
MIT Open Access Articles

A Multi-Core Numerical Framework for
Characterizing Flow in Oil Reservoirs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Leonardi, Christopher R. et al. "A Multi-Core Numerical Framework for Characterizing
Flow in Oil Reservoirs." in Papers of the 19th High Performance Computing Symposium (HPC
2011) Boston, Massachusetts, USA April 4–6, 2011.

As Published: http://hosting.cs.vt.edu/hpc2011/final-prog.html

Publisher: Society for Modeling & Simulation International

Persistent URL: http://hdl.handle.net/1721.1/67451

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/67451
http://creativecommons.org/licenses/by-nc-sa/3.0/

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

A Multi-Core Numerical Framework for Characterizing Flow in Oil Reservoirs

Christopher R. Leonardi, Civil and Environmental Engineering, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139 chrisleo@mit.edu

David W. Holmes, Department of Mechanical Engineering, James Cook University, Angus Smith Drive, Douglas,

QLD 4811, Australia david.holmes1@jcu.edu.au

John R. Williams, Civil and Environmental Engineering and Engineering Systems, Massachusetts Institute of

Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 jrw@mit.edu

Peter G. Tilke, Department of Mathematics and Modeling, Schlumberger-Doll Research Center, 1 Hampshire Street,

Cambridge, MA 02139 tilke@slb.com

Keywords: Parallel computation, multi-core, smoothed

particle hydrodynamics, lattice Boltzmann method,

enhanced oil recovery

Abstract

 This paper presents a numerical framework that enables

scalable, parallel execution of engineering simulations on

multi-core, shared memory architectures. Distribution of the

simulations is done by selective hash-tabling of the model

domain which spatially decomposes it into a number of

orthogonal computational tasks. These tasks, the size of

which is critical to optimal cache blocking and consequently

performance, are then distributed for execution to multiple

threads using the previously presented task management

algorithm, H-Dispatch. Two numerical methods, smoothed

particle hydrodynamics (SPH) and the lattice Boltzmann

method (LBM), are discussed in the present work, although

the framework is general enough to be used with any

explicit time integration scheme. The implementation of

both SPH and the LBM within the parallel framework is

outlined, and the performance of each is presented in terms

of speed-up and efficiency. On the 24-core server used in

this research, near linear scalability was achieved for both

numerical methods with utilization efficiencies up to 95%.

To close, the framework is employed to simulate fluid flow

in a porous rock specimen, which is of broad geophysical

significance, particularly in enhanced oil recovery.

1. INTRODUCTION

 The extension of engineering computations from serial

to parallel has had a profound effect on the scale and

complexity of problems that can be modeled in continuum

and discontinuum mechanics. Traditionally, such parallel

computing has almost exclusively been undertaken with

distributed memory parallel architectures, such as clusters of

single-processor machines. A number of authors have

reported on parallel particle methods (of which smoothed

particle hydrodynamics, SPH, is an example) demonstrating

scalability on such architectures, for example Walther and

Sbalzarini [1] and Ferrari et al. [2].

 The lattice Boltzmann method (LBM) has also been a

popular candidate for distributed computing which is

unsurprising due to the naturally parallel characteristics of

its traditionally regular, orthogonal grid and local node

operations. For example, Vidal et al. [3] presented results

incorporating five billion LBM nodes with a speed-up

efficiency of 75% on 128 processors. Götz et al. [4]

simulated dense particle suspensions with the LBM and a

rigid body physics engine on an SGI Altix system with 8192

cores (based on dual-core processors). At 7800 processors

an efficiency of approximately 60% is achieved in a

simulation featuring 15.6 billion LBM nodes and 4.6 million

suspended particles. Bernaschi et al. [5] utilized a GPU

implementation of a multi-component LBM and in 2D

simulations of 4.2 million nodes achieved a speed-up factor

of 13 over their benchmark CPU performance. Of particular

relevance to this study is the work of Zeiser et al. [6] in

which a parallel cache blocking strategy was used to

optimally decompose space-time of their LBM simulations.

In addition, this strategy was purported to be cache-

oblivious so that the decomposed blocks were automatically

matched to the cache size of the hardware used, minimizing

the latency of memory access during the simulation.

 Shared memory multi-core processors have emerged in

the last five years as a relatively inexpensive “commercial-

off-the-shelf” hardware option for technical computing.

Their development has been motivated by the current clock-

speed limitations that are hindering the advancement, at

least in terms of pure performance, of single processors [7].

However, as a comparatively young technology, there exists

little published work ([8] is one example) addressing the

implementation of numerical codes on shared memory

multi-core processors. With the expense and high demand

for compute time on cluster systems, multi-core represents

an attractive and accessible HPC alternative, but the known

challenges of software development on such architectures

(i.e. thread safety and memory bandwidth issues [9, 10, 11,

12]) must be addressed. Multi-core technologies are

importantly beginning to infiltrate all levels of computing,

including within each node of modern cross-machine

mailto:chrisleo@mit.edu
mailto:david.holmes1@jcu.edu.au
mailto:jrw@mit.edu
mailto:tilke@slb.com

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

clusters. As such, the development of scalable programming

strategies for multi-core will have widespread benefit.

 A variety of approaches to programming on multi-core

have been proposed to date. Commonly, concurrency tools

from traditional cluster computing like MPI [13] and

OpenMP [14] have been used to achieve fast take-up of the

new technology. Unfortunately, fundamental differences in

the cross-machine and multi-core architectures mean that

such approaches are rarely optimal for multi-core and result

in poor scalability for many applications. In response to this,

Chrysanthakopoulos and co-workers [15, 16], based on

earlier work by Stewart [17], have implemented multi-core

concurrency libraries using Port based abstractions. These

mimic the functionality of a message passing library like

MPI, but use shared memory as the medium for data

exchange, rather than exchanging serialized packets over

TCP/IP. Such an approach provides flexibility in program

structure, while still capitalizing on the speed advantages of

shared memory. Perhaps as a reflection of the growing

importance of multi-core software development, a number

of other concurrency libraries have been developed such as

Axum and Cilk++. In addition, the latest .NET Framework

includes a Task Parallel Library (TPL) which provides

methods and types, with varying degrees of abstraction,

which can be used with minimal programmatic difficulty to

distribute tasks on multiple threads.

 In an earlier paper [18] we have shown that a

programming model developed using such port-based

techniques described in [15, 16] provides significant

performance advantages over approaches like MPI and

OpenMP. Importantly, it was found that the H-Dispatch

distribution model facilitated adjustable cache-blocking

which allowed performance to be tuned via the

computational task size. In this paper, we apply the

proposed programming model to the parallelization of both

particle based methods and fixed-grid numerical methods on

multi-core. The unique challenges in parallel

implementation of both methods will be discussed and the

performance improvements will be presented.

 The layout of this paper is as follows. In Section 2 a

brief description of the multi-core distribution model, H-

Dispatch, is provided. Both the SPH and LBM numerical

methods are outlined in Section 3 and the relevant aspects of

their implementation in the multi-core framework, including

thread safety and cache memory efficiency, are discussed.

Section 4 presents performance test results from both the

SPH and LBM simulators as run on a 24-core server and,

finally, an application of the multi-core numerical

framework to a porous media flow problem relevant to

enhanced oil recovery is presented in Section 5.

2. MULTI-CORE DISTRIBUTION

 One of the hindrances to scalable, cross-machine

distribution of numerical methods is the communication of

ghost regions. These regions correspond to neighboring

sections of the problem domain (resident in memory on

other cluster nodes) which are required on a cluster node for

the processing of its own sub-domain. In the LBM this is

typically a 'layer' of grid points that encapsulates the local

sub-domain, but in SPH the layer of neighboring particles

required is equal to the radius of the compact support zone.

In 3D it can be shown that, depending on the sub-domain

size, the communicated fraction of the problem domain can

easily exceed 50%. In this situation Amdahl's Law [7], and

the fact that traditional cross-machine parallelism using

messaging packages is a serial process, dictates that this

type of distributed memory approach will scale poorly.

 If a problem is divided into spatial sub-domains for

multi-core distribution, ghost regions are no longer

necessary because adjacent data is readily available in

shared memory. Further, the removal of relatively slow

network communications required in cluster computing

allows for an entirely new programming paradigm. Sub-

domains can take on any simple shape or size and threaded

programming means many small sub-domains can be

processed on each core from an events queue rather than

needing to approximate a single large, computationally

balanced domain for each processor. Consequently,

dynamic domain decomposition becomes unnecessary and a

particle's position in a domain can be as simple as a spatial

hashing, allowing advection to proceed with minimal

management. Such characteristics mean that multi-core is

perfectly suited to the parallel implementation of particle

methods, however, shared memory challenges such as

thread safety and bandwidth limitations must be addressed.

 The decomposition of the spatial domain of a numerical

method creates a number of computational tasks. Multi-core

distribution of these tasks requires the use of a coordination

tool to manage them onto processing cores in a load

balanced way. While such tasks could easily be distributed

using a traditional approach like scatter-gather, here the H-

Dispatch programming model of [18] has been used because

of the demonstrated advantages for performance and

memory efficiency.

 A schematic illustrating the functionality of the H-

Dispatch programming model is shown in Figure 1. The

figure shows three enduring threads (corresponding to three

processing cores) that remain active through each time step

of the analysis. A simple problem space with nine

decomposed tasks is distributed across these threads by H-

Dispatch. The novel feature of H-Dispatch is the way in

which tasks are distributed to threads. Rather than a scatter

or push of tasks from the manager to threads, here threads

request values when free. H-Dispatch manages requests and

distributes cells to the requesting threads accordingly. It is

this pull mechanism that enables the use of a single thread

per core as threads only request a value when free, thus,

there is never more than one task at a time associated with a

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

given enduring thread (and its associated local variable

memory). Additionally, when all tasks in the problem space

have been dispatched and processed, H-Dispatch identifies

step completion (i.e. synchronization) and the process can

begin again.

Figure 1. Schematic representation of the H-Dispatch

programming model [18] used to distribute tasks to cores.

An enduring processing thread is available for each core,

which is three in this simplified representation, and H-

Dispatch coordinates tasks to threads in a load balanced way

over a number of time steps.

 The key benefit of such an approach from the

perspective of memory usage is in the ability to maintain a

single set of local variables for each enduring thread. The

numerical task associated with analysis on a sub-domain

will inevitably require local calculation variables, often with

significant memory requirements (particularly for the case

of particle methods). Overwriting this memory with each

allocated cell means the number of local variable sets will

match core count, rather than total cell count. Considering

that most problems will be run with core counts in the 10's

or 100's, but cell counts in the 1,000's or 10,000's, this can

significantly improve the memory efficiency of a code.

Additionally, in managed codes like C#.NET and Java,

because thread local variable memory remains active

throughout the analysis, it is not repeatedly reclaimed by the

garbage collector, a process that holds all other threads until

completion and degrades performance markedly (see [18]).

3. NUMERICAL METHODS

 The multi-core numerical framework featured in this

paper has been designed in a general fashion so as to

accommodate any explicit numerical method, such as SPH,

LBM, the discrete element method (DEM), the finite

element method (FEM) or finite difference (FD) techniques.

It is worth noting that it could be adapted to accommodate

implicit, iterative schemes with the correct data structures

for thread safety but that is not the focus of this work.

Instead, this study will focus on SPH and LBM, however

the performance of the multi-core framework with an FD

scheme has been previously reported [18].

3.1. Smoothed Particle Hydrodynamics

 SPH is a mesh-free Lagrangian particle method which

was first proposed for the study of astrophysical problems

by Lucy [19] and Gingold and Monaghan [20], but is now

widely applied to fluid mechanics problems [21]. A key

advantage of particle methods such as SPH (see also

dissipative particle dynamics (DPD) [22]) is in their ability

to advect mass with each particle, thus removing the need to

explicitly track phase interfaces for problems involving

multiple fluid phases or free surface flows. However, the

management of free particles brings with it the associated

computational cost of performing spatial reasoning at every

time step. This requires a search algorithm to determine

which particles fall within the compact support (i.e.

interaction) zone of a particle and then processing each

interacting pair. Nevertheless, in many circumstances this

expense can be justified by the versatility with which a

variety of multi-physics phenomena can be included.

 SPH theory has been detailed widely in the literature

with various formulations having been proposed. The

methodology of authors such as Tartakovsky and Meakin

[23, 24] and Hu and Adams [25] has been shown to perform

well for the case of multi-phase fluid flows. Their particle

number density variant of the conventional SPH formulation

removes erroneous artificial surface tension effects between

phases and allows for phases of significantly differing

densities. Such a method has been used for the performance

testing in this work.

 The discretized particle number density SPH equations

for some field quantity, iA , is given as,

   
j

ji

j

j

i hW
n

A
A ,rr , (1)

along with its gradient,

   
j

jii

j

j

i hW
n

A
A ,rr , (2)

where   
j jiiii hWmn ,rr is the particle number

density term, while W is the smoothing function (typically

a Gaussian or some form of spline), h is the smoothing

length and ir and jr are position vectors. These

expressions are applied to the Navier-Stokes conservation

equations to determine the SPH equations of motion.

 Computing density directly from (1) gives,

   
j

jiii hWm ,rr , (3)

where this expression conserves mass exactly, much like the

summation density approach of conventional SPH.

 An appropriate term for particle velocity rate has been

provided by Morris et al. [26], and used by Tartakovsky and

Meakin [23], where,

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

 
i

ij

ji

ji

ji

N

j ji

ji

i

i

i

ij
N

j j

j

i

i

i

i

d

dW

nnm

d

dWPP

mdt

d

rrr

rr
vv

F
r

v





































2
1

1
22

1

1




 (4)

in which iP is the particle pressure, i is the dynamic

viscosity, iv is the particle velocity and iF is the body

force applied on the thi particle.

 Surface tension is introduced into the method via the

superimposition of pair-wise inter-particle forces following

Tartakovsky and Meakin [24],




























h

h
h

s

ij

ij

ij

ij

ijij

ij








rr

rr
rr

rr
rr

F

,0

,
2

3
cos

, (5)

wherein ijs is the strength of force between particles i and j,

while h is the interaction distance of a particle. By

defining ijs as being stronger between particles of the same

phase, than between particles of a different phase, surface

tension manifests naturally as a result of force imbalances at

phase interfaces. Similarly, ijs can be defined to control the

wettability properties of a solid.

 Solid boundaries in the simulator are defined using

rows of virtual particles similar to that used by Morris et al

[26], and no-slip boundary conditions are enforced for low

Reynolds number flow simulations using an artificially

imposed boundary velocity method developed in [27] and

shown to produce high accuracy results.

3.1.1. Multi-Core Implementation of SPH

 Because particle methods necessitate the recalculation

of interacting particle pairs at regular intervals, algorithms

that reduce the number of candidate interacting particles to

check are critical to numerical efficiency. This is achieved

by spatial hashing, which assigns particles to cells or 'bins'

based on their Cartesian coordinates. With a cell side length

greater than or equal to the interaction depth of a particle, all

candidates for interaction with some target particle will be

contained in the target cell, or one of the immediately

neighboring cells. The storage of particle cells is handled

using hash table abstractions such as the Dictionary<Tkey,

Tvalue> class in C#.NET [28], and parallel distribution is

performed by allocation of cell keys to processors from an

events queue. In cases where data is required from particles

in adjacent cells, it is addressed directly using the key of the

relevant cell.

 With the described particle cell decomposition of the

domain care must be taken to avoid common shared

memory problems like race conditions and thread

contention. To circumvent the problems associated with

using locks (coarse grained locking scales poorly, while fine

grained locking is tedious to implement and can introduce

deadlocking conditions [29]) the SPH data can be structured

to remove the possibility of thread contention altogether. By

storing the present and previous values of the SPH field

variables, necessary gradient terms can be calculated as

functions of values in previous memory, while updates are

written to the current value memory. This reduces the

number of synchronizations per time step from two (if the

gradient terms are calculated before synchronizing, followed

by the update of the field variables) to one, and a rolling

memory algorithm switches the index of previous and

current data with successive time steps.

 An important advantage of the use of spatial hashing to

create particle cells is the ease with which the cell size can

be used to optimize cache blocking. By adjusting the cell

size, the associated computational task can be re-sized to fit

in cache close to the processor (e.g. L1 or L2 cache levels).

It can be shown that cells fitting completely in cache

demonstrate a significantly better performance (15 to 30%)

than those that overflow cache causing an increase in cache

misses, because cache misses require that data then be

retrieved from RAM with a greater memory latency.

3.2. The Lattice Boltzmann Method

 The lattice Boltzmann method (LBM) (see [30] for a

review) has been established in the last 20 years as a

powerful numerical method for the simulation of fluid

flows. It has found application in a vast array of problems

including magnetohydrodynamics, multiphase and

multicomponent flows, flows in porous media, turbulent

flows and particle suspensions.

 The primary variables in the LBM are the particle

distribution functions,  tf i ,x , which exist at each of the

lattice nodes that comprise the fluid domain. These

functions relate the probable amount of fluid „particles‟

moving with a discrete speed in a discrete direction at each

lattice node at each time increment. The particle distribution

functions are evolved at each time step via the two-stage,

collide-stream process as defined in the lattice-Bhatnagar-

Gross-Krook [31] equation (LBGK),

        

i

eq

iiiii

A

tftf
t

tftttf

cG

xxxcx








,,,,
 , (6)

in which x defines the node coordinates, t is the explicit

time step, ti  /xc defines the lattice velocities,  is the

relaxation time,  tf eq

i ,x

are the nodal equilibrium

functions, G is a body force (e.g. gravity) and A is a mass-

conserving constant. The collision process, which is

described by the first two terms in the RHS of (6),

monotonically relaxes the particle distribution functions

towards their respective equilibria. The redistributed

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

functions are then adjusted by the body force term, after

which the streaming process propagates them to their

nearest neighbor nodes.

 Spatial discretization in the LBM is typically based on a

periodic array of polyhedra, but this is not mandatory [32].

A choice of lattices is available in two and three dimensions

with an increasing number of velocities and therefore

symmetry. However, the benefits of increased symmetry can

be offset by the associated computational cost, especially in

3D. In the present work the D3Q15 lattice is employed,

whose velocity vectors are included in (7).






















































































































































































































































































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

cic

 (7)

The macroscopic fluid variables, density,  i if , and

momentum flux, ii if c , are calculated at each lattice

node as velocity moments of the particle distribution

functions. The definitions of the fluid pressure and viscosity

are by-products of the Chapman-Enskog expansion (see [34]

for details), which shows how the Navier-Stokes equations

are recovered in the near-incompressible limit with isotropy,

Galilean invariance and a velocity independent pressure. An

isothermal equation of state, 2

scp  , in which 3/ccs 

is the lattice speed of sound, is used to calculate the pressure

directly from the density, while the kinematic viscosity,

t












2

2

1

3

1 x
 , (8)

is evaluated from the relaxation and discretization

parameters. The requirement of positive viscosity in (8)

mandates that 21 and to ensure near-incompressibility

of the flow the computational Mach number is limited,

1 scuMa .

 The most straightforward approach to handling wall

boundary conditions is to employ the bounce-back

technique. Although it has been shown to be generally first-

order in accuracy [35], as opposed to the second order

accuracy of the lattice Boltzmann equation at internal fluid

nodes [30], its operations are local and the orientation of the

boundary with respect to the grid is irrelevant. A number of

alternative wall boundary techniques [36, 37] that offer

generalized second-order convergence are available in the

LBM, however these are at the expense of the locality and

simplicity of the bounce-back condition.

 In the present work, the immersed moving boundary

(IMB) method of Noble and Torczynski [38] is employed to

handle the hydrodynamic coupling of the fluid and structure.

In this method the LBE is modified to include an additional

collision term which is dependent on the proportion of the

nodal cell that is covered by solid, thus improving the

boundary representation and smoothing the hydrodynamic

forces calculated at an obstacle's boundary nodes as it

moves relative to the grid. Consequently, it overcomes the

momentum discontinuity of bounce-back and link-bounce-

back-based [39] techniques and provides adequate

representation of non-conforming boundaries at lower grid

resolutions. It also retains two critical advantages of the

LBM, namely the locality of the collision operator and the

simple linear streaming operator, and thus facilitate

solutions involving large numbers of irregular-shaped,

moving boundaries. Further details of the IMB method and

the coupling of the LBM to the DEM, including an

assessment of mixed boundary conditions in various flow

geometries, can be found in Owen et al. [40].

3.2.1. Multi-Core Implementation of the LBM

 Two characteristic aspects of the LBM often result in it

being described as a naturally parallel numerical method.

The first feature is the regular, orthogonal discretization of

space, which is typical of Eulerian schemes, and can

simplify domain decomposition. The second feature is the

use of only local data to perform nodal operations, which

consequently results in particle distribution functions at a

node being updated using only the previous values.

However, it should be noted that inclusion of additional

features such as flux boundary conditions and non-

Newtonian rheology, if not implemented carefully, can

negate the locality of operations.

 The obvious choice for decomposition of the LBM

domain is to use cubic nodal bundles, as shown

schematically in Figure 2. The bundles are analogous to the

particle cells that were used in SPH, and similarly H-

Dispatch is used to distribute bundle keys to processors.

Data storage is handled using a Dictionary of bundles,

which are in turn Dictionaries of nodes. This technique is

used, as opposed to a master Dictionary of all nodes, to

overcome problems that can occur with Collection limits

(approximately 90 million on the 64-bit server used here).

 By definition, the LBM nodal bundles can be used to

perform cache blocking just as the particle cells were in

SPH. With the correct bundle size, the associated

computational task can be stored sequentially in processor

cache and the latency associated with RAM access can be

minimized. Similar techniques for the LBM have been

reported in [41, 42] and extended to perform decomposition

of space-time [6] (as opposed to just space) in a way that is

independent of cache size (a recursive algorithm is used to

determine the optimal block size).

 To ensure thread safety, two copies of the LBM particle

distribution functions at each node are stored. Nodal

processing is undertaken using the current values, which are

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

then overwritten and propagated to the future data sets of

appropriate neighbor nodes. Techniques such as SHIFT [43]

have been presented which employ specialized data

structures that remove the need for storing two copies of the

particle distribution functions, however this is at the expense

of the flexibility of the code. Note that the collide-push

sequence implemented here can easily be reordered to a

pull-collide sequence, with each having their own subtle

conveniences and performance benefits depending on the

data structure and hardware employed [44, 42].

Figure 2. Schematic representation of the decomposition of

the LBM domain into nodal bundles. Data storage is

handled using a Dictionary of bundles, which are in turn

Dictionaries of nodes.

4. PARALLEL PERFORMANCE OF METHODS

 The parallel performance of SPH and the LBM in the

multi-core numerical framework was tested on a 24-core

Dell Server PER900 with Intel Xeon CPU, E7450 @ 2.40

GHz, running 64-bit Windows Server Enterprise 2007.

Here, two metrics are used to define the scalability of the

simulation framework, namely nprocproc ttSpeedUp /1 and

NSpeedUpEfficiency / . Obviously, idealized maximum

performance corresponds to a speed-up ratio equal to the

number of cores at which point efficiency would be 100%.

 Figure 3 graphs the increasing speed-up of the SPH

solver with increasing cores. The test problem simulated

flow through a porous geometry determined from

microtomographic images of oil reservoir rock (see

Section 5). Approximately 1.4 million particles were used in

the simulation and the execution duration was defined as the

time in seconds taken to complete a time step, averaged over

100 steps. For the double-search algorithm a speed-up of

approximately 22 was achieved with 24 cores, which

corresponds to an efficiency of approximately 92%. This, in

conjunction with the fact that the processor scaling response

is near linear, is an excellent result.

Figure 3. Multi-core, parallel performance of the SPH

solver contrasting the counterintuitive scalability of the

single-search and double-search algorithms.

 The results in Figure 3 also provide an interesting

insight into the comparative benefits of minimizing

computation or minimizing memory commit when using

multi-core hardware. The single-search result is attained

with a version of the solver that performs the spatial

reasoning once per time step and stores the results in

memory for use twice per time step. Conversely, the double-

search results are achieved when the code is modified to

perform the spatial search twice per time step, as needed.

Intuitively, the single-search approach requires a greater

memory commit but the double-search approach requires

more computation. However, it is counterintuitive to see

that double-search significantly outperforms single-search,

especially as the number of processors increases. This can

be attributed to better cache blocking of the second

approach and the smaller amount of data experiencing

latency when loaded from RAM to cache. The fact that such

performance gains only manifest when more than 10 cores

are used, suggests that for less than 10 cores, RAM pipeline

bandwidth is sufficient to handle a global interaction list.

 As in the SPH testing, the LBM solver was assessed in

terms of speed-up and efficiency. Figure 4 graphs speed-up

against the number of cores for a 3D duct flow problem on

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

a 200
3
 domain. Periodic boundaries were employed on the

in-flow and out-flow surfaces and the bounce-back wall

boundary condition was used on the remaining surfaces. A

constant body force was used to drive the flow.

Figure 4. Multi-core, parallel performance of the LBM

solver for varying bundle and domain sizes.

 The side length, in nodes, of the bundles was varied

between 10 and 50 and the difference in performance for

each size can clearly be seen. Optimal performance is

achieved at a side length of 20, where the speed-up and

efficiency are approximately 22 and 92%, respectively, on

24 cores. This bundle size represents the best cache

blocking scenario for the tested hardware. As the bundle

size is increased, performance degrades due to the

computational tasks becoming too large for storage in cache

which results in „slow‟ communication with RAM for data.

 The bundle side length of 20 was then transferred to

identical problems using a 300
3
 and 400

3
 domain, and the

results of these tests are also included in Figure 4. As in the

smaller problem, near linear scalability is achieved and at 24

cores the speed ups are approximately 23 and 22, and the

efficiencies are approximately 95% and 92% for 300
3
 and

400
3
, respectively. This is an important result, as it suggests

that the optimum bundle size for 3D LBM problems can be

determined in an a priori fashion for a specific architecture.

5. APPLIED PERMEABILITY EXPERIMENT

 The permeability of reservoir rocks to single and

multiple fluid phases is of importance to many enhanced oil

recovery procedures. Traditionally, these data are

determined experimentally from cored samples of rock. To

be able to perform these experiments numerically would

present significant cost and time savings, and therefore it is

the focus of the present study.

 The multi-core framework, using the SPH solver, was

applied to numerically determine the porosity-permeability

relationship of a sample of Dolomite. The structural model

geometry was generated from X-ray microtomographic

images of the sample, which were taken from a 4.95mm

diameter cylindrical core sample, 5.43mm in length and with

an image resolution of 2.8m. This produced a voxelated

image set that is 1840×1840×1940 in size. Current hardware

limitations prevent the full sample from being analyzed in

one numerical experiment, therefore sub-blocks (see the

insets in Figure 5) of voxel dimensions 200
3
 were taken

from the full image set to carry out flow testing and map the

porosity-permeability relationship.

Figure 5. Results of the Dolomite permeability tests

undertaken using SPH and the multi-core framework.

Experimental data [45] are included for comparison.

 The assemblage of SPH particles was initialized with a

density of approximately one particle per voxel. Fluid

particles (i.e. those located in the pore space) were assigned

the properties of water (0 = 10
3
kgm

-3
,  = 10

-6
m

2
s

-1
) and

boundary particles located further than 6h from a boundary

surface were deleted for efficiency. The four domain

surfaces parallel to the direction of flow were designated no-

flow boundaries and the in-flow and out-flow surfaces were

specified as periodic. Due to the incompatibility of the two

rock surfaces at these boundaries, periodicity could not be

applied directly. Instead, the experimental arrangement was

replicated by adding a narrow volume of fluid at the top and

bottom of the domain. Finally, all simulations were driven

from rest by a constant body force equivalent to an applied

pressure differential across the sample.

 The results of the permeability tests are graphed in

Figure 5 and experimental data [45] relevant to the grain

size of the sample are included for comparison. It can be

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

seen that the numerical results lie within the experimental

band, suggesting that the presented numerical procedure is

appropriate. As expected, each sub-block exhibits a different

porosity and by analyzing a range of sub-blocks a porosity-

permeability curve for the rock sample can be defined.

6. CONCLUDING REMARKS

 In this paper a parallel, multi-core framework has been

applied to the SPH and LBM numerical methods for the

solution of fluid-structure interaction problems in enhanced

oil recovery. Important aspects of their implementation,

including spatial decomposition, data structuring and the

management of thread safety have been briefly discussed.

 Near linear speed-up over 24 cores was found in testing

and peak efficiencies of 92% in SPH and 95% in LBM were

attained at 24 cores. The importance of optimal cache

blocking was demonstrated, in particular in the LBM

results, by varying the distributed computational task size

via the size of the nodal bundles. This minimized the cache

misses during execution and the latency associated with

accessing RAM. In addition, it was found that the optimal

nodal bundle size in the 3D LBM could be transferred to

larger problem domains and achieve similar performance,

suggesting an a priori technique for determining the best

computational task size for parallel distribution.

 Finally, the multi-core framework with the SPH solver

was applied in a numerical experiment to determine the

porosity-permeability relationship of a sample of Dolomite

(i.e. a candidate reservoir rock). Due to hardware

limitations, a number of 200
3
 sub-blocks of the complete

microtomographic image of the rock sample were tested.

Each sub-block was found to have a unique porosity and

corresponding permeability, and when these were

superimposed on relevant experimental data the correlation

was excellent. This result provides strong support for the

numerical experimentation technique presented.

 Future work will extend testing of the multi-core

framework to 64-core and 256-core server architectures.

However, the next major numerical development lies in the

extension of the fluid capabilities in SPH and the LBM to

multiple fluid phases. This will allow the prediction of the

relative permeability of rock samples which is essential to

drainage and imbibition processes in enhanced oil recovery.

Acknowledgements

The authors are grateful to the Schlumberger-Doll Research

Center for their support of this research.

References

[1] J. H. Walther and I. F. Sbalzarini. Large-scale parallel

discrete element simulations of granular flow. Engineering

Computations, 26(6):688-697, 2009.

[2] A. Ferrari, M. Dumbser, E. F. Toro, and A. Armanini. A

new 3D parallel SPH scheme for free surface flows.

Computers & Fluids, 38(6):1203-1217, 2009.

[3] D. Vidal, R. Roy, and F. Bertrand. A parallel workload

balanced and memory efficient lattice-Boltzmann algorithm

with single unit BGK relaxation time for laminar Newtonian

flows. Computers & Fluids, 39(8):1411-1423, 2010.

[4] J. Götz, K. Iglberger, C. Feichtinger, S. Donath, and U.

Rüde. Coupling multibody dynamics and computational

fluid dynamics on 8192 processor cores. Parallel

Computing, 36(2-3):142-151, 2010.

[5] M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia, and S.

Succi. Graphics processing unit implementation of lattice

Boltzmann models for flowing soft systems. Physical

Review E, 80(6):066707, 2009.

[6] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rude,

and G. Hager. Introducing a parallel cache oblivious

blocking approach for the lattice Boltzmann method.

Progress in Computational Fluid Dynamics, 8(1-4):179-

188, 2008.

[7] M. Herlihy and N. Shavit. The art of multiprocessor

programming. Morgan Kaufman, 2008.

[8] L. Valiant. A bridging model for multi-core computing.

Lecture Notes in Computer Science, 5193:13-28, 2008.

[9] K. Poulsen. Software bug contributed to blackout.

Security Focus, 2004.

[10] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy. The

impact of multicore on computational science software.

CTWatch Quarterly, 3(1), 2007.

[11] C. E. Leiserson and I. B. Mirman. How to Survive the

Multicore Software Revolution (or at Least Survive the

Hype). Cilk Arts, Cambridge, 2008.

[12] N. Singer. More chip cores can mean slower

supercomputing, Sandia simulation shows. Sandia National

Laboratories News Release, 2009. Available:

http://www.sandia.gov/news/resources/releases/2009/multic

ore.html

[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:

Portable Parallel Programming With the Message-Passing

Interface. MIT Press, Cambridge, 1999.

[14] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and

D. S. Nikolopoulos. An evaluation of OpenMP on current

and emerging multithreaded/multicore processors. In M. S.

Mueller, B. M. Chapman, B. R. de Supinski, A. D. Malony,

and M. Voss, editors, OpenMP Shared Memory Parallel

Programming, Lecture Notes in Computer Science,

4315/2008: 133-144, Springer, Berlin/Heidelberg, 2008.

[15] G. Chrysanthakopoulos and S. Singh. An asynchronous

messaging library for C#. In Proceedings of the Workshop

on Synchronization and Concurrency in Object-Oriented

Languages, 89-97, San Diego, 2005.

[16] X. Qiu, G. Fox, G. Chrysanthakopoulos, and H. F.

Nielsen. High performance multi-paradigm messaging

runtime on multicore systems. Technical report, Indiana

http://www.sandia.gov/news/resources/releases/2009/multicore.html
http://www.sandia.gov/news/resources/releases/2009/multicore.html

Presented at the SCS Spring Simulation Multi-Conference – SpringSim 2011, April 4-7, 2011 – Boston, USA

Awarded Best Paper in the 19
th
 High Performance Computing Symposium and Best Overall Paper at SpringSim 2011

University, 2007. Available: http://grids.ucs.indiana.edu/

ptliupages/publications/CCRApril16open.pdf.

[17] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design

of dynamically reconfigurable real-time software using port-

based objects. IEEE Transactions on Software Engineering,

23:759-776, 1997.

[18] D. W. Holmes, J. R. Williams, and P. G. Tilke. An

events based algorithm for distributing concurrent tasks on

multi-core architectures. Computer Physics

Communications, 181(2):341-354, 2010.

[19] L. B. Lucy. A numerical approach to the testing of the

fission hypothesis. Astronomical Journal, 82:1013-1024,

1977.

[20] R. A. Gingold and J. J. Monaghan. Smoothed particle

hydrodynamics: Theory and application to non-spherical

stars. Monthly Notices of the Royal Astronomical Society,

181:375-389, 1977.

[21] G. R. Liu and M. B. Liu. Smoothed Particle

Hydrodynamics: a meshfree particle method. World

Scientific, Singapore, 2007.

[22] M. Liu, P. Meakin, and H. Huang. Dissipative particle

dynamics simulations of multiphase fluid flow in

microchannels and microchannel networks. Physics of

Fluids, 19:033302, 2007.

[23] A. M. Tartakovsky and P. Meakin. A smoothed particle

hydrodynamics model for miscible flow in three-

dimensional fractures and the two-dimensional Rayleigh-

Taylor instability. Journal of Computational Physics,

207:610-624, 2005.

[24] A. M. Tartakovsky and P. Meakin. Pore scale modeling

of immiscible and miscible fluid flows using smoothed

particle hydrodynamics. Advances in Water Resources,

29:1464-1478, 2006.

[25] X. Y. Hu and N. A. Adams. A multi-phase SPH

method for macroscopic and mesoscopic flows. Journal of

Computational Physics, 213:844-861, 2006.

[26] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low

Reynolds number incompressible flows using SPH. Journal

of Computational Physics, 136:214-226, 1997.

[27] D. W. Holmes, J. R. Williams, and P. G. Tilke. Smooth

particle hydrodynamics simulations of low Reynolds

number flows through porous media. International Journal

for Numerical and Analytical Methods in Geomechanics,

n/a. doi: 10.1002/nag.898, 2010.

[28] J. Liberty and D. Xie. Programming C# 3.0: 5
th

Edition. O'Reilly Media, Sebastopol, 2007.

[29] A. R. Adl-Tabatabai, C. Kozyrakis, and B. Saha.

Unlocking concurrency. Queue, 4(10):24-33, 2007.

[30] S. Chen and G. D. Doolen. Lattice Boltzmann method

for fluid flows. Annual Review of Fluid Mechanics, 30:329-

364, 1998.

[31] H. Chen, S. Chen, and W. H. Matthaeus. Recovery of

the Navier-Stokes equations using a lattice-gas Boltzmann

method. Physical Review A, 45(8):R5339-R5342, 1992.

[32] X. He and G. D. Doolen. Lattice Boltzmann method on

a curvilinear coordinate system: Vortex shedding behind a

circular cylinder. Physical Review E, 56(1):434440, 1997.

[33] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas

automata for the Navier-Stokes equation. Physical Review

Letters, 56(14):1505-1508, 1986.

[34] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley.

Simulation of cavity flow by the lattice Boltzmann method.

Journal of Computational Physics, 118(2):329-347, 1995.

[35] R. Cornubert, D. d'Humières, and D. Levermore. A

Knudsen layer theory for lattice gases. Physica D, 47(1-

2):241-259, 1991.

[36] T. Inamuro, M. Yoshino, and F. Ogino. A non-slip

boundary condition for lattice Boltzmann simulations.

Physics of Fluids, 7(12):2928-2930, 1995.

[37] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O.

Buckius. A consistent hydrodynamic boundary condition for

the lattice Boltzmann method. Physics of Fluids, 7(1):203-

209, 1995.

[38] D. R. Noble and J. R. Torczynski. A lattice-Boltzmann

method for partially saturated computational cells.

International Journal of Modern Physics C, 9(8):1189-

1201, 1998.

[39] A. J. C. Ladd. Numerical simulations of particulate

suspensions via a discretized Boltzmann equation. Part 1.

Theoretical foundation. Journal of Fluid Mechanics,

271:285-309, 1994.

[40] D. R. J. Owen, C. R. Leonardi, and Y. T. Feng. An

efficient framework for fluid-structure interaction using the

lattice Boltzmann method and immersed moving

boundaries. International Journal for Numerical Methods in

Engineering, n/a. doi: 10.1002/nme.2985, 2010.

[41] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers,

G. Wellein, and T. Zeiser. Performance evaluation of

parallel large-scale Lattice Boltzmann applications on three

supercomputing architectures. In SC '04: Proceedings of the

2004 ACM/IEEE conference on Supercomputing, 21-33,

Washington, 2004.

[42] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the

single processor performance of simple lattice Boltzmann

kernels. Computers & Fluids, 35(8-9):910-919, 2006.

[43] J. Ma, K. Wu, Z. Jiang, and G. D. Couples. SHIFT: An

implementation for lattice Boltzmann simulation in low-

porosity porous media. Physical Review E, 81(5):056702,

2010.

[44] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U.

Rüde. Optimization and profiling of the cache performance

of parallel Lattice Boltzmann codes. Parallel Processing

Letters, 13(4):549-560, 2003.

[45] R. M. Sneider and J. S. Sneider. New oil in old places.

Search and Discovery, 10007, 2000. Available:

http://www.searchanddiscovery.com:16080/documents/snei

der/

http://www.searchanddiscovery.com:16080/documents/sneider/
http://www.searchanddiscovery.com:16080/documents/sneider/

