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ABSTRACT

This thesis extends the work on a shared human and robotic mission to the Martian system presented at
the Revolutionary Aerospace Systems Concepts Academic Linkage (RASC-AL) 2010 competition by a
team of MIT graduate students. Particular attention is paid to the transportation infrastructure and its
ability to support the human and robotic mission from a logistics and supply chain standpoint.

The original human and robotic mission was analyzed along with several variants including the use of
Advanced Chemical Propulsion instead of Nuclear Thermal Rockets and the decomposition of the
original mission into several that could, in the spirit of the Flexible Path, form the final steps on the way
to a human landing on Mars. Comparison of selected figures of merit, such as the mass required in Low-
Earth Orbit, number of sites explored, and crew-exploration days, gives mission designers a means to
begin down-selecting mission concepts at this early phase and focus analysis efforts on the most
promising concepts.

In general, compared to NASA's Human Exploration of Mars Design Reference Architecture 5.0, the
human and robotic mission concept requires 16% less mass in Low-Earth Orbit, is less complex, and
explores six areas as opposed to a single locale. Further, mission variants, including one that
hypothesizes a progression of Mars missions on the Flexible Path, are feasible and offer a flexible and
modular way of progressively exploring the Martian system with the ultimate goal of landing humans on
the surface of Mars.

Thesis Supervisor: Olivier L. de Weck
Title: Associate Professor of Aeronautics and Astronautics and of Engineering Systems
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1 Introduction

1.1 The Ultimate Goal: Humans on the Surface of Mars

The year in which this thesis has been written, 2011, is of particular, if somewhat dubious, interest to the

pioneers of aeronautics and astronautics. It bookends a period of unprecedented growth in humans in

aerospace followed by an anticlimactic denouement.

In 1927, eighty-four years prior, Charles Augustus Lindbergh, completed his historic solo non-stop flight

across the Atlantic Ocean from New York to Paris. An international hero, his flight inspired a generation

of engineers, aviators, and dreamers to push the envelope of aeronautics, carving out a place in the skies

for humankind.

Moving ahead to 1969, forty-two years after the flight of the "Spirit of St. Louis," the human race

experienced another "giant leap." Neil Armstrong, accompanied by Edwin "Buzz" Aldrin, landed and

walked on Earth's largest natural satellite with their crewmate Michael Collins orbiting overhead. In the

forty-two years after Lindbergh's flight, humans had come from flying across the Atlantic Ocean from

North America to Europe to flying across the cosmic ocean from the Earth to the moon and returning

safely.

Now, move ahead another forty-two years to 2011. Soon after Apollo 11, a study chaired by then-vice-

president Spiro Agnew was conducted to investigate a human landing on Mars that ultimately lost its

momentum (Augustine et al., 2009). A variety of other human Martian exploration proposals have been

made in the intervening years (Boston, 1984; Zubrin and Baker, 1992; Zubrin and Wager, 1997; National

Aeronautics and Space Administration [NASA], 2004; NASA Mars Architecture Steering Group

[NASA], 2009), none of which resulted in much more than paper designs. The painful reality is that, in

terms of human space exploration, the forty-two years after Apollo 11 were far less moving than the

forty-two years before.

That is not to say that we have experienced an extraterrestrial vacuum since Apollo 11. Achievements of

human ingenuity such as the space stations Skylab, Mir, and International Space Station (ISS), the

multitude of robotic explorers sent to investigate extraterrestrial surfaces, and the creation of an

interstellar ensemble of observers and probes from the Hubble Space Telescope to the Voyager 1

spacecraft attest to the continued advancement of the space science and robotic space exploration efforts.



Notwithstanding recent successes, one cannot help but think that human space exploration beyond low-

Earth orbit (LEO) has stalled. There is little debate that for a human landing within the inner solar

system, Mars is the location of most scientific, practical, and colonial interest (Mars Exploration Program

Analysis Group [MEPAG], 2008; Augustine et. al., 2009). Yet, it has yet to be explored and it is not

entirely obvious how it should be explored.

The goal of this thesis, therefore, is to analyze and compare the feasibility of several proposed human

Martian exploration architectures. The missions investigated take on many forms, from standalone sorties

that serve as an advanced precursor to a human landing on Mars to an extended Martian exploration

campaign.

1.2 Research Motivation

The primary motivation for this project is to expand on the study performed by Cunio et al. (2010a;

2010b). The study focused on comparing a humans-to-surface mission to Mars with one where humans

oversee robotic explorers from areostationary orbit (called humans-in-orbit), but never actually land on

the surface of Mars. This analysis assumed "isoperformance," that is to say it was assumed that a

transportation architecture capable of the launch, trans-Mars and trans-Earth injections, and satisfaction of

the crew demands for resources was in place for both mission modes. As such, this thesis attempts to

investigate the implications of this assumption in greater detail.

Further, Cunio et al. (2010a) define and analyze a single humans-in-orbit concept of operations. While

they discuss the merits of this mission mode compared to humans-to-surface, several variants of this

mission concept can be constructed that may provide further advantages depending on the technological,

environmental, and political context. These alternate scenarios are investigated in this thesis.

Cunio et al. (2010a) also note that the humans-in-orbit mission mode fits on the Flexible Path, a concept

proposed by Augustine et al. (2009) that is reviewed further below. In this thesis, an example extended

Mars exploration campaign in the spirit of the Flexible Path is defined and analyzed.

Finally, another motivation for this thesis was to demonstrate extended use of SpaceNet, a space logistics

modeling program developed at MIT and described thoroughly in Grogan (2010). Grogan develops and

analyzes four case studies to demonstrate the breadth of SpaceNet's modeling capability. This thesis

attempts to expand on the case study library, bolstering the range of SpaceNet's applicability.



1.3 Related Literature

This section contains an overview of the literature that appears most frequently throughout the thesis.

Because a large fraction of the supporting literature is specific to particular missions proposals, those are

reviewed individually in the appropriate chapters.

Cunio et al. (201 Oa) describes a shared human and robotic mission to Mars. The defining characteristic of

this mission is that humans do not descend to the Martian surface. Instead, they remain in orbit and tele-

operate robotic hopping explorers on the surface of Mars. Concurrently, humans can explore the Martian

moons, Phobos and Deimos, and nominally achieve sample return from the Martian surface and both

moons. This mission was demonstrated to be less costly, less risky, more quickly achievable than a

humans-to-surface mission, and a viable stepping-stone of the Flexible Path (explained further below).

NASA (2009), better known as the Human Exploration of Mars Design Reference Architecture 5.0

(henceforth denoted as "DRA 5.0"), is the most recent incarnation, under the Vision for Space

Exploration introduced in 2004 (NASA, 2004), of the NASA-proposed mission architecture for a human

landing on Mars. It utilizes the elements of the Constellation Program, namely the Ares I and Ares V

launch vehicles and the Orion Crew Exploration Vehicle, and presents a mission timeline and a very

preliminary design of the surface assets. The nominal architecture features nuclear thermal rockets

(NTRs), pre-positioning of surface assets before astronaut arrival, and travel to and from Mars on the

conjunction-class mission trajectory.

Augustine et al. (2009), titled Seeking a Human Spaceflight Program Worthy of a Great Nation

(henceforth denoted as the "Augustine Report"), present an independent review of the American human

spaceflight program. In effect, they propose three classes of options: one that closely follows the program

of record, one that preserves the moon as the exploration destination, and the "Flexible Path" which aims

to opportunistically explore inner solar system bodies. The Flexible Path is structured so that

technological advancement and operational experience both lead eventually to a human landing on the

Martian surface.

While a large body of literature is focused on potential human missions to the Martian surface and

neighborhood, what is missing is a high-level logistics evaluation of a family of missions, such as the one

presented in the Augustine Report, along common dimensions. This thesis attempts to fill that gap.

SpaceNet is a free software tool that "models space exploration from a supply chain and logistics

architecture perspective" (de Weck et al., 2009). It is culmination of several years of work done at MIT



beginning with prototyping in 2005-2006 leading to the release of a public version complete with source

code and a development and user community in 2010 (Grogan, 2010). It allows users to perform space

mission feasibility studies, from a logistics and supply chain perspective, and visualize results and figures

of merit in several useful ways. SpaceNet Version 2.5r2 is the primary version used throughout this

analysis.



2 Feasibility Analysis of a Shared Human and
Robotic Mars Mission (SHRMM)

2.1 Description of SHRMM

SHRMM is a mission concept designed by a team of MIT graduate students for the Revolutionary

Aerospace Systems Concepts Academic Linkage (RASC-AL) 2010 competition. A report detailing the

mission has been written (Cunio et al., 2010a) and a brief summary of the mission follows here with

additional technical details appearing in Appendix B.

2.1.1 Mission Concept Vision

SHRMM was envisioned to act as a stepping-stone between missions for which we have performed and

for which we have gained expertise, such as Earth-orbit missions to the International Space Station (ISS)

and lunar surface missions during the Apollo program, and the ultimate human exploration mission goal

in the inner solar system, the surface of Mars (Augustine et al., 2009) as shown in Figure 1.

The rationale is to eliminate the requirement for heavy, expensive, and complex systems, such as a Mars

surface habitat and Mars ascent vehicle, and also to bypass potentially dangerous maneuvers like Mars

entry, descent, and landing with humans aboard heavy payloads. By doing so, the cost, complexity, and

risk of the mission is reduced, and experience can be gained in areas such as long-term human spaceflight

and tele-robotic operation while value is returned through human-guided exploration and surface sample

return. All this leads to a mission that is more readily implementable, though one should recognize the

most significant downside of not being able to have "boots on the ground" during our first human mission

to Mars.
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Figure 1: SHRMM Mission Concept (adapted from Cunio et al. (2010a))

2.1.2 Concept of Operations

Figure 2 shows a bat chart of SHRMM in the Martian neighborhood. The stacks, consisting of, among

other things, the Mars Transit Vehicle (MTV), hoppers, Mars Ascent Vehicles (MAVs), and the Pirogue

excursion vehicle first enter areostationary Mars orbit (ASO). From there, the habitat and MTV remain in

orbit around Mars while the hoppers and MAVs descend to the Martian surface. There, the hoppers

perform exploration while being supervised remotely by the crew in orbit. The hoppers collect samples,

return them to the MAVs, which then ascend and rendezvous with the habitat where they are further

analyzed and stowed for the return journey to Earth. ASO (17,032 km altitude and 0* inclination) was

chosen specifically to allow the astronauts to have an uninterrupted line of sight to one Martian

hemisphere, allowing for continuous communication with the hoppers below.

..... ........
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Figure 2: SHRMM Bat Chart (adapted from Cunio et al. (2010a))

Meanwhile, two of the crewmembers utilize the Pirogue vehicle, designed expressly for exploration of the

Martian moons, to travel to Phobos and Deimos with a trip back to the MTV between the two. At the

Martian moons, the crew performs extravehicular exploration and retrieves samples to return to the MTV.

When the exploration phase is complete, the crewmembers and samples are loaded into the MTV, which

then performs the Trans-Earth Injection (TEI) maneuver, returning the crew back to Earth.

The crew nominally consists of six astronauts, four astronauts working in shifts to tele-operate the

hoppers on the Martian surface and two astronauts trained to perform the extravehicular explorations

using the Pirogue. Four pairs of hoppers, eight in total, are sent to the surface with each pair matched up

to a MAV. The rationale for sizing SHRMM, based on considerations of mass, ISS astronaut shift

schedules, and human supervisory control, is given in greater detail in Cunio et al. (201 0a).

2.1.3 Results and Conclusions

Table 1 shows the results of the SHRMM analysis presented in Cunio et al. (2010a), and their comparison

to DRA 5.0 (which is denoted the Humans-to-Surface mission mode in Cunio et al. (2010a) and was

taken as the reference human surface mission architecture). The cells shaded in green indicate the better

of the two mission modes for a given dimension. SHRMM requires 180.5 metric tons (mT) in Mars orbit

while DRA 5.0 requires 355.5 mT, a reduction of nearly 50%. However, in the nominal DRA 5.0,

approximately 200 kg of samples are returned from the Martian surface while in SHRMM, approximately

only 4 kg of samples are returned. This is balanced by the 150 kg that are expected from the surface of

the Martian moons, something that does not occur in DRA 5.0, and is of scientific interest (MEPAG,



2008; Galimov, 2010). Furthermore, potentially four different regions can be accessed on Mars in

SHRMM, a boon to scientific variety, while only the immediate outpost surroundings can be accessed in

DRA 5.0.

The development and build costs were estimated to be 70% lower in SHRMM compared to DRA 5.0.

However absolute cost numbers were not referenced due to uncertainty in their accuracy. Theoretically,

three technologies are below Technology Readiness Level (TRL) 6 in SHRMM (Mars ascent, asteroid

operations, and zero-boil off cryogenic propellant), while five do not meet this threshold in DRA 5.0

(Mars ascent, heavy Mars EDL, Mars in-situ propellant production (ISPP), Mars surface power, and zero

boil-off cryogenic propellant) (Cunio et al., 201 Oa). Further, rendezvous with the MTV immediately prior

to the return journey is mission- and life-critical in DRA 5.0, while only mission-critical in SHRMM.

Finally, while the stay time in the Martian neighborhood is many times higher in DRA 5.0, 500 days

compared to 40, SHRMM triples the number of bodies visited allowing for a wider variety of scientific

return.

Cunio et al. (2010b) conclude that SHRMM represents a "simpler, safer, lighter" approach to a human

mission to Mars. Indeed, given the results presented in Table 1, SHRMM provides a more widespread

human presence in the Martian system for less mass and development and build cost, while relinquishing

the focus of landing and concentrating exploration on the Martian surface for an extended period of time.

Table 1: Comparison of SHRMM to Humans-to-Surface Mission Mode (adapted from Cunio et al. (2010a))

Comparison Basis SHRMM NASA DRA 5.0

Wet mass in Mars orbit 355.5 mT

Samples mass from Mars -4 kg

Samples mass from moons None

Regions accessed on Mars I (outpost locale)

Normalized 1.0
development/build cost

Technologies below TRL 6 5: Mars ascent, heavy Mars EDL,
MARS ISPP, Mars surface power,
cryogenic zero boil-off

Stay time at Mars 40 days

Bodies visited 1

. ... ........ ............................ ..... ....... .......... .......... ............... . ........



2.1.4 Assumptions in SHRMM

The SHRMM study presented in Cunio et al. (2010a) assumes, in regard to the launch vehicle

infrastructure and transit phases, "isoperformance" between DRA 5.0, and SHRMM. This was done to

facilitate direct comparison of the exploration capabilities between DRA 5.0 and SHRMM while the two

missions were in the neighborhood of Mars (Cunio et al., 2010a).

The basic assumptions in the SHRMM analysis were as follows:

1. The launch vehicles presented in DRA 5.0, essentially variations on the Constellation launch

vehicle family (NASA, 2009), or very similar launch vehicles would be capable of delivering the

required elements for SHRMM.

2. The mission infrastructure would be able to satisfy the demand for crew provisions (e.g., food,

water, hygiene items, and waste disposal items) for the duration of the outbound journey,

exploration phase, and return journey.

While Cunio et al. (2010a) showed the potential advantages and disadvantages of embarking on a mission

like SHRMM, the aforementioned assumptions have not yet been verified and are the focus of the

remainder of this chapter.

2.2 Feasibility Analysis

To further develop the Shared Human and Robotic Mars Mission concept, a feasibility study focusing on

the propulsive and crew provisions supply network was performed. The analysis was done using the

space exploration logistics software SpaceNet Version 2.5r2 (http://spacenet.mit.edu/). The objective of

the feasibility study is to assess the ability of the elements proposed in DRA 5.0 to satisfy the propulsive

and crew provision demands of SHRMM.

2.2.1 Feasibility Analysis Assumptions

The following assumptions were made in the feasibility analysis:

1. All elements in the supporting infrastructure were modeled as specified in DRA 5.0. Where

conflicting information was found, an educated guess was made as to which value was carried

through the feasibility analysis as well as consultation with Grogan (2010). A summary of the

elements modeled is shown in Table 2 (NASA, 2009), including the three MTV stacks that will

be defined and discussed further below.



2. A notable absence from the above list is the Ares I crew launch vehicle. Because crew launch to

Low Earth Orbit (LEO) is a single launch isolated logistically from the rest of the mission

infrastructure, it was not necessary to model the Ares I in detail and instead it was assumed that a

capable crew launch vehicle would be available to deliver the crew to LEO.

3. Demand for crew provisions are assumed to be a constant 7.5 kg per crewmember daily, with an

approximate breakdown being 2 kg for food, 3.5 kg for water, 1 kg for gases, 0.5 kg for hygiene

items, and 0.5 kg for waste disposal items (Grogan, 2010). The demand rate is assumed

independent of the mission phase (i.e., transit, tele-operations, or extravehicular exploration).

4. Only mass feasibility is considered. At this current time, the volume and cost of the mission

elements both in DRA 5.0 and SHRMM are considered too uncertain to be of meaningful use.

5. DRA 5.0 assumes the use of zero boil-off LH2 cryocoolers (NASA, 2009) to prevent propellant

loss during the duration of the outbound transit and exploration phases. The assumption of zero

boil-off is thus carried over to this feasibility analysis.

6. DRA 5.0 implicitly makes the assumption of having in-space restart-able engines. Consequently,

this feasibility analysis also assumes this technology is available.

7. Additional mass for spares is included in the mass specifications for the elements in DRA 5.0

(NASA, 2009). The ancillary elements relevant to SHRMM, generally associated with

exploration and science, are comparatively significantly lighter and operate for a shorter period of

time, and it is assumed that their demand for spares is negligible in the context of the demand for

crew provisions.

Propulsive feasibility during the exploration phase, the time when the crew is in the Martian vicinity, is

not considered. During this time, only the Pirogue vehicle is used for propulsive maneuvers, and this

propulsive feasibility was investigated in Cunio et al. (2010a).



Table 2: Summary of DRA 5.0 Elements

Max Fuel

2.2.2 Trajectory Analysis

Propulsive requirements in AV for a conjunction class (i.e., long stay) mission for launch windows

between 2031 and 2046 for both an all-propulsive trajectory and a trajectory with the ability to aerobrake

during Mars Orbit Insertion (MOI) were calculated. In the analysis, it was assumed that vehicles would

leave from a 407-km circular LEO and insert into a 230 km x 33,793 km 1-sol orbit around Mars (NASA,

2009). Also, the results presented are for the conjunction class mission, as this is the nominal design

reference mission chosen for its long stay time at Mars and lower AV compared to the opposition (i.e.,

short stay) mission class.

SHRMM is built around the opposition mission class which affords the advantage of reducing the overall

human exposure to space radiation. Thus, an astrodynamics analysis is required to determine the AV

requirements for an opposition class mission for the various maneuvers: TMI, MOI, and TEL.

Furthermore, while the lower AV requirements associated with conjunction class missions can still be

Name
Ares V SRB

Ares V Core

Ares V Interstage

Ares V EDS

Ares V PLF

NTR

NTR (S)

In-line LH2 Tank

In-line LH2 Tank (S)

LH2 Drop Tank

MTH

CEV

CFC

SM

LST

SST

DM

Cargo MTV #1

Cargo MTV #2

Crewed MTV

Mass
(mT)
106.5

173.7

9.2

26.4

9.0

33.7

41.7

10.8

21.5

14.0

27.5

6.0

1.9

4.0

8.9

4.7

1.8

168.0

192.3

351.4

Max
Crew
0

0

0

0

0

0

0

0

0

0

6

6

0

0

0

0

0

0

0

6

Cargo
(mT)
0

0

0

0

0

0

0

0

0

0

5.3

0.5

7.94

0

0

0

0

0

0

13.74

Mass
(mT)
685

1,587

0

253

0

59.4

59.7

34.1

69.9

73.1

0

0

0

0

0

0

0

93.5

93.5

202.7

Ip
(s) Description
269 Ares V Solid Rocket Booster (2 per Ares V)

414 Ares V Core Stage

- Ares V Interstage

449 Ares V Earth Departure Stage

- Ares V Payload Fairing

950 Nuclear Thermal Rocket

950 Nuclear Thermal Rocket with Radiation Shield

950 Liquid Hydrogen Tank

950 Liquid Hydrogen Tank with Radiation Shield

950 Liquid Hydrogen Tank (jettisoned in transit)

- Mars Transfer Habitat

- Orion Crew Exploration Vehicle

- Contingency Food Canister

- Orion Service Module

- Long Saddle Truss

- Short Saddle Truss

- Docking Module

950 Cargo MTV #1 Stack

950 Cargo MTV #2 Stack

950 Crewed MTV Stack



utilized for cargo flights used to pre-position assets in SHRMM, care must be taken to adjust the AV

requirements to reflect MOI into ASO as opposed to the orbit suggested by DRA 5.0.

Casalino et al. (1998) present complete potential trajectory options between the years 2000 and 2037.

Each outbound TMI opportunity is matched with an appropriate return TEI opportunity, and the

trajectories are categorized as conjunction and opposition classes, some with outbound and inbound

midcourse corrections or Venus flybys.

The analysis performed by Casalino et al. (1998) assumed a TMI maneuver executed from a 500-km LEO

and subsequent insertion into a 403-km altitude periapsis 1-sol Martian orbit, hereafter referred to as

Reference Mars Orbit (RMO). It was then necessary to extend the analysis of Casalino et al. (1998)

account for the additional AV required to reach ASO.

Figure 3 shows the burn sequence used to reach ASO and then to hyperbolically escape during TEI,

essentially using a planetary flyby approach and a minimum-energy Hohmann Transfer (Larson and

Wertz, 1999). To reduce dependence on speculative technology and also for conservatism, an all-

propulsive (i.e., non-aerocapture) MOI was assumed. First, during the hyperbolic TMI approach

trajectory that has been mid-course corrected to produce a periapsis passage through ASO, the spacecraft

performs a retrograde burn to insert into ASO. The spacecraft remains in ASO during the duration of the

exploration phase of the mission. After the exploration phase, the spacecraft performs a burn to put itself

into an Areostationary Transfer Orbit (ATO) before finally performing the TEI burn at the periapsis

putting it on a hyperbolic escape trajectory bound for Earth.



Hyperbolic TMI
Approach at v.,

RMO

Figure 3: Mars Orbit Insertion and Trans-Earth Injection Burn Sequences (not to scale)

The analysis of the burn sequence follows from Battin (1999). The AV required for MOI utilizes a set of

three equations describing a close pass of a planet during a flyby, shown in Equation (1) along with their

supporting equations shown in Equation (2). In these equations, is half the turn angle, is the

incoming speed of the spacecraft relative to the planet, V is the circular speed of the spacecraft at the

minimum passing distance r > r is the point of aim, H is the standard gravitational parameter of Mars

(4.28 x 10"1 m3/s2), and a, is the semimajor axis of the hyperbolic flyby trajectory.
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V00 = -

h (2)

vr =

Equation (3), the equation for the Mean Motion, relates the orbital period p and the semimajor axis

through the standard gravitational parameter of Mars U

2,r -= (3)
P u

The radii of the apoapsis and periapsis of an orbit, r and r. respectively, can be related through the

definition of the semimajor axis as in Equation (4).

r. =2a-r (4)

The Vis-viva Integral, shown in Equation (5), relates, at a spacecraft in an orbit with semimajor axis a,
its velocity ,, and its radius

v2 421) (5)
r af/

The above equations can be used, in conjunction with the characteristics of RMO and results presented in

Casalino et al. (1998), to calculate the AV requirements for SHRMM near Mars. The results are shown in

Table 3 along with a standard assumption of 9.8 km/s for launch into LEO (Larson and Wertz, 1999) and

the assumed maneuver dates. As a point of verification, Wade (2008) notes that an opposition class

mission would have a total round-trip AV requirement of 19.8 km/s compared to the value of 18.5 km/s

calculated here.



Table 3: AV Requirements for SHRMM

Maneuver
Launch from Earth to LEO
Opposition Class TMI

Opposition Class MOI

Conjunction Class TMI

Conjunction Class MOI

TEI from ASO
Round-trip Total (opposition class)

TMI, MOI, and TEI (opposition class)

Outbound Total (conjunction class)

TMI and MOI (conjunction class)

AV Requirement (m/s)

9,800
4,244

2,067

3,567

2,067

2,375

18,486

8,686

15,434

5,634

Date

Jun 12, 2036

May 13, 2037

Apr 17, 2033

Nov 3, 2033

Jul 12, 2037

2.2.3 Initial Results

By performing a rough overall aggregate comparison of the propulsive and crew provision demands to

their respective supply capacities, it is readily evident that the infrastructure outlined in DRA 5.0 cannot

support SHRMM without some modifications.

The crewed Mars Transfer Vehicle (MTV), responsible for transporting, among other things, the crew to

and from the vicinity of Mars, flies the opposition class mission. According to Table 3, this mission

mode requires a total AV of 8,686 m/s from the MTV. However, analysis of the DRA 5.0 crewed MTV

shows it has a total AV capability of only 7,838 m/s, representing a shortfall of 848 m/s.

In terms of crew provisions, given that the particular opposition class mission trajectory assumed implies

595 days of crewed flight, the total crew provisions demand at 7.5 kg per day per person amounts to a

total mission demand of approximately 26.8 mT. However, from Table 2 it is evident the total crew

provision capacity (of the MTH, CFC and CEV) is approximately 13.7 mT representing a 13.1 mT

deficit.

Thus, in regards to propulsive and crew provision consideration, DRA 5.0 cannot support SHRMM

without some form of modification.

2.2.4 Modifications to the Feasibility Analysis of SHRMM

Firstly, a new element, called the TEI LH2 Drop Tank, was introduced. This tank is structurally identical

to the LH2 Drop Tank described in DRA 5.0 but is filled to only 48% capacity and is pre-positioned in

ASO with the other cargo on the conjunction class mission trajectory. During the exploration phase, the



crewed MTV will attach with the TEI LH2 Drop Tank and use its contents for the TEI maneuver after the

exploration phase is over.

Secondly, the crew provisions demand rate was reduced to 3.375 kg per person daily from the original

7.5. This represents an assumption that a 95% water closure rate and increased reusability of hygiene and

waste disposal items can be achieved (Grogan, 2010).

With these two modifications, the full-out mission feasibility analysis was performed, and the results are

presented in the next section.

2.2.5 Analysis, Results, and Discussion

Mission Overview

Figure 4 shows the SHRMM exploration network. The mission will be modeled from launch at Kennedy

Space Center (KSC) to assembly in LEO, transit to ASO, exploration of the Martian surface and Martian

moons, and finally the return journey to splashdown in the Pacific Ocean (PAC). Explained further

below, red arcs represent edges where AV calculations are explicitly performed while yellow arcs

represent abstracted flights with no explicit fuel or AV requirements (de Weck et al., 2009).

Figure 5 shows a bat chart outlining the location and movement of exploration assets over the course of

SHRMM. In the Cargo Pre-positioning phase, four Ares V launches position the assets for construction

of two Cargo MTVs which are then sent on a conjunction class trajectory to ASO. Later, when the

opposition class launch window opens, four more Ares V launches position the elements required for the

construction of the Crewed MTV. The crew is then launched and rendezvous with the crewed MTV

which then performs the opposition class TMI maneuver. When the crewed MTV reaches ASO, the

exploration phase detailed in Cunio et al. (2010a) is carried out. During the exploration phase, the TEI

LH2 Drop Tank is mated with the Crewed MTV. When this is complete, the Crewed MTV performs the

TEI maneuver to splashdown in PAC. The timeline of important milestones for SHRMM is shown in

Table 4.



Figure 4: SHRMM Exploration Network
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Table 4: SHRMM Schedule

Cargo Pre-positioning Flight Manifest

Figure 6 shows the flight manifest for the four Ares V flights during Cargo Pre-positioning. The flights

are spaced at 30-day intervals to allow for on-orbit assembly as was assumed in DRA 5.0 (NASA, 2009).

The first two Ares V launches deliver the two NTRs, while the third launch delivers the two In-Line LH2

Tanks and the fourth launch delivers the two Cargo MTV payloads.

These two payloads are detailed in Figure 7. The first is the SHRMM exploration payload, consisting of

four pairs of hoppers and their corresponding MAVs, and the Pirogue excursion vehicle. The second

payload is the TEI LH2 Drop Tank required for the return TEI burn maneuver.

Event
Cargo Ares V Launch 1

Cargo Ares V Launch 2

Cargo Ares V Launch 3

Cargo Ares V Launch 4

Cargo MTV #1 TMI

Cargo MTV #2 TMI

Cargo MTV #1 MOI

Cargo MTV #2 MOI

Crewed MTV Ares V Launch 1

Crewed MTV Ares V Launch 2

Crewed MTV Ares V Launch 3

Crewed MTV Ares V Launch 4

Crew Launch

Crewed MTV TMI

Crewed MTV MOI

Exploration Phase

Crewed MTV TEI

Splashdown

Date
Nov 17, 2032

Dec 17, 2032

Jan 16, 2033

Feb 12, 2033

Apr 11,2033

Apr 21, 2033

Oct 30, 2033

Nov 9, 2033

Jan 12, 2036

Feb 11, 2036

Mar 12, 2036

Apr 11,2036

Jun 5, 2036

Jun 5, 2036

May 6, 2037

May 7, 2037

Jul 12, 2037

Jan 28, 2038

Origin
KSC

KSC

KSC

KSC

LEO

LEO

KSC

KSC

KSC

KSC

KSC

LEO

ASO

ASO

Destination
LEO

LEO

LEO

LEO

ASO

ASO

LEO

LEO

LEO

LEO

LEO

ASO

M, M2, M3,
M4, PBS, DMS
PAC

Duration (days)
0.1

0.1

0.1

0.1

202

202

0.1

0.1

0.1

0.1

0.1

335

60

200



Cargo MTV 1 (168.0 mT)
(96.7 mT) (46.6 mT) (24.7 mT)

Cargo MTV 2 (192.3 mT)

(96.7 mT) (46.6 mT) (49.0 mT)

rg Poad 2

Ares V Launch Vehicle

Payload Fairing

EDS
Interstage

Core

SRBs

Cargo MTV 1

(24.7 mT)

LEO 1 7

ft I I i I
15-Nov 30-Nov 15-Dec 30-Dec 14-Jan 29-jan 13-Feb 28-Feb

Date

Figure 6: Cargo Pre-positioning Ares V Flight Manifest

8 Hoppers
(6.9 mT)

4 MAVs
(0.3 mT)

Pirogue
(PIR)

(17.5 mT)

jFjI LF Jfj~~IIII

Cargo MTV 2

CagoPalod

(49.0 mT)

Figure 7: Cargo MTV Payloads



Crewed MTV Mission Flight Manifest

Figure 8 similarly shows the Ares V flight manifest for the Crewed portion of the mission. The first Ares

V launch delivers a radiation-shielded NTR, the second the radiation-shielded In-Line LH2 Tank, the

third the LH2 Drop Tank, and the last Ares V launch delivers the CFC, MTV, and CEV and SM

assembly.

(106.3 mT)

I

15-Jan 30-Jan

Crewed MTV (351.4 mT) (48.8 mT) (some
(91.4 mT) (87.1 mT) elements not shown)

CEV/SM

14-Feb 29-Feb
Date

15-Mar 30-Mar

Figure 8: Crewed Mission Ares V Launch Manifest

Results and Discussion

Table 5 shows the profile of propellant usage for the vehicles of interest in SHRMM. Readily, several

observations can be made from these results.

1. SHRMM is feasible from a propulsive prospective using the DRA 5.0 infrastructure given the use

of the TEI LH2 Drop Tank. While on-orbit refueling is not required, a rendezvous and

subsequent attachment of the TEI LH2 Drop Tank to the Crewed MTV must occur in ASO.

14-Apr 29-Apr



2. The Ares V launch vehicles are utilized essentially to full capacity. This is not surprising as the

heaviest Ares V payloads in both SHRMM and DRA 5.0 are the common NTR and radiation-

shielded NTR.

3. Of the three MTVs, Cargo MTV #1, carrying the SHRMM exploration payload, has the largest

propellant margin. This extra capacity can be utilized in several ways. First, the extra capacity

can be downsized with consideration given to Cargo MTV #2 which uses an identical design but

has a smaller propellant margin. The extra capacity can also be used to pre-position other assets

for future exploration missions. Finally, an ASO fuel depot could potentially be used in lieu of

the TEI LH2 Drop Tank, possibly rendering Cargo MTV #2 unnecessary.

Table 5: Propellant Usage in SHRMM

Remaining Propellant (mT)
Cargo Cargo Cargo Crewed
Ares V MTV MTV Ares V Crewed

Event Group* #1 #2 Group* MTV
Pre-launch 2,957 N 93.5 N 93.5 N 2,9570 202.70

Cargo MTV Ares V Launches 20.0 + 93.5 93.5 2,957 202.7

Cargo MTVs TMI and MOI 20.0 23.3 4 6.3 + 2,957 202.7
Crewed MTV Ares V Launches 20.0 23.3 6.3 12.9 4 202.7
Crewed MTV TMI and MOI 20.0 23.3 6.3 12.9 40.0 +
Attach TEI LH2 Drop Tank 20.0 23.3 6.3 12.9 75.0 1
Crewed MTV TEI 20.0 23.3 6.3 12.9 20.9 +
Margin (of capacity) 0.8% 24.4% 6.7% 0.4% 8.8%**

* minimum of the group of four Ares V launch vehicles
** capacity taken as original propellant load plus TEI LH2 Drop Tank load
* maximum capacity
+ propellant from this vehicle was used
+ propellant was added to this vehicle

Similarly, Table 6 shows the profile of crew provision usage for SHRMM. Again, several observations

can be made from these results.

1. SHRMM is feasible from a crew provision perspective given the assumed demand rate of 3.375

kg per person daily.

2. The CFC, while used in DRA 5.0 to provide contingency provisions in the event of a mission

abort, must be used in SHRMM to satisfy crew demands.

3. Pre-positioning of crew provisions is not necessary. All required crew provisions can be

transported on the Crewed MTV. Thus, an element serving the function of providing contingency



crew provisions is not necessary in SHRMM since no crew provisions are ever separated from the

crew.

Approximately 1,244 kg of crew provisions remain unused at splashdown. This mass can be used to

account for packaging mass, as a zero-tare crew provision mass was assumed in this analysis.

Table 6: Crew Provisions Usage in SHRMM

Remaining Crew Provisions (kg)
Event MTV CFC CEV Pirogue
Pre-launch 5,300 0 7,940 N 50 N 455 N

Crewed MTV MOI 5,300 1,494 4 50 455

Crewed MTV TEI 5,300 23 4 50 361 +
Splashdown at PAC 883 + 0 + 0 + 361

Margin (of capacity) 16.7% 0% 0% 79.3%

0 maximum capacity
+ crew provisions from this vehicle were used

Table 7 shows several figures of interest comparing DRA 5.0 to SHRMM. Figures highlighted in green

represent the superior figure in a pair wise comparison. Again, several interesting observations can be

made.

1. Only eight Ares V launches carrying 706.0 mT to LEO are required in SHRMM as compared to

nine for DRA 5.0 carrying 848.7 mT for DRA 5.0. Indeed, SHRMM is a lighter and simpler

mission as a large portion of the mass eliminated is in the form of the surface habitat, heavy

ascent vehicle, and entry, descent, and landing systems.

2. Although SHRMM is a lighter mission, it requires more propellant from its MTVs because it is

on the opposition class trajectory.

3. Six sites from all three major bodies in the Martian system are sampled in SHRMM as opposed to

just the area around the surface habitat in DRA 5.0.

4. DRA 5.0 allows for more concentrated exploration, providing 3,000 crew-days on Mars while

SHRMM allows for disseminated exploration of the Martian system for a total of 360 crew-days.



Table 7: SHRMM Figures of Interest

DRA 5.0
Figure of Interest
Ares V launches

Crew launches

Total mass in LEO (mT)

Number of sites sampled

MTV propellant usage (mT)

Crew consumables demand (mT)

Crew consumables remaining (mT)

Crew-days of exploration (crew-days)

(NTR, I,, 950 s)
SHRMM
(NTR, I.. 950 s)

9

1

848.7

1 (habitat locale)

374.2

15.3

1.2

360

2.3 Conclusions

Given the modifications discussed, including an additional TEI LH2 Drop Tank and assuming a certain

level of performance from water closure and crew provision reusability, SHRMM is feasible using the

DRA 5.0 vehicle architecture.

SHRMM, being lighter, requiring fewer complex systems, and avoiding the need for heavy entry, descent,

and landing on Mars, is a viable stepping stone toward utilizing the nominal DRA 5.0 architecture for a

human surface mission to Mars. The primary trade is between the shorter explorations of multiple sites in

SHRMM for the longer exploration of a single site in DRA 5.0. SHRMM represents a partial buildup and

validation of the required systems, spreading out the cost of development and construction while

returning scientific and inspirational value.



3 Variations on SHRMM

Three variations on SHRMM are analyzed in this chapter, and a further four spinoff missions, making up

a potential Martian exploration campaign, are defined in Chapter 4. To aid the reader in following these

variations, a mission "family tree" is shown in Figure 9.

---------------------------------------------------------- I
Variations on SHRMM

(Ch. 6)

Reduced NTR Eliminating Advanced Chemical
Performance MTV #2 Propulsion Architecture

(6.1) , (6.2) p (6.3)

%*- - - -- -- - - - - - - - - - -

* - Legend

Base SHRMM - + Variation mission

(Ch.5) --+ spinoff mission

Flexible Path progression

Mars Tele-
Marsorteie- Phobos and Phobos Exploration Mars Surface
explion Deimos Sorties Mission MissionMission (7.2.3) (7.2.4) (7.2.5)
(7.2.2)

Martian Exploration Campaign
(Flexible Path)

(Ch. 7)

Figure 9: Future Human Mars Exploration Mission Family Tree

3.1 Reduced NTR Performance

In the feasibility analysis presented in Chapter 2, a specific impulse of 950 s was assumed representing

the most optimistic performance of the NTR predicted by DRA 5.0. To investigate the robustness of this

assumption, the feasibility analysis was repeated for the most pessimistic NTR specific impulse

prediction, 875 s. Table 8 shows the propellant usage profile and demonstrates that even with the lowest

predicted NTR performance, the concept of operations introduced in Chapter 2 remains feasible from a

propulsive standpoint with a propellant margin of 1.1% on Cargo MTV #2.



Table 8: Propellant Usage in SHRMM (875 s NTR Specific Impulse)

Remaining Propellant (mT)
Cargo Cargo Cargo Crewed
Ares V MTV MTV Ares V Crewed

Event Group* #1 #2 Group* MTV
Pre-launch 2,957 E 93.50 93.5 0 2,957 E 202.7 0

Cargo MTV Ares V Launches 20.0 4 93.5 93.5 2,957 202.7
Cargo MTVs TMI and MOI 20.0 19.0 4 1.0 4 2,957 202.7
Crewed MTV Ares V Launches 20.0 19.0 1.0 12.9 + 202.7
Crewed MTV TMI and MOI 20.0 19.0 1.0 12.9 23.1 +
Attach TEI LH2 Drop Tank 20.0 19.0 1.0 12.9 58.1 +
Crewed MTV TEI 20.0 19.0 1.0 12.9 15.2 4
Margin (of capacity) 0.8% 20.3% 1.1% 0.4% 6.4%**

* minimum of the group of four Ares V launch vehicles
** capacity taken as original propellant load plus TEI LH2 Drop Tank load
N maximum capacity
4 propellant from this vehicle was used
+ propellant was added to this vehicle

Table 9 shows Table 7, the SHRMM figures of interest, appended with the figures of interest from the

875 s NTR specific impulse analysis. Figures highlighted in green represent superiority when compared

to DRA 5.0. Essentially, as expected, the lower specific impulse mission requires more propellant, and

has a lower overall propellant margin when compared to DRA 5.0. Notwithstanding the reduced NTR

performance, DRA 5.0 still requires less propellant than SHRMM while SHRMM has a larger propellant

margin.

Table 9: SHRMM Figures of

Figure of Interest
Ares V launches

Crew launches

Total mass in LEO (mT)

Number of sites sampled

MTV propellant usage (mT)

Crew consumables demand (mT)

Crew consumables remaining (mT)

Crew-days of exploration (crew-days)

Interest (with 875 s NTR Specific Impulse)

DRA 5.0 SHRMM SHRMM
(NTR, 1 950 s) (NTR, 1, 950 s) (NTR 1 875
9
1 1 1

848.7

1

389.5

15.3

1.2

360

1.2

360

Further analysis shows that the minimum NTR specific impulse for which this concept of operations is

feasible is 863 s, the specific impulse at which Cargo MTV#2 requires its entire propellant load to

complete its flight. At 863 s, 8.2 mT of propellant remain in the Crewed MTV after the Crewed MTV

374.2



TEI maneuver. If the amount of propellant in the TEI LH2 Drop Tank is optimized to simultaneously

minimize the propellant margin in Cargo MTV #2 and the Crewed MTV, this concept of operations is

feasible at a minimum specific impulse of 835 s.

3.2 Eliminating Cargo MTV #2

Although the use of a dual Cargo MTV architecture provides robustness from a propellant feasibility

standpoint, significant savings can be realized if Cargo MTV #2 is eliminated. Essentially, if the TEI

LH2 Drop Tank can be positioned in ASO using Cargo MTV #1, there would be no need to launch a

second Cargo MTV.

Figure 10 shows the SHRMM bat chart without Cargo MTV #2. The mission progression is essentially

the same as the original plan presented in Chapter 2 with three modifications. First, as was the objective,

Cargo MTV #2 has been eliminated. Second, only three Ares V launches are required during the Cargo

Pre-positioning mission phase as the Ares V launch dedicated to positioning the NTR Core stage for

Cargo MTV #2 is no longer required. Third, because one fewer Ares V launch is required, the start date

of the Cargo Pre-positioning phase was moved back thirty days to December 17, 2032.
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Figure 10: SHRMM Exploration Bat Chart (without Cargo MTV #2)

Table 10 shows the propellant usage profile for SHRMM after Cargo MTV #2 has been eliminated

assuming a specific impulse of 950 s. The TEI LH2 Drop Tank, loaded with 8.5 mT of propellant as

opposed to 35 mT as in the original feasibility analysis which allows the TEI LH2 Drop Tank to be

positioned by Cargo MTV #1. After the Crewed MTV TEI maneuver, 0.4 mT of propellant remains in

the Crewed MTV.

Table 11 shows the figures of interest of the SHRMM with no Cargo MTV #2, for both a 950 s and 875 s

specific impulse, against DRA 5.0 and the original SHRMM mission mode. Again, figures highlighted in

green are superior to DRA 5.0. In the 875 s case, 23 mT of propellant are loaded onto the TEI LH2 Drop

Tank.

Crewed
MTV TE

TV TMI
ction)

Cargo M
(Conjun

I 1



Table 10: Propellant Usage in SHRMM (without Cargo MTV #2, 950 s NTR Specific Impulse)

Remaining Propellant (mT)
Cargo Cargo Crewed
Ares V MTV Ares V Crewed

Event Group* #1 Group* MTV
Pre-launch 2,957 0 93.5 0 2,9570 202.7 N

Cargo MTV Ares V Launches 20.0 4 93.5 2,957 202.7

Cargo MTVs TMI and MOI 20.0 13.1 4 2,957 202.7
Crewed MTV Ares V Launches 20.0 13.1 12.9 4 202.7

Crewed MTV TMI and MOI 20.0 13.1 12.9 33.0 4
Attach TEI LH2 Drop Tank 20.0 13.1 12.9 41.5 +

Crewed MTV TEI 20.0 13.1 12.9 0.4 4
Margin (of capacity) 0.8% 14.0% 0.4% 0.2%**

* minimum of the group of four Ares V launch vehicles
** capacity taken as original propellant load plus TEI LH2 Drop Tank load
E maximum capacity
4 propellant from this vehicle was used
+ propellant was added to this vehicle

Immediately, one notices that in the case of no Cargo MTV #2, one fewer Ares V launch is required, and

the total mass in LEO and MTV propellant usage and drop by 24% and 22%, respectively, when the two

SHRMM 950 s cases are compared. Similarly, in the SHRMM 875 s case, the two reductions are 22%

and 18%, respectively. This represents a significant savings in launch mass, complexity, and overall cost.

Removing Cargo MTV #2 from the mission concept is not without technological risk. For the single

Cargo MTV mission, again by simultaneously minimizing the remaining propellant in the Cargo and

Crewed MTV, the mission can be completed with a minimum specific impulse of 865 s. Compare this to

835 s, which is the minimum specific impulse for which the two-Cargo MTV SHRMM will be feasible.

This highlights that the ability to significantly reduce mission cost by using a single Cargo MTV is

contingent on a minimum NTR performance requirement. If the capability of the NTR is uncertain, the

dual Cargo MTV SHRMM mode will provide more robustness guarding against the downside risk of loss

of mission.



Table 11: SHRMM Figures of Interest (without Cargo MTV #2)

SHRMM SHRMM
(no Cargo (no Cargo

DRA 5.0 SHRMM SHRMM MTV #2; MTV #2;
(NTR, I,, (NTR, I,, (NTR, I,, NTR, I,, NTR, I,,

Figure of Interest 950 s) 950s) 875s) 950s) 875s)
Ares V launches 9
Crew launches 1 1 1 1 1

Total mass in LEO (mT)

Number of sites sampled

MTV propellant usage (mT)

Crew consumables demand (mT)

Crew consumables remaining (mT)

Crew-days of exploration (crew-days)

848.7

1

356.8

15.3

1.2 1.2 1.2 1.2

360 360 360 360

3.3 Advanced Chemical Propulsion
Architecture

In-space Transportation

DRA 5.0 presents an alternate in-space transportation architecture for a human mission to Mars, the so-

called Advanced Chemical Propulsion (ACP) architecture. The concept involves using multiple-stage

vehicles made up of separate propulsive elements for the major mission maneuvers, namely TMI, MOI,

and TEI (NASA, 2009). The propulsive elements are designed to emphasize commonality and a certain

level of modularity allowing adjustment of the vehicle propulsive output depending on the mission

trajectory. An analysis was performed to assess the feasibility of using ACP to support SHRMM.

DRA 5.0 does not report the predicted specific impulse of ACP so instead it was calculated from the NTR

specifications by assuming equivalent performance of the Cargo MTVs in both the NTR and ACP

architectures since the implication is that both architectures can be used to support the DRA 5.0 reference

mission. Table 12 shows the ACP specific impulses that correspond to the upper and lower bounds of the

predicted NTR specific impulse.

Table 12: Corresponding NTR and ACP Specific Impulse

NTR Specific Impulse (s) ACP Specific Impulse (s)
875 482

950 523

The analysis proceeded in the same manner as in Chapter 2, allowing for in-space restart-able engines,

implicitly assumed in DRA 5.0, and assuming a constant crew demand of 3.375 kg per person daily for

crew provisions.



Figure 11 shows the bat chart for the ACP incarnation of SHRMM. Three Ares V launches are required

in the Cargo Pre-positioning phase, carrying the hoppers, MAVs, Pirogue, and Cargo MTV propulsive

stages. In the Crewed MTV Mission phase, five Ares V launches are used to construct the Crewed MTV.

The crew launch then follows shortly afterward and the mission progresses as before.

When a specific impulse of 523 s is assumed, corresponding to the upper bound NTR specific impulse of

950 s, ACP suffers from the same challenge as NTR: the TEI maneuver for the return journey not feasible

from a propulsion perspective. Under these assumptions, an additional AV of 608 m/s is required at TEI.

Fortunately, ACP can deliver enough crew provisions to satisfy demands.

A second TEI stage, exactly the same as the TEI stage already propelling to the Crewed MTV, was used

to provide the extra AV as a solution analogous to including the TEI LH2 Drop Tank in the NTR

architecture. The second TEI stage is pre-positioned in ASO with the Cargo MTV and is docked to the

Crewed MTV before the now two-stage TEI maneuver. With this modification, SHRMM supported by

the ACP in-space transportation architecture is feasible from both a propulsive and crew provisions

standpoint.

Using a similar methodology, the ACP specific impulse was reduced to determine the minimum

propulsive performance required to support SHRMM. This value was found to be 516 s, representing a

fairly small margin of underperformance for which SHRMM can be supported by ACP. The limiting

maneuver in this case is the MOI stage for the Crewed MTV.

Table 13 shows that compared to the NTR in-space propulsion architecture (Table 11), ACP requires a

considerable increase in LEO mass (753.0 mT compared to 706.0 or 550.7 mT) and also uses

significantly more propellant (approximately 520 mT compared to at most 389.5 mT), a direct result of

the lower efficiency of the ACP architecture propulsion stages. Furthermore, ACP is not as robust as

NTR, being able to tolerate only a 1.3% decrease in specific impulse before the concept of operations

requires a substantial redesign. This underscores the decision NASA made, selecting NTR as its design

reference in-space transportation architecture, essentially shifting risk from mission operations to

technology development.
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Table 13: Advanced Chemical Propulsion Architecture Figures of Interest

SHRMM SHRMM
Figure of Interest (ACP, I, 523 s) (ACP, I,, 516 s)
Ares V launches 8 8

Crew launches 1 1

Total mass in LEO (mT) 753.0 753.0

Number of sites sampled 6 6

MTV propellant usage (mT) 518.4 522.6

Crew consumables demand (mT) 12.5 12.5

Crew consumables remaining (mT) 1.2 1.2

Crew-days of exploration (crew-days) 360 360

M2 j

Cargo MTV TMI
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4 A Martian Exploration Campaign Along the
Flexible Path

4.1 Background

4.1.1 The Flexible Path to Mars

In Augustine et al. (2009), the notion of the Flexible Path to Mars is elucidated. Figure 12 illustrates its

philosophy. Essentially, after a human return to lunar orbit, visit(s) to points of interest in the earth-moon

and earth-sun systems (e.g., earth-sun Lagrange point LI), and mission(s) to NEOs, several options then

lead to the ultimate goal of landing humans on the surface of Mars. These options include a combination

of lunar surface, Mars flyby, Mars orbit, and Mars moon missions with the actual options taken being

directed by technological advancements, scientific discoveries, political direction, and budgetary

constraints. One theme common to these four forces is they are all important and uncertain; they

represent significant guiding factors we can only predict, perhaps knowingly with little confidence, in the

present. The Flexible Path is thus responsive to the resolution of future uncertainties, deferring

programmatic decisions until more information is available, and advances progress toward a human Mars

surface mission.
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Figure 12: The Flexible Path to Mars (reproduced from Augustine et al. (2009))



4.1.2 Propellant Depots

The use of propellant depots as a method of enabling high-energy space missions has been considered for

at least forty-five years (Morgan, 1965). A variety of depot architectures, with the aim of enabling or

reducing the cost of lunar or Martian exploration, has been suggested. For example, Keaton (1985)

investigates a depot in a halo orbit at Sun-Earth L4 and Zegler and Kutter (2010) consider a depot in

Earth-Moon L2.

Regardless of the location, one general argument for use of a propellant depot put forth by Zegler and

Kutter (2010) is the reduction of overall long-term exploration costs by utilizing existing, reliable, and

(relatively) inexpensive launch vehicles to ferry propellant, a low-value commodity, to LEO. They argue

that moving propellant to LEO, representing approximately 70% of mass launched to orbit, should be a

"go-do" task that "can take place without significant development or risk." Further, they argue that

instead of bolstering launch vehicles with extra stages to enhance propulsive capabilities, forcing each

individual mission to supply and carry all of its required energy, a propellant depot in LEO can provide an

"energy savings account" so that launch vehicles can concentrate on moving high-value payloads to orbit

while the depot provides the required propellant for interplanetary injection.

In his report, Griffin (2005) addresses the economic and risk-reduction advantages of not only employing

propellant depots, but also privatizing their operation. Essentially, the risk of operating the depot reliably

and efficiently is transferred to industry, which through profit motive and competition aims to lower the

cost of operation and achieve consistent performance. NASA exploration missions can then take

advantage of these services when required, but also bypass them if they are too uncertain an option

leaving private companies to bear the brunt of the economic fallout. As before, newly developed launch

vehicles focus on moving payloads and other mission-specific elements while positioning propellant in

orbit is done by industry using simpler and less costly launch systems.

Tanner et al. (2006) describe an interesting potential application of propellant depots in the context of the

human exploration of Mars. After the launch of a payload (such as a Mars surface habitat or

interplanetary transit habitat) aboard an Ares V rocket, instead of jettisoning the EDS used to boost the

payload into LEO, it is refueled by a propellant depot and used to inject the payload into a Mars-bound

trajectory, precluding the requirement of either the NTR- or ACP-defined in-space transportation stages.

As seen in the above analyses, launching and then requiring Earth-orbit rendezvous of payloads and in-

space transportation stages results in added complexity in the form of LEO construction and would also

demand the development and build costs of a clean-sheet design. Instead, if those stages were replaced

by the utilization of a refueled EDS, the aforementioned benefits of a propellant depot could be gained



along with relaxing the requirement for advanced chemical propulsion stages and, perhaps more

significantly, sidestepping the environmental and policy labyrinth of justifying the use of nuclear

propulsion in space. Tanner et al. (2006) conclude that using the EDS in conjunction with a propellant

depot stationed in LEO is more cost-effective than employing NTRs, though it should be noted that this

study was based on an earlier version of DRA 5.0.

As the chapter progresses, it will be evident that a propellant depot in Mars orbit is also required. This

notion has been suggested in literature, such as in O'Leary (1992), where use of a Space Shuttle External

Fuel Tank as a propellant storage device in Mars orbit is investigated. In this analysis, less emphasis will

be placed on the design and possible use of legacy components for the propellant depot, and instead more

focus will be put on its requirements from a logistical perspective.

4.1.3 Mission Opportunity

Given the potential benefits of establishing a propellant depot in LEO and its ability to support a human

surface exploration mission to Mars, there is a possibility that this architecture could also support

SHRMM and other Flexible Path missions. More importantly, the propellant depot could be a link

between SHRMM and a human mission to the surface of Mars, first enabling SHRMM to provide initial

scientific value and exposure to operating in deep space and Mars orbit, and then transitioning to a human

surface mission. In this way, SHRMM acts as a stepping-stone along the Flexible Path leading eventually

to "boots on the ground" of Mars as it was originally envisioned (Cunio et al., 2010a).

Thus, the remainder of this chapter focuses on the analysis of an exploration campaign to Mars, beginning

with SHRMM and culminating in a human landing on the surface of Mars, enabled by the use of

propellant depots.

4.1.4 A Note on Boil-off

In regard to the technical issue of boil-off, Zegler and Kutter note that while "existing, demonstrated

technologies can effectively achieve zero boil-off for oxygen, it is far more difficult to accomplish this for

hydrogen" (Zegler and Kutter, 2010). In the analysis that follows, as throughout the rest of this thesis, for

model simplicity it is assumed that zero boil-off can be achieved for both oxygen and hydrogen, although

it is noted as a significant technical barrier to the emplacement of propellant depots.



4.2 Concept of Operations

Four missions were defined and analyzed for propulsive and crew provision logistics feasibility in

SpaceNet. These missions, detailed further in the sections that follow, are:

e Mars Tele-exploration Mission (MTM)

* Phobos and Deimos Sorties (PDS)

* Phobos Exploration Mission (PEM)

* Mars Surface Mission (MSM)

The missions are designed to be modular, self-sufficient, and form a progression toward landing humans

on the surface of Mars. The point of continuity between the missions is the propellant depot, allowing

variable injection of energy into the mission according to propulsive requirements. In line with the

Flexible Path, some or all of the missions leading up to MSM can be modified, delayed, or cancelled

depending on the prevailing situation. Because of their independence, except possibly through

requirements in the propellant depot if a reusable depot is employed, none of the missions explicitly

require the completion of any other mission, though the more missions performed, the farther humans

advance along the space exploration learning curve.

In the following analysis, it is assumed that opposition and conjunction class trajectories, along with their

propulsive requirements, repeat every 26 months. While it is not precisely true that the propulsive

requirements remain the same for each launch window (due to slight variations in orbital characteristics,

see Ishimatsu (2008)), the differences are considered negligible at this level of analysis.

Before the commencement of these missions, propellant depots must be designed, built, and positioned

for refueling support. The next section overviews the depot infrastructure design.

4.2.1 Propellant Depot Infrastructure

Two types of propellant depots are required to enable this set of missions: one stationed in LEO and one

in Mars orbit. The LEO propellant depot (LPD) is constructed, before the commencement of any of the

four missions, over the course of three Ares V launches, having a total dry mass of 52.2 mT and a

propellant capacity of 255 mT yielding a propellant mass fraction of 0.83. Similarly, the Mars Orbit

propellant depot (MPD) has a dry mass of 11.1 mT and a propellant load of 54.3 mT for a propellant mass

fraction of 0.83. These mass fractions agree well with literature as shown in Table 14.



In addition, a propellant refueling module (PRM) was modeled as the method of storing propellant bound

for the LPD. Its design was based on analysis by Tanner et al. (2006): a dry mass of 38.2 mT and a

propellant load of 85 mT and sized to be launched on an Ares V. An alternative PRM design, to be used

with the Delta IV Heavy, is also presented in Tanner et al. (2006). Using the Delta IV Heavy instead of

the Ares V would be aligned with the goal of using less costly launch vehicles with flight experience, and

the choice of using the Ares V as the primary refueling vehicle was made to simplify the modeling since

it has already been assumed that the Ares V has been designed and built.

The MPD is not refueled after use; new MPDs are transported as necessary to provide refueling

capabilities in Mars orbit.

Table 14: Propellant Mass Fraction for LOX/LH2 Propellant Depots

Useable Propellant (mT)* Propellant Mass Fraction Reference
100 0.848 (Street, 2006)

50 0.860 (Street, 2006)

50 0.840 (Flaherty et al., 2007)

76.5 0.814 (Tanner et al., 2006)

221 0.832 (Tanner et al., 2006)

*This figure takes into account expected boil-off.

4.2.2 Mars Tele-exploration Mission (MTM)

The first of the four missions, MTM, shown in Figure 13, is a derivative of SHRMM. Two spacecraft are

sent to ASO. First, the cargo payload consisting of three robotic exploration teams (each involving two

hoppers and one MAV) and an MPD is launched to LEO using an Ares V rocket. The EDS is then

refueled before it is put on a conjunction class trans-Mars trajectory where it then inserts into ASO and

loiters there waiting for the crew. During the next available launch window, a crewed payload consisting

of a CEV, MTH, and six crewmembers are launched on an opposition class trans-Mars trajectory after

also being refueled in LEO. After a propulsive MOI into ASO, the crew rendezvous with the cargo

payload, send the three hopper/MAV teams to the surface and perform robotic exploration as outlined in

SHRMM, and also refuel the EDS in preparation for TEL. Samples are launched to the MTH which

subsequently returns to earth after spending approximately sixty days in ASO.
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Figure 13: Mars Tele-exploration Mission

In the context of the Flexible Path, this mission represents the first human stay in Martian orbit. From a

scientific standpoint, this also represents the first return of Martian samples, especially samples that can

be analyzed by humans before their return to earth. The crew would have the opportunity to demonstrate

and practice joint human and robotic exploration, Mars orbit rendezvous, and gather more information on

the health effects (i.e., radiation, microgravity, and psychology) of extended deep space travel and

exploration.

The primary reason SHRMM was separated into two separate missions is to satisfy propulsion

requirements. A fully fueled EDS is not capable of performing the all-propulsive TMI and MOI

maneuvers, necessitating the division of SHRMM into two smaller missions. However, there is a

resulting benefit in the form of reduced individual mission complexity, in effect lengthening the Flexible

Path and allowing the acquisition of more operational experience in smaller portions.

4.2.3 Phobos and Deimos Sorties (PDS)

Figure 14 overviews PDS which represents the complement of MTM; that is, the combination of MTM

and PDS is SHRMM. Again, in total, two spacecraft are sent to ASO and again, they both consist of a

LEO-refueled EDS and a payload. The first is a cargo payload consisting of the Pirogue excursion

vehicle, a 1-mT science package, and an MPD. This payload is pre-positioned in ASO on a conjunction



class trajectory and awaits the arrival of the crewed payload consisting of a CEV, MTH, and six

crewmembers which arrive on the next available opposition class launch window. After successful

rendezvous with the cargo payload in ASO, two crewmembers embark on a seven-day sortie to Phobos,

explore and gather samples, and then return to ASO. Then, two other crewmembers (or the same pair)

repeat the exercise for Deimos. Finally, after the EDS has been refueled, the crew embark on the return

journey after spending approximately sixty days in the Martian neighborhood.

6. Pirogue return to ASO

4. MOI
9. ASO Refuel
10. TEl

3. TMI

N

Figure 14: Phobos and Deimos Sorties

For the Flexible Path, this mission represents the first direct human contact with a body in the Martian

system. Large samples (on the order of hundreds of kilograms) can be gathered from both Martian

moons, analyzed in orbit, and returned to earth for detailed investigation. Further experience is gained in

Mars orbit rendezvous, long-term human space travel, and "landing" on what is essentially an asteroid,
while from an inspirational standpoint this mission represents the first human landing on another moon in

the solar system.

4.2.4 Phobos Exploration Mission (PEM)

Discoveries from previous missions would direct the goals of future missions. For example, the

confirmation of water on Phobos may channel efforts into a dedicated Phobos exploration mission.

Without such information at this time, given the premise of the Flexible Path's philosophy one can only

speculate on Phobos' scientific value.

LEO



O'Leary (1987) compares the advantages and disadvantages of a Phobos exploration mission compared to

a Deimos mission from operational, energetic, and scientific standpoints. The basic conclusion is that at,

at a high level, there are advantages to going to either Phobos or Deimos first, and the differences

between the two are not very large.

MEPAG (2008) notes that the Martian moons are of scientific importance primarily because their origins

are not understood and further exploration is warranted. Galimov (2010) further highlights that Phobos is

potentially a unique object for studying the mechanism of planet formation as it is believed to be an

asteroid captured in Mars orbit and largely unchanged by secondary processes, possibly relict material of

the solar system.

As such, a dedicated Phobos exploration mission is included to demonstrate how the propellant depot

architecture can support these scientific and exploration goals.

Figure 15 shows a high-level representation of PEM. The primary difference between PEM and both

MTM and PDS is that the vehicles for PEM are stationed in PBS as opposed to ASO and all mission

assets remain in Phobos orbit instead of being spread over different locations in the Martian system.

From a modeling perspective, the consequent change in propulsion requirements was determined to be 5.6

km/s for a conjunction class TMI and all-propulsive MOI while a round-trip opposition class trip would

require 8.8 km/s. These figures were calculated using the methodology presented in Section 2.2.2.

O'Leary (1988) calculates that for non-aerobraking missions, a Phobos rendezvous would require 5.4

km/s and a round-trip mission to Phobos requires 7.3 km/s. Though it is not explicitly stated, these

figures seem to represent a conjunction class mission opportunity, supported by the good agreement

between the cargo mission AV values. Regardless, these figures suggest the propulsion requirements used

in this analysis are conservative.
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Figure 15: Phobos Exploration Mission

The mission begins as in MTM and PDS with a cargo payload launched on a conjunction class trajectory

after being refueled in LEO. It inserts into Phobos orbit and loiters there while the crewed payload is

launched, refueled, and performs the TMI maneuver on the next opposition class opportunity. The crew

then spends approximately sixty days in Phobos vicinity, gathering samples and performing science, after

which it refuels the EDS and performs the TEI maneuver. One detail to note is that the propellant depot,

for the Phobos Exploration Mission, is left in Phobos orbit which would limit its reusability for future

missions based in ASO.

This mission, hopefully leveraging on experience gained during previous NEO missions, allows for an

extended and concentrated study of Mars' closest companion and the harvesting of large quantities of

surface samples. Scientifically, this has been postulated as valuable, though only the passage of time and

the resolution of future uncertainties can validate this hypothesis. From Phobos, close observations can

also be made of the Martian surface, scouting a potential base location for the eventual human Mars

surface mission.

All three Mars orbit missions also provide experience in valuable semi-autonomous crew operations.

Because of the communications delay, crews will be required to function at some level without Earth-

based support. Testing crew capability in missions with comparatively less danger to crew safety (ones

.............. ......... .................. ... ........ ...................... ----_ _



with reduced extra-vehicular activity and no EDL) allow experience to be gained while not concurrently

assuming maximum risk.

4.2.5 Mars Surface Mission (MSM)

MSM (shown in Figure 16) is the end goal of the Flexible Path. It involves sending four spacecraft to

Mars. The first carries an MPD and the CFC, a contingency to sustain the astronauts in the event that

they must abort Mars EDL, thereby being cut off from the crew provisions pre-positioned on the surface.

The second and third spacecraft carry the Surface Habitat (SHAB) and Mars Descent Ascent Vehicle

(MDAV) as suggested by DRA 5.0. The fourth and final spacecraft carries the six crewmembers in the

MTH along with the CEV for Earth re-entry. The three cargo payloads are launched during one

conjunction class launch window while the crewed spacecraft follows approximately twenty-six months

later. All spacecraft travel on the conjunction class trajectory and are parked in a Reference Mars Orbit

(RMO), specified as a 250 x 33,793 km 1-sol orbit by DRA 5.0. Shortly after reaching RMO, the SHAB

descends to the Martian surface and begins preparations for the arrival of the crew.

When the crewed spacecraft reaches RMO, it first rendezvous with the MPD and CFC and refuels the

EDS to prepare for mission abort should it be necessary. After being checked-out, the crew descends to

the Martian surface in the MDAV and nominally spends the next 530 days exploring the local area. At

the end of their surface stay, the crewmembers, along with 250 kg of surface samples, ascend to RMO,

rendezvous with the MTH and CEV, and perform the inbound TEI maneuver.

This mission is the capstone of the Flexible Path exploration strategy. It leverages experience from

gained from previous missions (in, for example, long-term space travel, crew autonomy, and Mars orbit

rendezvous) while introducing new elements like crewed EDL, in-situ resource utilization, surface

exploration after extended microgravity exposure, and crewed ascent from the Martian surface. An

unprecedented volume of samples will be returned to earth for examination, as well as inspiration for the

current and future generation of astronauts, scientists, and engineers.

In terms of modeling, the AV requirements were taken directly from DRA 5.0, as were the designs of the

SHAB and MDAV surface assets. As with the previous three missions, the mission propulsive

requirements dictated that an MPD be positioned in RMO to provide propellant for TEL.
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Figure 16: Mars Surface Mission

Further, Grogan (2010) highlights the inadequacy of the logistics infrastructure specified in DRA 5.0 in

two respects. First, the crewmembers are forced to utilize the CFC not as contingency supplies but

necessary supplies to bring them to mission completion. Grogan's solution was to manifest an additional

CFC to serve as contingency supplies which is the solution adopted here. Second, the crew provisions

demand while on the Martian surface was assumed to be reduced to 2.375 kg per person daily from the

3.375 kg per person daily during in-space travel as suggested by Grogan (2010). Even at this rate of

consumption, the Martian surface assets do not have enough capacity to support the 530-day exploration

phase. To solve this problem, the crew provisions capacity for both the SHAB and MDAV were both

increased by 1 mT. As noted by Grogan (2010), because of the tight propellant margins for the SHAB

and MDAV, this additional capacity may have to come at the expense of science equipment and/or other

exploration assets.

4.3 Analysis, Results, and Discussion

The analysis of the exploration campaign was performed using SpaceNet Version 2.5r2. The missions

were modeled under the same assumptions used in the feasibility analysis of SHRMM, listed in Section

2.2.1, along with the modifications to the MSM described above in Section 4.2.5. This includes the



assumption that human EDL to and ascent from the Mars surface are feasible maneuvers when the

elements in DRA 5.0 are utilized.

For the Martian exploration campaign, Figure 17 and Table 15 show the exploration network and location

designations, accordingly. Compared to the single mission defined in SHRMM, this campaign does not

necessarily contain many more locations visited, but instead the revisiting of locations for longer periods

of time and by different assets (i.e., robotic explorers versus human explorers).

Figure 17: Mars Exploration Campaign Network

Table 15: Mars Exploration Campaign Locations

Body
Earth

Earth

Earth

Mars

Mars

Mars

Mars

Mars

Mars

Mars

Location
KSC

LEO

PAC
ASO

PBS

DMS
RMO

MV
GC

HC

Description
Kennedy Space Center

Low Earth Orbit

Pacific Ocean Splashdown Zone

Areostationary Orbit

Phobos Orbit

Deimos Orbit

Reference Mars Orbit

Mawrth Vallis

Gale Crater

Holden Crater Fan
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Figure 18: Mars Exploration Campaign Bat Chart
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Figure 18 shows the complete bat chart for the Mars exploration campaign assuming a nominal

progression with each mission executed once (though there can be value in repeating missions with

identical or similar objectives). It shows the five broad phases of the mission: the construction of the

LPD and the four exploration missions that follow. It highlights the use of the propellant depot, as most

of the missions are refueling flights from KSC to LEO compared to the relatively few flights that are

bound for the Martian system.

Further, the bat chart highlights the range of exploration sites visited over the course of the campaign,

using both robotic and human explorers, and the notion of revisiting sites to build on previous knowledge,

experience, and infrastructure.

The timeline used in this analysis is somewhat arbitrary. It is not necessarily required that the mission

timeline be adhered to given the periodic nature of the TMI windows. It may be attractive to lengthen the

mission timeline in certain phases, especially in ones where refueling missions are concentrated, to allow

for mission delays and launch failures. There is a trade, however, as the propellant depot will degrade in

operability and may have to be replaced before the end of the campaign as a 10-year service life has been

assumed previously in literature (Street, 2006) and the campaign presented in Figure 18 suggests a 20-

year timeline. While explicit replacement of the LPD was not modeled, its similarity to the PRM justifies

the assumption that should an LPD be rendered inoperable, the next PRM launches can be replaced with

LPD launches, and a new LPD can be constructed without loss of continuity.

Table 16 shows the figures of interest for the Martian Exploration Campaign. Several observations can

be made from these results:

1. All four missions are feasible from a propulsive and crew provisions logistics standpoint.

2. Although all four missions are feasible, they have tight propellant margins. The remaining

propellant in the EDS, as a percentage of the propellant used, ranges from 0.9-4.6%. Down-

scoping scientific payloads or use of propellant-saving technologies, such as aerocapture, may be

necessary to mitigate risk of loss of mission and crew.

3. A clear buildup of human exploration and mission complexity is demonstrated. The first three

missions involve a gradually increasing number of human-days spent interacting with Martian

bodies. Concurrently, MSM constitutes somewhat of a "double mission" requiring twice as many

Ares V launches and approximately twice as much total mass in LEO. At the same time,

however, the scientific return in robot- and human-days of exploration increases nearly tenfold

while the mass of returned samples gradually increases.



Several more Ares V launches, when compared to the original DRA 5.0, are required. This stems from

the lower specific impulse attributed to the EDS (449 s) as opposed to the higher NTR and ACP specific

impulses (from Table 12: 875-950 s and 482-523 s, respectively). The trade here is between Ares V

launches and reduced design and build costs along with the associated complexity involved with the

specialized NTR and ACP in-space transportation stages. As mentioned before, the Ares V refueling

launches could be replaced by Delta IV Heavy launches to further reduce reliance on launch vehicles that

currently exist only in paper form.

Table 16: Martian Exploration Campaign Figures of Interest

Figure of Interest MTM
Ares V launches (mission payloads) 2

Ares V launches (PRM payload)* 6

Crew launches 1

Total mass in LEO** (mT) 681.7
Number of sites sampled 3

Returned sample mass (kg) 3

EDS propellant usage (mT) 510.9
EDS propellant remaining (mT) 4.7

Crew consumables demand (mT) 12.5

Crew consumables remaining (mT) 1.2

Robotic-days of exploration (robot-days) 360

Human-days of exploration (human-days) 0

*Includes launches required construct LPD
**Includes mass of stack immediately before TMI
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4.4 Conclusions

From a propulsive and crew provisions logistics perspective, this exploration campaign is feasible and is

aligned with the overarching philosophy of the Flexible Path as outlined in The Augustine Report. The

missions presented represent a gradual ramp up in human exploration of Martian-system bodies

culminating in a human landing on Mars. At the onset, during MTM, no human exploration occurs

beyond the confines of the MTH. As the missions progress, humans spend longer and longer periods of

time directly interacting and exploring Martian-system bodies while drawing on a pool of continually

increasing operational experience.

Further, this set of missions does not have to be strictly adhered to. Their modular nature, enabled by the

use of propellant depots and in-space refueling, allowing for the addition, modification, delay, and

cancellation of any number of missions, precludes the burden of a critical path of tasks that must be



performed en route to a Mars landing, which is especially important in the context of evolving budgetary

constraints. For example, Phobos could be used as a base of tele-operations, as suggested by the

Augustine Report, effectively combining MTM and PEM into a single exploration effort.

Additionally, common elements (e.g., LPD and EDS) are used to provide the in-space transportation

capabilities for all missions, allowing for repetitive use and thereby building flight experience and

bulwarking technical confidence. Lunar and Lagrange point missions could also be conducted using the

EDS and propellant depot architecture, allowing the amortization of the design, development, and testing

costs of the LPD and EDS to be amortized over a prolonged campaign. As a result, the use of specialized

in-space propulsion stages (e.g., NTR, shielded NTR, and ACP TEI and TMI stages) serving only one

mission is not required. Reiterating, the propellant depot serves as an "energy savings account" (Zegler

and Kutter, 2010) that can provide a correctly metered amount of propellant for the mission at hand.

While consideration of issues such as inability to achieve zero boil-off, reduced component reliability,

and desire for increased levels of risk mitigation may result in smaller exploration payloads and down-

scoped mission objectives than what is presented in this potential campaign, the overall campaign

architecture is the focus of this analysis. However, certain technologies, like aerocapture, that could

significantly reduce the overall propulsive requirements, were not taken advantage of because of their

uncertain technological readiness. Their use would bolster the margins in all missions discussed above.

No attempt was made to quantify the cost of the campaign. Because of the breadth of new systems

required and uncertainty in technological advancement and evolution of exploration directorates, it was

seen as being too imprecise to be of useful interpretation.



5 Technology Investment and Real Options

5.1 Introduction

The campaign described in Chapter 4 represents a possible gradual evolution of human exploration of the

red planet rather than an "all-at-once" approach. Though it commences with missions specifically

designed, among other considerations, with reduced dependence on enabling technologies, some thought

should be given to what corresponding technological evolution is required to support such a campaign.

Specifically, technological innovation will be required in the areas of space radiation protection during

long-duration spaceflight, strategies to mitigate and recover from microgravity environments, and

rendezvous with small bodies like Phobos and Deimos, just to name a few. Some capabilities, such as

long-duration medical treatment, support multiple missions while other capabilities, such as in-situ

resource production, may only serve the humans-to-surface mission mode. In an ideal situation, NASA

would have all the resources necessary to obtain all required capabilities for all projected missions.

However, in a budget-constrained environment, a methodology is required to optimally determine

investment technology portfolios and their sequencing.

This challenge extends further than the Mars campaign suggested in this thesis. A general theme of the

Flexible Path is the potential exploration of a number of locations in the inner solar system, from NEOs to

Lagrange points to the lunar surface. To achieve this, an even more diverse technology portfolio is

required implying an increased number of possible portfolio development sequences, and an even greater

need to systematically and effectively select and phase investment options.

As with many large, long, and capital-intensive projects, technology development in the realm of human

space exploration is fraught with uncertainty. Some of these uncertainties include probability of

successful development, probability of successful infusion, cost, and budgetary uncertainty (Elfes et al.,

2006). Their presence further complicates the already complex problem of determining an optimal

technology investment portfolio in a scientific, non-market based context. There already exists a body of

literature concerning this problem, a brief summary of which follows below.



5.2 Literature Review

5.2.1 The Black-Scholes Equation

A real options approach to technology investment selection employing the use of the Black-Scholes

Equation is proposed by Shishko and Ebbeler (1999) and Shishko et al. (2004). They develop a

computation procedure to quantify the option value of a given technology, allowing for a comparison

against the development cost to quantifiably justify investment in the technology. It essentially likens

investment in a technology to the purchase of an option. The investment enables but does not necessitate

the exercise of a "real" option to produce new products with potentially high returns, analogous to

exercising a financial option at a favorable time in the future.

A case study applying this framework to ultra-lightweight propellant tanks (UPT) is presented. The

shadow price for investment into UPT is calculated based on the (launch) cost savings that would be

achieved if the new UPT technology were available. The case study demonstrates that, under the

assumptions made on flight rate, spacecraft characteristics, development costs, and discount rate, the UPT

option value is high enough to warrant development investment.

5.2.2 The START Methodology

The START methodology is a method of systematically and transparently phasing technology investment

portfolios under budget constraints. It has been developed at the NASA Jet Propulsion Laboratory over

approximately ten years and is the subject of a number of publications (Smith et al., 2003a; Smith et al.,

2003b; Weisbin et al., 2004; Derleth et al., 2005; Weisbin et al., 2005; Elfes at el., 2006; Lincoln et al.,

2006; Weisbin et al., 2006; and Adumitroaie, 2010).

START, though continually evolving, essentially solicits expert estimates on a plethora of subjects such

as required technological advances to enable future missions, mission preferences, probability of

successful development, probability of successful infusion, capability-enhanced probability of mission

success, development costs, time required for technological maturation, and simplified utility curves. The

technologies are then non-dimensionally scored and conditioned on probability of successful

development, and compared to the estimated development cost to yield a benefit-cost ratio. An

optimization is then performed to determine the investment portfolio that maximizes total benefits under a

specified budget constraint. The results are visualized as a temporally sequenced optimal profile, enabled

missions for various budget levels, and the depiction of the "competition border," the frontier that divides

funded technologies and deferred ones. Post-processing of the results include sensitivity and robustness

analyses to check how the results vary when the inputs are perturbed. Several case studies have been



performed and documented to illustrate the implementation of the START methodology (Weisbin et al.,

2004; Derleth et al., 2005; and Lincoln et al., 2006).

5.2.3 Research Opportunity

START is a useful methodology. It is a quantifiable, traceable, and adaptable way of collecting,

organizing, and processing information in support of determining optimal technology investment

portfolios. Because of its acceptance and continued development at NASA, gauged proximally by the

number of papers that continue to be generated on the subject, it will ground the discussion throughout

the rest of this chapter.

START's capabilities continue to evolve. One key capability is its capacity for handling uncertainty. The

methodology itself cannot inherently generate estimates on uncertain parameters, leaving that to expert

opinion, but it can and does incorporate uncertainty (such as uncertainty in development costs) into its

analysis allowing for explicit consideration of a very real phenomenon. However, other uncertainties may

warrant inclusion into the START framework as well.

In the wake of recent events, the cancellation of the Constellation Program, the uncertainty in mission

targets (NEOs, the moon, or Mars), and in the spirit of the Flexible Path, one uncertainty that should be

taken into account is the mission target. Does the optimal technology portfolio support the current

mission and other missions if goals change in the future?

One method of mitigating this type of uncertainty is flexibility (de Neufville and Scholtes, 2011).

Flexibility reconfigures a system, in this case a technology portfolio, in order to maximize auspicious

outcomes and minimize unfavorable ones after observing the occurrence of triggering events. In its

current form, the START methodology does not explicitly address flexibility in the technology

investment portfolio, especially in the face of overarching uncertain mission goals.

Because of time constraints, incorporating flexibility considerations into the START methodology and

performing a case study on human Mars mission technologies was not feasible. However, a discussion of

how flexibility could be modeled follows, in addition to the hopefully achievable types of insights on the

flexibility of the portfolio.

5.3 Proposed Flexibility Analysis Methodology

With the START methodology having already been developed to its current state, flexibility analysis can

be easily implemented. The required steps are outlined below.



5.3.1 Predict Future Mission Goals

Currently, mission preferences are defined as single point estimates, essentially given weights to denote

their relative importance (Lincoln et al., 2006). In order to perform a flexibility analysis, the evolution of

these preferences over time needs to be modeled. Essentially, the mission preferences must be treated as

uncertain parameters.

For example, one could assume that every four years, there is a possibility that an incoming president

introduces a new exploration policy, altering the mission preferences in the process. Concurrently,

upcoming robotic missions such as the Mars Science Laboratory, ExoMars, and robotic lunar missions

could influence the probability that NASA will be directed toward a different mission goal as scientific

discoveries are made. Finally, impetus from international entities such as cooperative partnerships or

mutual competition may spur changes in NASA's human exploration targets.

The author recognizes this is a particularly difficult task. This type of uncertainty emerges from many

factors, factors like political context, technological evolution and revolution, unprecedented scientific

discovery and public interest, that are in and of themselves difficult to model.

5.3.2 Implementation of Temporal Simulation with Decision Rules

Temporal simulation with decision rules has been used in previous work (Lin, 2008). Essentially, this

entails defining a discrete time step, for example one year, and performing a random number draw to

simulate whether or not mission preferences change as dictated by the model devised in Section 5.3.1.

Because of the stochastic nature of the uncertainty model, sometimes a change will occur and sometimes

it will not.

At this point a decision will have to be made. If the mission preferences do not change, the original

optimal investment portfolio (found at the beginning of the evaluation period as per the current START

procedure) will still be optimal, indicating that no restructuring of the portfolio is necessary. However, if

mission preferences do change, an optimization can be performed to determine a new optimal investment

portfolio.

Figure 19 shows a time-expanded decision network (TDN) for a hypothetical technology portfolio.

Before the commencement of the technology development period, all three technologies, R, Y, and G, are

not in development. At the initial portfolio optimization, technologies R and Y are selected for

development. Some time later, a chance event causes a change in mission preferences, and a subsequent

re-optimization of the technology portfolio takes place. In this example, technology Y is dropped in favor



of technology G. As time continues, in this example, no further mission preference altering events occur,

and technologies R and G end up being developed with technology Y on the shelf, an unexpected

outcome considering the initial portfolio optimization results.
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Initial Change in Mission End of TimePortfolio Preferences; Portfolio Horizon
Optimization Re-optimization

Time

Figure 19: Time-Expanded Decision Network for Technology Selection

There should be some switching costs associated with abandoning some technologies and taking on the

development of others. A decision would have to be made with each new optimal investment portfolio:

will the increase in utility afforded by adopting the new portfolio be worth the reconfiguration costs?

Thresholds would be set for each of these parameters to automate the decision-making process.

During the temporal simulation, at each time step a check is made for changed mission preferences and a

consequent re-optimization of the investment portfolio, and a check against the decision rule to determine

whether or not the new portfolio is accepted. At the end of a specified time horizon, metrics can be

calculated to determine the value of flexibility, such as:

* total switching costs incurred,

e number of missions enabled,

---- ............ .......... ...... ......... ........ - ...... .. ........



. whether or not the target mission was enabled, and

* increase in utility during the development timeframe.

Using a Monte Carlo simulation framework, this simulation can be repeated many times, each time using

a randomly generated instance of mission preference uncertainty, and aggregate statistical measures can

be calculated for the simulation metrics, giving an overall picture of the performance of the portfolio

optimization strategy under uncertainty.

5.3.3 Extension to General Uncertainties

Mission preferences are not the only uncertain parameters in this technology selection problem. Use of

temporal simulation can also enhance the modeling of other uncertainties that vary in time. For example,

it is not guaranteed that funded technologies will in fact be successful as there is a certain degree of

technological uncertainty. If a technology's development looks less promising in the future, flexibility

can be introduced that reduces investment in that particular technology and provides funding for other,

more promising technologies. In a sense, this type of analysis hopes to simulate the passage of time

which brings about the resolution of future uncertainties, and most importantly, the reaction of technology

portfolio managers to those resolved uncertainties.

5.4 Alternative Analysis Method

The above methodology requires a large amount of data collection. Not only is the information required

for the START analysis necessarily required, but also estimates on future mission goals which are

uncertain and not easily predicted. In particular, because of time and data constraints, the methodology

proposed in Section 5.3 is not implemented in this thesis. Instead, an alternative, simplified methodology

is proposed here and applied to human exploration of Mars.

Essentially, this method attempts to prioritize a list of technologies and then investigates the effects of

changing mission preferences. There is no consideration given to more refined factors like cost,

probability of acceptance, probability of success, etc., found in the START analysis, and as such, is a

drastic simplification of the realities of technological investment and development. However, its

advantage is that it requires minimal amounts of data, and looks to highlight some trends in technological

investment when the future mission goals are uncertain.

This methodology is illustrated below through application to the human Mars exploration campaign

developed in Chapter 4.



5.5 Application to Human Mars Exploration

The NASA Human Exploration Framework Team (HEFT) recently released a summary on a possible

human space exploration framework (NASA, 2011). Contained within was a mapping of technology

applicability to destination overview for 59 technologies, ranging from cryogenic boil-off to dust

mitigation, and 10 destinations ranging from LEO to the Martian surface. The map denotes the

applicability of each technology to each destination, rating as "not applicable," "may be required,"

"probably required," and "required technology." In this analysis, those categorizations are given the

numerical values of 0, 1, 2, and 3, respectively. This mapping for three selected missions (MTM, PDS,

and MSM as defined in Chapter 4) is shown in Table 17.

Table 17: Technology to Destination Mapping (adapted from NASA (2011))

# Description MTM PDS MSM
1 L02/LH2 reduced boil-off flight demo 3 3 3

2 L02/LH2 reduced boil-off & other CPS tech development 3 3 3

3 L02/LH2 zero boil-off tech development 2 2 2

4 in-space cryo prop transfer 0 0 0

5 energy storage 3 3 3

6 electrolysis for life support (part of energy storage) 3 3 3

7 fire prevention, detection & suppression (for 8 psi) 3 3 3

8 environmental monitoring and control 3 3 3

9 high-reliability life support systems 3 3 3

10 closed-loop high reliability life support systems 2 2 2

11 proximity communications 2 3 3

12 in-space timing and navigation for autonomy 3 3 3

13 high data rate forward link (ground & flight) 3 3 3

14 hybrid RF/optical terminal (communications) 3 3 3

15 behavioral health 3 3 3

16 optimized exercise countermeasures hardware 3 3 3

17 human factors and habitability 3 3 3

18 long duration medical 3 3 3

19 biomedical countermeasures 3 3 3

20 space radiation protection - GCR 3 3 3

21 space radiation protection - SPE 3 3 3

22 space radiation shielding - GCR & SPE 3 3 3

23 vehicle systems management 3 3 3

24 crew autonomy 3 3 3

25 mission control autonomy 3 3 3

26 common avionics 3 3 3



27 advanced software development/tools 3 3 3

28 thermal management (e.g., fusible heat sinks) 3 3 3

29 mechanisms for long duration, deep space missions 3 3 3

30 lightweight structures and materials (HLLV) 3 3 3

31 lightweight structures and materials (in-space elements) 3 3 3

32 robots working side-by-side with suited crew 2 3 3

33 tele-robotic control of robotic systems with time delay 2 3 3

34 surface mobility 0 0 3

35 suitport 0 3 2

36 deep space suit (block 1) 1 3 0

37 surface space suit (block 2) 0 0 3

38 NEA surface ops (related to EVA) 0 3 0

39 environment mitigation (e.g., dust) 0 2 3

40 autonomously deployable very large solar arrays 3 3 3

41 SEP demo 3 3 3

42 solar electric propulsion (SEP) stage 3 3 3

43 fission power for nuclear electric propulsion (NEP) 1 1 1

44 nuclear thermal propulsion (NTP) engine 1 1 1

45 fission power for surface missions 0 0 3

46 inflatable habitat flight demo (flight demo launch) 2 2 2

47 inflatable habitat tech development (including demo) 2 2 2

48 in-situ resource utilization (ISRU) 0 0 3

49 TPS - low speed (<11.5 km/s; avocat) 3 3 3

50 thermal protection systems (TPS) - high speed 2 2 2

51 NEA auto rendezvous, prox ops, and terrain relative nav 0 3 3

52 precision landing 0 0 3

53 entry, descent, and landing (EDL) 3 2 3

54 supportability and logistics 1 1 2

55 LOX/methane RCS 0 0 2

56 LOX/methane propulsion stage - pressure fed 0 0 2

57 LOX/methane propulsion stage - pump fed 0 0 2

58 in-space chemical (non-toxic reaction control system) 0 1 0

59 HLLV oxygen-rich staged combustion engine 1 1 1

Legend
0 - Not applicable

1 - May be required

2 - Probably required

3 - Required technology

While it is not clear how HEFT generated this mapping or whether or not is considered comprehensive, it

is used in an attempt to apply the alternative analysis method described in Section 5.4. Note that TRL is



not explicitly taken into account, and could implicitly manifest itself in the cost of developing a given

technology.

In sequencing these technologies for portfolio investment, consideration should be given to their costs of

development, times for development, and other factors as considered in the START analysis. Another

consideration should be the flexibility of the portfolio that is defined, in particular the reduction of

switches necessary to transition from one optimized portfolio under a certain set of uncertain assumptions

to one found in the future for different goals.

5.5.1 Possible Campaign Paths

For the purposes of this case study, three possible campaign paths were defined using the missions

indicated in the columns of Table 17.

The nominal campaign path has humans progressing sequentially from MTM to PDS, and finally to

MSM. In terms of complexity and mission risk, this represents more or less a natural mission

progression. This path is called the Base Case.

The second campaign path postulates that a scientific discovery during MTM instigates a delay in PDS,

and instead focus is put immediately on MSM. This path is called Scientific Discovery.

The third and final campaign path postulates that before MTM is even launched, political direction

necessitates that MSM is directly pursued. This mission path would forego MTM and concentrate on

PDS after MSM. This path is called Political Direction.

5.5.2 Alternative Flexibility Analysis

The enabling technologies are sequenced for each of the three defined mission. A mission-enabling

mindset is used, such that technologies are ranked based on their ability to contribute to the envisioned

campaign first by the most imminent mission, next by the second-most imminent, and third by the third-

most imminent. While this was the method chosen for this case study, one more akin to what is used in

the START methodology, the so-called "democratic" method that seeks to optimize overall portfolio

utility (Derleth et al., 2005), could be employed instead.

For organizational reasons, the technologies in Table 17 were grouped and color-coded as "blocks" with

identical relevance for the three mission types, and these technology "blocks" are shown in the first

column (labeled Color Legend) of Figure 20. The numbers in Figure 20 correspond to the technology

identification numbers in Table 17. These blocks were then sequenced adhering to the method described



above for each of the three possible campaign progressions, with the result shown in the three other

columns of Figure 20 (labeled Base Case, Scientific Discovery, and Political Direction).

The three result columns in Figure 20 are read from the top to the bottom. Technology "blocks"

appearing at the top of the list have higher priority, that is, they should be developed first, over "blocks"

lower down. The colored boxes overlaid on top with the white text shows the technology development

that is required for a given mission (MTM, PDS, or MSM). For example, the final technology "block"

that must be developed to enable MTM in the Base Case consists of technologies 43, 44, and 59.

Afterwards, five other technologies must be developed for PDS, and finally two "blocks" consisting of

eight technologies must be further developed for MSM.

Several conclusions can be drawn from Figure 20:

1. There is a large degree of commonality between the required technologies. After the initial

mission is enabled (MTM or MSM), a relatively few number of additional technologies are

required to enable subsequent missions.

2. Because of the commonality involved, the degree of flexibility, the ability to switch between one

path to another, is higher than if many technologies useful for only one mission existed.

3. Targeting MTM first enables a mission with fewer required technologies than MSM.

4. After MTM is complete, a decision can then be made to either continuing pursuing the Base Case

scenario or switch to the Scientific Discovery path. There does not seem to be a high switching

cost in this scenario.

5. Development of MSM first, along the Political Direction path, delays the enabling of any of the

three missions.

These conclusions represent potential assertions that can be made with this type of analysis. Again, the

goal is to attempt to introduce considerations for flexibility into the technology portfolio selection

analysis in order to recognize uncertainties in mission direction.
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Figure 20: Flexibility Analysis of Enabling Technologies for Human Mars Exploration
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5.6 Conclusions and Future Work

This chapter attempted to lay the framework for inclusion of flexibility analysis into the technology

portfolio investment optimization problem. Two different methods were suggested: introducing

flexibility with Monte Carlo simulation and decision rules into the START method and performing a

simplified technology ranking to observe possible trends. Neither method has been developed to a great

degree, that being left for future work. In particular, it would be especially interesting to apply the

START methodology to the human Mars exploration campaign developed in this thesis and then

incorporate uncertainty as described in this chapter.



6 Conclusions and Future Work

In this thesis, an attempt was made to better assess the feasibility of a human mission to Mars, particularly

the shared human and robotic mission (humans-in-orbit) presented by Cunio et al. (2010a; 2010b) and

related variants. A summary of the results is presented here, along with some concluding remarks and

areas for future work.

With assumptions on crew provisions demand rate and the inclusion of an additional propellant tank, the

shared human and robotic mission presented by Cunio et al. (2010a; 2010b) offers a viable alternative to

the traditional humans-to-surface mission architecture. It involves less overall mass, a subset of the

required technologies, and allows for sampling of multiple sites when compared to a surface-landing

mission.

Variants on the humans-to-orbit mission were made to investigate the robustness of the mission to

changes in the transportation infrastructure. For example, the humans-in-orbit mission can be conducted

with a minimum NTR specific impulse of 835 s, while Grogan (2010) found that for 875 s, the humans-

to-surface mission outlined by DRA 5.0 is infeasible. If the NTR specific impulse is 865 s or higher, only

one cargo MTV is required to support the mission, leading to a mass savings of 22-24% in LEO. Finally,

an investigation of the Advanced Chemical Propulsion transportation architecture showed that the

humans-to-orbit mission is feasible only for the most optimistic predictions of the advanced chemical

specific impulses.

Four missions were defined giving an example of how the Flexible Path could develop to completion: a

tele-robotic mission from areostationary orbit, a Phobos and Deimos sortie mission, a dedicated Phobos

exploration mission, and a Mars surface mission. In this sequence, humans progress from remaining in

the MTH to interacting directly with Martian-system bodies for longer and longer periods of time.

Common elements, use of propellant depots, and modular missions allow for flexibility in both individual

mission objectives and overall campaign direction.

One conclusion of this thesis is that several mission architectures can viably, from a logistics perspective,

take humans to Mars. Although no attempt is made to choose which is better from a scientific value point

of view, the mass estimates presented are a useful first-order screening criterion to grade relative mission

complexity and costs. In that vein, none of the missions appear infeasible, and all offer novel

opportunities from both scientific and operational perspectives. Table 18 shows the figures of interest for

all mission architectures studied in this thesis.



Table 18: Summary Figures of Interest

DRA
5.0 SHRMM Mars Exploration Campaign

NTR (no
Cargo MTV

Figure of NTR NTR #2) ACP
Interest 950 s 950 s 875 s 950 s 875 s 523 s 516 s MTM PDS PEM MSM
Ares V launches 9 8 8 7 7 8 8 8 8 8 15

Total mass in 848.7 706.0 706.0 536.2 550.7 753.0 753.0 681.7 681.7 681.3 1,448.7
LEO (mT)
Number of sites 16 6 6 6 6 6 6 3 2 1 1
sampled
Returned sample 4 4 4 4 4 4 4 3 150 150 250
mass (kg)
Robotic-days of 1,060 332 332 332 332 332 332 360 0 0 1,060
exploration
(robot-days)
Human-days of 1,940 28 28 28 28 28 0 0 28 360 2,120
exploration
(human-days)

Compared to DRA 5.0, this thesis attempts to take a different approach to reference mission definition.

Instead of specifying a single mission, a family of possible missions, all attempting to utilize a common

transportation infrastructure, gradually build operational experience, and offer varied scientific returns is

explored. The goal is to avoid an Apollo-like phenomenon, where a grand ambition is sought with no

logical, incremental follow-on to foment further exploration. In this thesis, one large goal is replaced

with several smaller ones, and as the pursuit of those seems to be feasible, the hope is that they will one

day be realized.

Whether or not that will actually happen is unknown, though in the author's opinion much more study

will be done before any meaningful actions are taken. As such, there are many areas that can be

investigated further in the future. For example, all analyses performed in this thesis were on the basis of

mass feasibility. Volume feasibility is the next logical step, ensuring that the elements will fit inside the

launch vehicles and other defined infrastructure elements. Further, more detailed design of those

elements would aid greatly, lending much more credibility to the analysis results.

Though several mission variants were considered here, this is by no means a comprehensive list. For

example, a one-way mission, covered recently by Schulze-Makuch and Davies (2010), is an interesting

alternative to a return mission. A logistical analysis was done on such a mission, but because it is not as

related to the other missions in this thesis, it is presented in Appendix A. Further, Mars missions,

especially a one-way mission, lead to the question of eventual colonization of Mars. While this is reality

that is far off into the future, it is by no means too early to begin thinking about the eventual permanent



casting off from terrestrial shores, across the cosmic ocean, to not only the New World, but perhaps a

New World.
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Appendix A Feasibility Analysis of a One-way
Mission to Mars

A.1 Background

A number of proposals have been made for a one-way mission to Mars. Schulze-Makuch and Davies

(2010) cite that doing so would cut costs several fold, possibly as much as by 80% as there is no need to

send the fuel and supplies necessary for the return journey, and there is no need to rehabilitate astronauts

after long-term exposure to the reduced gravity environments of the Martian surface and free space.

Furthermore, Schulze-Makuch and Davies (2010) note that a one-way mission would not be a suicide

mission. In fact, certain risks, such as powered flight through the Martian atmosphere and radiation

exposure during interplanetary travel are effectively halved. It is expected that the crew, postulated to be

two males and two females, would be re-supplied periodically for some length of time (from decades to

possibly centuries) while slowly but increasingly becoming more self-sufficient. The ultimate hope is

that over several decades more colonists would be sent until the Martian population expands to 150, the

hypothesized critical mass for the colony to begin reproducing and sustaining a long-term settlement.

Other proposals are less ambitious. McLane III (2006) asserts that a human can be placed on Mars using

current technology if ascent from the Martian surface is not necessary. The proposal is for a single

astronaut to go to Mars, thereby reducing the long mission lead times (for conception, design, and

fabrication of necessary exploration elements) and reducing the possibility of funding cuts and subsequent

program postponement or cancellation.

A word should be given to the ethics of a one-way Mars mission. The majority of arguments against a

one-way mission, especially a mission with a single astronaut, center around the abandonment or sacrifice

of human lives to a hostile and alien environment. In response, Schulze-Makuch and Davies (2010) cite

that for the first explorers of the New World such as Columbus, there was no guarantee of survival and

even less commitment from the Old World in terms of resupply and support. Contrast this with one-way

missions to Mars featuring constant communication with Earth and a dedicated population with the intent

and means to monitor and sustain the human pioneers.



A.2 Analysis Setup and Assumptions

A logistics feasibility analysis was done to verify some of the claimed merits of a one-way mission as

opposed to a conventional return mission, such as MSM at the end of the campaign discussed in Chapter

4.

To minimize crew demands, a mission concept of operations similar to the "lone wolf' scenario presented

by McLane III (2006) is assumed. A single astronaut is sent to the surface of Mars and is assumed to live

out the rest of his or her life there, a time postulated to be approximately twenty years (Schulze-Makuch

and Davies, 2010).

During that time, McLane III (2011) estimates a required resupply of 10,000 lb per year (equivalent to

12.4 kg per day) of food, water, oxygen, and so on from Earth to sustain the astronaut. Since this estimate

is of significant importance, an independent calculation of the logistical requirements was made below.

Further, it was assumed that the EDS and propellant depot in-space transportation infrastructure was used

(see Chapter 4) so a more meaningful comparison can be made to a more conventional return human

mission. A Mars Resource Canister (MRC) was designed based on a scaled-down version of the DRA

5.0 CFC and MDAV descent stage, with the capacity to deliver 10 mT of supplies to the Martian surface.

A.2.1 Calculation of Resupply Requirements

Table 19 summarizes the breakdown of the resupply requirements required for a one-way mission to the

Mars surface. There are two major elements to resupply, namely crew provisions and equipment spares.

Table 19: One-Way Mars Mission Crew Demands

Demand Resupply Rate (kg/person/day)
Crew Provisions 2.375

Equipment Spares 9.9
Surface Habitat 5.5

Power Generation System 2.0

Surface Rover 2.4

In-situ Resource Utilization System 0.3

Communication System ~0

Total 12.575

In the case of crew provisions, the same 2.375 kg per person per day assumption used in all previous

analysis (see Chapter 4) was applied, essentially assuming nearly complete closure in the water cycle and

reusability of hygiene and waste disposal items. Also, it assumes in-situ oxygen production.



Equipment sparing mass was calculated as 10% of the element mass per year of operation (Grogan,

2010). The surface habitat, power generation system, surface rover and in-situ resource utilization system

were taken from NASA DRA 5.0, while the mass of the necessary communications system was assumed

to be negligible based on estimates made by Yue et al. (2010). For element masses taken from NASA

DRA 5.0, it is assumed that resupply is not required for the first 17 months of operation (essentially the

length of surface time for a conjunction-class human surface mission) because this sparing mass has

already been included in the estimates provided (Grogan, 2010).

Implicitly, it is assumed here that the surface assets can be used indefinitely for the entire mission (i.e.,

twenty years) without the need for complete replacement. While this is likely unrealistic, it is difficult to

judge the operational life of the surface elements because of the relatively uncharacterized Martian

environment and the little (i.e., zero) operational data for the surface elements which only exist as paper

designs.

The total required resupply rate is 12.575 kg per day, which is within 2% of the estimate given by

McLane III (2011). Thus, in the analysis that follows, it is assumed that the required resupply rate is

10,000 lb per year, or 12.4 kg per day.

A.3 Analysis Results and Discussion

A.3.1 Concept of Operations

Figure 21 shows the bat chart for the one-way mission to Mars. There are, essentially, two phases. The

first phase is concerned with moving all appropriate assets to the right place. The LEO Propellant Depot

is first constructed. Shortly afterward, the Martian surface infrastructure, namely the equipment listed in

Table 19 (denoted the SHAB payload) and an MRC, are put on conjunction-class trajectories via two

separate Ares V launches and EDSs after they are refueled in LEO. The MRC descends to the surface

while the SHAB payload loiters in RMO.
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Figure 21: One-Way Mars Mission Bat Chart

On the next conjunction-class launch opportunity, a single astronaut is launched and journeys to Mars

using the MTH defined in DRA 5.0. Nominally, the MTH inserts into RMO on January 15, 2038. The

astronaut then rendezvous with the SHAB payload and uses it to descend to the surface of Mars,

hopefully near the pre-positioned MRC.

The astronaut then begins surface operations while being resupplied every 26 months (i.e., every time the

conjunction-class trajectory window becomes available) with a single MRC, the equivalent of providing

10,172 lb of resupply per year. This continues until the astronaut can no longer function, assumed to be

20 years after arrival.

................... .... ..... ........



A.3.2 Results Discussion

Table 20 shows the figures of merit for a one-way mission to Mars that lasts 20 years and also one that

lasts for 10 years, and compares it to the Mars Surface Mission (MSM) introduced in Section 4.2.5.

Several observations can be made from the figures of interest:

1. The number of Ares V launches required for the 20-year one-way mission (14) is comparable to

the number required for MSM (15). The one-way mission launches are spread over a longer

period of time and fewer launches are required if the mission is shorter than expected (e.g., a total

of 9 for a 10-year mission).

2. The majority of the Ares V launches for the one-way mission is for resupply, launches that do not

require refueling from the LPD, while the majority of the MSM launches carry refueling PRMs.

From this, it can be concluded that the majority of mass required for the one-way mission is crew

provisions and equipment spares while that for MSM is propellant for the departing EDSs. This

also implies that the LPD is relatively underutilized in the one-way mission, and that another in-

space transportation infrastructure with more frequent utilization could be advantageous.

3. An extension of the above observation is that Ares V launches are more critical in the one-way

mission. While in MSM the crew are not sent to Mars until the surface assets are successfully

launched and positioned, in the one-way mission, several Ares V launches must occur after the

astronauts are in a potentially vulnerable situation unless a sufficient contingency margin can be

accumulated on the Martian surface.

4. The total required mass in LEO is lower for the one-way mission, even for one that could last 20

years. In fact, only a 33% increase in mass is required to double the mission duration from 10

years to 20 years, highlighting the initial mass investment required to enable the mission.

5. The one-way mission does not currently have the capacity to return samples, but a sample return

element could be included as part of the concept of operations.

6. Because there is only one astronaut in the one-way mission, accumulating an equivalent number

of human-days of exploration takes considerably more time. Thus, the one way mission,

effectively lasting 14 times as long as MSM, only increases the human-days of exploration by 2.3

times.



Table 20: One-way Mars Mission Figures of Interest

One-way
Figure of Interest MSM (10 years)
Ares V launches (mission payloads) 4 1

Ares V launches (PRM payload)* 11 3

Ares V launches (MRC payload) - 5

Crew launches 1 1

Total mass in LEO** (mT) 1,448.7 826.5

Number of sites sampled 1 1

Returned sample mass (kg) 250 0

Robotic-days of exploration (robot-days) 1,060 0

Human-days of exploration (human-days) 2,120 3,650

*Includes launches required to construct LPD
**Includes mass of stack immediately before TMI

One-way
(20 years)
1

3

10

1

1,102.5

1

0

0

7,300

One aspect of the one-way mission that is not highlighted in Table 20 is the extendibility of this analysis

to larger crew sizes, the effect of which being potentially beneficial (e.g., possibly the prevalence of crew

depression would be decreased and provisions could be made for reproduction and child-rearing, but at

the same time, intra-crew conflicts could arise). As Table 19 shows, only approximately 19% of the

resupply demand is for crew provisions, the complement being sparing for the surface elements. As such,

to employ financial terminology, the variable cost of increasing the crew size is small in comparison to

the fixed operating cost of fielding the mission, especially since the surface elements were sized in DRA

5.0 for a crew of six. Some thought should be given to the effect on the launch vehicle size and resupply

capacity, but a one-way mission with multiple crewmembers could be a more attractive and yet still

viable option.

Overall, the one-way mission represents an alternative human mission to Mars. It features several

advantages, requiring less propellant and will most likely be cheaper as it is lighter overall and does not

require significant technological advancement to become feasible.

On the other hand, it also has its disadvantages. There is no plan for human return, introducing ethical

and policy debates, and also negating the possibility of studying the physiological effects of long-term

space flight (although it affords the somewhat sadistic possibility of investigating the psychological

effects of long-term space exile). Further, launch criticality becomes an issue as each launch has more of

a direct impact on astronaut survival given the infrequency of viable launch windows. Along the same

thread, high surface asset reliability (i.e., for the SHAB, ISRU plant, etc.) is crucial to mission success.



Appendix B Details on the Shared Human and
Robotic Mission (SHRMM)

This appendix gives more details on SHRMM, going deeper into various aspects of the mission

definition. Further detail can be found in Cunio et al. (2010a).

B.1 Architectural Comparison

Table 21 shows an architectural comparison between SHRMM and DRA 5.0. Cunio et al. (2010a)

assumed "isoperformance" of the two missions during the transit and return phases of the mission, with

divergence between the two occurring in the vicinity of Mars. Table 21 readily shows the diffuse nature

of SHRMM, exploring and sampling from three bodies compared to the concentrated nature of DRA 5.0.

Table 21: SHRMM and DRA 5.0 Mission Architectures Comparison (adapted from Cunio et al. (2010a))

Mission Phase
Launch

Transit

Stay time

Mars Arrival

Mars Operations

Science

Exploration

Ascent from Mars

MTV Rendezvous

Return Transit

Reentry

SHRMM NASA DRA 5.0
Same

Same: about 180 days

About 40 days About 500 days

Dock/Orbit/Deploy Land

Tele-operate/Moon EVA Surface exploration

Samples from 3 bodies Samples from Mars

Hoppers/Pirogue/EVA Pressurized/Unpressurized
rovers/EVA

One hopper with samples Large MAV with crew

Mission-critical, not life-critical Mission-critical and life-critical

Same

Same

Figure 22 compares the bat charts of the two mission architectures, focusing on the differences in asset

location over the course of the two missions. Again, one recognizes the disperse nature of SHRMM,

deploying assets to more locations of interest in the Martian neighborhood compared to DRA 5.0.
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Figure 22: SHRMM and DRA 5.0 Bat Chart Comparison (adapted from Cunio et al. (2010b))

B.2 SHRMM Vehicle Properties

Three vehicles were designed to a conceptual level to evaluate the feasibility of SHRMM: the planetary

hopper, its associated Mars Ascent Vehicle (MAV), and the Pirogue excursion vehicle. Details of each of

the vehicles are given below with, again, more detail appearing in Cunio et al. (2010a).

B.2.1 Planetary Hopper Design

The hopper design was performed based on the model described in Yue et al. (2010). It was assumed that

each hopper would be self-sufficient, insomuch as it would harbor its own solar array, lithium-ion

batteries, communications system, chemical rocket engine, and scientific payload. The engine was

designed to allow for ten total hops each with a horizontal distance of 500 m.

Each hopper payload enters the Martian atmosphere and lands using a 700 aeroshell which is jettisoned at

Mach 1.7 so parachutes can be deployed. The chemical rocket engine slows the hopper to a speed of 3.3

m/s before touchdown. This descent trajectory and the associated subsystems were specified using

historical considerations from American robotic landings on Mars since Viking 1 and 2. With the mass of

the aeroshell, each hopper weighs 857 kg.

- SHRMM



B.2.2 Mars Ascent Vehicle

The purpose of the MAV is to return a 1-kg Martian soil sample to ASO for rendezvous with the MTV.

A two-stage ascent architecture, the first stage employing solid rocket boosters and the second stage using

hydrazine bi-propellant, was used to achieve the 6.0 km/s required to reach ASO.

The MAV mass breakdown is shown in Table 22, which indicates that the total MAV mass is 336.1 kg. It

was decided to reduce overall mission mass by dedicating two hoppers to a single MAV.

Table 22: Mars Ascent Vehicle Mass Breakdown (adapted from Cunio et al. (2010a))

Vehicle Stage Mass (kg)
Sample Canister 4.1

MAV Second Stage 118.4

MAV First Stage 213.6

Total 336.1

B.2.3 Pirogue Excursion Vehicle

The Pirogue, a conceptual drawing of which is shown in Figure 23, is designed to allow two astronauts to

rendezvous with both Martian moons with an intervening return to the MTV in ASO. Calculation of the

AV requirements for the Phobos and Deimos excursions were performed using skewed-axis velocity

analysis and the Battin-Vaughan Algorithm (Battin, 1999).

Maneuvering

BACK VIEW engines

Consumables
Crew hatch

FRONT VIEW

Cockpit window

Figure 23: Pirogue Excursion Vehicle (adapted from Cunio et al. (2010a))

As the sphere of influence for both moons exist within each moon's radius, it was assumed that a trailing

or leading orbit at close distance could be maintained with minimal station-keeping requirements. A 40-

day timeframe was defined as the allowable window in which both sorties take place, and each sortie was

allowed to last between 2 and 7 days. Using these constraints, a genetic algorithm was used to calculate

the optimal AV requirements.

Solar array



Figure 24 shows the result of the optimization as a plot of stay time at the Mars moons versus the required

round trip AV. It shows that there is a multitude of feasible missions that can be flown to Phobos and

Deimos for approximately 2.4 and 0.6 km/s, respectively. For the purposes of sizing the Pirogue, a

growth margin of 30% was applied to these estimates to account for simplifying assumptions and other

unknown complications.

Because of the microgravity environment on both planets, the Pirogue does not land on either moon in the

conventional sense. Instead, the Pirogue approaches the target moon and matches orbits at a distance of a

few dozen meters. The astronauts can then exit the Pirogue using suitlocks and appropriate extravehicular

suits, and utilize inertial tether lines and cold-gas propelled backpacks to traverse to, around, and back

from the target moon. Further information on mission operations near an asteroid, a reasonable analogue

to the Martian moons, can be found in Massachusetts Institute of Technology 16.89 Graduate Design

Class (2010).

The Pirogue design, as indicated in the mass breakdown in Table 23, carries scientific equipment and

allocates space for samples from the moons, providing for an opportunity for in-situ science and sample

return. Fully fueled, the Pirogue weighs in at approximately 17,500 kg.

Figure 24: AV Requirements for Phobos and Deimos (PhD) Sorties
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Table 23: Pirogue Excursion Vehicle Mass Breakdown (adapted from Cunio et al. (2010a))

Pirogue Excursion Vehicle Subsystem Mass (kg)
Structure 1,445

Life support 455

Comm., sensors, and computation 105

Power 275

Mission 875

Propulsion 10,333

Growth Margin 30%

Total in Mars Orbit 17,469



Appendix C Reflections on SpaceNet Version 2.5r2

The majority of the analyses presented in this thesis were performed in SpaceNet Version 2.5r2. At this

time, SpaceNet is an open source program under continual revision with the goal being its widespread use

in logistical planning in long-term space campaigns. As such, in order to aid in further development, an

account of the author's impressions of SpaceNet Version 2.5r2 follows below.

First, much appreciation is offered to Paul T. Grogan, the Lead Developer of SpaceNet Version 2.5r2.

Without his tireless support and advice, some aspects of this thesis would not have been possible, or

would have been frustratingly tedious.

This leads into the first point: while SpaceNet Version 2.5r2 is simple to use and is applicable to many

mission types and scenarios, there are some concepts that cannot be modeled in the current release of

SpaceNet. A prime example is on-orbit refueling, which was modeled in SpaceNet only after Mr. Grogan

provided a patch enabling this capability. Without such contact with the Lead Developer or his

willingness to further SpaceNet's capabilities, or the willingness to dive into SpaceNet's source code,

modeling the use of fuel depots would have been extremely difficult.

Another piece of advice given to the author by Mr. Grogan was to save scenario files as little as possible.

At times, saving a scenario through the graphical user interface (GUI) would result in scenario files that

were not complete. These files would be essentially unusable, as they were missing scenario information

and would not open again in the GUI. Remedying this issue would save much irritation on the part of the

modeler.

Further, Mr. Grogan also suggested increasing the amount of RAM SpaceNet accesses by executing it

through the command line prompt. This capability, previously unknown to the author, helped greatly

during the modeling of large scenarios with many events, which is otherwise impossibly sluggish.

That being said, notwithstanding the aforementioned potential improvements, SpaceNet is an intuitive

program providing users the ability to quickly model, analyze, and visualize space mission campaigns.

The actual analysis engine in SpaceNet could be replicated from scratch using a number of platforms, but

SpaceNet uniquely and usefully offers advantages over self-made models.

First, SpaceNet enforces a standard definition of model elements, giving the modeler a checklist of items

that need to be tracked down for proper element definition giving structure and efficiency to the data-



gathering process. Along the vein of standardization, SpaceNet also facilitates sharing and discussion of

model files in a common environment, removing traditional barriers such as idiosyncrasies in model

definition, disparities in modeler competence, and incompatibilities in programming platforms.

SpaceNet also offers built-in feasibility checks which, while conceptually simple, are tedious to program

in models built from scratch. This allows the modeler to focus on defining the campaign itself, leaving

the more or less automatable task of checking feasibility to SpaceNet.

Finally, SpaceNet offers a number of visualization options such as bat charts, demand curves, and

animations that summarize the premise and key metrics of a campaign and that can be created with

minimal effort on the part of the modeler. These graphics would require a substantial amount of time to

generate manually, again allowing the modeler to focus more on logistics and less on image processing.

Overall, SpaceNet was instrumental in the writing of this thesis. It is already extremely valuable in its

current state and, with further enhancement, should become a mainstay of space logistics analysis both at

NASA and with the greater public community.


