for the smallest data sizes

(corresponding to relatively little computation) and decreases to be negligible for the

largest data sizes (Figure 2-4b). As expected, more intense computation amortizes

the extra overhead of a virtual function call.

These results are encouraging, but in themselves are not a convincing argument for

using coarse grained element sets. However, using element sets affords us flexibility in

the implementation of functions such as residual assembly. Specifically, it aids us in

developing multi-threaded and GPGPU codes by capturing details of synchronization

in the element set itself. Thus, we can use the same exact interface regardless of

whether our code is running sequentially, with shared memory multi-threading, or

on a GPU. Using fine grained classes for elements would require a separate interface

for GPU codes as well as more invasive synchronization capability in the assembly

routines. This approach allows our assembly routine to be blind to the details of how

33

0 20 40 60 80 100 120 140
Data Size [bytes]

0.0

0.5

1.0

1.5

2.0

Ti
m

e
[s

]

Virtual Call Penalty for 1,000,000 Elements

Fine Grained
Fine Grained (Pool)
Coarse Grained

(a) Performance Results

0 20 40 60 80 100 120 140
Data Size [bytes]

�5

0

5

10

15

20

Pe
rc

en
t S

pe
ed

 Im
pr

ov
em

en
t

Performance Benefit of Coarse Graining

(b) Coarse Grained Improvement

Figure 2-4: Performance results from a test on a simple class hierarchy to determine
the penalty of virtual function calls and memory fragmentation.

our element calculations are performed.

2.3.2 Interface

With the advantages of using element sets established, we can now describe the user

interface to the finite elements module. This module comprises several related classes

that provide the functionality of a spatial finite element discretization. Specifically,

the finite elements module allows us to establish a function space over our domain

and then compute residual vectors and stiffness matrices for the weak form of our

problem given an approximation in that function space. The primary classes involved

are the abstract base ElementSet and its derived classes, the Mapping, a DoFMap, the

FunctionSpace and the WeakForm. An overall picture of the relationships between

these classes is shown in 2-5.

The primary interface to the element module is the FunctionSpace class. This

class captures the idea of an assembly of individual finite elements over a spatial

domain, essentially the second part of step 3 in our original mathematical descrip-

tion. Thus, the FunctionSpace provides us with support for function interpola-

tions over the domain, and thus is a basis for the NodalField and QuadratureField

classes. Its interface provides functions for interpolating from a NodalField to a

QuadratureField or extrapolating a QuadratureField to a NodalField. The latter

34

Figure 2-5: Primary classes and relationship in the elements module.

operation is not well defined since we may be extrapolating from a discontinuous to a

continuous function space. However, an approximation suffices since this function is

only used for data output. Finally, the FunctionSpace has an interface to our basic

finite element assembly functions, namely those for assembling the residual vector,

the mass matrices, and a stable timestep.

Importantly, the FunctionSpace deals only with spatial interpolation and has no

knowledge of the equations being solved. Information about the equation is captured

in the abstract WeakForm class. The purpose of this class is to provide stiffness matrix

and residual calculations for the weak form of our equation of interest at points in

our domain. Derived classes from this base class provide the actual functionality; for

example, most of our calculations use the MechanicsWeakForm. Although the weak

is used heavily by the elements module, it is actually owned by a system, which shall

be discussed in the next section.

The remaining classes in the element module, including the element sets, should

35

not be dealt with directly in application code. All issues of allocation or calling

assembly operations are done through higher level classes such as the FunctionSpace.

An application writer only needs to worry about specifying which element or elements

to use for a given mesh.

2.3.3 Implementation

While the FunctionSpace class provides the main user interface to the spacial dis-

cretization, all the actual calculations are performed by the element sets. An element

set is a container for a set of elements, all of the same type and discretizing the same

equation. A simple interface is provided in the abstract ElementSet class, which sim-

ply requires that the derived element sets be able to perform assembly operations for

our residual vector and mass and stiffness matrices. All other details of initialization

and interaction are left to the discretion of the derived class.

Many of our elements are derived from the ElementSetCG class, which inherits

from ElementSet. This class is for continuous Galerkin (CG) elements, and provides

many of the support features in common for CG elements such as residual and stiffness

vector assembly. The CG element base class also stores the shape function and

jacobian values at quadrature points for later use in integrating functions. These

values depend on the actual element being used, and their computation is done in the

constructors for derived classes, such as ElementSetTri2. To compute shape function

values, these derived classes need to know how the reference element for the element

set is mapped into the particular element under consideration. This knowledge is

provided by the Mapping class, which captures the idea of the element reference map

ϕK referenced in our mathematical description.

Tying together element function spaces requires that we have a connectivity table

that relates element local degrees of freedom to global degrees of freedom. This

functionality is provided by the DoFMap object in our function space. This object

is responsible for holding the connectivities of all the elements in our element sets,

which may have different numbers of nodes. In addition, this class can provide an

interface for degree of freedom renumbering algorithms to reduce the bandwidth of

36

the global stiffness matrix.

2.4 System of equations and fields

One of the objectives of our code is support for multi-physics problems involving

multiple unknown fields. For example, we may want to do a coupled simulation of

thermal elasticity with a displacement field for the mechanics as well as a temperature

field. Another example is the simulation of a shape memory alloys, where we may

want to include the volume fraction of martensite as an additional field. To support

different physical problems, we introduce the System class that acts as a container for

the unknown fields in the problem as well as the weak form of the system equations.

The System then interfaces directly into solver and integrator classes to determine

the actual solution. A single simulation can also use multiple systems. For example, a

shape memory alloy calculation can proceed in an staggered fashion, and use a system

for the mechanics problem and another system for the volume fraction problem. These

multiple systems can share the same FunctionSpace object, reducing the memory

requirements.

2.4.1 Interface

To interface well with various solvers (described in the next section), system classes

are derived in an specific inheritance tree that describes their mathematical structure

(Figure 2-6). All classes derive from a common base, the System class, which provides

a single interface for output classes. An application programmer constructs a system

from a previously initialized FunctionSpace object, allocates the fields, and then

continues to create the solver object. The system by itself cannot solve any equations,

it is essentially a wrapper for the mathematical fields involved in the problem as well

as the actual equations being solved.

Another important aspect of the interface is the accessors to unknown fields. These

are specified in the abstract NonlinearSystem and HyperbolicSystem classes. For

example, the NonlinearSystem class has the function u() that provides access to the

37

Figure 2-6: Interface to systems module

unknown field, whatever it may actually be called within the class itself. Any class

deriving from a NonlinearSystem must implement this function and have it return

the primary unknown. A NonlinearSolver will then use this interface when solving

the system, as detailed in the next section.

Output is performed via the SystemWriter class. This class allows an output

writer to be created for a given system, and allows specified fields to be dumped

after performing a solver step. An output writer is initialized with the name of the

output file, the system to write, and the type of writer to use (VTK, Tecplot, etc.).

An example from of a user application of creating a system and an output writer is

shown in Listing 2.3.

2.4.2 Implementation

The System class contains two functions for internal use, GetField and RegisterField.

The GetField function takes a string for the name of the field and returns a const

reference to the NodalField in the system, if it exists. This functionality is im-

plemented through an STL map between strings and NodalField references. The

38

Listing 2.3: Initializing a system for a statics problem

#include <systems/statics_system .h>

int main() {

// function space created here

// setup system

summit :: StaticsSystem tension_problem(function_space);

tension_problem.AllocateFields ();

// create and initialize a solver for the system

// ...

// create a VTK output writer

summit :: SystemWriter writer(‘‘output ’’,

tension_problem ,

function_space ,

summit :: MESH_WRITER_VTK);

writer.AddOutputField (‘‘displacement ’’, ‘‘stress ’’);

// solve the system for a load increment

// ...

// output the solution for load increment 0

writer.Write (0);

}

39

Figure 2-7: Relevant classes for system output

RegisterField function registers a given NodalField or QuadratureField with the

System so that it can add it to the map. The constructor for any of the derived

systems must call this function on all of its fields so that they can be referenced and

outputted.

All output is done through a SystemWriter class, as shown in the example code

of the previous section. The SystemWriter is associated with a specific System

instance, and holds a const reference to it as one of its members. The writer records

which fields should be outputted upon a call to the Write function in an STL set of

strings. When output is requested, it iterates through this set, gets the field from

the system and outputs it using a mesh writer. A mesh writer is a class that can

output a given NodalField on a FunctionSpace. Different mesh writers derive from

a base class, allowing for implementation of output in various formats such as VTK,

TecPlot, NetCDF, etc. The required mesh writer is created upon instantiation of

the SystemWriter via a static factory method, based on whatever type of output is

required by the user. A summary of these concepts is shown in Figure 2-7.

The base System class provides no further functionality than the basic support

for output and field access. Derived classes for specific equation sets require extra

code for proper initialization of fields and assembly of vectors. For example, the

40

StaticsSystem class sets the initial gradient of displacement to the identity tensor,

and resets to zero stress. Although StaticsSystem has a function for assembling

the stiffness matrix, the actual process of assembly is delegated to the element sets

through the associated FunctionSpace, as described in the previous section. The

primary purpose of the system is to simply be a container for the unknown and

derived fields in the problem.

2.5 Solvers and integrators

Once we have a spatial discretization for our system of equations, we will need to

numerically integrate or solve our system. This is the final step of our mathematical

formulation:

7. Solve the system of equations (1.3) via a linear or nonlinear solver for the

unknown coefficients uha
. These coefficients determine a functional form for

our solution function by the formula in (1.2)

For implicit solves, the stiffness matrix is very sparse, and we use a special sparse

matrix to store it. Some of the early finite element codes were directly tied to an

internal sparse direct solver. While this close coupling makes development easy and

the code efficient, it limits the code to the capabilities of the included solver. An

objective of our new framework is a general interface to linear solvers and integrators

so that a user can choose the best solver for their problem and the code can keep up

to date with new technologies while avoiding performance penalties. As better solvers

are developed, we can simply add wrapper interfaces around them and integrate them

into our code.

2.5.1 Interface

An application writer must choose the appropriate solver to create for their system.

For example, in solving a StaticsSystem an application writer could use either a

41

Listing 2.4: Creating a solver for a statics problem

// function space created previously

summit :: StaticsSystem tension_problem(function_space);

tension_problem.AllocateFields ();

// create and initialize a solver for the system

summit :: LinearSolver solver (& tension_problem);

solver.Init();

// create boundary conditions

// ...

// setup nodal fields boundary and forces here

// ...

solver.SetBoundaryConditions(boundary , forces);

solver.AllocStiffness (function_space);

// solve the static loading step

solver.Solve();

LinearSolver or a NewtonSolver depending on whether or not small or large dis-

placements are being considered and if the material model is linear or nonlinear.

Using a completely inappropriate solver, such as a ExplicitNewmarkIntegrator for

a StaticsSystem will create a compile time error, since the integrator expects a

HyperbolicSystem (see Figure 2-6 for the hierarchy of systems). Boundary con-

ditions types and forcing values are set through the solver interface, as they are

necessary for the solution of a static or time step. We can solve the simple statics

problem from Listing 2.3 with a solver as shown in Listing 2.4

The allocation of the stiffness matrix in an implicit solver must be done after

boundary conditions are specified, since we use static condensation in our stiffness

matrix for Dirichlet degrees of freedom. The boundary conditions can be specified

either in application code, or loaded through an external file.

2.5.2 Serial and parallel solver implementation

The solver implementation consists of several layers. At the top layer are classes

derived from the base Solver class that are designed to either integrate or solve a given

System. Aside from the explicit integrators, all solvers eventually require some sort

of linear solve. Thus, at the bottom layer is the SparseMatrix class that provides the

42

Figure 2-8: Class heirarchy for SparseMatrix

structure for a large serial or parallel sparse matrix. Finally, in between we have the

Stiffness class that adds in additional knowledge about the finite element method

on top of a SparseMatrix. This additional knowledge includes functions to initialize

the non zero structure from a given mesh connectivity as well as the equation map

structure for handling the static condensation of the Dirichlet boundary conditions.

In a serial run of our code, the functioning of these classes is relatively straightfor-

ward. The user application requests a solve or a time step integration from a Solver.

The solver then goes through the appropriate algorithm, whether it is Newmark in-

tegration or Newton-Raphson. It uses the interfaces described in the systems section

to access the unknown field. For example, the Newmark solver gets the displacement,

velocity and acceleration from the system. It then performs the predictor step, calls

the residual assembly function on the system and finally performs the corrector step.

The system class knows how to perform the assembly operation, but the responsibility

for correctly modifying the physical fields are the responsibility of the solver.

Parallel Solver

The implementation of a parallel solver class presents many additional difficulties.

There are several readily available parallel direct and iterative solvers that we can

43

Listing 2.5: Negotiation of stiffness matrix row ownership

int node_start , node_end;

// first node starts the process

if (myPID == 0) {

node_start = 0

node_end = max(global_ids);

MPI_Send (&node_end , myPID +1);

}

// each following node proceeds in turn

else {

MPI_Recv (& node_start);

node_start ++;

node_end = max(global_ids , node_start);

if (myPID < nProcessors -1)

MPI_Send (&node_end , myPID +1);

}

interface with. However, we require a parallel sparse matrix object that can han-

dle assembly and proper synchronization between processors. The class heirarchy

for deriving the parallel sparse matrix is shown in Figure 2-8. The PSparseMatrix

class inherits from a generic SparseMatrix, which allows us to seperate the parallel

implementation from the user interface.

The PSparseCRS class implements a specific type of parallel sparse matrix based

on the Compressed Sparse Row serial matrix. Each processor in the cluster takes

ownership of a set of rows in the matrix. This division corresponds to the input

required by most parallel solvers. The matrix values for these rows are stored as

a SparseCRS member in the PSparseCRS class, and the row offset is stored as an

integer. In addition, the PSparseCRS object has a vector of send matrices and a

vector of receive matrices to buffer values that must be later synchronized with other

processors.

The row partitioning is negotiated during initialization of the stiffness matrix.

The nodes in the mesh have already been labeled with global IDs from the parallel

mechanics module. The row partition negotiation algorithm is shown in Listing 2.5.

It proceeds serially through the processors, and has run time O(N) where N is the

total number of nodes in the mesh.

44

In addition, we must initialize an equation map for the stiffness matrix, which is

done simultaneously with node ownership assignment. This equation map provides

a mapping from degrees of freedom to equations in the stiffness matrix, allowing for

static condensation of Dirichlet boundary conditions. Note that the concept of an

equation map is tied to the stiffness matrix, and the parallel sparse matrix underneath

deals only with rows and columns.

After row numbers are assigned, the sparse matrix initializes its send and receive

matrices. Each processor has a communication map that specifies which processors it

communicates with based on the manner of the domain decomposition. Each proces-

sor informs its neighbors of its row ownership via non blocking sends. Simultaneously,

it receives the row ownerships of all of its neighbors. These values determine the range

of validity for its send matrices.

The parallel sparse matrix is initialized from the DoFMap in a similar manner to

the serial sparse matrix. However, in the parallel case we have the added complexity

of initializing the send and receive matrices. In the serial case, the SparseCRS matrix

is passed a vector of non zeroes per row for allocation. In the parallel case, we must

pass the number of non zeroes per row in the ownership range of the current node, as

well as the number of non zeroes per row in the range of each neighboring node. Once

the send matrices on a processor are initialized, it passes the non zero information for

each send matrix to the appropriate neighbor so that the neighbor can initialize its

receive matrix. Since each send matrix corresponds to a neighbor, the communication

time here is only dependent on the number of neighbors for a single processor. Thus,

total allocation time should be linear in the size of the matrix, just as for the serial

case.

Setting values in a parallel sparse matrix is done through the same Get/Set in-

terface present in the serial sparse matrix. Although the interface is the same, there

are limitations to the parallel implementations of these functions. The Get function

can only access values stored locally on the calling processor, i.e. in the row owner-

ship range of that processor. The Set function can only write values that are either

stored locally on that processor, or stored on a neighboring processor. Note that this

45

is simply a limitation of this particular implementation, and not the interface itself.

These limitations are acceptable, since for our finite element implementation these

are all the accesses we need.

To optimize the amount of communication, synchronization occurs only when

specifically initiated by the user. Thus, a Set command called with an index not

owned by the processor will be written to one of the send matrices. In the synchro-

nization step, all send and receive matrices are exchanged via non-blocking MPI calls.

Since we have already established the matrix structure in the initialization, we only

need to exchange the actual matrix values. After all the matrices are exchanged, a

processor iterates through its receive matrices and adds the components to its own

matrix. Since the maximum number of neighbors a processor has is ultimately a geo-

metric property that is a function of the dimension of the space, our synchronization

can be completed in O(N/P) time, where N is the number of nodes in the mesh and

P is the number of processors.

Complicated material responses can produce very ill conditioned matrices that

prove difficult for iterative solvers. Thus, we are interested in recent advances in

parallel direct solvers, such as the WSMP solver [13]. To this end, we test our solver

framework on a simple implicit problem, namely the crushing and buckling of an

aluminum sandwich panel (Figure 2-9). Our test mesh has 104 thousand elements

and 0.5 million degrees of freedom. This mesh produces a matrix with 17.5 million

non zeroes. We measure the matrix assembly and solve times for 64 solver threads,

using from 1 to 4 solver threads per processor. The results shown in Figure 2-10

indicate that the parallel assembly algorithm detailed in the previous paragraphs has

perfect linear strong scaling. The solver does not scale as well as the assembly, but

the solver is provided by an external module that can be replaced and updated as

technology improves.

46

Figure 2-9: Buckling of a webbed aluminum panel under a compressive load. Colors
indicate stresses in the panel, with red indicating compressive stress and blue tensile
stress.

Figure 2-10: Strong scaling for direct implicit solver, showing assembly time and solve
time for varying numbers of threads per process.

47

48

Chapter 3

GPGPU Acceleration

3.1 Motivation

General Purpose processing on Graphics Processing Units (GPGPU) has made enor-

mous strides in recent years. Many applications have been written to perform faster

computations at lower cost for problems in the financial industry, geophysics, and

medical imaging. Problems that would take hours on a distributed memory cluster

can be solved within minutes on a desktop with a sufficiently powerful GPU. The

HPC community has also become very interested in GPGPU. In November 2010,

three of the top ten computers on the Top500 list included GPU hardware accelera-

tors, including the fastest computer - Tianhe-1A [17].

There are several reasons for the growing popularity of GPGPU acceleration. In

the first place, GPUs are widely available and relatively cheap in terms of GFLOPs

performance per dollar, largely due to the demands of the gaming industry. Most

modern desktop computers and a growing number of laptop computers have dedi-

cated video accelerators capable of general purpose calculations. In addition to these

graphics accelerators, dedicated compute processors based on GPU chip design have

become available in the last few years.

Although GPU hardware has been available since the mid to late 1990s, the soft-

ware and hardware to perform GPGPU has only recently become available. The

original GPUs focused on accelerating 3D rasterization, and the hardware was fully

49

customized for rendering triangles and mapping textures. The introduction of fully

programmable pixel and vertex shaders first enabled general purpose computation.

Between 2003 and 2005 the GPGPU movement began gaining momentum, taking

advantage of programmable shaders to perform scientific computations with graphics

hardware. However, shader languages were specialized to graphics operations and

programming scientific applications required a lot of specialized hardware knowledge.

The introduction of frameworks specific for GPGPU, such as NVIDIA’s CUDA ([18])

in November 2006, greatly lowered the knowledge barrier . The CUDA framework

provides a set of compilers and libraries that allows general C programs to be com-

piled for execution on the GPU. Since its introduction, there has been an explosion

of GPU applications, particularly in molecular dynamics, geophysics, computational

fluid dynamics and medical imaging [19], [20].

One major reason for the heavy interest in GPUs is the suitability of the hardware

for scientific computing. In the last few years, CPUs have hit a frequency performance

barrier, where increasing the clock frequency to improve performance has a prohibitive

cost in power consumption. This barrier has driven the development of multicore de-

sign, with most laptops and desktops in 2010 containing multicore chips. However,

a CPU core is a heavyweight core that can execute an operating system and is op-

timized for sequential performance. By contrast, a GPU is composed of hundreds of

lightweight cores optimized for arithmetic performance with high memory bandwidth

[21]. In NVIDIA GPUs, these lightweight cores are known as stream processors and

they together execute a single instruction for a series of threads in a model known

as SIMT (Single Instruction, Multiple Thread). Each thread operates on a distinct

piece of data, and thus the model is well suited to highly data parallel applications.

Finally, the theoretical arithmetic performance of GPUs has exceeded the perfor-

mance of CPUs in the last several years. For example, a single NVIDIA 8800 GTX

from 2008 achieves 330 billion floating point operations per second (GFLOPs) and

a peak memory bandwidth of over 80 GB/s. This performance is significantly more

powerful than even high end CPUs [22]. Modern GPUs in 2011 can achieve upwards

of 1 TFLOPs performance on a single chip. The almost order of magnitude gap

50

between GPU and CPU cores in pure arithmetic performance has generated great

interest for computationally dominated applications.

Although CUDA was one of the first GPGPU architectures to be introduced, there

are several others currently available. AMD has gone through a series of architectures,

including the most recent FireStream SDK, formerly known as Close To Metal. In

addition, there is the open industry standard of OpenCL (Open Compute Language).

We have chosen to work with CUDA for our application due to its widespread adoption

and the current performance edge CUDA enjoys over OpenCL on NVIDIA hardware.

GPU accelerated finite element applications have been around for almost as long

as GPGPU. In 2005, Goddeke et al. published one of the original papers on accel-

erating a simple Poisson problem with a GPU, although their primary performance

gains were in the acceleration of the iterative linear solver [23]. In the geophysics

community, Komatitsch et. al. implemented a higher order elastodynamics solver for

linear anisotropic materials [24]. Linear elasticity is also treated by Goddeke in 2009

[25], along with strategies for encapsulating the acceleration code in the library with

minimal impact on the user. Nonlinear finite elasticity using a neohookean material

was first treated by Taylor in 2008 with the idea of applying real-time computations

of tissue mechanics for surgery planning [26].

3.2 Serial FEM with CUDA

GPU compilers have not yet advanced to the state of CPU compilers in terms of

performance optimization. Thus, achieving high performance in GPU code requires

an understanding of GPU architecture and ways to best exploit its features. We will

briefly describe the salient features of GPU hardware to enable our later discussion

on performance optimization. A modern NVIDIA GPU is composed of hundreds of

small Scalar Processor (SP) cores capable of executing arithmetic instructions. These

SP cores are organized into groups known as Streaming Multiprocessors (SMs). A SM

contains eight SP cores, an instruction unit as well as a local shared memory cache.

The SIMT model is evident in this arrangement - the instruction unit of an SM issues

51

a new instruction and the eight SP cores all execute it for their separate threads,

presumably operating on separate data. As long as there are no divergent conditional

statements in the program execution and none of the threads stall on reading mem-

ory, the program execution will fully utilize the compute cores and achieve near the

theoretical peak arithmetic performance.

The CUDA programming model is driven by the GPU architecture. A single

program thread runs on a SP core. On the software side, these threads are grouped

together into blocks. A block runs on a single SM, allowing for block-level syn-

chronization commands such as syncthreads(). The SM handles all the overhead

for scheduling the block threads on the SP cores and implements very fast hardware

thread context switching. An SM can execute one, or as many as eight blocks depend-

ing on the configuration of the execution grid and the register and shared memory

usage of the thread blocks. Both registers and shared memory use the local shared

memory cache located on the SM. A set of blocks together forms a grid, which is the

unit of parallel execution for a program kernel in CUDA. When executing a parallel

kernel, the programmer specifies the dimensions of a block and the dimensions of the

grid. Further information on these concepts can be found in the CUDA Programmer’s

Guide [18].

With this knowledge in mind, we shall examine how to implement an explicit finite

element method for solid dynamics. The field equation for non-linear solid dynamics

is:

PiI,I + ρ0Bi = ρ0ai (3.1)

where PiI is the first Piola-Kirchhoff stress tensor, Bi is any body force, and ai is the

acceleration field. To integrate this equation, we use an explicit, central-difference

time integration scheme. The algorithm for computing a new time step for the spa-

52

tially discretized problem is:

xn+1 = xn +△tvn +
△t2

2
an (3.2)

vn+1 = vn +
△t2

2
(an + an+1) (3.3)

Man+1 + f intn+1 = f extn+1 (3.4)

where the subscript n refers to time tn; x, v and a refer to the nodal discrete de-

formations, velocities and accelerations; f int refers to nodal internal forces from the

divergence of the Piola-Kirchhoff stress; f ext refers to any nodal external forces and

M refers to the mass matrix [3]. Via mass lumping of the elemental mass matrices

our mass matrix is diagonal, and thus no equation solving is necessary for the explicit

step.

This time discretization translates into 3 basic steps for our algorithm. In the

predictor step, nodal deformations and velocities are updated based on (3.2) and

(3.3). Next, we calculate a residual force as a function of the updated deformations,

defined as rn+1 = f extn+1 − f intn+1. This residual calculation requires calling the mate-

rial constitutive law with the updated deformation gradient based on the predicted

deformations. The stress from the constitutive evaluation is then used to integrate

the virtual work in the domain, which allows us to determine the nodal internal force

vector. Combined with the external forcing vector, this allows us to calculate the new

residual vector. Finally, the corrector step calculates new accelerations from (3.4) and

corrects velocities from (3.3).

Typically, our dynamic simulations are run for from thousands to hundreds of

thousands of explicit timesteps. Within a single explicit step, most of the time is

spent in assembling the residual vector. For example, when running a 160,000 element

mesh on a single core, the CPU version of our code spends, normalized per element,

0.017 µs on the predictor step, 2.42 µs on the residual calculation and 0.034 µs on

the corrector step. This example simulation uses a neohookean material model, more

complicated materials models such as J2 plasticity will require even greater time

on the residual calculation with no increase in predictor or corrector time. Thus,

53

following Amdahl’s Law, our acceleration efforts should focus on increasing the speed

of the residual vector calculation.

Fortunately, the residual calculation is very data parallel and thus well amenable

to acceleration on GPUs [27]. However, before attempting to parallelize our explicit

update algorithm via the shared memory paradigm for GPUs, it is necessary to un-

derstand the data dependencies involved. Figure 3-1 shows the flow of data during

residual calculation. Since we use unstructured meshes, the element local vectors

access values from scattered locations in the nodal displacement vector. They also

write to scattered, and possibly overlapping locations in the nodal residual vector.

These locations are determined by the connectivity table of the mesh. There are two

consequences to this data flow. In the first place, we will have an unavoidable penalty

in reading nodal data from scattered memory locations due to the poor caching be-

havior of random access. This penalty can be avoided by either using structured

meshes, which is undesirable for problems with complex geometry, or by using a

different numerical scheme such as discontinuous Galerkin methods [28]. A second

consequence is that we will need some method of synchronization for residual vector

writes, since several threads may be trying to write to the same location in memory.

A global lock on the residual vector produces extremely poor performance due to very

high contention, while atomic operations on double precision data are not available in

hardware on the GPU. One possible solution is to color the elements such that no two

colors share a node, and then serialize computation across colors [24]. Another possi-

bility is gathering of the element local data on a per node basis instead of assembling

from elements to nodes [29]. While the coloring approach should in theory achieve

better performance, memory access pattern issues on GPUs reduce its benefit, and

so we have chosen to implement the latter approach.

Examining the process of developing an optimized serial GPU code reveals many

of the algorithmic design decisions that would otherwise be rather unintuitive. The

first step of the process was a direct translation of our existing CPU code to run

on the GPU. The natural choice of granularity for parallelization was a single GPU

thread per element in the mesh. Using the CUDA environment enabled an almost

54

P = P(F) P = P(F) constitutive update

element residual

nodal displaplacement

nodal residual

element displacement

Figure 3-1: Data dependencies for residual calculation.

direct copy and paste of our C++ based application. A few changes, however, were

required to conform with the limitations of the CUDA version we used. For example,

the GPU we used for testing does not support C++ classes or function pointers,

so choosing which element to execute or what material to use has to be done via a

switch statement. Any memory allocations also have to be converted to GPU memory

allocations, since a GPU thread can only access GPU memory. Generally, this only

required an allocation of GPU memory via cudaMalloc() and a copy of the CPU

structure to the GPU via cudaMemcpy(). However, some of our more complicated

structures such as the material model implementations also contained pointers to

internal allocated arrays. Since these allocation sizes were small and predictable, we

chose to simply include a GPU version of these structures that statically contains the

required memory.

The primary issue with this initial conversion is proper synchronization of the

GPU threads. As shown in Figure 3-1, each element thread calculates a local residual

vector that must then be inserted into the global residual vector. Our synchronization

is done by reversing the manner of assembly, and turning it into a gather operation.

We loop through the nodes in the mesh, and for each node we gather the values from

each element that contains that node. Performing this operation requires a reverse

connectivity map, from nodes to elements, which can be obtained directly from our

55

MeshTopology object. On the GPU, the loop through the nodes in the mesh is

performed in parallel, with a thread per node. Since we are writing a value per node,

there is no write contention for this process.

To test our serial code we ran on a machine with a Tesla C1060 GPU (78 GFLOPs

double precision peak performance, 102 GB/s memory bandwidth) and dual quad-

core Intel Xeon X5550 Nehalem processors operating at 2.67 GHz. We shall use

GPU vs. CPU speedup in assembly time to measure the relative performance of our

efforts and the merit of optimization strategies. As has been noted in [24] and [28],

the speedup metric is highly dependent on the CPU implementation and varies with

hardware, and is thus not as useful as an absolute metric of performance. A direct

translation of the code with only the required modifications detailed above produced

a speedup of approximately 2.5x on the GPU vs. a single CPU core. Unfortunately,

any speedup of less than approximately 7x is not beneficial on this machine since we

can simply run an OpenMP version of our code on the eight core CPU. Perhaps a

more telling metric is that this version only reaches 3 GFLOPs of double precision

performance and less than 10 GB/s memory bandwidth, which is far less than the

theoretical peak performance of the GPU.

The first performance improvement comes from explicitly unrolling several of the

loops in our code. Although the CUDA compiler will in general unroll loops for

which it knows the bounds at compile time, we did not see this behavior for nested

loops. Our code includes many matrix multiplications for relatively small matrices

of known sizes, such as in the material constitutive update or in the integration

of the stress field. Unrolling these loops in the GPU code provided a factor of 2

performance improvement, bringing us to a total of 5x speedup over the CPU. All

further improvements require at least some knowledge of graphics hardware.

Properly understanding the memory hierarchy on GPUs and CPUs is critical to

high performance, as many programs are memory bandwidth limited and not CPU

limited. A schematic overview of the entire memory structure is shown in Figure 3-2,

along with approximate bandwidths for the hardware on our test machine. Graphics

memory is divided into fast but small shared memory and slow but large global mem-

56

CPU

network

RAM
19−25 GB/s

shmem

gmem

8 GB/s

GPU

100 GB/s

SP SP SP

SM

Figure 3-2: Memory structure for GPU and CPU.

ory. Access to global memory is 100 to 150 times slower than shared memory, but

the shared memory space is limited to 16 KiB per SM, split among the 8 SPs in the

GT200 series. Analyzing our data requirements for residual construction shows that

we need 2-3 KiB of data per element, depending on the material model used. Thus,

to achieve high occupancy of threads we need to use the slower global memory. One

strategy to improve access times to global memory on the GPU is proper coalescing

of memory access. Coalescing requires that sequential threads access sequential ad-

dresses in global memory as well as obey certain alignment restrictions [30]. Most of

the data in our application is indexed by element number and dimension of the data.

The CPU implementation stores data with the element number as the most significant

index, this is changed to the least significant index to achieve coalescing, see Figure

3-3. Properly coalescing memory access gives us another factor of 2 performance,

bringing us to a about 10x speedup over the CPU.

Our residual calculation kernel requires a high number of registers due to the

complexity of the constitutive calculation, and thus achieves fairly low occupancy on

the graphics card. Since the GT200 generation of graphics cards lacks an L1 cache,

57

nelem*i+e

i=1

e=1
e=2

e=3

e=4

e=1
e=2

e=3

e=4

e=1
e=2

e=3

e=4

i=2

i=3

i=1

i=2

i=3

e=2

i=1

i=2

i=3

i=1

i=2

i=3

i=1

i=2

i=3

e=3

e=4

dim*e+i

e=1

Figure 3-3: Our program is parallel across elements, which is index e. Element data
can be vectors or tensors, which is index i. To coalesce memory access, we must store
data with the element index, which determines the thread, as the least significant
index (right side of diagram).

it uses a large number of threads and essentially free thread switching to mask the

long latency on global memory access [21]. However, when a thread is switched out

its context must be stored. Thus, the registers on an SM must be split between the

currently running threads on the SP, as well as any sets of threads that have stalled

and been swapped out. Since we cannot reduce the number of threads we are using,

achieving higher occupancy with our kernel requires increasing the granularity of our

parallelization. Evaluating the integrals to compute our residual force vector requires

numerical integration, which we accomplish via Gaussian quadrature. Each element

has a set of quadrature points, and the quantity to be integrated is evaluated at these

points and the results summed with an established weighting. For example, a second

order tetrahedron has four quadrature points.

We modify our kernel to have a thread per quadrature point instead of a thread

per element, which is similar to the approach taken by Komatitsch et al. [24]. To

evaluate the integrand, each thread requires all of the nodal data on the element, such

as displacements and the residual vector at all the nodes. The quadrature point values

and derivatives are then interpolated from these values. This nodal data is stored in

shared memory, and the work of loading it from global memory and storing it is split

among the quadrature threads. We have to be careful when assembling the residual

vector to ensure that multiple threads do not attempt to write to the same location

58

Table 3.1: Performance of the GPU code for an example problem with a neohookean
material model. GPU performance is listed in GFLOPS for residual computation and
assembly.

Elements CPU [s] GPU [s] Speedup GFLOPS
160 2.375 0.875 2.71 2.59
4320 2.264 0.169 13.40 13.42
10240 2.317 0.128 18.11 17.73
43940 2.383 0.114 20.86 19.85
160000 2.410 0.114 21.08 19.84
439040 2.403 0.114 21.16 19.97

in shared memory. In the case of finite elements, each quadrature thread needs to

add a value to the running sum of the residual vector for each of the ten nodes. To

ensure that we do not have overlapping writes, each thread writes its partial result

into a location in shared memory. Then, the threads perform reduce operations in

parallel on separate values. There are 10 nodes and 3 spatial directions and thus 30

values to be reduced, which allows for high efficiency with 4 threads. Implementing

this finer level of parallelization brings us to a factor of 21x speedup.

Performance results for a variety of problem sizes are listed in Table 3.1. Speedup

results are reported, showing the ultimate 21x speedup for the largest mesh size. A

more telling result is the GFLOPs performance. For the largest meshes, our GPU

code reaches approximately 20 GFLOPS in double precision, which is about 25% of

the performance capability of the graphics card. This level of arithmetic performance

is fairly high for an application with such a high amount of random memory access.

3.3 CUDA + MPI Hybridization

Although running our code on a GPU produces impressive speedups over running on

a CPU, we become very limited in problem size since GPU memory sizes are limited

to about 4GB. Thus, we are interested in hybridizing our code to run on clusters

of GPUs. This combination of shared memory algorithms on a single node and dis-

tributed memory algorithms across the cluster of nodes is one possible implementation

59

of hybrid parallelism. There are many possible models of hybrid parallelism [31], but

for this code we focus on CUDA and MPI hybridization.

One of the earliest investigations of hybrid parallel GPU computing for finite ele-

ment problems was performed by Goddeke in 2007 [32]. Once again, their acceleration

efforts focused on speeding up the linear solver, specifically the sparse matrix vector

multiplication. However, their work demonstrated that adding even outdated GPUs

to the cluster could create noticeable speed ups. In 2010, Komatitsch et. al. also

accelerated their geophysics code to run on a cluster of GPUs, with promising results

[33].

Before embarking on a program of hybrid parallelization, it is important to ascer-

tain if the effort will provide worthwhile benefits. If we accelerate the computation

on each node, we will reduce compute time relative to communication time for a sin-

gle time step. Assuming that communication time is unaffected by our efforts, the

total speedup we achieve can never be greater than 1/fc where fc is the fraction of

communication time in the total program execution. For example, if communication

is half of the program execution time, i.e. fc = 0.5, then we can never achieve more

than a factor of 2 speedup for the parallel code. Thus, we require that the commu-

nication time be small compared to the total timestep so that we can maximize our

potential speedup. Figure 3-4 shows the strong scaling properties of the CPU paral-

lel portion of our code. This benchmark reveals that we only spend approximately

2% of the timestep in communication. Therefore, our program is suitable for hybrid

parallelization.

In the non-GPU version of our code, we parallelize across processors using do-

main decomposition for the problem and MPI for communication between nodes.

The problem geometry is divided into components of equal numbers of elements by

the METIS package [34]. Each processor owns a submesh of elements, as well as frag-

ments of the overall displacement, residual and other fields. In a dynamic problem,

each processor performs the predictor and corrector step independently, since these

steps require only data values at a given node. As shown in Figure 3-5, nodes on

the boundary between processors will see force contributions from elements on both

60

20 21 22 23 24 25 26 27 28

Processors

10-1

100

101

102

103

Ti
m

e
[s

]

MPI Strong Scaling, 400k mesh

Total time
Ideal Scaling
MPI Sync

Figure 3-4: Strong scaling properties of the CPU version of our code. Time given is for
100 timesteps of an explicit problem on a 400,000 element mesh. The upper dashed
line shows ideal strong scaling, while the lower dashed line shows communication
time.

processors. Thus, the only communication we require is the synchronization of resid-

ual vector values of the nodes on the interprocessor boundaries. The actual residual

computation is done locally on the processor, after which we perform a sum reduce

operation across all of the shared nodes.

Our method lends itself to naturally to the hierarchical structure required for

hybrid parallelism, as shown in Figure 3-6. After the domain decomposition, each

processor still has many thousands of elements. Thus, we can apply our shared

memory serial algorithm to the individual processor problem with the addition of the

synchronization step described above. This synchronization step requires a transfer

of data from the GPU to the CPU for broadcast across the network.

Each individual processor only communicates with its neighbors, i.e. processors

whose mesh partition borders the given processor. Each processor stores a list of the

processor IDs of its neighbors, as well as a communication map specifying the local

indices of shared nodes. On a synchronization step, each processor loops through

its neighbors, allocates a buffer the size of the communication map, fills that buffer

61

A B

Processor 1
Processor 2

5 5

6

6

7 7

Figure 3-5: Synchronization step for distributed memory parallel algorithm. Node 6
sees contributions from both elements A and B, which are on different processors.

Original Mesh

CPU:

Message

Passing

GPU:

Shared

Memory

Node 1 Node 2 Node 3 Node 4

Figure 3-6: Hybrid parallel decomposition of a mesh. Each CPU has a partition of the
mesh, and communicates boundary data. The attached GPU runs a single element
per core, with synchronization between individual threads.

62

Node 3

Node 1 Node 4

MPI

send array

residual

Figure 3-7: MPI communication map operation. Node 3 needs to synchronize with
Nodes 1 and 2, and the communication maps specify which residual values it must
pull and send across the network.

according to the value specified by the map, and sends it via an MPI non-blocking send

(Figure 3-7). Each processor also posts a non-blocking receive for each neighbor, and

then takes the received arrays and adds them to the nodal array being synchronized.

As a first test for hybrid parallelism, we simply copy the entire residual vector

from the GPU up to the CPU. Then, we can use the existing parallel infrastructure

to synchronize the array. Finally, the synchronized array is copied back down to the

GPU to be used in the corrector step. For a partitioning that results in 100,000

elements per node, the residual vector is on the order of 1 MB. Even for such a

small amount of data to be copied, we end up spending about 25% of the timestep

in cudaMemcpy. This is due to the relatively small bandwidth of the PCI Express

bus connecting the CPU to the GPU. As shown in Figure 3-2, the bandwidth of

this connection is over an order of magnitude smaller than the bandwidth to GPU

global memory. Thus, a CPU data transfer of even a 1 MB vector per timestep is an

expensive operation.

Since GPU to GPU memory copies are much faster than GPU to CPU memory

copies, a better approach is to copy up only the values that need to be synchronized.

At initialization, the CPU communication map arrays are copied down to the GPU.

To improve performance, we concatenate the arrays for all the neighbors into a single

array to reduce the number of cudaMemcpys required. The GPU is not concerned

63

Table 3.2: Relative times of hybrid synchronization steps

Part Relative Time
CUDA gather 14%
Copy to Host 12%
MPI Sync 57%

Copy to Device 9%
CUDA scatter 8%

about the details of which neighbor each piece of information goes to, it simply knows

that the CPU requires certain values from the residual vector. The synchronization

step now proceeds in five parts:

1. CUDA gather - GPU loops through concatenated communication maps, assem-

bling values from residual vector into a single array

2. Copy to Host - Copy concatenated send arrays to the CPU via cudaMemcpy

3. MPI Sync - Communicate buffers via non blocking sends, buffers are pointers

into concatenated send array

4. Copy to Device - Copy concatenated array of receive buffers to the GPU via

cudaMemcpy

5. CUDA scatter - Once again, GPU loops through communication map array and

adds values into residual vector

The relative time required for each part for a typical timestep is shown in Table

3.2. The extra overhead for the GPU copies is approximately equal to the MPI

communication time. Note also that the assembly of the communication buffers is

also now done in parallel on the GPU, exploiting the higher bandwidth of the GPU

main memory over CPU main memory.

Using this synchronization algorithm, we proceed to measure the strong scaling

performance of our GPU code, shown in Figure 3-8. This plot also shows results for

the CPU code, and both exhibit near perfect strong scaling. An unforeseen benefit of

64

20 21 22

Processors

100

101

102

103

104

Ti
m

e
[n

s/
el

em
en

t]

MPI+CUDA Hybrid Strong Scaling

CPU
GPU
CPU sync
GPU sync

Figure 3-8: Strong scaling for MPI+CUDA code. Nodes have Xeon E5530 processors,
a single C1060 and IB QDR interconnect

the hybrid code is that the synchronization time is actually faster than the pure CPU

code. Further profiling of the CPU code reveals that much of the synchronization

time is spent waiting in MPI Barrier, due to small load imbalances and memory

access timing differences between processors. As we accelerate the serial code, the

relative size of these imbalances remains the same, but the absolute time measure of

the imbalance decreases. Thus, the absolute measure of synchronization time actually

decreases as we accelerate computation, meaning that our communication time factor

fc changes. The implication is that our speedup can be even greater than the original

maximum estimate of 1/fc.

3.4 Seamless integration of GPGPU acceleration

GPU acceleration is only truly useful if it is seamlessly integrated into a code. The

application writer should not have to be concerned about the details of the GPU

implementation, and ideally no extra steps should be required to run a program on

65

the GPU. One of the driving goals of the design decisions detailed in Chapter 2 was

seamless integration of GPU computing in our code.

The element set structure described in Chapter 2 greatly simplifies the inte-

gration of GPU computing into our code. We create a new element set called

ElementSetTet2GPU that encapsulates the serial FEM code detailed earlier in this

chapter. Since an element set represents an entire collection of elements, we can

include the somewhat delicate assembly algorithm directly in the element set code.

This reduces the complexity of the overall structure of the code, and minimizes the

intrusiveness of GPU modifications.

Our nodal and quadrature fields also need to be modified so that memory allo-

cations occur on the GPU. Once again, we can minimize intrusiveness by creating

specialized GPU objects, NodalFieldGPU and QuadratureFieldGPU. The GPU ver-

sion of the elemnt set can then access the GPU data memory pointers from these

structures for use in the residual assembly kernel. One difficulty is that we would

like to maintain the same interfaces for CPU code and GPU code. Our goal is that

an application writer can simply select to enable or disable GPU acceleration at the

beginning of the application, and all of the rest of the code remains the same. We

accomplish this goal through the use of private implementation objects. For example,

when GPU compilation is enabled the NodalField class is simply a thin layer that

contains the usual NodalField interface and a pointer to an implementation class.

This implementation class is either a NodalFieldGPU or a NodalFieldCPU object,

depending on whether or not GPU acceleration is enabled. Any method calls on the

nodal field get delegated to one of these objects. This structure allows us to retain

the same interface to the element sets for the GPU code and the CPU code, and

encapsulates all GPU relevant code within one object.

Another change required is a similar delegation scheme with our solvers. The

systems can remain unchanged, since they are simply containers for the fields. For

example, with our explicit newmark solver we again retain the same interface in the

ExplicitNewmarkIntegrator. This class now also contains a pointer to an imple-

mentation class, which can be either a CPU integrator or a GPU based integrator,

66

with the appropriate class instantiated based on whether or not GPU acceleration

is enabled. The CPU class remains as before, while the GPU class simply pulls the

GPU memory pointers from the GPU implementations of the NodalFields and calls

the appropriate kernels for the predictor and corrector step.

One additional component is necessary to complete the integration of GPU accel-

eration. We require a singleton object to handle the initialization of CUDA and also

to offer an interface for enabling or disabling GPU acceleration. The constructor for

this class enables CUDA via the appropriate library calls and selects the best GPU

to use out of the available options. The destructor calls any clean up functions for

CUDA and our interface. With this interface, an application writer can enable GPU

acceleration through one function call. All the remaining code in the application can

stay the same. Data is only copied between the GPU and CPU for the initialization

of boundary conditions at the beginning of the problem, and for any output. Fur-

ther performance could be achieved by using asynchronous memory copies for moving

output data up to the CPU and a separate thread for output, since this can occur in

parallel with the calculations. However, this optimization has not yet been put into

place.

67

68

Chapter 4

Numerical Tests and Application

Problems

The correctness of our code is established by a combination of unit tests and full

simulations of simple problems. These tests are run nightly as part of a nightly build

and test suite using the CTest framework. Verification tests include 2D and 3D patch

tests for the elements, including static and dynamic tests corresponding to uniform

strain and strain rate fields, respectively. In addition, simple linear problems with

known solutions such as a plate with hole subject to a uniform remote stress are

included to verify the overall functionality of the code and material model.

To demonstrate the applicability of our new finite element framework, we present

several example problems that highlight some of the new features. The first problem

corresponds to the propagation of converging as well as diverging cylindrical shock

waves generated by a cylindrical picosecond laser pulse in a water film. The second

problem corresponds to wave propagation in a micro-truss, and shows the parallel

capability of the code. Finally, we demonstrate the multiphysics capability via a

superelastic tension problem.

69

(a) Laser and mirror setup (b) Shocking geometry on a sample

Figure 4-1: Overview of laser induced shock experimental setup.

4.1 Laser induced shock

A recently developed experimental technique involving a laser induced shock shows

promise for novel experimental inquiry into material behavior at extreme stresses

while providing micromechanical response details [35]. In this technique, a laser beam

is focused on a concentric, ring shaped region of the material of interest via a set of

mirrors and beam splitters (Figure 4-1a). The energy from the 300 picosecond laser

pulse causes a rise in temperature in the region and ultimately a high pressure zone.

This cylindrical high pressure zone induces two shocks - one propagating inwards and

one propagating outwards (Figure 4-1b). The inwards propagating shock ultimately

focuses at the center of the ring, creating a spot of very high pressure. Unfortunately,

it is very difficult to experimentally measure the exact pressure distribution in the

material. Thus, we are interested in numerically modeling this shock propagation to

better understand and quantitatively interpret the experimental results.

The specific experiment we model involves shock propagation in a water sample,

with the high pressure coming from heating of carbon particles suspended in the

water. The specific geometry we use is a rectangular prism, 400µm by 400µm by

6µm. In the experiment, the sample is confined between two layers of glass. For

modeling purposes, we assume the glass to be infinitely rigid and allow no outwards

displacement on the boundary nodes. Two simulation meshes were used - one with

214,000 elements for test runs and one with 1.7 million elements for calculations.

70

Table 4.1: Parameters for water material model

Property Value
Density (kg/m3) ρ = 998
Dynamic Viscosity (Pa·s) µ = 1.002 · 10−3

1st Tait Parameter Γ0 = 6.15
2nd Tait Parameter (MPa) B = 304.2

(a) Initial Mesh and Pressure (b) Shocks at 23 ns (c) Shocks at 49 ns

Figure 4-2: Coarse mesh used for investigating laser induced shock propagation.

The water is modeled as a Newtonian fluid with the Tait equation of state for the

pressure response and artificial viscosity for shock capturing. The Tait equation of

state provides a relationship between deformation and fluid pressure:

p(J) = B
[(1

J

)Γ0+1

− 1
]

+ p0 (4.1)

where Γ0 is the Tait parameter, B is a second Tait parameter, p0 is the reference

pressure of the water and J is the usual determinant of the deformation gradient.

The model parameters used in this simulation are shown in Table 4.1.

The ringed laser pulse excitation is modeled as an initial ring of high pressure in

the water sample, shown in Figure 4-2a for a coarse mesh. The pressure profile has a

Gaussian distribution in the radial direction, centered at 95 µm with a half width of

10 µm. This initial pressure is established by applying an eigenstrain to the material.

This eigenstrain creates a non identity initial deformation gradient and determinant

J , which produces an initial pressure via (4.1). An updated Lagrangian scheme is

then employed to maintain this strain as an initial condition. Specifically, we modify

71

our calculated deformation gradient:

F = ∇φ · F r (4.2)

where F r is the reference deformation gradient. In addition, we must modify our

residual force calculation:

ria =

∫

Ω

PiJNa,J̄F
r
J̄J(J

r)−1dΩ (4.3)

where PiJ is the Piola-Kirchhoff stress tensor and Na,J̄ are the shape functions on the

reference element (in the updated configuration).

The continuum equations are integrated by the explicit Newmark method de-

scribed in the previous chapter. The simulation is continued until shortly after the

converging wave reflects from the center, which can be 45-60 ns depending on the

shock speed (Figures 4-2b and 4-2c). An automated Python-based post processing

framework outside of our code analyzes the pressure data and detects the shock wave

peak location to compute trajectories and wave velocities. In the simulation, we set

an initial condition by establishing the initial pressure field of the water sample. In

the experiment, however, the initial condition is the total energy of the laser pulse.

Since the mechanism of transfer from laser energy to water pressure is beyond the

scope of our modeling, we assume a linear relationship between initial pressure and

laser energy based on dimensional considerations. Since zero energy corresponds to

zero pressure, we only have to correlate one set of values to determine the relation-

ship. This correlation is done by matching experimental shock trajectories with the

computed simulation trajectories. For greater accuracy, we match more than one set

of trajectories, these are shown in Figure 4-3.

With these calibrations complete, we proceed to verify the accuracy of our sim-

ulation against experimental results. This verification is done by comparing our

computed converging shock speeds at a variety of laser energies to the experimentally

determined shock speeds. Since the converging shock accelerates towards the center

of the domain, we use a secant velocity between 0 and 20 ns. This comparison is

72

(a) Trajectory at 0.15 mJ (b) Trajectory at 0.67 mJ

Figure 4-3: Comparison between numerically computed and experimental shock tra-
jectories

shown in Figure 4-4. We observe that the numerical values for the converging wave

match very well with the experimental values, giving us confidence in the validity of

our simulation results.

With our simulation calibrated and validated against experimental results, we can

proceed to examine the pressure profiles of the converging shock. This data cannot

be determined through experimental measurements, and thus is the primary interest

of our simulation. A plot of the pressure profiles for a 2.15mJ laser pulse is shown

in Figure 4-5. This plot shows the dramatic increase in pressure at the center of the

converging shock, as well as the steepening of the converging wave as it approaches

the center.

4.2 Wave propagation in a micro-truss array

There has been an increased interest in protective materials applications to explore

ways in which stress waves can be managed in such a way as to achieve desired

mitigation metrics. These waves carry momentum and energy from impactors and

blasts, both of which must be considered and managed. Momentum transfer cannot

be reduced, but we can extend its time scale, thus reducing force. Energy transfer

can be reduced, by using a material that can absorb energy in plastic deformation.

73

0.0 0.5 1.0 1.5 2.0 2.5
Energy [mJ/pulse]

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Sp
ee

d
[k

m
/s

]

Variation of Shock Speed in Water

Converging
Diverging
Converging, Experiment
Diverging, Experiment

Figure 4-4: Comparison between numerically computed shock speed and experimental
shock speed for a variety of initial energies.

0 50 100 150 200
Radius [um]

0

5

10

15

20

M
a
x
im

u
m

P
re

s
s
u
re

[G
P
a
]

Pressure Profile Evolution and Maximum Envelope

Initial Laser Ring

6 ns18 ns
27 ns

31 ns

Figure 4-5: Pressure profiles for converging and diverging shock propagations from a
2.15mJ laser pulse

74

Micro-truss arrays have been studied experimentally as candidates in armor design

due to their excellent energy absorption properties and high structural efficiency. In

addition, the voids in the array can be used for other functions, such as running a

cooling liquid for heat transfer [36]. Finally, the regular, periodic structure of micro-

truss arrays can be exploited to direct the propagation directions of stress waves.

Numerical analysis of micro-truss arrays has so far concentrated mainly on the

plastic dissipation of energy under compressive loading [37] using quasi-static analysis.

The periodic nature of micro-truss arrays implies that they will have interesting wave

propagation properties. Ruzenne and Scarpa investigated wave propagation in a 2-

D hexagonal array using beam elements and eigenvalue analysis [38]. The arrays

showed strong directionality for wave propagation, as well as band-gap frequencies.

We are interested in studying the wave propagation properties for a 3-D micro-truss

array using a full continuum finite element model for the array as opposed to beam

elements. This enables the description of potentially defining features of the response

such as scattering of longitudinal and shear waves at the truss nodes, etc.

4.2.1 Mesh generation

To allow for parametric studies, it is desirable to be able to automatically generate

micro-truss array meshes. One possibility is to generate an entire mesh for an arbi-

trary number of units in each dimension. However, due to the periodic structure of

the truss, it is possible to simply generate the mesh for a single unit and then tile

this unit mesh to obtain our total array. This hybrid structured-unstructured mesh

has clear advantages in terms of disk usage. In addition, we can load an entire array

in parallel, with each processor loading a unit mesh and the communication maps

statically determined at the time of mesh creation. This approach allows us to scale

simulations to the size of the available cluster without the limitation of loading a

mesh on one processor first. For simplicity, we model a pyramidal micro-truss array

so that truss units tile as cubes.

To ensure a conforming mesh, we must make sure in the generation of a single

mesh unit that the tetrahedron faces present on one side of the mesh match the faces

75

Figure 4-6: Assembly of microtruss mesh unit from individual leg mesh.

l

2r

θ

Figure 4-7: Boundary representation for a truss leg with geometric parameters.

on the other side. To satisfy this requirement, we generate a mesh for a single leg

and then assemble it as shown in Figure 4-6 to create the octahedral mesh unit.

This assembly process creates an eight-fold symmetry in the mesh that guarantees

opposing faces of the unit will have matching nodes. To automate the process, we

create the individual leg mesh from a computer generated BRep description. The

BRep is created by a python script, whose input parameters are the length of the leg,

its radius, and the truss angle. The geometry of this BRep is shown in Figure 4-7,

along with the 3 dimensional parameters: r, l, and θ.

The complete process for creating a micro truss mesh unit is then:

1. Automatically generate a BRep for a truss leg from input parameters r, l and θ

2. Create the leg mesh from the BRep with the desired number of elements through

76

Figure 4-8: Scaling test for micro truss simulation on 256 processors, with 12 million
elements.

any external meshing tool

3. Flip the mesh and stitch the resulting overlapping nodes for each spatial axis

x,y and z

4. Create static communication maps by matching nodes on opposing faces

This process is entirely automated via a script that takes as input the 3 leg parameters

and a mesh size parameter. A single unit is created from this script, and the actual

micro-truss array mesh is then created in parallel by tiling a single unit per processor.

Further details on the geometry of the BRep and the actual code for the generating

script can be found in Appendix A.

4.2.2 Wave propagation analysis

To demonstrate the scalability of our mesh loading, we run a test case of a planar

16x16x1 micro-truss array on 256 processors. Each processor loads an individual

50,000 element unit mesh, for a total mesh size of 12 million elements. A view of

the entire mesh is shown in Figure 4-8, showing that the mesh was loaded correctly

77

Figure 4-9: Top view of wave propagation in 5x5 micro-truss array. Colors indicate
displacement.

with the correct spatial offset on each processor. To verify that the interprocessor

communication maps have been correctly constructed, we then apply an impulse at

the center of this mesh and observe the propagation of the wave. The purpose of

this test is not to observe the nature of the propagation or to make any quantitative

measurements. Instead, we want to determine that the waves smoothly progress

across processor boundaries to verify that our parallel mesh loading algorithm works

correctly. Visual inspection of the resulting data files confirms that the wave generated

by the impulse propagates across the mesh correctly.

Our primary interest is the observation of wave propagation through the periodic

78

Figure 4-10: Side view of wave propagation in 5x5 micro-truss array. Colors indicate
displacement and the mesh is deformed by displacements scaled 20 times.

Table 4.2: Parameters for micro-truss material

Property Value
Density (kg/m3) ρ = 7000
Young’s Modulus (GPa) E = 211
Poisson Ratio ν = 0.3

79

structure of the micro-truss array. Thus, our next test is a simple wave propagation

problem. Our array is again planar, with 5 units in the x and y directions. The

truss legs are 1 mm in length, with a radius of 0.1 mm and a leg angle of 45 degrees.

Once again, each mesh unit consists of 50,000 individual elements. For the truss

material, we employ a neohookean model with parameters as shown in Table 4.2,

which correspond to steel. The boundary conditions are force free everywhere, with

an applied displacement on the top of the center truss unit. The displacement is

periodic in time, with an amplitude of 0.01 mm and a frequency of 100,000 rad/s.

The extremely high frequency is so that we can observe several oscillations of the

displacement forcing given the restricted time size step with an explicit integrator.

The resulting wave propagation is shown from the top in Figure 4-9 and from the

side with exaggerated deformations in Figure 4-10.

We can clearly see the directional nature of the wave propagation in the micro-

truss array. Namely, at a given distance the wave amplitude appears to be highest

on the four corners of a square centered about the forcing point. The displacement

along the edges of this squares is much less than the corners. This indicates the

presence of preferred directions of propagation, which likely have to do with the four-

fold symmetry of the octahedral truss unit when viewed from above. Further analysis

of the properties of these micro-truss arrays could include eigenvalue analysis of the

mesh to determine its primary vibration modes, which would allow a full analysis of

its wave propagation properties.

4.3 Superelastic bar under tensile load

Our final test demonstrates the multiphysics capability of our code. We consider a bar

constructed from a shape memory alloy, such as single crystal Cu-Al-Ni. Application

of a uniaxial tensile load will induce a phase transformation between the austenitic

and martensitic phases of the crystal. The so called superelastic effect refers to the

significant strains developed in this phase transformation, which are fully recoverable

upon unloading. We follow the formulation in [39], which introduces an energetic

80

length scale, le and a dissipative length scale ld into the free energy and dissipation

rate, respectively. For simplicity, we shall only consider the energetic length scale in

this problem.

4.3.1 Material model

Our model uses separate fields for the deformation field ϕ and the volume fraction

of martensite ξ. We define the usual deformation gradient F = ∇0ϕ and the Green-

Lagrange strain tensor E = 1

2
(FTF− 1). Assuming small strains, we can decompose

the strain tensor as E = Ee + Et, where Ee is the elastic component and Et is the

phase transformation part. We can now define the free energy per unit volume as

ψ(Ee, ξ,∇0ξ) =
1

2
Ee : C : Ee +

λT
θT

(θ − θT)ξ +
1

2
S0l

2
e ||∇0ξ||

2 (4.4)

where C = C (ξ) is the elastic moduli of the mixture of austenite and martensite,

θT is the equilibrium temperature between the two-phases in a stress free state, λT

is the latent heat, and S0 is a model parameter. The final term of this free energy

introduces a non-local term with the energetic length scale le.

We assume the usual linear elastic material response to the elastic strain Ee =

E− Et

S = C : (E− Et) (4.5)

where S is the second Piola-Kirchhoff stress tensor. In general, the inelestic strain

is defined as Ėt = ξ̇Λ where Λ is determined via a flow rule. For simplicity, in this

initial test problem we will consider an inelastic strain defined by

Et = ξΛ = ξǫt

√

3

2

Sdev

||Sdev||
(4.6)

where ǫt is a material parameter for the maximum transformation strain and Sdev is

the deviatoric component of the second Piola-Kirchhoff stress tensor. Our mechanics

81

system uses the usual force balance

∇0P = 0 (4.7)

where P = FS is the first Piola-Kirchhoff stress tensor.

The introduction of the volume fraction in the free energy (4.4) with a gradient

term requires the solution of a second, coupled system for the volume fraction com-

ponent. In this simplified problem, we ignore any terms involving time derivatives of

the volume fraction, ξ̇. We also assume a single set of elastic moduli for the material,

so C,ξ = 0. These assumptions produce the volume fraction force balance

S : Λ + S0l
2
e∇

2ξ = Y + Bt (4.8)

where Y and Bt are material parameters describing the resistance to phase transfor-

mation and thermal back stress, respectively.

4.3.2 Implementation of the coupled system

As stated in the introduction, one of the key contributions of the framework developed

in this thesis is its ability to simulate multiphysics problems. In principle, we can solve

an arbitrary number of coupled PDEs where each problem is represented by a system

object. For the superelastic problem, we need to solve the balance equations (4.7)

and (4.8), and so our unknown variables are the displacement field, u and the volume

fraction field ξ. The mechanics problems couples to the volume fraction problem

through the second Piola-Kirchhoff stress in (4.8) while the volume fraction problem

couples to the mechanics problem through the inelastic strain computed in (4.6). A

staggered solver shall be employed to solve the coupled problem, which shall solve

each PDE in turn, transferring the required fields, until the solution fields converge.

Within the context of our finite element framework as described in Chapter 2, we

use a standard StaticsSystem for the mechanics component of the problem and a

new VFSystem for the volume fraction component. Both of these classes derive from

82

Table 4.3: Parameters for shape memory alloy material

Property Value
Density (kg/m3) ρ = 7000
Young’s Modulus (MPa) E = 10000
Poisson Ratio ν = 0.0
Maximum Phase Transformation ǫt = 0.04
Thermal Back Stress (MPa) Bt = 4.0
Volume Fraction Gradient Parameter (MPa) S0 = 100
Resistance to Phase Transformation (MPa) Y = 1.0
Energetic Length Scale (m) le = 0.1

the NonlinearSystem base to allow them to interface with our existing non-linear

solvers. We then add a new coupled solver class to perform the iterative staggered

solve using Newton-Raphson solvers for the individual systems. The mechanics prob-

lem is solved first, after which we must transfer the second Piola-Kirchhoff stress

to the volume fraction system. The transfer is accomplished through the Transfer

method in the abstract System class, which allows for any given nodal or quadrature

field to be transferred into any other nodal or quadrature field in the System, with

the assumption that both fields are defined on the same FunctionSpace. Transfers

from a nodal field to a nodal field or a quadrature field to a quadrature field are

straightforward copies. The mixed transfers require the use of the Interpolate and

Extrapolate methods provided by the function space class. After the stress transfer,

we solve the volume fraction problem. Finally, the inelastic strain is transferred to

the mechanics system, which requires interpolation of the volume fraction field ξ to

the quadrature points.

4.3.3 Results for static loading

We demonstrate the capabilities of the coupled solver with a static problem of tensile

loading on a bar. This problem was already solved in 1D in [39], but it is useful

to use it here as a test case for the 3D code. Our mesh geometry is a bar with

dimensions 100 cm by 20 cm by 20 cm, fully restrained on one end and with an

83

applied displacement on the other end. The volume fraction boundary condition is

ξ = 0 at both ends of the bar, with the assumption that the mechanical boundaries

inhibit the phase transition. For this first investigation, we use a relatively coarse

mesh of 200 elements with second order tetrahedra. The material properties of the

shape memory alloy are shown in Table 4.3.

For this simple static case, we investigate the development of the phase transition

under increased loading to demonstrate the correct coupling of the problems. We

increase our applied displacement from 1 cm up to 3.5 cm, and observe the change

in the volume fraction of martensite in the bar. The results of this test are shown

in Figure 4-11. In this simulation we can clearly see that the amount of material

undergoing the phase transition increases as we increase our load. Under the 3.5cm

displacement, we see that the entire center of the bar has transitioned to martensite.

The development of the volume fraction in the material verifies that our coupling code

is correctly transferring fields between the two problems. Furthermore, the staggered

solver converges within 2 iterations in each load case, where our convergence criteria

is the vanishing of the volume fraction increment between each staggered iteration.

We use an absolute tolerance of 8×108 and a relative tolerance of 1×108, compared to

the increment in the first iteration. The fast convergence we observe is unsurprising

as our deformations are essentially within the linear regime of the material.

84

Figure 4-11: Evolution of martensite volume fraction along the length of the bar under
increased displacement loading. Displacements are from left to right, top down: 1cm,
1.5cm, 2cm, 2.5cm, 3cm, 3.5

85

86

Chapter 5

Summary and Conclusions

In this thesis we have presented a new, object-oriented, hybrid parallel computational

framework for solid mechanics and PDEs in general. An overview was provided of

existing finite element codes and their various strategies for translating the mathe-

matical concepts of the numerical method into software. With the lessons from these

codes in mind, we presented a high level view of the modules and classes within

our framework, including a description of the interface and implementation details.

To accelerate our code, we translated critical numerical algorithms such as element

assembly and time integration to run on GPUs and take advantage of the massive

arithmetic compute power of modern GPUs. A fully hybrid approach was taken,

allowing our code to run on clusters of GPUs with a mix of message passing between

nodes and shared memory parallelism within nodes. Finally, our code was tested on

a series of numerical example problems. These included a laser induced converging

shock in water, wave propagation in micro-truss arrays with very large mesh sizes,

and a coupled set of PDEs for a superelastic material.

The primary result, however, is the new framework that can now be applied to a

wide variety of new problems. The main contributions of this new framework are:

• It is designed from the ground up in an object-oriented language to be extensible

and to have strong encapsulation. The framework structure makes it relatively

easy to add new linear or non-linear solvers, time integrators, physical systems,

87

elements, etc. without worrying about breaking existing code. In addition, the

element set structure helps ensure high performance in the critical sections of

our code.

• Native support is provided for GPU acceleration on both single desktop work-

stations and GPU clusters. Enabling GPU acceleration for an application is a

seamless process involving a single API call. The prevalence of GPUs in mod-

ern computers and the ease of enabling GPU acceleration in our framework will

allow application writers to perform much compute intensive problems without

having to gain access to an entire cluster.

• Our element code is written without any assumptions about the equation or

equations to be discretized and solved. Combined with the encapsulation of-

fered by our object-oriented structure, this allows our code to solve coupled

multiphysics problems with an arbitrary number of PDEs. Built in methods

provide the capability to transfer fields from one system to another, allowing

for the easy creation of staggered solvers.

There are many avenues for further development and research with our new frame-

work. In terms of code development, new classes can be added to simplify the addition

of boundary conditions. Currently, boundary conditions are set by passing vectors to

the solver class describing the type of boundary condition and the forcing vector. A

better solution would be to encapsulate these with a new BoundaryCondition class,

which would then allow us to derive classes for Dirichlet, Neumann, mixed, etc. con-

ditions. Another improvement that can be made is the use of existing GPU libraries

to provide a more STL like interface to arrays on the GPU. Our current strategy

is to allow modification only on CPU vectors, which are then copied entirely onto

the GPU for calculation. In terms of research, much more work can be done with

the micro-truss arrays to explore the exact shape of vibrational modes as well as the

possibility of band-gap frequencies in wave propagation. Our current implementation

of the superelastic material uses a simplified, static version of the equations, and so

a future extension is the addition of the dynamic terms and the exploration of their

88

effects on loading and unloading. Finally, our framework provides a good interface to

investigate the open question of the effectiveness of iterative linear solvers for complex

material behavior. Traditionally, solid mechanics has tended to use direct solvers in

implicit problems due to the poor convergence of iterative solvers for problems involv-

ing buckling, softening, or plasticity. The facilities our code provides for selecting new

solvers for a problem allows for the investigation of these issues with a wide variety

of serial and parallel direct and iterative solvers.

89

90

Appendix A

Generation of BRep for micro-truss

The Python script for generating a BRep for the truss leg from Figure 4-7 is shown

below. The BRep format is the format accepted by the Gmsh mesher [40], which we

use for its batch capability, simple interface and performance. The labeling for the

points in the BRep as well as the choice of coordinate axes is shown in Figure A-1.

create the Gmsh compatible BRep geometry for a truss leg

@param filename name of the file for output

@param theta the angle of the leg

@param l the length of the leg

@param r the radius of the leg

def gen_geo(filename , theta , l, r):

out = open(filename , ’w’)

st = math.sin(theta)

ct = math.cos(theta)

L = l*math.cos(theta)

H = l*math.sin(theta)

rs = r/math.sin(theta)

rc = r/math.cos(theta)

r45 = rs*r/math.sqrt (0.5*(rs*rs+r*r))

al = 0.5* math.sqrt(st **4+2* st*st+1+ct*ct*st*st+ct*ct)

ra=r/(math.sqrt (2) /2*ct)

left end of bar points

out.write(’Point (1) ={0 ,0 ,0};\n’)

out.write(’Point (2) ={%f,%f,0};\n’%(r45*math.cos(math.pi/4),r45*

math.sin(math.pi/4)))

out.write(’Point (3)={0,%f ,0};\n’%(rs))

out.write(’Point (4) ={%f,%f,0};\n’%(-r45*math.cos(math.pi/4),r45*

math.sin(math.pi/4)))

out.write(’Point (5)={0,0,%f};\n’%(rc))

out.write(’Point (6) ={%f,%f,%f};\n’%(ra *0.5* ct/al ,ra *0.5*ct/al ,ra

91

0.5(st**3+st+ct*ct*st)/al))

out.write(’Point (7) ={%f,%f,%f};\n’%(-ra *0.5* ct/al,ra *0.5* ct/al,

ra *0.5*(st**3+st+ct*ct*st)/al))

left end of bar lines

out.write(’Ellipse (1)={2, 1, 3, 3};\n’)

out.write(’Ellipse (2)={4, 1, 3, 3};\n’)

out.write(’Ellipse (3)={2, 1, 6, 6};\n’)

out.write(’Ellipse (4)={5, 1, 6, 6};\n’)

out.write(’Ellipse (5)={4, 1, 7, 7};\n’)

out.write(’Ellipse (6)={5, 1, 7, 7};\n’)

out.write(’Line (7) ={4 ,1};\n’)

out.write(’Line (8) ={2 ,1};\n’)

out.write(’Line (9) ={5 ,1};\n’)

left end , near vertical face

out.write(’Line Loop (25) ={-8,3,-4,9};\n’)

out.write(’Plane Surface (1) ={25};\n’)

left end , far vertical face

out.write(’Line Loop (26) ={-9,6,-5,7};\n’)

out.write(’Plane Surface (2) ={26};\n’)

left end , bottom face

out.write(’Line Loop (27) ={8,-7,2,-1};\n’)

out.write(’Plane Surface (3) ={27};\n’)

right end of bar points

out.write(’Point (8)={0,%f,%f};\n’%(L,H))

out.write(’Point (9) ={%f,%f,%f};\n’%(r45*math.cos(math.pi/4),L-

r45*math.sin(math.pi/4),H))

out.write(’Point (10) ={0,%f,%f};\n’%(L-rs ,H))

out.write(’Point (11) ={%f,%f,%f};\n’%(-r45*math.cos(math.pi/4),L-

r45*math.sin(math.pi/4),H))

out.write(’Point (12) ={0,%f,%f};\n’%(L,H-rc))

out.write(’Point (13) ={%f,%f,%f};\n’%(ra *0.5* ct/al,L-ra *0.5* ct/al

,H-ra *0.5*(st**3+st+ct*ct*st)/al))

out.write(’Point (14) ={%f,%f,%f};\n’%(-ra *0.5*ct/al ,L-ra *0.5* ct/

al,H-ra *0.5*(st**3+st+ct*ct*st)/al))

right end of bar lines

out.write(’Ellipse (10)={9, 8, 10, 10};\n’)

out.write(’Ellipse (11) ={11, 8, 10, 10};\n’)

out.write(’Ellipse (12)={9, 8, 13, 13};\n’)

out.write(’Ellipse (13) ={12, 8, 13, 13};\n’)

out.write(’Ellipse (14) ={11, 8, 14, 14};\n’)

out.write(’Ellipse (15) ={12, 8, 14, 14};\n’)

out.write(’Line (16) ={11 ,8};\n’)

out.write(’Line (17) ={9 ,8};\n’)

out.write(’Line (18) ={12 ,8};\n’)

right end , near vertical face

out.write(’Line Loop (28) ={18,-17,12,-13};\n’)

out.write(’Plane Surface (4) ={28};\n’)

right end , far vertical face

out.write(’Line Loop (29) ={-18,15,-14,16};\n’)

92

out.write(’Plane Surface (5) ={29};\n’)

right end , top face

out.write(’Line Loop (30) ={17,-16,11,-10};\n’)

out.write(’Plane Surface (6) ={30};\n’)

crossing lines

out.write(’Line (19) ={3 ,12};\n’)

out.write(’Line (20) ={2 ,13};\n’)

out.write(’Line (21) ={6 ,9};\n’)

out.write(’Line (22) ={5 ,10};\n’)

out.write(’Line (23) ={7 ,11};\n’)

out.write(’Line (24) ={4 ,14};\n’)

top 2 faces

out.write(’Line Loop (31) ={4 ,21 ,10 , -22};\n’)

out.write(’Ruled Surface (7) ={31};\n’)

out.write(’Line Loop (32) ={-6,22,-11,-23};\n’)

out.write(’Ruled Surface (8) ={32};\n’)

bottom 2 faces

out.write(’Line Loop (33) ={1 ,19 ,13 , -20};\n’)

out.write(’Ruled Surface (9) ={33};\n’)

out.write(’Line Loop (34) ={-2,24,-15,-19};\n’)

out.write(’Ruled Surface (10) ={34};\n’)

side faces

out.write(’Line Loop (35) ={-3,20,-12,-21};\n’)

out.write(’Ruled Surface (11) ={35};\n’)

out.write(’Line Loop (36) ={5 ,23 ,14 , -24};\n’)

out.write(’Ruled Surface (12) ={36};\n’)

the whole body

out.write(’Surface Loop (13) ={1,2,3,4,5,6,7,8,9,10,11,12};\n’)

out.write(’Volume (1) ={13}; ’)

93

l

2r

θ

x

y

z

1
2

3
4

5
6

7

8

9
10

11

12

13

14

Figure A-1: Micro-truss leg BRep with axes and points labeled.

94

Bibliography

[1] W. Bangerth, R. Hartmann, and G. Kanschat. deal.ii–a general-purpose object-
oriented finite element library. ACM Transactions on Mathematical Software,
33(4):24/1–24/27, 2007.

[2] R. Radovitzky, A. Seagraves, M. Tupek, and L. Noels. A scalable 3d fracture
and fragmentation algorithm based on a hybrid, discontinuous galerkin, cohesive
element method. Computer Methods in Applied Mechanics and Engineering,
200:326–344, 2011.

[3] T.J.R. Hughes. The finite element method: Linear static and dynamic finite
element analysis. Dover Publications, Inc, New York, 2000.

[4] O. C. Zienkiewicz and R. L. Taylor . The Finite Element method, 4th edn.
McGraw-Hill, New York, 1994.

[5] J.R. Stewart and H.C. Edwards. A framework approach for developing parallel
adaptive multiphysics applications. Finite Elements in Analysis and Design,
40:1599–1617, 2004.

[6] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ li-
brary for parallel adaptive mesh refinement/coarsening simulations. Engineering
with Computers, 22(3-4):237–254, 2006.

[7] A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM
Transactions on Mathematical Software, 37(2):1–28, 2010.

[8] Junxian Liu, Paul Kelly, and Stuart Cox. Functional programming for finite
element analysis, 1993.

[9] J. Besson and R. Foerch. Large scale object-oriented finite element code design.
Computer Methods in Applied Mechanics and Engineering, 142:165–187, 1997.

[10] O. Pironneau, F. Hect, and A. Le Hyaric. Freefem++. http://www.freefem.org,
2009.

[11] Satish Balay, Jed Brown, , Kris Buschelman, Victor Eijkhout, William D. Gropp,
Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision
3.1, Argonne National Laboratory, 2010.

95

http://www.freefem.org

[12] P.R. Amestoy, I.S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics
and Engineering, 184(2-4):501 – 520, 2000.

[13] A. Gupta, S. Koric, and T. George. Sparse matrix factorization on massively
parallel computers. In Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, SC ’09, pages 1:1–1:12, New York, NY,
USA, 2009. ACM.

[14] A. Logg. Efficient representation of computational meshes. International Journal
of Computational Science, 4(4):283–295, 2009.

[15] James Munkres. Elements of Algebraic Topology. Prentice Hall, 1984.

[16] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[17] Top500.org. Top500 List - November 2010.
http://www.top500.org/list/2010/11/100, November 2010.

[18] NVIDIA Corporation. NVIDIA CUDA Programming Guide, Version 2.0.
http://developer.download.nvidia.com, November 2008.

[19] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger,
Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose compu-
tation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[20] D. Luebke. CUDA: Scalable parallel programming for high-performance scientific
computing. In 5th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 2008., pages 836 –838, May 2008.

[21] D.B. Kirk and W.H. Wen-mei. Programming Massively Parallel Processors. Mor-
gan Kaufmann, 2010.

[22] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips.
GPU Computing. Proceedings of the IEEE, 96:879 – 899, 2008.

[23] D. Goddeke, R. Strzodka, and S. Turek. Accelerating double precision fem sim-
ulations with gpus. Proceedings of ASIM, 2005.

[24] Dimitri Komatitsch, David Michea, and Gordon Erlebacher. Porting a high-
order finite-element earthquake modeling application to nvidia graphics cards
using cuda. Journal of Parallel Distributed Computing, 69:451–460, 2009.

[25] D. Goddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, and
S. Turek. Co-processor acceleration of an unmodified parallel solid mechanics
code with feastgpu. International Journal of Computational Science, 4:254–269,
2009.

96

http://www.top500.org/list/2010/11/100
http://developer.download.nvidia.com

[26] Z.A. Taylor, M. Cheng, and S. Ourselin. High-speed nonlinear finite element
analysis for surgical simulation using graphics processing units. IEEE Transac-
tions on Medical Imaging, 27:650–663, 2008.

[27] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with cuda. Queue, 6:40–53, March 2008.

[28] A. Klockner, T. Warburton, J. Bridge, and J.S. Hesthaven. Nodal discontinuous
galerkin methods on graphics processors. Journal of Computational Physics,
228:7863–7882, 2009.

[29] C. Cecka, A.J. Lew, and Darve E. Assembly of finite element methods on graphics
processors. International Journal for Numerical Methods in Engineering, 85:640–
669, 2011.

[30] NVIDIA Corporation. NVIDIA CUDA C Programming Best Practices Guide,
Version 2.3. http://developer.download.nvidia.com, July 2009.

[31] R. Rabenseifner. Hybrid parallel programming on hpc platforms. In Fifth Euro-
pean Workshop on OpenMP, September 2003.

[32] D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen, M. Gra-
jewski, and S. Turek. Exploring weak scalability for fem calculations on a gpu-
enhanced cluster. Parallel Computing, 33:685–699, 2007.

[33] D. Komatitsch, G. Erlebacher, D. Goddeke, and D. Michea. High-order finite-
element seismic wave propagation modeling with mpi on a large gpu cluster.
Journal of Computational Physics, 2010.

[34] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In Associ-
ation for Computing Machinery, editor, Supercomputing, San Diego, 1995.

[35] T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and
K. A. Nelson. Direct visualization of laser-driven focusing shock waves (in press).
Physical Review Letters, 2011.

[36] H.N.G. Wadley. Multifunctional periodic cellular metals. Philisophical Transac-
tions of the Royal Society A, 364:31–68, 2006.

[37] L. Wang, M.C. Boyce, C-Y Wen, and E.L. Thomas. Plastic dissipation mecha-
nisms in periodic microframe-structured polymers. Advanced Functional Mate-
rials, 19:1343–1350, 2009.

[38] M. Ruzzene and F. Scarpa. Directional and band-gap behavior of periodic auxetic
lattices. phys. stat. sol. (b), 242:665–680, 2005.

[39] L. Qiao, J. J. Rimoli, Y. Chen, C. A. Schuh, and R. Radovitzky. Nonlocal
superelastic model of size-dependent hardening and dissipation in single crystal
Cu-Al-Ni shape memory alloys. Physical Review Letters, 106(8):085504, 2011.

97

http://developer.download.nvidia.com

[40] Christophe Geuzaine and Jean-Franois Remacle. Gmsh: A 3-d finite element
mesh generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

98

	Introduction
	Motivation
	Background
	Finite element method
	Modern finite element codes

	Scope and outline

	Object-Oriented Framework
	Objectives
	Topology and meshes
	Interface
	Simplicial complex structure for topology
	Implementation

	Finite elements module
	Fine grained vs. coarse grained containers
	Interface
	Implementation

	System of equations and fields
	Interface
	Implementation

	Solvers and integrators
	Interface
	Serial and parallel solver implementation

	GPGPU Acceleration
	Motivation
	Serial FEM with CUDA
	CUDA + MPI Hybridization
	Seamless integration of GPGPU acceleration

	Numerical Tests and Application Problems
	Laser induced shock
	Wave propagation in a micro-truss array
	Mesh generation
	Wave propagation analysis

	Superelastic bar under tensile load
	Material model
	Implementation of the coupled system
	Results for static loading

	Summary and Conclusions
	Generation of BRep for micro-truss

