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Wavelength selection-based nonlinear calibration
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Abstract. While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of
biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic
calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear
multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such
as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting,
especially in the presence of external interferences that may create nonlinearities in the spectra-concentration
relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and
nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the
spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature
fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a
substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent
prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject
studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing
prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such
wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given
the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we
anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of
miniaturized clinical systems for disease diagnosis in the near future. C©2011 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.3611006]
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1 Introduction
Noninvasive diagnostic tools are of great importance in
biomedicine as they dramatically reduce the cost and incon-
venience associated with blood withdrawals and tissue biopsies.
By virtue of its high chemical specificity and capability for
reagentless detection of the sample constituents, Raman spec-
troscopy has received considerable interest in the biomedical
community for detection of a cancerous lesion,1, 2 atherosclerotic
plaque,3 and diabetes monitoring.4, 5 However, the multitude of
Raman-active components coupled with the endogenous tissue
fluorescence usually makes the quantitative determination of the
analyte of interest difficult. Multivariate calibration provides a
powerful tool for spectroscopy-based chemical quantification by
analyzing multiple measurements of the sample responses. The
primary role of multivariate calibration methods is to develop
a regression model connecting the measured spectral signals to
specific sample properties (such as constituent concentrations)
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for predicting the same properties of prospective samples. Typ-
ically, multivariate calibration methods such as ordinary least
squares (OLS) and partial least squares (PLS)6, 7 employ the full
spectral information to differentiate the analyte of interest from
the spectral interferents. To further refine the predictive ability
of the multivariate calibration techniques, appropriate selection
of the spectral data points (wavelengths) has been investigated
using various optimization tools such as simulated annealing8

and genetic algorithms.9 In fact, it has been demonstrated that
optimal predictions are obtained by selecting only the analyte-
specific spectral features in order to eliminate uninformative and
spurious regions from calibration.10, 11 In this regard, Raman
spectroscopy is particularly suitable for wavelength selection
purposes due to its inherently narrow vibrational features.

However, the application of existing wavelength selection ap-
proaches has hitherto been largely restricted to linear calibration
techniques. Given the (latent) nonlinear information that is of-
ten present in the spectral data, the linear additivity assumption
of the basis spectra12 may not be valid necessitating the intro-
duction of nonlinear modeling. This is particularly important
for biomedical applications where the sample optical properties
and measurement conditions may substantially vary causing the
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inclusion of irrelevant sources of variation in linear calibration
models. Clearly, such models (full spectrum or otherwise) are
unable to perform accurate predictions in prospective samples.

To achieve the important goal of noninvasive blood glucose
detection, our laboratory has previously studied the causality of
the blood glucose levels to Raman spectral information13 and ad-
dressed specific technical challenges including tissue turbidity,14

autofluorescence and photobleaching,15 and physiological lag
between blood and interstitial fluid glucose.16 This paper inves-
tigates the applicability of wavelength selection for linear and
nonlinear multivariate calibration methods to further enhance
the robustness and quality of the calibration models. In this
work, robust implies the ability to make accurate predictions
irrespective of the specific identity of the sample or subject.
Using tissue phantom17 and human subject datasets,18 we show
that even with a substantial reduction in the number of wave-
lengths sampled, we can arrive at calibration models of nearly
equivalent prediction accuracy. Specifically, use of wavelength
selection in conjunction with nonlinear support vector regres-
sion (SVR) provides improved accuracy, in comparison to PLS
full spectrum analysis. Our analysis also indicates the presence
of an intrinsic subset of spectral points dictated by the vibra-
tional responses of the specific analyte and the interferents in
the samples, and the multivariate calibration method used. This
leads to a minimum allowable size of the spectral subset re-
quired to establish a clinically accurate model. Furthermore, we
demonstrate the prospective transferability of a selected spec-
tral subset across different human subjects while maintaining
equivalent levels of prediction accuracy. This is a significant re-
sult from a calibration maintenance and transfer perspective that
potentially opens avenues for robust prospective application of
spectroscopic algorithms. The approach employed in this article
is also sufficiently broad and general to address diagnosis of
other diseases (e.g., cancer and atherosclerosis) as well as rou-
tine pharmaceutical and forensic analysis. Finally, such selection
of limited wavelength subsets may provide new impetus to the
development of tunable detection filter-based serial Raman ac-
quisition systems.19, 20 These systems greatly alleviate the large
spatial footprint drawback of standard Raman systems but suffer
from longer acquisition time requirements. By employing only
a fraction of the total set of wavelengths, we envision a sig-
nificant reduction in the acquisition time because of the serial
sampling nature of such systems. While the tunable filter-based
serial Raman systems require further experimental validation
from a SNR standpoint, the acquisition time reduction coupled
with the intrinsic spatial footprint advantage may make them a
desirable alternative in the near future.

2 Theoretical background
2.1 Wavelength Selection
Over the years, wavelength selection techniques have been
demonstrated (theoretically21, 22 and experimentally23) to im-
prove calibration model accuracy and robustness. As noted in
the literature, wavelength (variable) selection can be viewed as
a subset of the more generic process of dimension reduction.24

Potentially, wavelength selection can enhance the stability of
the model to the collinearity in the acquired Raman spectra as
well as increase the interpretability of the relationship between
the model and the sample compositions by reducing the number

of loading vectors to the chemical rank of the system.25 The
important consideration is how many and which of the spectral
bands facilitate accurate prediction. Clearly, such selection is
also dependent on the rest of the constituents in the investigated
sample(s), because of the spectral overlap that may be observed
in certain fingerprint regions.

For orientation, a brief summary of the existing wavelength
selection methods is provided here. Although the wavelength
selection methods are sufficiently broad to work in conjunction
with any calibration scheme, most of the work reported in the lit-
erature is on OLS and PLS analysis. The wavelength selection
procedures primarily differ from one another in the objective
criterion used for measuring the optimality of selected subsets
or in the search algorithm for the determination of these sub-
sets. Algorithms, such as simulated annealing (SA) and genetic
algorithms (GA), have been proposed as global optimizers ca-
pable of determining the best set of parameters and selecting
well-defined spectral regions instead of single data points scat-
tered across the spectral range. These stochastic search meth-
ods accept transitory reductions of predictive quality during an
optimization procedure enabling them to escape local extrema
without supervision. However, this stochastic nature (involv-
ing predictable processes as well as random actions) is also a
major disadvantage in establishing a universal spectral subset
since it is almost impossible to recreate identical GA or SA
models.26 Other methods that have been employed for feature
selection include iterative variable selection,27 iterative predic-
tor weighting,28 and uninformative variable elimination.29 In
particular, the important work of Centner et al.29 proposes the
addition of artificial (noise) variables prior to the development
of a closed form PLS or principal component regression (PCR)
model for the dataset containing both the experimental and ar-
tificial variables. Subsequently, the experimental variables that
do not exhibit more importance in predictive analysis, in com-
parison to the artificial variables, are eliminated. The interested
reader is also referred to the work of Leardi and coworkers (for
example, sequential application of backward interval PLS and
GA for feature selection30) for a detailed description.

Alternately, a spectral interval selection called moving
window partial least squares regression (MWPLSR) has
been proposed for enhancing predictive quality of calibration
models.31–33 MWPLSR and its variants (changeable size moving
window partial least squares and searching combination mov-
ing window partial least squares), are advantageous in search-
ing for informative spectral regions for multicomponent spectral
analysis. This method applies PLS calibration models in every
window that moves over the spectrum and selects informative
regions on the basis of lowest sum of residual errors. Such a mov-
ing window approach based on minimization of the residue error
has previously shown promising results in improving prospec-
tive prediction of analytes in mixture solutions.34

In this paper, we follow a similar scheme of selecting lower
residue error wavelength regions for both linear (PLS) and non-
linear (SVR) multivariate regression models. To implement this,
we construct a spectral window of size w, which starts at ith spec-
tral channel and ends at (I + w − 1)th spectral channel. The
window is progressively moved in the full spectrum range. PLS
and SVR models are built and root mean squared error of valida-
tion (RMSEV) is calculated for each spectral window position
by performing prediction on the validation dataset (as detailed
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in Sec. 3.2). Subsequently, we plot RMSEV as a function of the
spectral window position. The spectral window positions with
large errors imply that the responses at these spectral channels
are highly contaminated by the factors that cannot be accurately
modeled using the calibration samples. It should be noted that
a residue error plot selection method searches for spectral in-
tervals (bands), as opposed to individual scattered points, based
on the continuity of the spectral response in vibrational spectra
[where the characteristic full width at half maximum (FWHM) is
typically at least 4 to 16 cm− 1].31 It is worth emphasizing that
residue error plot-based wavelength selection was separately
applied for PLS and SVR schemes. Evidently, this resulted in
distinct residue error plots for the two cases leading to separate
optimal wavelength subsets.

2.2 Support Vector Regression
As mentioned in Sec. 1, wavelength selection schemes have been
predominantly employed with linear regression models. How-
ever, the underlying assumption of linearity in the relationship
between the spectra and the property of interest (analyte con-
centration) may not be valid under all circumstances, especially
for clinical measurements. For example, in transcutaneous mon-
itoring of blood glucose, the linearity assumption may fail due
to fluctuations in process and system variables, such as changes
in temperature, sampling volume and physiological glucose dy-
namics. Although weak nonlinearities can be modeled by the
conventional linear methods such as PLS and PCR by retain-
ing more factors than are necessitated by the chemical rank
of the system, this risks the inclusion of irrelevant sources of
variance and noise in the calibration model. Such incorporation
of nonanalyte specific variance renders the model incapable of
prospective prediction. To model the potential curved effects and
to avoid overfitting of the data, support vector machines have
been introduced for nonlinear classification35–37 and regression
(SVR).38 Recently, SVR has been successfully employed for
near-infrared (NIR) absorption-based concentration prediction
in mixture solutions, where the acquired spectra are nonlinearly
affected by temperature fluctuations.39

In SVR, the regression is performed by minimizing a cost
function, which regularizes the regression coefficients and pe-
nalizes the net regression error. While reduction of large re-
gression coefficients improves the generalization ability of the
method,40 minimization of the regression error (the root mean
squared error of validation) ensures the development of an ac-
curate calibration model. In SVR, this is solved with Lagrange
multipliers as a constrained optimization problem and yields the
following regression function:38

y =
∑

i

(αi − α∗
i )〈xi , x〉 + b, (1)

where x represents the spectral data, y is the concentration of
analyte of interest, i is the index of the calibration data, α and α∗

i
are Lagrange multipliers, and 〈.., ..〉 denotes the inner product.
From Eq. (1), it is clear that each calibration data point has
its own Lagrange multiplier, which decides the impact of the
point on the final solution. Specifically, calibration data points
that are positioned farther from the regression line (exhibiting
relatively high regression errors) greatly affect the location of
this line. Thus, the corresponding Lagrange multipliers are also
relatively high (i.e., proportional to their regression error).

Equation (1) can be readily extended to handle nonlinear
regression by substituting the inner product of the calibration and
prediction spectra with a kernel function that satisfies Mercer’s
conditions41

y =
∑

i

(αi − α∗
i )K (xi , x) + b. (2)

The most widely used kernel for nonlinear regression is the
radial basis function (RBF) and can be expressed as

K (xi , x) = exp

[
−||x − xi ||2

σ 2

]
, (3)

where σ 2 is the RBF kernel parameter. In addition to the kernel
parameter, solving a support vector regression involves optimiz-
ing the regularization parameter, which determines the trade-
off between minimizing the regression error and the regres-
sion coefficients. Further details of the analysis are described in
Sec. 3.2.

3 Materials and Methods
3.1 Experimental
We have employed two data sets to investigate: (a) the relative
prediction performance of wavelength selected linear and non-
linear calibration models and (b) the transferability of the wave-
length selected subset from one sample to another. For (a), we
employ a physical tissue model (tissue phantom) study, which
focuses on glucose detection in a multicomponent mixture un-
der controlled laboratory settings. To accomplish objective (b),
a clinical dataset acquired from human subjects undergoing oral
glucose tolerance tests (OGTT) is analyzed. These two data
sets were originally reported in our previous publications.17, 18

We briefly describe the experimental methods in the following
paragraphs.

For the tissue phantom data set, spectra were collected from
50 tissue phantoms containing randomly varying concentrations
of two Raman active analytes, glucose, and creatinine, between
5 to 30 mM.17 These samples also contained randomized con-
centrations of India ink and intralipid to mimic the turbidity
values, absorption (0.09 to 0.18 cm− 1) and scattering (48.4 to
95.1 cm− 1), observed in human skin tissue. Spectroscopic mea-
surements were performed on aliquots of these tissue phantoms
in a fused silica cuvette by exciting with an 830 nm exter-
nal cavity diode laser (Process Instruments). The back-scattered
light was passed through a modified f/1.4 spectrograph (Kaiser
Optical Systems, Inc.) before spectral acquisition using a liquid-
nitrogen cooled CCD (Princeton Instruments).17 For our analy-
sis, we have performed curvature correction,42 vertical binning,
and cosmic ray removal.

For the human subject data set, transcutaneous blood glu-
cose measurements were performed on 13 healthy Caucasian
and Asian volunteers in our laboratory.18 Following standard
OGTT protocol, the volunteers were given 220 mL of a bev-
erage containing 75 g of glucose before the study period. The
experimental setup was similar to the one mentioned above. The
laser was focused onto the forearm of the human volunteers with
an average power of 300 mW and a spot size of ∼1 mm2. Raman
spectra were taken approximately every 5 min for each volun-
teer over the 2 to 3 h study period. Concomitant blood glucose
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Table 1 Summary statistics of human subject dataset.

Average Minimum Maximum

Total Calibration concentration concentration concentration

Volunteer samples samples (mg/dL) (mg/dL) (mg/dL)

1 25 15 144.1 83 188

2 26 16 146.3 78 204

3 26 16 145.4 84 191

4 30 20 173.5 95 223

5 20 10 134.4 82 169

6 32 22 167.9 71 201

7 25 15 135.2 80 190

8 26 16 153.1 79 208

9 28 18 160.1 70 209

10 25 15 110.7 69 142

11 29 19 121.9 85 167

12 31 21 139.2 68 198

13 27 17 159.2 69 201

measurements were performed every 10 min from extracted
blood samples, and spline interpolation was used to correlate
the measured blood glucose concentrations with the spectra
collected at the intermediate time points. Our human subject
study was approved by the Massachusetts Institute of Technol-
ogy Committee on the Use of Humans as Experimental Subjects.
Prior to their inclusion in the OGTT study, informed consent was
obtained from all subjects. We note that the power levels used in
the study, while on the higher side, did not cause any discomfort
during the test or exhibit any skin damage afterward, except in
one volunteer who developed a small blister.

For our analysis below, datasets from volunteers exhibiting
impaired glucose tolerance profiles (due to the risk of spuri-
ous correlations with quenched fluorescence levels) have been
excluded. In addition, a student’s t-test employing Mahalanobis
distance function was used to reject spectra with 95% probability
of being spectral outliers (p < 0.05).43 A summary of relevant
statistics for the human subject study is provided in Table 1.
Thirteen human subject data sets are considered for our analy-
sis. Table 1 displays the number of calibration data points, and
the average, minimum, and maximum glucose concentrations
(mg/dL) for each subject.

3.2 Data Analysis
In the tissue phantom study, 20 prediction samples are randomly
chosen from the entire data set and kept aside for prospective
application. The creation of an independent prediction set is a
standard approach used to mitigate and/or test for the presence
of spurious correlations. Subsequently, the remaining 30 tissue

phantoms are randomly split into 20 calibration samples and 10
validation samples. The moving window approach is used to
generate a regression vector from the calibration sample spectra
corresponding to the specific window position. This regression
vector is then used on the validation samples to obtain a RM-
SEV value. The window is subsequently moved, as mentioned
in Sec. 2.1, over the full spectrum to construct the residue er-
ror plot as a function of the moving window position. Figure 1
shows the residue error plots calculated from a representative
partition of calibration and validation sets using PLS and SVR
schemes, respectively. From the residue plots, spectral points
with lowest computed RMSEV are selected for developing the
final regression vectors. For our analysis, we selected 100 to
900 spectral points (in increments of 100), where one spectral
point roughly corresponds to 1.45 cm− 1. The final regression
vector is generated from the 30 tissue phantoms constituted by
the calibration and validation data sets for each subset of spec-
tral points. This regression vector is prospectively used on the
corresponding prediction set and root-mean-square error of pre-
diction (RMSEP) is calculated for the specific subset of spectral
points. It is worth mentioning that the prediction set comprises
the spectral information only at the points selected to create the
regression vector. To ensure the reproducibility of the predic-
tion results, 100 iterations are performed to obtain an average
RMSEP.

For our investigation, different window sizes from 10 to 20
spectral points are selected. This size range corresponds to the
FWHM of the prominent bands in the glucose Raman spectrum.
Assigning window sizes beyond this range exhibited little or
adverse effect on the resultant residue lines, as also noted by
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Fig. 1 Residue error plots (solid curves) calculated for (a) PLS and
(b) SVR calibration models in the tissue phantom dataset using a 20
spectral point window. The set of 300 spectral points that exhibit the
minimum residue errors are highlighted in cyan and green for PLS and
SVR, respectively.

Jiang et al.31 Wavelength selection using the above protocol is
performed for both PLS and SVR calibration. PLS models are
created based on the number of loading vectors that provide the
least error in cross-validation using in-house code based on the
seminal algorithms of Haaland and Thomas.7 A standard rec-
ommendation for PLS calibration is to incorporate at least three
times the number of samples as the rank of the calibration model.
To satisfy this criterion, 20 samples are chosen for calibration
(as six loading vectors provided the least error in cross vali-
dation). The SVR calculations are carried out using the widely
used LIBSVM toolbox originally developed by Chang and Lin44

(accessible at http://www.csie.ntu.edu.tw/˜cjlin/libsvm). Prior to
wavelength selection for SVR processing, the Raman spectra are
linearly scaled by dividing each spectrum by the maximum in-
tensity value to prevent skewed effect arising from the larger
pixel intensity values. Here, we have used the RBF kernel func-
tion [Eq. (3)] to enable nonlinear scaling of the acquired dataset.
The optimal model parameters C and σ 2 are obtained by em-

ploying a grid search algorithm in the range of 1 to 10000 (C)
and 0.01 to 10 (σ 2), respectively. In addition, numerical binning
of adjacent pixel intensities is performed to explore the possibil-
ity of further reduction of sampled wavelengths in conjunction
with the wavelength selection approach.

Similar analysis steps are also followed for the human sub-
ject dataset. From a representative human volunteer data set
(volunteer A) all but five data points are used to develop the
wavelength-selected regression model. The developed regres-
sion model is then applied on the remaining five data points
of volunteer A to evaluate the RMSEV as a function of the
moving window position and subsequently for the construction
of the residue error plots. To obtain enhanced robustness in the
wavelength subset selection, we perform 100 iterations by repar-
titioning the calibration and validation data sets of volunteer A.
The residue error plots from these iterations are added to form a
cumulative error plot as a function of wavelength. By comput-
ing the cumulative validation errors using different sized spec-
tral subsets, we find that the 300 spectral point subset provides
the optimal trade-off between the number of sampled spectral
points and prediction error. In other words, further reduction of
number of spectral points appears to significantly compromise
the predictive capability of the model. The set of 300 spec-
tral points with the least cumulative error are then selected for
prospective application in the other human volunteer datasets.
For clarity, we henceforth represent the remaining volunteers as
volunteer Bi, where i is the index of the volunteer. For volunteer
Bi, the data points are split into calibration and prediction. The
regression models are constructed on the calibration data points
of volunteer Bi using only the 300 spectral points selected from
volunteer A. These models are subsequently used to estimate the
glucose concentrations of the prediction data points in volunteer
Bi. The resultant prediction errors provide a true measure of the
prospective applicability of the selected spectral subset, i.e., the
transferability of the selected points across human subjects. It
is worth emphasizing that we are assessing the transferability
of the selected spectral subset across human subjects not that
of the calibration model (regression vector) itself. The loading
vectors for PLS analysis are optimized for each volunteer based
on leave-one-out cross-validation on the calibration data points.
Similarly, SVR optimization is also carried out for C and σ 2 in
the range of 1 to 10000 and 0.01 to 10, respectively. It is worth
mentioning that for both the human volunteer as well as the
tissue phantom study, the spectra were directly used for devel-
opment of the multivariate calibration models without any data
manipulation such as removal of background fluorescence.

4 Results and Discussion
4.1 Tissue Phantom Study
Wavelength selection was performed on the tissue phantom
dataset using both PLS and SVR models. Figure 2 shows the
results of prospective prediction for glucose obtained with PLS
(blue) and SVR (red) models, where the lengths of the bars are
proportional to the average RMSEP and the associated error bars
represent the standard deviation of the RMSEP over 100 iter-
ations. Figure 2 provides a comparative estimate of predictive
performance of calibration models corresponding to the selec-
tion of minimum residue wavelength subsets of different sizes,
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Fig. 2 Bar plot showing comparative performance of wavelength-
selected PLS (blue) and SVR (red) calibration models in tissue phantoms
for glucose prediction. The lengths of the bars are proportional to the
average RMSEP and the associated error bars represent the standard
deviation of the RMSEP over 100 iterations.

ranging from 300 to 900 spectral points. It is evident that the
SVR calibration models outperform the PLS calibration models
with identical size of wavelength subset in regard to prospec-
tive prediction. For example, given a spectral subset size of 300
points, the mean prediction errors for glucose are observed to
be 0.89 and 0.63 mM for the PLS and SVR models, respec-
tively. In fact, the SVR model with 300 spectral points provides
equivalent levels of prediction accuracy as the full spectrum PLS
model (mean RMSEP of 0.6 mM) (p-value = 0.54 indicating the
absence of statistically significant differences). We also observe
that, as the spectral subset size is initially decreased from 900
to 500 spectral points, the change in prediction errors are not
statistically significant (p-value > 0.05 for both cases). How-
ever, with further decrease of the size of the spectral subset from
500 to 300 spectral points, the prediction errors show a percep-
tible rise (p-value < 10− 4 for both PLS and SVR). On further
reduction to 200 and 100 spectral points, the prediction error
exhibits a substantially steeper rise to 1.13 and 1.64 mM for
PLS and 1.73 and 2.6 mM for SVR, respectively (not shown in
Fig. 2 due to their excessively high magnitude). Based on these
results, one can infer how many spectral points provide relevant
information specific to the analyte of interest and the spectral
interferents in the sample(s). Particularly for our tissue phantom
study, it would appear that the informative regions necessary for
accurate glucose prediction constitute about a third of the full
spectrum.

In conjunction with RMSEP determination, we have also
evaluated the relative predictive determinant (RPD) metric to
classify the overall prediction quality of the individual calibra-
tion models for the two Raman-active analytes (glucose and
creatinine). Briefly, RPD is defined as the ratio of the standard
deviation of the reference concentration in the sample population
(σR) to the standard error of prediction (the standard deviation of
the differences between predicted and reference values) (σR−P )

RPD = σR

σR−P
. (4)

Table 2 Evaluation of RPD.

RPD (glucose) RPD (creatinine)

Spectral points PLS SVR PLS SVR

100 3.9 1.6 5.9 2.4

200 6.8 5.1 10.3 4.5

300 8.5 12.2 11.4 8.2

400 9.3 13.5 14.5 11.5

500 10.2 14.9 15.1 14.5

600 11.0 15.8 16.1 17.2

700 11.6 16.1 16.7 20.4

800 11.9 16.5 16.8 22.4

900 12.4 16.9 17.1 24.2

Typically, a RPD value of five is considered to be good for quality
control while a value larger than 6.5 is acceptable for process
monitoring. A calibration model, with a RPD value higher than
eight, may be used for any application. From Table 2, we observe
that both PLS and SVR models including at least 300 spectral
points show excellent prediction quality. On further reduction
of the number of spectral points included to 200, we find that
glucose RPD values obtained using PLS and SVR are 6.8 and
5.1. When only 100 points are considered, these values show a
substantive fall to 3.9 (PLS) and 1.6 (SVR), respectively. Based
on these results, we can infer that a minimum of 300 spectral
points is probably necessary for building a reasonable model
for glucose predictions, although the specific scheme (PLS or
SVR) plays a substantive role in the determination of size of the
optimal wavelength subset. To this end, RPD provides a useful
tool in evaluating the allowable minimum size of the spectral
subset for different applications and analytes of interest.45

Our results, showing the improvement of prediction accuracy
by performing nonlinear calibration, are consistent with similar
results from NIR absorption studies reported earlier.39, 46 The
curved effects in our spectral data set can probably be attributed
to the fluctuations in sampling volume due to the change in
tissue phantom turbidity (absorption and scattering). In a sem-
inal study on the introduction of nonlinearity on vibrational
spectra, Wülfert and coworkers showed that the temperature-
induced spectral variations may produce a change in peak area,
peak width, or/and a spectral shift.47 Since sample turbidity can
cause significant changes in peak area (intensity scaling) and
smaller distortions of the intrinsic width of the spectral bands
(via overlap of specific absorption and Raman features), it is
likely that such changes will introduce curved effects that can-
not be adequately modeled by linear multivariate calibration
schemes. We have recently investigated this phenomenon in Ra-
man spectroscopy for typically observed ranges of tissue absorp-
tion and scattering and obtained similar results.48 The improved
performance of SVR can also be attributed to the assessment
(weighting) of the calibration samples by means of Lagrange

Journal of Biomedical Optics August 2011 � Vol. 16(8)087009-6

Downloaded from SPIE Digital Library on 04 Nov 2011 to 18.51.3.76. Terms of Use:  http://spiedl.org/terms



Dingari et al.: Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing...

multipliers, which facilitates the ability to discriminate between
important and irrelevant samples.39, 49, 50

Finally, we employed horizontal binning of the pixels to
see if the adjacent pixel intensities could be combined without
substantially compromising predictive ability. In principle, the
numerical binning of pixel intensities of the Raman spectra pro-
vides a trade-off between higher spectral resolution and higher
system throughput (analogous to increasing the slit width of a
spectrograph). Here, our motivation is to investigate if it is pos-
sible to sample an even smaller set of spectral points than that
prescribed by the wavelength selection approach above. To this
end, we binned successive pixels using the selected 300 spec-
tral points for SVR models with increasing bin sizes of one to
six pixels (i.e., a total of 300 to 50 spectral points sampled).
We observed that an increase in bin size to two pixels slightly
reduces RMSEP from 0.63 to 0.59 mM. This can be attributed
to the reduction in influence of spectrograph drift as well as
the increase in SNR of each data point. Indeed, a bin size of
three pixels provided an error value of 0.7 mM, comparable to
that obtained from no numerical binning. This is borne out by
the lack of statistically significant differences (p-value = 0.12)
between the no binning and three pixel binning cases. However,
further increase in bin size to four, five, and six pixels exhibits
statistically significant increases in RMSEP to 0.84, 1.1, and
1.4 mM, respectively (p-value < 0.05 for each successive case).
Our results suggest that combined use of wavelength selection
and numerical binning can reduce the number of sampled wave-
lengths from 1000 to approximately 100 spectral points without
a corresponding reduction in prediction accuracy.

4.2 Human Subject Study
From Sec. 4.1, we observe that reduction of spectral points (even
by a factor of three) does not substantially deteriorate calibra-
tion model performance, as long as the appropriate wavelengths
depending on the analyte of interest and spectral interferents are
analyzed. Nevertheless, the prospective transfer of the selected
wavelength subset from one human to another is substantially
more difficult because of the complexity arising from substan-
tive variations in tissue optical (e.g., turbidity, autofluorescence,
and skin heterogeneity) and physiological properties (dynam-
ics of the analyte of interest) as well as changes in experimental
conditions. Indeed, while several investigators have successfully
applied wavelength selection in powder and mixture samples,
to the best of our knowledge, its transferability in complex bi-
ological specimens has not been previously demonstrated. As
previously mentioned, our goal here is to quantify the trans-
ferability of the selected wavelength subsets in such biological
specimens and not that of the calibration models, which are sep-
arately developed on the individual human subjects as detailed
in Sec. 3.2.

Figure 3 shows the prediction results of PLS and SVR cali-
bration models using wavelength selection on the human subject
dataset. The prediction results are shown plotted on Clarke error
grids, which are widely used for quantifying the clinical accu-
racy of blood glucose monitors.18 Predictions in zones A and B
are regarded as acceptable while those in zones C, D, and E are
potentially dangerous if used for determining treatment options.
The RMSEP and the R2 correlation-coefficient values in each

Fig. 3 Glucose prediction performance of wavelength-selected PLS
and SVR calibration models in human subjects shown on the Clarke
error grid. PLS calibration results are shown in (a) and (b) for 300 and
900 spectral points respectively. SVR calibration results are shown in
(c) and (d) for 300 and 900 spectral points respectively.

of the four cases (i.e., for PLS and SVR calibration with 300
and 900 spectral points, respectively) is provided in Table 3.
We observe that the average RMSEP for SVR in each case is
much lower than the corresponding value for PLS, such that the
SVR calibration model with 300 spectral points provides equiv-
alent (or better) prediction accuracy as compared to the PLS 900
spectral point model.

Current FDA recommendations (ISO 15197 guideline) stip-
ulates that for clinical usage 95% of the sensor predictions
should be within 15 mg/dL (0.83 mM) of reference for glucose
<75 mg/dL (4.2 mM) and within 20% for glucose ≥75 mg/dL
(4.2 mM).51 The percentage of data points satisfying the FDA
criteria for our four calibration models are also tabulated in

Table 3 Comparison of wavelength selection for PLS and SVR cali-
bration models in human subjects.

PLS SVR

300 900 300 900
spectral spectral spectral spectral
points points points points

RMSEP 18.6 16.9 15.1 11.3

R2 0.87 0.89 0.92 0.95

Percentage of
points satisfying
ISO criteria

86.66 89.17 88.33 94.17

We report the enhanced robustness obtained for quantitative biological Raman
spectroscopy by employing feature selection-based nonlinear support vector cal-
ibration. Importantly, we demonstrate the transferability of spectral subsets from
one human subject to another for transcutaneous blood glucose measurements.
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Fig. 4 Boxplot showing robustness metric of 300 spectral points for
PLS and SVR calibration models.

Table 3. While none of the models completely satisfy the 95%
criterion (even though the SVR model for 900 spectral points is
very close), one can reasonably expect that the deviations from
the aforementioned criterion can be overcome by correcting for
variations in tissue turbidity and autofluorescence as well as by
addressing the physiological lag between blood and interstitial
fluid glucose.16 We expect that our current clinical studies, in
collaboration with the MIT Clinical Research Center, encom-
passing nearly 100 normal and diabetic volunteers will provide
the necessary datasets where we can validate our algorithms,
including the application of wavelength selected support vector
machines. Through these studies, we anticipate the demonstra-
tion of clinical feasibility of Raman spectroscopy for noninva-
sive blood glucose sensing.

Importantly, our results reflect that the selected wavelength
subsets are transferable from one human subject to another. To
quantify the transferability, we compare the degree of overlap
between the wavelength subsets giving the minimum residue
error for each of the human subjects. Evidently, if the degree of
overlap between wavelength subsets from two human subjects is
high, prospective application of the selected wavelength subset
from one subject to the other will also provide accurate results.
Here, we define robustness metric as the ratio of overlapping
spectral points (between selected wavelength subsets of any two
volunteers) to the total number of selected spectral points (300).
Figure 4 provides box-plots of the robustness metrics for PLS
and SVR calibration. The box-plots are generated from the ro-
bustness metrics evaluated for all possible combinations in the
human subject dataset (i.e., total of 78 data-points from 13 sub-
jects). Clearly, SVR provides a marked improvement with re-
spect to transferability of the selected wavelength subsets. This
information can also be readily visualized by a frequency plot
showing the cumulative number of times a given spectral point
is selected between the different models developed on individual
human subjects. Figure 5 provides this alternate representation
in which we observe the evident benefits of employing SVR in
relation to PLS. The consistency of region selection in SVR is
highlighted by the presence of greater structure (higher retention
frequency of specific informative wavelengths) as compared to
PLS modeling. Taken together, Figs. 4 and 5 illustrates the sub-
stantial enhancement of robustness provided by SVR modeling.
This enhancement opens new avenues toward construction of
universal calibration models based on a small set of features,

Fig. 5 Frequency of wavelength selections for 13 human subjects using
(a) PLS and (b) SVR calibration.

which also enables the development of Raman instruments em-
ploying a smaller set of wavelength sampling channels. A similar
idea has been previously proposed by Buydens and coworkers,46

arising from their observation of the robustness of SVR with re-
spect to nonlinear effects in NIR absorption and Raman spectra,
in regard to the usage of cheaper low-resolution spectroscopic
systems for industrial applications. Our results here validate this
line of thought in turbid biological media, where multiple inter-
ferents (i.e., other Raman scatterers, absorbers and fluorophores)
exist.48, 52

Finally, we note the implications of these results for the
prospects of a miniaturized Raman instrument that can provide
adequate detection sensitivity. As is well-known, a major draw-
back in translation of Raman spectroscopy is the large spatial
footprint of the conventional Raman spectrometers, which are
ill-suited to meet the needs of a clinical setting. Specifically,
continuous glucose monitoring necessitates the development
of a hand-held or a wearable device due to the frequency of
measurements required for diabetic patients. To this end, Vo-
Dinh and coworkers have explored, in a series of publications,
the possibility of employing tunable detection filter-based (e.g.,
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acousto-optic tunable filter) serial scanning Raman systems to
significantly overcome the footprint drawbacks.19, 20 However,
since the proposed systems employ serial acquisition of the pho-
tons at different wavelengths, a significant number of the Raman
photons are not utilized in constructing the final spectrum and
consequently larger acquisition times are needed to collect high
quality Raman spectrum. While this problem cannot be com-
pletely eliminated, appropriate application of wavelength selec-
tion can greatly alleviate the problems associated with serial
acquisition. For the specific problem of transcutaneous glucose
detection, we have demonstrated above that a set of 300 spectral
points can provide equivalent levels of accuracy as the full spec-
trum (900 spectral points). This implies that instead of having to
perform serial acquisition over 900 spectral points, one can ac-
quire the Raman photons at one-third of the spectrum, which in
turn means the total acquisition time can be reduced by a factor of
three. Conversely (and more importantly for glucose detection),
one can acquire for longer periods of time (three-fold) at the
appropriate wavelengths that leads to more efficient utilization
of the important Raman photons. Considering shot-noise lim-
ited detection, a three-fold increase in acquisition time translates
to a 1.73 times increase in analyte SNR. Using the minimum
detectible concentration formulation,53, 54 this increase in SNR
results in a corresponding reduction in the prediction uncertainty
(or rise in precision) by nearly 43%.

5 Conclusion
In the present study, we have employed wavelength selection for
linear (PLS) and nonlinear calibration (SVR) using tissue phan-
tom and human subject datasets. We have demonstrated that the
prediction accuracy is substantially improved by using SVR. In
fact, our studies indicate that SVR models can provide the same
prediction accuracy with a small fraction of the spectral infor-
mation as used in PLS full spectrum analysis. Relative predictive
determinant analysis has also been used to infer the size of the
minimum allowable spectral subset that can provide calibration
models of acceptable predictive quality. Furthermore, we show
the prospective transferability of a selected wavelength subset
across different human subjects while maintaining reasonably
constant levels of prediction accuracy. It is observed that the
SVR models, in particular, demonstrate surprising robustness
and consistency in the selection of spectral bands. We believe
that the resultant increase in accuracy and robustness, alongside
the promise of enabling smaller and cheaper serial scanning Ra-
man instruments, makes this an important step in the clinical
translation of quantitative Raman spectroscopy. The approach
proposed in this article, namely the combination of feature se-
lection with nonlinear calibration schemes, is sufficiently broad
to work for other disease diagnostics as well as for composi-
tional analysis of pharmaceutical tablets, forensic analysis, and
other process monitoring applications.
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