
Example-Based Graphical Programming:

An approach for Graphic Design in Electronic Media

by

Suguru Ishizaki

Bachelor of Art and Design
Tsukuba University, Tsukuba, Japan

1986

SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION IN PARTIAL
FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF

MASTERS OF SCIENCE IN VISUAL STUDIES
AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE, 1989

@ Massachusetts Institute of Technology, 1989 All right reserved

Signature of the aul
/ ' Suguru Ishizaki

Media Arts and Sciences
May 12, 1989

Certified by
-- Muriel Cooper

S(I Professor of Visual Studies
Thesis Supervisor

Accepted by 41 _ __

g V '~ "Stephen Benton
Chairman

Departmental Comitee for Graduate Students
ROM~

MASSACmse$ETTSipTE
OF TECtti OGY

OCT 2 3 1989
UDRARIES

Example-Based Graphical Programming:
An approach for Graphic Design in Electronic Media

By
Suguru Ishizaki

Submitted to the Media Arts and Sciences Section on May 12, 1989 in
partial fulfillment of the requirements for the degree of
Master of Science in Visual Studies

Abstract

The Example-Based Graphical Programming System is an
interactive computer environment that allows a graphic designer to create
a computer program that mimics design examples. The system records the
designer's graphical editing process. Then the recorded procedures are
generalized into a Lisp function that can be applied in future examples.
This system is intended for programming the visual style of graphical
elements in a dynamic environment. An example of using this system as
a tool for designing the dynamic display of animal migration is presented.

This work was supported in part by DARPA, NYNEX and Hewlett Packard.

Thesis Supervisor:
Title:

Muriel Cooper
Professor of Visual Studies

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Muriel Cooper, for

introducing me to the field of design and technology at the Visible
Language Workshop.

I would also like to thank Henry Lieberman for helping me focus

and clarify my ideas. His research in programming-by-example was one of
the main inspirations of this work.

Thanks are also due to Ron MacNeil and Patrick Purcell for their
useful comments and encouragement.

I am particularly grateful to Mark Gross for his constructive
criticism and for useful suggestions in organizing this thesis.

Acknowledgement must also be made to my colleagues at the

Visible Language Workshop. I would like to thank Sylvain Morgaine for
his friendship, Bob Sabiston and Russell Greenlee for providing the
graphical interface environment. I also received much support from
Ming Chen, Laura Robin and David Small, while I was writing this thesis.

Finally, my thanks to the Media Laboratory for the opportunity to
work in a stimulating environment.

TABLE OF CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

A bstract ..
Acknowledgements

Introduction ...
1.1 M otivation
1.2 Examples as a means of communication
1.3 Related w ork
1.4 The structure of the thesis

O verview ...
2.1 The Example-Based Graphical Programming System..
2.2 Scenario ..

Inplementation
3.1 Representation and basic recording mechanism

3.1.1 Graphical objects
3.1.2 Representation of the manipulation
3.1.3 Recording mechanism and design procedure . .

3.2 Generalization
3.2.1 Creation of parameters
3.2.2 Creation of conditional structures
3.2.3 Generalization as a search

3.3 An example of the generalization process

M igration Graphics
4.1 Design requirements
4.2 A session with the system

4.2.1 Display of the herd migration
4.2.2 Display of temperature information
4.2.3 Display of snow information

CHAPTER 5 Conclusion ... 59
5.1 Future w ork 60

Bibliography
Appendix A
Appendix B
Appendix C

44
45
46
46
52
55

. .
.
. . . . 6. ..

. .

Introduction

CHAPTER 1

Introduction

1.1 Motivation

Traditional graphic design has been concerned with the design of

visual forms for static media like paper. As computer-based

communication media become more dynamic and interactive, the

complexity of visual design problems increase. Three characteristics in

electronic media bring new concerns to graphic design: interactivity,

personalization and dynamics.

Interactive media allow non-linear access to information. A

designer may not be able to control the exact sequence of presented

information eventually chosen by the user. This new type of problem

requires graphic design in real-time.

Personalized media, such as NewsPeek* developed by the

Electronic Publishing group at the MIT Media Lab, are an applications that

NewsPeek is a system that reads closed-captioned data encoded in the video signal of a
news broadcast and compares it with keywords representing a viewer's interest.

Introduction

demonstrated the need for the dynamic control of the information

presentation. Traditionally a newspaper is designed before it is published

and read by many readers. However in electronic media, each edition

should be designed for each individual, hence it is impossible to

previously determine the design of the screen.

The display of dynamic data also presents a new type of design

problem. For instance, in dynamic information design, such as weather

information, air traffic control or physiological monitoring, the data is

unpredictable. Complex real-time information must be clarified

depending on the viewer's interest or purpose at a particular time.

In traditional media, each individual design problem is solved

directly by the designer. In electronic media, design rules and

specifications can be encoded in a computer program and each design

problem may be solved by a program.

Ideally, such a computer program would be created for the

individual graphic designer, since each one has different methods or

styles. General design principles are very difficult to acquire in graphic

design. It would be better if the graphic designer can directly create a

program without the assistance of a computer programmer. However, no

existing system allows a graphic designer to create such a program unless

he/she learns a conventional programming language such as C or Lisp.

Introduction

There is a need for systems that provide individual graphic designers with

ways of programming their own design objectives.

What can be considered a natural language for the graphic designer

to communicate a design concept? Graphic designers find it difficult to

articulate their ideas in verbal form. They usually prefer visual forms,

such as drawings or diagrams, to communicate their ideas. One

comfortable way for individual graphic designers to program their design

styles would be to use visual expressions as a means of communication

with the machine.

1.2 Examples as a means of communication

Examples are often used to communicate design ideas, especially in

teaching. The design teacher demonstrates examples to illustrate a

concept. Students extract the essence of a design concept from a series of

examples and apply it to new design problems. The teacher then criticizes

the students' design solutions to refine the concept. Students

incrementally learn concepts through many examples. In teaching, it is

crucial to have an appropriate selection of examples. Students may

misunderstand a concept from inappropriate examples. The teacher must

clarify the idea and carefully select examples. Finding good examples can

be considered as a primary task for teaching design.

Introduction

Examples are also used as ways of finding a clear description of a

design concept. Suppose the designer first has a concept which solves a

certain design problem but does not know how to describe it. The designer

may be able to find a description of a concept by exploring examples that fit

the idea. For instance, consider an example of corporate identity design.

The designer makes a specification of the design concept by examining

different concrete cases of design problems.

This thesis investigates Example-Based programming as a tool for

the graphic designer to program a design concept. Design examples

provide ways of communicating the idea as well as feedback to the

designer. The system helps a graphic designer, who is also a novice

programmer, to generate design rules and specifications in the form of a

computer program using design examples. The designer also uses the

system as a tool to explore design solutions. The metaphor of this

programming technique is teaching by examples: The graphic designer

teaches a computer system by demonstrating design examples. The system

first watches and remembers the designer's demonstrations, then

generalizes them in a computer program. The system also asks questions

to the designer when it gets confused about a particular action. In order to

avoid being "misunderstood", the designer, as a teacher, also has to clarify

a concept and explain it to the system with good examples.

Introduction

This thesis describes a prototype of the Example-Based Graphical

Programming System for graphic design. The following are specific goals

for the implementation of the system.

e To build a highly interactive environment that allows the graphic

designer to create computer programs without conventional

programming. This includes the implementation of an object

oriented graphics editor where the designer can demonstrate

examples.

e To design mechanisms that can generate a computer program from

concrete examples of graphical editing. This includes the

mechanisms to record a designer's demonstrations, and to

generalize and generate a computer program from the recorded

demonstrations. The generation of two programming structures

are investigated: conditionals and parameters.

1.3 Related Work

Example-Based programming has been investigated for various

applications. The Tinker program [Lieberman 86] was the most influential

to this research. Tinker , a Lisp programming environment for beginning

programmers, formulates a procedure from demonstrations of concrete

examples. Tinker allows beginning programmers to create simple

Introduction

procedures through fairly complex structures such as recursions and

conditionals. Tinker has been tested for various kinds of programs, such

as interface design and video game design. Using Tinker, examples are

entered in Lisp, whereas in the proposed system, the user demonstrates

examples graphically.

Halbert has developed a programming by example system for an

office information system, SmallStar [Halbert 81]. The user can create

macros by demonstrating graphical interactions with icons. The SmallStar

records a series of actions and generalizes concrete examples by replacing

constant expressions with parameters. To generate conditionals and loops,

the user must explicitly specify the control structure. SmallStar also

provides an English-like high level programming language, Cusp*, as a

static representation of the program. This allows the user to learn and edit

a program created by example.

Peridot [Mayer 88] is an example-based programming environment

that has been developed as a rapid prototyping tool for dynamic user

interface design. Peridot allows to program a user interactions by

demonstration. Using rule-based inference mechanisms, Peridot can

guess the intent of the designer. For example, it can decides on a condition

to distinguish different demonstrations. The system developed in this

thesis does not guess conditions, it requires the users to provide them.

Customer Programming.

Introduction

Automating graphic design is a current interest of the Visible

Language Workshop at the MIT Media Lab. DAIS (Do As I Sketch)

[Greenlee 88] is a computer-aided page layout system that allows a graphic

designer to specify a design style using a freehand sketch. DAIS uses the

designer's sketches as a guideline for search among space allocation.

Sketch is a very abstract way of specifying a design style. The proposed

system, on the other hand, uses concrete examples as a way of

communicating the concept to the machine.

PACKIT [Amari 87] and GRID [Badshah 87] are rule-based expert

systems for automatic layout. These system have shown the feasibility of

automating some parts of design. Traditional knowledge engineering

approaches have been taken to building rule bases: A knowledge engineer

interviews graphic designers to capture their design knowledge and

encode it in the form of if-then rules. Rules in these systems are then

entered by a programmer. The designer could not directly specify

individual design styles. The idea of a programming system for the

graphic designer is originally inspired by this distancing problem that

PACKIT and GRID exhibit.

Introduction

1.4 The structure of this thesis

This thesis is organized as follows. Chapter 2 introduces the

Example-Based Graphical Programming System and a simple scenario of

the designer-machine interaction. Chapter 3 describes the

implementation of the system. The mechanism of graphical editing,

recording, and the generalization technique are described. Chapter 4

shows how the system might assist the designer in designing for electronic

media. The use of the system is illustrated in the design of a dynamic

display of animal migration.

Overview

CHAPTER 2

Overview

This chapter introduces the Example-Based Graphical Programming

System. Section 2.1 presents the overall structure of the system and shows

how the system is used. Section 2.2 shows a simple interaction with the

system and shows how the system functions in the process of designing.

2.1 The Example-Based Graphical Programming System

The Example-Based Graphical Programming System is an

interactive computer environment that allows the graphic designer to

create a computer program of a design concept. A design concept is

translated into a computer program through examples. A design concept,

such as the layout of a business card , the color coordination of a textile, or

how an element can catch the attention of the viewer, can be programmed

with concrete examples.

There are essentially two steps to creating a program using the

system (figure 2-1). First, the designer decides on a concept to program and

Overview

starts by showing an example by using the design editor. The design editor

is an object oriented graphics editor, like MacDraw, where the graphic

designer demonstrates design examples. The design editor provides tools

for editing some of the parameters used in graphic design, such as color,

font style, position, size or translucency. The attributes of graphical objects

are initially set to default values for convenience. The designer can edit a

graphical object either by direct or textual manipulation. The system

records the designer's graphical editing process.

Design Editor xa eGeneralizer

Graphic Interafr6n-----.--- ProgramDesigner --- ~~

Figure 2-1 A schematic diagram of the Example-Based Graphical
Programming System.

The second step is generalization. Once an example is

demonstrated, the recorded procedure is passed to the generalizer. The

generalizer incrementally creates a general procedure from previously

demonstrated examples. Generalization in this system is done through

repeated interactions with the graphic designer. The system will query the

designer when a decision must be made. Since the system assumes that

Overview

each example illustrates a particular design concept, when a new example

conflicts with previous examples, the system tries to learn how to

distinguish the new one from the others.

A selection of a unit of design concept depends on the designer. For

example, consider a design problem for a page of an electronic magazine.

The designer may create a program for head line and author, and another

program for picture and article. However, the designer can also create a

single program which lays out all the elements. A program that lays out a

head line and author can be used in other situations which have no

picture or article. This way of designing is more flexible. If the designer

knows there are always four elements on a page, then the program, which

lays out four elements, might be appropriate.

The designer can demonstrate as many examples as needed to

perform the desired result. In general, the more examples demonstrated

the more flexible the program becomes. The designer starts from a specific

example. Then, the design procedure can be refined by demonstrating

more examples with explanations. Thus the designer does not have to

make a program all at once. Rather, the program is refined as the design

process goes along. If later in the process, the designer finds a new design

problem, he/she can just show a new design solution. A design procedure

is always refinable.

Overview

2.2 Scenario

A short scenario of the designer's interaction with the system is

presented. The task is to design a dynamic temperature display of major

American cities, as they might appear on the nightly news (figure 2-2).

Boston6

w York 6 8

San

Dynamic temperature display
data.

of main American cities: original

Before we start programming, we must briefly describe the structure

of the information and graphical objects. Graphical objects are

hierarchically organized. Figure 2-3 shows the hierarchy used in this

example. Graphical objects are always attached to some information. For

example, the Boston-Temperature object is a text object attached to the

temperature of Boston. In this system, the information can be a class,

which we call an information type. The temperature of a city is a type, as

Figure 2-2

Overview

can be the weather or humidity. The information type is defined by the

designer. In this scenario, we assume that the information type is already

defined.

Temperature

Boston-Temperature LosAngeles-Temperature Dallas-Temperature

Figure 2-3 A hierarchy of graphical elements.

Suppose we want to make a program (design procedure) that displays

temperature information as follows: The color of a text string representing

the temperature is Yellow by default, Orange when the temperature is

greater than 70 degrees and Red when the temperature is greater than 80

degrees.

The first step is to tell the system to create a new procedure by

selecting the menu item NEW. The system then asks the designer to enter a

Overview

name of the new procedure (Appendix A):

Enter procedure name

=> display-temperature*

Now the system is ready to learn a new design procedure, "display-

temperature." The second step is to select a graphical object used as the

argument of the procedure. The menu item ADD ELEMENT is used to

choose a new element. Suppose we have chosen a Boston-Temperature

object for the first demonstration, with a temperature value lower than 70

degrees. We now use the design editor to edit the graphical object. At this

point, the designer usually tries out design solutions to test and clarify

his/her ideas.

In order to record an example, we click the menu item SHOW

EXAMPLE. We then set the color of the Boston-Temperature object to

Yellow (figure 2-4) using the design editor.

Throughout this thesis, the symbol "=>" is used to indicate a prompt for the user's input
and the bold type represents the text typed from the keyboard by the user.

Overview

L White 1 Orange
U Red Yellow

Figure 2-4 Set the color of the Boston-Temperature object to Yellow.

During the example, the editing operation is recorded by the system.

By clicking the menu item DONE, we tell the system that the example

is over. The recorded example is then passed to the generalizer in the form

of a design procedure. At this point, the specific design procedure is

generalized so that it can be applied for other objects that belong to the same

information type. The generalization mechanism is described in detail in

chapter 3.

Now, "display-temperature" has generalized the user's actions by

applying the procedure to a different graphical object. We replace the

Boston-Temperature object by a LosAngeles-Temperature object. The

LosAngeles-Temperature object belongs to the same information type. The

"display-temperature" procedure can also be applied. The current version

Overview

of the design procedure, "display-temperature" sets the color of the

LosAngeles-Temperature object to Yellow.

However, since the temperature in LosAngeles is 79 degrees,

which is higher than 70, we want the color of the LosAngeles-

Temperature object to be Orange. Hence we show a new example that

sets the color of LosAngeles-Temperature to be Orange. The system

then generalizes the new demonstration along with the previous

"display-temperature" procedure. Here, since the system assumes that

both examples cover the same concept, the system finds a conflict and

asks:

This case matches the operation:

(send Temperature :set-color Yellow).

However you demonstrated a different example

How do you distinguish

(send Temperature :set-color Orange) from

(send Temperature :set-color Yellow)?

The system uses a lisp-based object oriented language to represent and

communicate design procedures. In the current system, the designer must

learn a few fairly easy statements of the language. The question given here

is read as follows: "This situation matches to the operation of setting the

color of the object to Yellow. However you demonstrated a different

example. How do you distinguish the new example, which sets the color to

Overview

be Orange, from the previous example?" The system's internal

representation is described in detail in the next section.

We now must describe a condition that differentiates the new

example from the previous one. We explain that the value of a

temperature object is greater than 70:

=> (> (send Temperature :value) 70).

Now "display-temperature" has been programmed to make a decision. It

sets the color of any temperature objects to Orange if its value is higher than

70, otherwise it can set the color of the object to Yellow.

Let us demonstrate one more example here. Suppose we have

set the color of the Dallas-Temperature object to be Red. The system

generalizes the new example with the previously generalized

procedure, and asks: "Since the temperature of the object is higher

than 70, the expected action is to set the color of the object to be Orange.

However you demonstrated a different action. How do you distinguish

the new example, that sets the color of an object to be Red, from the

previous example, that sets the color of an object to be Orange?"

Overview

(> (send Temperature :value) 70) is TRUE

Therefore the situation matches the operation:

(send Temperature :set-color Orange).

However you demonstrated a different action.

How do you distinguish

(send Temperature :set-color Red) from

(send Temperature :set-color Orange)?

Since the temperature of Dallas is greater than 70, the system first finds that

this case matches the action which sets the text color to be Orange for the

Dallas-Temperature object. However, the demonstrated action is different.

Therefore, the system asks the designer how to distinguish the new example

from the previous examples. We explain that the value of the temperature

object is greater than 80 as a condition to distinguish the new design

solution:

=> (> (send Temperature :value) 80).

Now we have programmed a satisfactory design procedure. We assume

that the procedure, "display-temperature", is already a part of the

temperature display program. Figure 2-5 shows the result of applying the

procedure to all the temperature objects.

Overview

Minneapolis.l Boston,'4

7 .Philadelphia New York..

Salt 80 Chicago
SSalt Lake City WashingtoSan Francisc

Denve 7 8

LosAngeles .* 9Losngles . Phoenix *SI Atl nta 80
* DallX

Houson Orleans Miami 8 8

Figure 2-5 Dynamic temperature display after the procedure is applied.

Suppose we have tested the design procedure with dynamic

temperature data and we noticed that the Phoenix-Temperature object has a

value of 118 degrees in a particular scene. This makes us realize that we

want to differentiate the object when the temperature is very high. We

might decide to use a bigger font to indicate that fact. The fontsize of the

Phoenix-Temperature object is set to 32 point as an example (figure 2-6).

Overview

Figure 2-6 Set the fontsize of Phoenix-Temperature object to 32 point.

The system tries to generalize and asks the question:

The situation does not match the operation: set-fontsize

However you demonstrated an example.

How do you distinguish

(send Temperature :set-fontsize 32)?

Then, we explain that the value of the temperature object is greater than
110:

=> (> (send Temperature :value) 110).

Figure 2-7 shows the scene when we apply the new display-temperature

procedure to the dynamic information.

Overview

Minneapolis (f Boston

71 . Philadelphia . New York7 0

75Chicago
San Francisc 7, Salt Lake City Washingto 72

- *80Denver

LosAngeles Phoenix * 8At nta84

89
92 New c1

Houston Orleans Miami

Figure 2-7 Dynamic temperature information after the new procedure is
applied.

We have looked at how the system is used from a designer's

standpoint. However, a real design session may not be as linear as we

presented. There is usually a planning session where the designer explores

different cases before showing different examples. In other words, the

designer has to plan what examples must be demonstrated to create a

procedure that performs his/her objectives. The system also has the

potential of making the designer think about his/her own decisions. The

designer may discover new problems or solutions by applying the current

procedure to a new case.

Implementation

CHAPTER 3

Implementation

We have seen the operation of the system from a user's

standpoint in the previous chapter. This chapter describes the

implementation of the Example-Based Graphical Programming System

referring to the scenario presented in chapter 2. Section 3.1 describes the

representation used for design procedures and the basic recording

mechanism. Section 3.2 describes the generalization techniques used in

the system.

3.1 Representation and the basic recording mechanism

This section shows how the system is structured. The basic data

structures and the recording mechanism are described.

3.1.1 Graphical objects (design elements)

In the design editor two classes of graphical objects are used: text

objects and image objects. These are defined as follows:

Implementation

Text object
:top
:bottom
:left
:right
:width
: height
:string
: fontname
:fontstyle
:fontsize
:color
:translucency

Image object
:top
:bottom
:left
:right
:width
:height
:translucency

Attributes of the design object can be updated either through a menu or by

direct manipulation. (Appendix B)

3.1.2 Representation of the manipulation

The design editor automatically generates a procedural description

of each editing operation. The procedural description is a textual

representation of the graphical manipulation. A lisp-based object oriented

programing language is used to represent the procedural descriptions.

Suppose we have a graphical object, Boston-Temperature, which is an

instance of the text class object. The expression:

(send Boston-Temperature :set-color Yellow),

Implementation

means "send a message to the Boston-Temperature object to set its color to

Yellow."

3.1.3 Recording mechanism and the design procedure

The design procedure is a sequence of procedural descriptions

generated and recorded by the design editor. To see how the design

procedure is recorded, recall the demonstration of the display-temperature

procedure. When we set the color of the Boston-Temperature object to

Yellow, the demonstration is recorded as follows:

procedure = ((send Boston-Temperature :set-color Yellow)).

If the designer then sets the fontsize to be 32 point, the design procedure is

updated:

procedure = ((send Boston-Temperature :set-fontsize 32)

(send Boston-Temperature :set-color Red))

The following data structure represents the design procedure:

Design procedure

:lisp-function
:arguments
:body
:current-elements
:current-example

The most recent design procedure is stored in the slot ":current-example."

This slot is updated by the designer's each graphical manipulation. The

Implementation

design elements used in the demonstration are stored in the slot ":current-

elements." Once the generalization is done, a generalized design

procedure is stored in the slot ":body." The slot ":arguments" stores

variables generalized from specific graphical objects. The slot ":lisp-

function" stores the function definition, which is used internally.

The following is a state of the design procedure after the second

example is given.

Design procedure
:name display-temperature
:lisp-function (defun display-temperature (Temperature)

(send Temperature :set-color Yellow))

:arguments (Temperature)

:body ((send Temperature :set-color Yellow))

:current-elements (LosAngeles-Temperature)

:current-example ((send LosAngeles-Temperature :set-color Orange))

Notice the LosAngeles-Temperature is in the ":current-elements" slot and

the generated procedural description is stored in the ":current-example"

slot. The generalized first example is in the slot ":body". The element

used in the first example is in the slot ":arguments" as an argument to the

program.

Implementation

3.2 Generalization

Simple recording of a demonstration generates a program that

always performs exactly the same action. This program can not be applied

to any other objects or in any other situations. By generalizing recorded

design procedures, a more flexible program can be generated.

Generalization is defined as the problem of finding important

characteristics from a number of specific observations. In this system, the

generalization creates a general procedure from one or more specific

design examples, that can be applied for other similar kind of design

problems. A number of generalization techniques have been developed

for programming by example.

One way is to use an inference mechanism to guess what the user

means through examples and then generate a program. For example,

Peridot [Mayer 88] can infer when to make conditionals and loops by using

rules. This method is very easy to use for non-programmers. One

problem of inference-based systems is that their guesses are not always

accurate. The inference also does not work if the system lacks sufficient

knowledge. Mayer reports that Peridot seems to have most of the rules

necessary for interface design, unless the graphic designer invents a new

graphical style. Other systems require a series of examples for the

generalization. This method is tedious when the user knows what he/she

exactly wants the program to do.

Implementation

An other way is to require some user input during or after the

demonstration is recorded. This method does not have an inference

mechanism. For example, SmallStar [Halbert 81] requires the user to

specify what to parameterise when an example is recorded. To create

conditionals and loops, the user must explicitly specify the control

structures. A program generated using this method can perform exactly

what the user tells it to do, while the inference-based method uses

examples to create a program that performs what the users means. A

disadvantage of this method is that the user must understand

programming concepts. However, this method can be more flexible, so

that the kinds of program the user can produce are not limited by the

inference engine. This method also does not require the user to repeat

examples.

The generalizer developed in this thesis automatically generates

parameters for graphical elements in specific design examples. As

described above, the designer demonstrates an example based on the type

of information, such as graphical behavior of temperature for weather

display, or placement of page number for a magazine.

In order to have a program make design decisions, conditional

statements are needed. The system does not use inference to create

conditions: rather, the designer has to provide conditions. Explaining

each example is more suitable for graphic design because the designer

usually knows the purpose, or reason, for a particular decision. Without

Implementation

the designer's specification, it is hard for the system to guess the designer's

intention from examples. There is also a need for a series of examples to

guess appropriate conditional statements correctly, and this is not

guaranteed to be accurate. The following sections describe the

generalization mechanisms in detail.

3.2.1 Creation of parameters (Changing constants to variables)

A procedural description that has a constant can be generalized by

turning a constant into a variable. A variable can stand for any constant,

which means it is more general than a constant. The system generalizes a

specific design object to a variable by climbing the hierarchy of design

elements (figure 3-1).

Temperature Weatheir

Boston-Temperature LosAngeles-Temperatur Boston-Weather LosAngeles-Weather

Figure 3-1 A class of design elements.

This type of generalization is called "IS-A hierarchy" generalization and is

used to avoid over generalization. [Charniak 84] When the system

Implementation

transforms a specific object into a variable, the system tries to keep the

generalization as minimal as possible. Using this technique, the system

can remember whether the design procedure is created for a particular

information type.

Suppose we want to demonstrate an example of the concept, "catch

the viewer's attention", by setting the color of the text to Red. The

following two demonstrations:

(send Boston-Temperature :set-color Red) and
(send LosAngeles-Temperature :set-color Red)

can be generalized into

(send Temperature :set-color Red).

*where Temperature is a variable stands for

any Temperature objects.

The following demonstrations:

(send Boston-Temperature :set-color Red) and
(send Boston-Weather :set-color Red)

can be generalized into

(send X :set-color Red)

*where X is a variable stands for any

graphical objects.

Implementation

In the system, the first level of generalization is automatically done

even with one example. A specific graphical object in a design procedure

is generalized into a variable which stands for any object that belongs to

the same information type. For example, if a design example is shown

with a specific temperature information object, such as Boston-

Temperature, the design procedure is generalized such that the same

operation can be applied for any other temperature objects.

3.2.2 Creation of conditional structures (Adding options)

An example can also be generalized by adding options. When the

designer demonstrates two or more different specifications for the same

attribute, the system considers them as alternate solutions. Having

alternate actions in a linear procedure necessitates a conditional structure

to select one action from others. The system uses "if" statements to

generate conditional structures. For example, consider the scenario of

chapter 2. After the first two examples are shown, the system generates a

conditional structure with the condition provided by the designer:

(if (> (send Temperature :value) 70) ;condition

(send Temperature :set-color Orange) ;then

(send Temperature :set-color Yellow)) . ;otherwise

Implementation

This is more general than the design procedure generalized from the first

example:

(send Temperature :set-color Yellow).

When the system finds that an alternate action is introduced in the

generalization process, it asks the designer to provide a condition that

distinguishes one example from another. Then the system creates a

conditional structure in a design procedure. The designer can specify

either graphical conditions or application based conditions. Graphical

condition is a situation independent from information, such as

overlapping. Application based conditions is a situation depending on the

content of information, such as the temperature value.

Two types of generalization techniques have been described in

previous sections. However, the scope of the generalizations was not

clearly described. In the generalizer, variables are created only for

constants which stand for the graphical object. The other constants, such

as color, typeface or fontsize, can not be variablized since these values are

intentionally selected by the designer. These constants are generalized by

adding options.

Implementation

3.2.3 Generalization as a search

In this thesis, we consider generalization as a search problem. The

search space is defined as a set of partially ordered hypotheses, based on the

relation "more-specific-than." [Mitchell 78,79] Generalization is

performed for each graphical manipulation, such as "set-color" or "set-

fontsize." The design procedure is a conjunction of all the generalized

graphical manipulations. Figure 3-2 shows a simple "general-to-specific"

search space for "set-color" using the example shown in chapter 2. To

keep the search space small, we present the object with only one attribute,

color, and the choice of color is limited to Red, Orange or Yellow.

General (T, Red) or (T, Orange) or (T, Yellow) or (T, X)

(T,Red) or (TOrange) or (T,Yellow) (T,Red) or (T,Orange) or (TX) (T,Red) or (T,Yellow) or (TX) (T,Orange) or (T,Yellow) or (T,X)

(T,Red) or (T,Orange) (T,R ed) or (T,Yellow) (T,Red) or (T,X) (TOrange) or (T,Yellow) (T,Orange) or (T,X) (T,Yellow) or (TX)

(T, Red) (T, Orange) (T, Yellow) (T, X)

(Text-A, Red) (Text-B, Orange) (Text-C, Yellow) (Text-E, X)
SpecifiC (Text-F, Red) (Text-G, Orange) (Text-H, Yellow) (Text-1, X)

Figure 3-2 A simple general-to-specific search space.

Implementation

In the diagram, "Text-A~I . . . " are specific graphical objects and "T"

represents a variable stands for Temperature. The most specific level in

the diagram contains the examples demonstrated by the designer, such as

(Text-A, Red) * A specific example becomes more general when the

specific object is changed to a variable, such as (T, Red), which is translated

as "set the color of any temperature object to Red." Two or more examples

can generate optional actions. For example, if (Text-A, Red) and (Text-B,

Orange) are demonstrated, the system can climb up the search space and

generalize them into (T, Red) or (T, Orange). In the design procedure, this

becomes a conditional structure with a condition provided by the designer.

(T, Red) or (T, Orange) is translated as "set the color of an object to Red or

Orange depending on the condition."

The "X" used in this diagram means "do not perform" the action

"set-color." In other words, the action "set-color" is not demonstrated by

the designer. "Do not perform" an action in a program means there is no

expression which specifies the action in a program. Therefore, we do not

see any expression in the design procedure. "Do not perform" is an

imaginary action that is used by the generalizer. For example, if the

designer sets Text-A to Red as in the first example and does not specify the

color for the second example, the system automatically generates (Text-A,

2X, and generalizes them. The system climbs the search space and finds (T,

For brevity, the expression, (Object, Value), is used to represent a procedural description,
(send Object :set-color Value).

Implementation

Red) or (T, X) as a result, which is translated as "set the color of an object to

Red or do not set, depending on a condition."

3.3 An example of the the generalization process

Let us look at the generalization process with the scenario presented

in chapter 2. Suppose that the system has already seen the first example:

(send Boston-Temperature :set-color Yellow)

Since the system tries to keep the design procedure as specific as possible,

the system generalizes the design procedure to be:

(defun display-temperature (Temperature)

(send Temperature :set-color Yellow))

Notice that Boston-Temperature is generalized into Temperature and a
lisp function is constructed.

Now, consider the second example:

(send LosAngeles-Temperature :set-color Orange)

is demonstrated. The system then finds the current design procedure is

too specific and it needs to be generalized. The system first finds that an

option must be added:

Implementation

(or (send Temperature :set-color Orange)

(send Temperature :set-color Yellow))

It then asks the designer to distinguish

(send Temperature :set-color Orange) from

(send Temperature :set-color Yellow).

Suppose we have already answered that this is because the temperature is
above 70:

=> (> (send Temperature :value) 70)

The system creates a conditional structure, updating the design procedure

as follows:

(defun display-temperature (Temperature)

(if (> (send Temperature :value) 70)

(send Temperature :set-color Orange)

(send Temperature :set-color Yellow)))

Here is the third example. We set the color of the Dallas-

Temperature object to Red:

(defun display-temperature (Temperature)

((send Dallas-Temperature :set-color Red))

The system first examines the condition against this case and finds that the
action:

(send temperature :set-color Orange)

Implementation

has to be performed, since the temperature value of the new object is

above 70. However, the new example makes the system realize that the

result is too specific and needs to be generalized. The system then asks

how to distinguish

(send Temperature :set-color Red) from

(send Temperature :set-color Orange).

The condition:

=> (> (send Temperature :value) 80)

updates the design procedure to be:

(defun display-temperature (Temperature)

(if (> (send Temperature :value) 70)

(if (> (send Temperature :value) 80)

(send Temperature :set-color Red)

(send Temperature :set-color Orange))

(send Temperature :set-color Yellow))))

Figure 3-3 shows the resulting search space after the third example.

Arrows show the path the generalizer has taken.

Implementation

(T, Red) or (T, Orange) or (T, Yellow) or (T, X)

(T, Red) or (T, Orange) or (T, Yellow) (T, Red) or (T, Orange) or (T, X) (T, Red) or (T, Yellow) or (T, X) (T, Orange) or (T, Yellow) or (T, X)

(T, Red) or (T, Orange) (T, Red) or (T, Yellow) (T, Red) or (T, X) (T, Orange) or (T, Yellow) (T, Orange) or (X) (Yellow) or (X)

(T, Red) (T, Orange) (T, Yellow) (T, X)

(Dallas-Temperature, Red) (LosAngeles-Temperature, Orange) (Boston-Temperature, Yellow)

Figure 3-3 The search space after the third example is generalized.

Finally we show a new example that sets the size of a text object to

be 32 point when the temperature value is greater than 110. The new

example is shown with the Phoenix-Temperature object:

((send Phoenix-Temperature :set-color Red)

(send Phoenix-Temperature :set-fontsize 32))

The system then tries to generalize and find that the previous examples do

not use the set-fontsize manipulation in a design procedure. However,

the new example tells that the fontsize must be set to 32 point. The system

then asks how to distinguish the new example:

(send Temperature :set-fontsize 32).

Implementation

The answer:

=> (> (send Temperature :value) 110)

updates display-temperature to be the following:

(defun display-temperature (Temperature)

((if (> (send Temperature :value) 70)

(if (> (send Temperature :value) 80)

(send Temperature :set-color Red)

(send Temperature :set-color Orange))

(send Temperature :set-color Yellow))

(if (> (send Temperature :value) 110)

(send Temperature :set-fontsize 32)))

Notice that a conditional structure has been created. In a previous

examples, the fontsize was not specified and treated as "do not perform,"

The new conditional structure can distinguish "do not perform" and "set

the fontsize to 32 point." This conditional structure is created separately

form the condition clause used for "set-color", since this is a different

graphical manipulation. Figure 3-4 shows the resulting search space for

"set-fontsize" after the fourth example is generalized.

Implementation

(T, 32pt) or (T, 24pt) or (T, 16pt) or (T, X)

or(T,X)

(T, 32pt)

(T, 32pt) (T, 24pt) (T, 16pt) (T, X)

(
(D

(Phoenix-Temperature, 32pt) (Boston-Temperature, X) (Loskngeles-Temnperature, X) (Dallas-Temperature, X)

Figure 3-4 The search space for "set-fontsize" after the fourth example is
generalized.

Migration graphics

CHAPTER 4

Migration graphics

We have seen the mechanisms for recording and generalizing the

designer's demonstrations and simple examples have been presented that

illustrate how the system works. In this chapter, the Example-Based

Graphical Programming System is used as a tool for designing the

dynamic display of mule deer migration.* Appendix B shows the interface

of the Example-Based Graphical Programming System specially

customized for the display of the migration.

Design procedures are programmed through examples that show

different design solutions to important situations. First we graphically set

a situation, then we demonstrate a solution using the design editor. For

example, if we want to program a design procedure to change the color of a

text object when a herd of mule deer is in a green grass area, we place the

object in the correct area on the map. Then the right color of object is set

as an example. In this chapter, more complex examples of design

In Dynamic Information Display, a research effort being developed at the Visible Language
Workshop, the graphical representation of time and space varying information is
investigated to enhance communication.

Migration graphics

procedures are presented. Section 4.1 briefly introduces the requirements

for the dynamic display of mule deer migration information. Section 4.2

covers an interactive session of programming-by-example.

4.1 Design requirements

Before looking at a programming session, let us look at the design

requirements for the dynamic migration graphics. Mule deer are likely to

develop a seasonal return migration on the slope of hills and mountains.

The autumn migration begins sometime in October with the first

significant snow fall. [Baker 78] As a reference, figure 4-1 shows examples

of static views of the migration.

2000 -Summer

- 1000 - eginninWinter IV
range 0 tg

J A S 0 N D J F M A M J
Summer
range

0 5km

Figure 4-1 Static visualization of mule deer migration.

Migration graphics

The dynamic information includes the movements of herds of

mule deer, snow and temperature. The environmental information

includes feature types, such as rivers, grass and altitude. The design task is

to graphically represent the relation between dynamic and environmental

information.

4.2 A session with the system

4.2.1 Display of the herd migration

We begin by programming the behavior of a graphical object as the

visualization of a herd of mule deer in relation to the environment. We

assume that we already constructed a text object, "HERD 1", to represent the

herd information, and the procedure to place "HERD 1" in the right position

is previously programmed. We want a graphical object to indicate the

topographic feature type near the herd. Let us create a design procedure,

"display-mule-deer", as follows: The size of the text represents the Altitude

of the terrain: 32 point represents HIGH (> 1500ft). 24 point represents

MEDIUM (1000 - 1500). 16 point represents LOW (< 1000ft). The color of the

text represents the features of the terrain: Green represents Grass; Blue

represents Rivers; Yellow represents other features.

We start from the most general situation: "HERD 1" is neither on

river nor grass. "HERD 1" is placed where the Altitude is 1340.

Migration graphics

example (24point, Yellow, Bold)

1500 1200 900 600 900

N River Grass

Figure 4-2 The first demonstration for "display-mule-deer."

We demonstrate a solution to the first situation (figure 4-2): We set the

color to Yellow, the fontsize to 24 point and the fontstyle to Bold. At this

point, the design procedure,"display-mule-deer", has been generalized to

perform exactly the same procedure as the first example. However, the

procedure now can be applied for other mule-deer objects, since "HERD 1" in

the example is variablized into its information type.

The second example shows the behavior of "HERD 1" when it is on

Grass. Since we cannot find a place where the Altitude is higher than 1500

feet or less than 1000 feet, the fontsize is still within the range of 24 point

(1389ft). We demonstrate the design solution for the second situation

(figure 4-3): We set the color to Green and leave the fontsize at 24 point.

The fontstyle remains Bold.

situation

Migration graphics

situation example (24point, Green, Bold)

1500 1200 900 600

I River Grass

900

Figure 4-3 The second demonstration for "display-mule-deer."

After we have shown the example, the system now tries to generalize

the first and the second examples. The system first asks:

This case matches the operation:

(send mule-deer :set-color Yellow).

However you demonstrated a different example

How do you distinguish

(send mule-deer :set-color Green) from

(send mule-deer :set-color Yellow)?

We explain that this is because the herd is on the grass:

=> (send mule-deer :on-grass?).

Migration graphics

Since the fontsize and the fontstyle are exactly as in the previous example,

the system accepts the rest of the new demonstration as general ideas.

In the system, a set of predefined messages for objects are used to

access information related to a graphical object. Figure 4-4 is a list of

messages currently defined for the migration graphics. Using these

messages the designer can tell the system important situations.

on-grass?
on-river?
on-inhabitants?
any-overlapping?
overlapping-to
distance-to
any-object-within?
get-altitude
snow-fall

Figure 4-4 Predefined messages.

The third situation places "HERD 1" in the River area. In this case

the altitude is set to 790ft. The design solution to the third situation is to

set the color to Blue. The fontsize is set to 16 point. The fontstyle is Bold

(figure 4-5).

Migration graphics

example (1 6point, Blue, Bold)

1500 1200 900 600

River Grass

Figure 4-5 The third

900

demonstration for "display-mule-deer."

In order to generalize the third example from the current best

hypothesis, the system asks:

This case matches to the operation:

(send mule-deer :set-color Yellow).

However you demonstrated a different example

How do you distinguish

(send mule-deer :set-color Blue) from

(send mule-deer :set-color Yellow)?

We explain that this is because the mule deer is in a river area:

=> (send mule-deer :is-river-there?).

Then the system asks another question:

situation

1800

1500

1200

Migration graphics

This case matches to the operation:

(send mule-deer :set-fontsize 24)

However you demonstrated a different example

How do you distinguish

(send mule-deer :set-fontsize 16) from

(send mule-deer :set-fontsize 24)?

We explain that this is because the altitude is lower than 1000 ft.

=> (< (send mule-deer :get-altitude) 1000)

The only situation left is when a herd is in an area where the

altitude is higher than 1500 feet. We set the last situation and show the

new example: The color of the object is set to be Yellow. The fontsize is

set to be 32 point. The fontstyle is set to be Bold. (figure 4-6)

situation example (32point, Blue, Bold)

1500 1200 900 600

River Grass

800

500

200

900

Figure 4-6 The fourth demonstration for "display-mule-deer."

Migration graphics

The system tries to generalize the new example and asks:

This case matches the operation:

(send mule-deer :set-fontsize 32)

However you demonstrated a different example

How do you distinguish

(send mule-deer :set-fontsize 24) from

(send mule-deer :set-fontsize 32)?

We explain that this is because the altitude of the current position is higher

than 1500 ft:

=> (> (send mule-deer :get-altitude) 1500).

We have shown how the design procedure, "display-mule-deer", is

programmed. Appendix C shows the result of applying this procedure to a

simulated dynamic information with the other design procedures

presented in the following sections.

4.2.2 Display of temperature information

In the previous section, we have programmed the display of

dynamic information in relation to its environment. This section

introduces a design procedure which has to consider the relation between

two dynamic information: temperature and the herd migration. Suppose

that the temperature information will be measured in different locations

and needs to be visualized. However, if we display all temperature

Migration graphics

information on the map, the display gets rather cluttered. A design

solution to this problem is to use translucency to reduce the contrast of

objects. Since the herd information is the more important, the

translucency of the temperature object at a specific location according to

the distance form the mule-deer object to that point. The design

procedure, "display-temperature", is programmed as follows: The

translucency of the temperature object is set to be high (80%) when any

herd of mule deer is within 2 miles, otherwise low (30%).

We start demonstrating a general situation: No herd of deer is

within 2 miles. We choose a temperature object, Temperature-1, from the

display and set the situation. After testing several different translucency,

we decide and demonstrate an example of setting the translucency of

Temperature-1 to 80% (figure 4-8).

situation example (Translucency=80%)

HERD 1 HERD 1

67

Figure 4-8 The first demonstration for "display-temperature."

Migration graphics

Now we need to show an example when some herd of mule deer is

within 2 miles. First, we set this situation by placing "HERD 1" close to

Temperature-1. Then, we demonstrate a solution to the second situation;

The translucency of Temperature-1 is set to 30 % (figure 4-9).

situation example (Translucency=30%)

Figure 4-9 The second demonstration for "display-temperature."

The system tries to generalize a new example from the first one and asks:

This case matches the operation:

(send Temperature :set-trans 80).

However you demonstrated a different example

How do you distinguish

(send Temperature :set-trans 30) from

(send Temperature :set-trans 80)?

We explain that this is because there is some deer object within 2 miles:

HERD 1

67

HERD 1

67

Migration graphics

=> (send Temperature

:any-object-within mule-deer 2).

Now the design procedure, "display-temperature", has been

programmed to set the translucency of the temperature object based on the

distance to the herd of deers. (Appendix C)

4.2.3 display of snow information

This section introduces the use of two graphical objects into one

design procedure to visualize snow information. A picture of a snow

cloud is used to represent the area covered by the cloud. Text is used to

represent the amount of snow fall. The translucency of the picture is

increased slightly when it overlaps with other objects, in order to make

the information behind visible. The color of the text is set to Red when

the amount of snowfall is large. The precise description of the design

procedure, "display-snow", is the following: The translucency of the

picture is set to 60% when it overlaps with a deer object. Otherwise the

translucency of the picture is set to 30%. The color of the text is set to Red

when the amount of snow fall is greater than 6 inches/hour. Otherwise

the color of the text is set to Black.

We begin by setting the situation for a general case. Here, we

manually set the value of information. We set the amount of snow fall to

be 1 inch/hour. We demonstrate a design solution as follows: The

Migration graphics

translucency of a picture is set to 30% The color of the text is set to Black.

(figure 4-10)

situation example (ImageTranslucency=30%,
Text Color = Red)

Figure 4-10 The first demonstration for "display-snow."

Now we set a new situation where the amount of snow fall is 7

inches/hour. We demonstrate a solution to the second situation. The

translucency of the picture is set to be 60% so that "HERD 1" can be visible.

The color of the text is set to Red since the amount of snow fall is more

than 6 inches/hour. (figure 4-11)

HERD 1

1

....

Migration graphics

situation example (imageTranslucency=60%,
Text Color = Red)

Figure 4-11 The second demonstration for "display-snow."

The system tries to generalize and asks:

This case matches the operation:

(send snow-text :set-color Black).

However you demonstrated a different example

How do you distinguish

(send snow-text :set-color Red) from

(send snow-text :set-color Black)?

We explain that this is because the amount of snow fall is greater than 6
inches/hour.

=> (> (send snow-text :snow-fall)

Then, the system asks another question:

This case matches the operation:

6)

RD 1

Migration graphics

(send snow-picture :set-translucency 30).

However you demonstrated a different example

How do you distinguish

(send snow-picture :set-translucency 60) from

(send snow-picture :set-translucency 30)?

We explain that this is because the snow cloud is overlapping with the
mule-deer object:

=> (send snow-picture :overlapping-to mule-deer).

The design procedure, "display-snow", has been programmed.

Appendix C shows the result of applying all three design procedures

concurrently.

Conclusion

CHAPTER 5

Conclusion -

In this thesis, the Example-Based Graphical Programming System has

been implemented. The object oriented design editor is built as an interface

where the graphic designer shows examples. The system records the

demonstration of design examples as a process of graphical editing. The

generalizer then generalizes those examples into a computer program.

We have shown that the Example-Based Graphical Programming

System is fairly easy to use for the designer, who is also a novice

programmer, with minimal practice.

The system has been tested for the graphic design of migration

graphics. The behaviors of graphical representation for dynamic

information have been programmed by demonstrating design examples.

This study showed that the user can quickly create a computer program

using the system, as opposed to using more conventional programming

languages.

Conclusion

5.1 Future work

In the current system, a lisp-based object oriented language is used for

some of the designer-machine communication. Even though the system is

visually oriented and easy to use, the designer has to learn simple

statements to communicate with the system. A simple extension would be

to use an English-like language. However, when using such a language,

the designer always has to remember its syntax. Several different graphical

languages have also been investigated. Graphical languages are known as

intuitive interaction tools, but when we have to communicate a complex

concept, such as conditionals or procedures, the language becomes

unwieldy. This area needs to be explored.

The system also does not provide a static representation of the

program. Therefore, it is hard to understand the program since it is

automatically generated. Even though the system does not require the user

to read and understand the programming language, if the language is easy

to understand, such as Cusp* or HyperTalk, it will be useful for many

applications. If we provide a static representation of the program, the

designer may be able to learn the programming language from examples.

The use of easy textual programming languages may also extend the

Customer programming. A special English-like language provided by SmallStar
[Halbert 81].

Conclusion

limitation of direct manipulation. Again, the designer does not need to

learn programming to use the system, this is only a useful optional feature.

The designer rarely selects only good examples without making

mistakes. The system currently does not support editing and debugging of

the program. Editing capability is crucial in a graphic design program as

well as in any other domains. In general, designing is a process of trial and

evaluation. Adding an editing module to the system would allow the

graphic designer to change his/her mind while showing examples. The

most interesting area of research is to investigate editing by example.

The Example-Based Graphical Programming System can be

implemented for various design applications, such as screen layout or

corporate identity as well as the display of dynamic information. It is

interesting to test the idea for other design problems.

The system has been tested only by a few graphic designers. Testing

the system with more designers is also important to evaluate the potential

of this technique as well as its limitation.

BIBLIOGRAPHY

[Amari 87] Thomas R. Amari. "Automating the Design of Packageing

Families Using PackIT, The Packager's Inferencing Tool," Masters
Thesis, MIT. 1987.

[Badshah 87] Alka G. Badshah. "GRID - Graphic Intelligence in Design: An

Expert Layout System," Masters Thesis, MIT, 1987.

[Charniak 84] Eugene Charniak, Drew McDermott. Introduction to
Artificial Intelligence. Addison Wesley, 1984.

[Dietterich 81] Thomas G. Dietterich, Ryszard S. Michalski. "Inductive

Learning of Structural Descriptions: Evaluation Criteria and

Comparative Review of Selected Methods," Artificial Intelligence 16,
1981.

[Greenlee 88] Russell L. Greenlee. "From Sketch to Layout: Using Abstract

Descriptions and Visual Properties to Generate Page Layout," Masters

Thesis, MIT, 1988.

[Halbert 81] Daniel C. Harlbert. "An Example of Programming By
Example," Masters Thesis, University of California, Berkeley and

Berkeley and Xerox corporation Office Products Division, Palo Alto,

CA., 1981.

[Hayes-Roth 77] Frederich Hayes-Roth, John McDermott. "Knowledge

Acquisition from Structual Descriptions," Proceedings of the 5th

International Joint Conference on Artificial Intelligence, 1977. pp.356-

362.

[Lieberman 84] Henry Lieberman. "Video games by example," SigGraph

Video Review (videotape) 12(1).

[Lieberman 86] Henry Lieberman. "An Example Based Environment for
Beginning Programmers," Instructional Science 14, Amsterdam, 1986.
pp.277-292.

[Lieberman 88] Henry Lieberman. "Design by Example," unpublished

paper, 1988.

[Myers 88] Brad A. Myers. Creating User Interfaces by Demonstration.

Academic press, INC., San Diego, 1988.

[Myers 86] Brad A. Myers. "Visual Programming, Programming by
Example, and Program Visualization: A Taxonomy," CHI'86
Proceedings, 1986. pp.59-66.

[Mitchell 81] Tom M. Mitchell. "Generalization as Search," Reading in

Artificial Intelligence, Morgan Kaufmann Publishers Inc.,1981. pp517-
546.

[Reiss 86] Steven P. Reiss. "Displaying Program and Data Structures,"

Technical Report No. CS-86-19, Brown University, 1986.

[Shu 88] Nan C. Shu. Visual Programming. Van Nostrand Reinhold,

New York, 1988.

[Stillings 87] Neil A. Stillings. "Artificial Intelligence: Search, Control, and

learning," Cognitive Science: An Introduction, MIT Press, Cambridge.

1987. pp.17 1-213.

[B6cker 86] Heinz-Dieter Bcker, Gerhard Fischer. "The Enhancement of

Understanding through Visual Representation," CHI'86 Proceedings,

1986. pp.44-50.

APPENDIX A

APPENDIX A

pagican PaWC

NEW REMEO NEW
REMOVE LOA6
REMOVE AL.L CLOSE

ATTRUTES SAVE

SCALE Ab0ELEMENT

PALETTE UlMatt EMEHM

8ACKGROU$D SHOW EM PLE

DEFlNE

APPLY

Menu

47

73
m tontaw

90 word1s9

a cowsp
as color

trans

Attribute menu

>
1

cu(U00

tb

rjQ

(>X
U

C
J

-0

(U
'.4

-4

~0

s
(Ucn

APPENDIX C

APPENDIX C

Design procedures programmed in chapter 4 are applied for the representation of
simulated real-time information.

APPENDIX C

APPENDIX C

APPENDIX C

