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Abstract 

 This paper presents a numerical framework that enables 

scalable, parallel execution of engineering simulations on 

multi-core, shared memory architectures. Distribution of the 

simulations is done by selective hash-tabling of the model 

domain which spatially decomposes it into a number of 

orthogonal computational tasks. These tasks, the size of 

which is critical to optimal cache blocking and consequently 

performance, are then distributed for execution to multiple 

threads using the previously presented task management 

algorithm, H-Dispatch. Two numerical methods, smoothed 

particle hydrodynamics (SPH) and the lattice Boltzmann 

method (LBM), are discussed in the present work, although 

the framework is general enough to be used with any 

explicit time integration scheme. The implementation of 

both SPH and the LBM within the parallel framework is 

outlined, and the performance of each is presented in terms 

of speed-up and efficiency. On the 24-core server used in 

this research, near linear scalability was achieved for both 

numerical methods with utilization efficiencies up to 95%. 

To close, the framework is employed to simulate fluid flow 

in a porous rock specimen, which is of broad geophysical 

significance, particularly in enhanced oil recovery. 

 

1. INTRODUCTION 

 The extension of engineering computations from serial 

to parallel has had a profound effect on the scale and 

complexity of problems that can be modeled in continuum 

and discontinuum mechanics. Traditionally, such parallel 

computing has almost exclusively been undertaken with 

distributed memory parallel architectures, such as clusters of 

single-processor machines. A number of authors have 

reported on parallel particle methods (of which smoothed 

particle hydrodynamics, SPH, is an example) demonstrating 

scalability on such architectures, for example Walther and 

Sbalzarini [1] and Ferrari et al. [2]. 

 The lattice Boltzmann method (LBM) has also been a 

popular candidate for distributed computing which is 

unsurprising due to the naturally parallel characteristics of 

its traditionally regular, orthogonal grid and local node 

operations. For example, Vidal et al. [3] presented results 

incorporating five billion LBM nodes with a speed-up 

efficiency of 75% on 128 processors. Götz et al. [4] 

simulated dense particle suspensions with the LBM and a 

rigid body physics engine on an SGI Altix system with 8192 

cores (based on dual-core processors). At 7800 processors 

an efficiency of approximately 60% is achieved in a 

simulation featuring 15.6 billion LBM nodes and 4.6 million 

suspended particles. Bernaschi et al. [5] utilized a GPU 

implementation of a multi-component LBM and in 2D 

simulations of 4.2 million nodes achieved a speed-up factor 

of 13 over their benchmark CPU performance. Of particular 

relevance to this study is the work of Zeiser et al. [6] in 

which a parallel cache blocking strategy was used to 

optimally decompose space-time of their LBM simulations. 

In addition, this strategy was purported to be cache-

oblivious so that the decomposed blocks were automatically 

matched to the cache size of the hardware used, minimizing 

the latency of memory access during the simulation. 

 Shared memory multi-core processors have emerged in 

the last five years as a relatively inexpensive “commercial-

off-the-shelf” hardware option for technical computing. 

Their development has been motivated by the current clock-

speed limitations that are hindering the advancement, at 

least in terms of pure performance, of single processors [7]. 

However, as a comparatively young technology, there exists 

little published work ([8] is one example) addressing the 

implementation of numerical codes on shared memory 

multi-core processors. With the expense and high demand 

for compute time on cluster systems, multi-core represents 

an attractive and accessible HPC alternative, but the known 

challenges of software development on such architectures 

(i.e. thread safety and memory bandwidth issues [9, 10, 11, 

12]) must be addressed. Multi-core technologies are 

importantly beginning to infiltrate all levels of computing, 

including within each node of modern cross-machine 
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clusters. As such, the development of scalable programming 

strategies for multi-core will have widespread benefit. 

 A variety of approaches to programming on multi-core 

have been proposed to date. Commonly, concurrency tools 

from traditional cluster computing like MPI [13] and 

OpenMP [14] have been used to achieve fast take-up of the 

new technology. Unfortunately, fundamental differences in 

the cross-machine and multi-core architectures mean that 

such approaches are rarely optimal for multi-core and result 

in poor scalability for many applications. In response to this, 

Chrysanthakopoulos and co-workers [15, 16], based on 

earlier work by Stewart [17], have implemented multi-core 

concurrency libraries using Port based abstractions. These 

mimic the functionality of a message passing library like 

MPI, but use shared memory as the medium for data 

exchange, rather than exchanging serialized packets over 

TCP/IP. Such an approach provides flexibility in program 

structure, while still capitalizing on the speed advantages of 

shared memory. Perhaps as a reflection of the growing 

importance of multi-core software development, a number 

of other concurrency libraries have been developed such as 

Axum and Cilk++. In addition, the latest .NET Framework 

includes a Task Parallel Library (TPL) which provides 

methods and types, with varying degrees of abstraction, 

which can be used with minimal programmatic difficulty to 

distribute tasks on multiple threads. 

 In an earlier paper [18] we have shown that a 

programming model developed using such port-based 

techniques described in [15, 16] provides significant 

performance advantages over approaches like MPI and 

OpenMP. Importantly, it was found that the H-Dispatch 

distribution model facilitated adjustable cache-blocking 

which allowed performance to be tuned via the 

computational task size. In this paper, we apply the 

proposed programming model to the parallelization of both 

particle based methods and fixed-grid numerical methods on 

multi-core. The unique challenges in parallel 

implementation of both methods will be discussed and the 

performance improvements will be presented. 

 The layout of this paper is as follows. In Section 2 a 

brief description of the multi-core distribution model, H-

Dispatch, is provided. Both the SPH and LBM numerical 

methods are outlined in Section 3 and the relevant aspects of 

their implementation in the multi-core framework, including 

thread safety and cache memory efficiency, are discussed. 

Section 4 presents performance test results from both the 

SPH and LBM simulators as run on a 24-core server and, 

finally, an application of the multi-core numerical 

framework to a porous media flow problem relevant to 

enhanced oil recovery is presented in Section 5. 

 

2. MULTI-CORE DISTRIBUTION 

 One of the hindrances to scalable, cross-machine 

distribution of numerical methods is the communication of 

ghost regions. These regions correspond to neighboring 

sections of the problem domain (resident in memory on 

other cluster nodes) which are required on a cluster node for 

the processing of its own sub-domain. In the LBM this is 

typically a 'layer' of grid points that encapsulates the local 

sub-domain, but in SPH the layer of neighboring particles 

required is equal to the radius of the compact support zone. 

In 3D it can be shown that, depending on the sub-domain 

size, the communicated fraction of the problem domain can 

easily exceed 50%. In this situation Amdahl's Law [7], and 

the fact that traditional cross-machine parallelism using 

messaging packages is a serial process, dictates that this 

type of distributed memory approach will scale poorly. 

 If a problem is divided into spatial sub-domains for 

multi-core distribution, ghost regions are no longer 

necessary because adjacent data is readily available in 

shared memory. Further, the removal of relatively slow 

network communications required in cluster computing 

allows for an entirely new programming paradigm. Sub-

domains can take on any simple shape or size and threaded 

programming means many small sub-domains can be 

processed on each core from an events queue rather than 

needing to approximate a single large, computationally 

balanced domain for each processor. Consequently, 

dynamic domain decomposition becomes unnecessary and a 

particle's position in a domain can be as simple as a spatial 

hashing, allowing advection to proceed with minimal 

management. Such characteristics mean that multi-core is 

perfectly suited to the parallel implementation of particle 

methods, however, shared memory challenges such as 

thread safety and bandwidth limitations must be addressed. 

 The decomposition of the spatial domain of a numerical 

method creates a number of computational tasks. Multi-core 

distribution of these tasks requires the use of a coordination 

tool to manage them onto processing cores in a load 

balanced way. While such tasks could easily be distributed 

using a traditional approach like scatter-gather, here the H-

Dispatch programming model of [18] has been used because 

of the demonstrated advantages for performance and 

memory efficiency. 

 A schematic illustrating the functionality of the H-

Dispatch programming model is shown in Figure 1. The 

figure shows three enduring threads (corresponding to three 

processing cores) that remain active through each time step 

of the analysis. A simple problem space with nine 

decomposed tasks is distributed across these threads by H-

Dispatch. The novel feature of H-Dispatch is the way in 

which tasks are distributed to threads. Rather than a scatter 

or push of tasks from the manager to threads, here threads 

request values when free. H-Dispatch manages requests and 

distributes cells to the requesting threads accordingly. It is 

this pull mechanism that enables the use of a single thread 

per core as threads only request a value when free, thus, 

there is never more than one task at a time associated with a 
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given enduring thread (and its associated local variable 

memory). Additionally, when all tasks in the problem space 

have been dispatched and processed, H-Dispatch identifies 

step completion (i.e. synchronization) and the process can 

begin again. 

 

 
Figure 1.  Schematic representation of the H-Dispatch 

programming model [18] used to distribute tasks to cores. 

An enduring processing thread is available for each core, 

which is three in this simplified representation, and H-

Dispatch coordinates tasks to threads in a load balanced way 

over a number of time steps. 

 

 The key benefit of such an approach from the 

perspective of memory usage is in the ability to maintain a 

single set of local variables for each enduring thread. The 

numerical task associated with analysis on a sub-domain 

will inevitably require local calculation variables, often with 

significant memory requirements (particularly for the case 

of particle methods). Overwriting this memory with each 

allocated cell means the number of local variable sets will 

match core count, rather than total cell count. Considering 

that most problems will be run with core counts in the 10's 

or 100's, but cell counts in the 1,000's or 10,000's, this can 

significantly improve the memory efficiency of a code. 

Additionally, in managed codes like C#.NET and Java, 

because thread local variable memory remains active 

throughout the analysis, it is not repeatedly reclaimed by the 

garbage collector, a process that holds all other threads until 

completion and degrades performance markedly (see [18]). 

 

3. NUMERICAL METHODS 

 The multi-core numerical framework featured in this 

paper has been designed in a general fashion so as to 

accommodate any explicit numerical method, such as SPH, 

LBM, the discrete element method (DEM), the finite 

element method (FEM) or finite difference (FD) techniques. 

It is worth noting that it could be adapted to accommodate 

implicit, iterative schemes with the correct data structures 

for thread safety but that is not the focus of this work. 

Instead, this study will focus on SPH and LBM, however 

the performance of the multi-core framework with an FD 

scheme has been previously reported [18]. 

3.1. Smoothed Particle Hydrodynamics 

 SPH is a mesh-free Lagrangian particle method which 

was first proposed for the study of astrophysical problems 

by Lucy [19] and Gingold and Monaghan [20], but is now 

widely applied to fluid mechanics problems [21]. A key 

advantage of particle methods such as SPH (see also 

dissipative particle dynamics (DPD) [22]) is in their ability 

to advect mass with each particle, thus removing the need to 

explicitly track phase interfaces for problems involving 

multiple fluid phases or free surface flows. However, the 

management of free particles brings with it the associated 

computational cost of performing spatial reasoning at every 

time step. This requires a search algorithm to determine 

which particles fall within the compact support (i.e. 

interaction) zone of a particle and then processing each 

interacting pair. Nevertheless, in many circumstances this 

expense can be justified by the versatility with which a 

variety of multi-physics phenomena can be included. 

 SPH theory has been detailed widely in the literature 

with various formulations having been proposed. The 

methodology of authors such as Tartakovsky and Meakin 

[23, 24] and Hu and Adams [25] has been shown to perform 

well for the case of multi-phase fluid flows. Their particle 

number density variant of the conventional SPH formulation 

removes erroneous artificial surface tension effects between 

phases and allows for phases of significantly differing 

densities. Such a method has been used for the performance 

testing in this work. 

 The discretized particle number density SPH equations 

for some field quantity, iA , is given as, 

    
j
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A ,rr , (1) 

along with its gradient, 
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where   
j jiiii hWmn ,rr  is the particle number 

density term, while W  is the smoothing function (typically 

a Gaussian or some form of spline), h  is the smoothing 

length and ir  and jr  are position vectors. These 

expressions are applied to the Navier-Stokes conservation 

equations to determine the SPH equations of motion. 

 Computing density directly from (1) gives, 

    
j

jiii hWm ,rr , (3) 

where this expression conserves mass exactly, much like the 

summation density approach of conventional SPH. 

 An appropriate term for particle velocity rate has been 

provided by Morris et al. [26], and used by Tartakovsky and 

Meakin [23], where, 
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in which iP  is the particle pressure, i  is the dynamic 

viscosity, iv  is the particle velocity and iF  is the body 

force applied on the thi  particle. 

 Surface tension is introduced into the method via the 

superimposition of pair-wise inter-particle forces following 

Tartakovsky and Meakin [24], 
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wherein ijs  is the strength of force between particles i and j, 

while h  is the interaction distance of a particle. By 

defining ijs  as being stronger between particles of the same 

phase, than between particles of a different phase, surface 

tension manifests naturally as a result of force imbalances at 

phase interfaces. Similarly, ijs  can be defined to control the 

wettability properties of a solid. 

 Solid boundaries in the simulator are defined using 

rows of virtual particles similar to that used by Morris et al 

[26], and no-slip boundary conditions are enforced for low 

Reynolds number flow simulations using an artificially 

imposed boundary velocity method developed in [27] and 

shown to produce high accuracy results. 

 

3.1.1. Multi-Core Implementation of SPH 

 Because particle methods necessitate the recalculation 

of interacting particle pairs at regular intervals, algorithms 

that reduce the number of candidate interacting particles to 

check are critical to numerical efficiency. This is achieved 

by spatial hashing, which assigns particles to cells or 'bins' 

based on their Cartesian coordinates. With a cell side length 

greater than or equal to the interaction depth of a particle, all 

candidates for interaction with some target particle will be 

contained in the target cell, or one of the immediately 

neighboring cells. The storage of particle cells is handled 

using hash table abstractions such as the Dictionary<Tkey, 

Tvalue> class in C#.NET [28], and parallel distribution is 

performed by allocation of cell keys to processors from an 

events queue. In cases where data is required from particles 

in adjacent cells, it is addressed directly using the key of the 

relevant cell. 

 With the described particle cell decomposition of the 

domain care must be taken to avoid common shared 

memory problems like race conditions and thread 

contention. To circumvent the problems associated with 

using locks (coarse grained locking scales poorly, while fine 

grained locking is tedious to implement and can introduce 

deadlocking conditions [29]) the SPH data can be structured 

to remove the possibility of thread contention altogether. By 

storing the present and previous values of the SPH field 

variables, necessary gradient terms can be calculated as 

functions of values in previous memory, while updates are 

written to the current value memory. This reduces the 

number of synchronizations per time step from two (if the 

gradient terms are calculated before synchronizing, followed 

by the update of the field variables) to one, and a rolling 

memory algorithm switches the index of previous and 

current data with successive time steps. 

 An important advantage of the use of spatial hashing to 

create particle cells is the ease with which the cell size can 

be used to optimize cache blocking. By adjusting the cell 

size, the associated computational task can be re-sized to fit 

in cache close to the processor (e.g. L1 or L2 cache levels). 

It can be shown that cells fitting completely in cache 

demonstrate a significantly better performance (15 to 30%) 

than those that overflow cache causing an increase in cache 

misses, because cache misses require that data then be 

retrieved from RAM with a greater memory latency. 

 

3.2. The Lattice Boltzmann Method 

 The lattice Boltzmann method (LBM) (see [30] for a 

review) has been established in the last 20 years as a 

powerful numerical method for the simulation of fluid 

flows. It has found application in a vast array of problems 

including magnetohydrodynamics, multiphase and 

multicomponent flows, flows in porous media, turbulent 

flows and particle suspensions. 

 The primary variables in the LBM are the particle 

distribution functions,  tf i ,x , which exist at each of the 

lattice nodes that comprise the fluid domain. These 

functions relate the probable amount of fluid „particles‟ 

moving with a discrete speed in a discrete direction at each 

lattice node at each time increment. The particle distribution 

functions are evolved at each time step via the two-stage, 

collide-stream process as defined in the lattice-Bhatnagar-

Gross-Krook [31] equation (LBGK), 

 

        

i

eq

iiiii

A

tftf
t

tftttf

cG

xxxcx








                                

,,,,
 , (6) 

in which x  defines the node coordinates, t  is the explicit 

time step, ti  /xc  defines the lattice velocities,   is the 

relaxation time,  tf eq

i ,x
 

are the nodal equilibrium 

functions, G is a body force (e.g. gravity) and A is a mass-

conserving constant. The collision process, which is 

described by the first two terms in the RHS of (6), 

monotonically relaxes the particle distribution functions 

towards their respective equilibria. The redistributed 
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functions are then adjusted by the body force term, after 

which the streaming process propagates them to their 

nearest neighbor nodes. 

 Spatial discretization in the LBM is typically based on a 

periodic array of polyhedra, but this is not mandatory [32]. 

A choice of lattices is available in two and three dimensions 

with an increasing number of velocities and therefore 

symmetry. However, the benefits of increased symmetry can 

be offset by the associated computational cost, especially in 

3D. In the present work the D3Q15 lattice is employed, 

whose velocity vectors are included in (7). 
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The macroscopic fluid variables, density,  i if , and 

momentum flux, ii if c , are calculated at each lattice 

node as velocity moments of the particle distribution 

functions. The definitions of the fluid pressure and viscosity 

are by-products of the Chapman-Enskog expansion (see [34] 

for details), which shows how the Navier-Stokes equations 

are recovered in the near-incompressible limit with isotropy, 

Galilean invariance and a velocity independent pressure. An 

isothermal equation of state, 2

scp  , in which 3/ccs   

is the lattice speed of sound, is used to calculate the pressure 

directly from the density, while the kinematic viscosity, 
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
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3
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is evaluated from the relaxation and discretization 

parameters. The requirement of positive viscosity in (8) 

mandates that 21 and to ensure near-incompressibility 

of the flow the computational Mach number is limited, 

1 scuMa . 

 The most straightforward approach to handling wall 

boundary conditions is to employ the bounce-back 

technique. Although it has been shown to be generally first-

order in accuracy [35], as opposed to the second order 

accuracy of the lattice Boltzmann equation at internal fluid 

nodes [30], its operations are local and the orientation of the 

boundary with respect to the grid is irrelevant. A number of 

alternative wall boundary techniques [36, 37] that offer 

generalized second-order convergence are available in the 

LBM, however these are at the expense of the locality and 

simplicity of the bounce-back condition. 

 In the present work, the immersed moving boundary 

(IMB) method of Noble and Torczynski [38] is employed to 

handle the hydrodynamic coupling of the fluid and structure. 

In this method the LBE is modified to include an additional 

collision term which is dependent on the proportion of the 

nodal cell that is covered by solid, thus improving the 

boundary representation and smoothing the hydrodynamic 

forces calculated at an obstacle's boundary nodes as it 

moves relative to the grid. Consequently, it overcomes the 

momentum discontinuity of bounce-back and link-bounce-

back-based [39] techniques and provides adequate 

representation of non-conforming boundaries at lower grid 

resolutions. It also retains two critical advantages of the 

LBM, namely the locality of the collision operator and the 

simple linear streaming operator, and thus facilitate 

solutions involving large numbers of irregular-shaped, 

moving boundaries. Further details of the IMB method and 

the coupling of the LBM to the DEM, including an 

assessment of mixed boundary conditions in various flow 

geometries, can be found in Owen et al. [40]. 

 

3.2.1. Multi-Core Implementation of the LBM 

 Two characteristic aspects of the LBM often result in it 

being described as a naturally parallel numerical method. 

The first feature is the regular, orthogonal discretization of 

space, which is typical of Eulerian schemes, and can 

simplify domain decomposition. The second feature is the 

use of only local data to perform nodal operations, which 

consequently results in particle distribution functions at a 

node being updated using only the previous values. 

However, it should be noted that inclusion of additional 

features such as flux boundary conditions and non-

Newtonian rheology, if not implemented carefully, can 

negate the locality of operations. 

 The obvious choice for decomposition of the LBM 

domain is to use cubic nodal bundles, as shown 

schematically in Figure 2. The bundles are analogous to the 

particle cells that were used in SPH, and similarly H-

Dispatch is used to distribute bundle keys to processors. 

Data storage is handled using a Dictionary of bundles, 

which are in turn Dictionaries of nodes. This technique is 

used, as opposed to a master Dictionary of all nodes, to 

overcome problems that can occur with Collection limits 

(approximately 90 million on the 64-bit server used here). 

 By definition, the LBM nodal bundles can be used to 

perform cache blocking just as the particle cells were in 

SPH. With the correct bundle size, the associated 

computational task can be stored sequentially in processor 

cache and the latency associated with RAM access can be 

minimized. Similar techniques for the LBM have been 

reported in [41, 42] and extended to perform decomposition 

of space-time [6] (as opposed to just space) in a way that is 

independent of cache size (a recursive algorithm is used to 

determine the optimal block size). 

 To ensure thread safety, two copies of the LBM particle 

distribution functions at each node are stored. Nodal 

processing is undertaken using the current values, which are 
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then overwritten and propagated to the future data sets of 

appropriate neighbor nodes. Techniques such as SHIFT [43] 

have been presented which employ specialized data 

structures that remove the need for storing two copies of the 

particle distribution functions, however this is at the expense 

of the flexibility of the code. Note that the collide-push 

sequence implemented here can easily be reordered to a 

pull-collide sequence, with each having their own subtle 

conveniences and performance benefits depending on the 

data structure and hardware employed [44, 42]. 

 

 
Figure 2.  Schematic representation of the decomposition of 

the LBM domain into nodal bundles. Data storage is 

handled using a Dictionary of bundles, which are in turn 

Dictionaries of nodes. 

 

4. PARALLEL PERFORMANCE OF METHODS 

 The parallel performance of SPH and the LBM in the 

multi-core numerical framework was tested on a 24-core 

Dell Server PER900 with Intel Xeon CPU, E7450 @ 2.40 

GHz, running 64-bit Windows Server Enterprise 2007. 

Here, two metrics are used to define the scalability of the 

simulation framework, namely nprocproc ttSpeedUp /1  and 

NSpeedUpEfficiency / . Obviously, idealized maximum 

performance corresponds to a speed-up ratio equal to the 

number of cores at which point efficiency would be 100%. 

 Figure 3 graphs the increasing speed-up of the SPH 

solver with increasing cores. The test problem simulated 

flow through a porous geometry determined from 

microtomographic images of oil reservoir rock (see 

Section 5). Approximately 1.4 million particles were used in 

the simulation and the execution duration was defined as the 

time in seconds taken to complete a time step, averaged over 

100 steps. For the double-search algorithm a speed-up of 

approximately 22 was achieved with 24 cores, which 

corresponds to an efficiency of approximately 92%. This, in 

conjunction with the fact that the processor scaling response 

is near linear, is an excellent result. 

 

 
Figure 3.  Multi-core, parallel performance of the SPH 

solver contrasting the counterintuitive scalability of the 

single-search and double-search algorithms. 

 

 The results in Figure 3 also provide an interesting 

insight into the comparative benefits of minimizing 

computation or minimizing memory commit when using 

multi-core hardware. The single-search result is attained 

with a version of the solver that performs the spatial 

reasoning once per time step and stores the results in 

memory for use twice per time step. Conversely, the double-

search results are achieved when the code is modified to 

perform the spatial search twice per time step, as needed. 

Intuitively, the single-search approach requires a greater 

memory commit but the double-search approach requires 

more computation. However, it is counterintuitive to see 

that double-search significantly outperforms single-search, 

especially as the number of processors increases. This can 

be attributed to better cache blocking of the second 

approach and the smaller amount of data experiencing 

latency when loaded from RAM to cache. The fact that such 

performance gains only manifest when more than 10 cores 

are used, suggests that for less than 10 cores, RAM pipeline 

bandwidth is sufficient to handle a global interaction list. 

 As in the SPH testing, the LBM solver was assessed in 

terms of speed-up and efficiency. Figure 4 graphs speed-up 

against the number of cores for a 3D duct flow  problem on 
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a 200
3
 domain. Periodic boundaries were employed on the 

in-flow and out-flow surfaces and the bounce-back wall 

boundary condition was used on the remaining surfaces. A 

constant body force was used to drive the flow. 

 

 
Figure 4.  Multi-core, parallel performance of the LBM 

solver for varying bundle and domain sizes. 

 

 The side length, in nodes, of the bundles was varied 

between 10 and 50 and the difference in performance for 

each size can clearly be seen. Optimal performance is 

achieved at a side length of 20, where the speed-up and 

efficiency are approximately 22 and 92%, respectively, on 

24 cores. This bundle size represents the best cache 

blocking scenario for the tested hardware. As the bundle 

size is increased, performance degrades due to the 

computational tasks becoming too large for storage in cache 

which results in „slow‟ communication with RAM for data. 

 The bundle side length of 20 was then transferred to 

identical problems using a 300
3
 and 400

3
 domain, and the 

results of these tests are also included in Figure 4. As in the 

smaller problem, near linear scalability is achieved and at 24 

cores the speed ups are approximately 23 and 22, and the 

efficiencies are approximately 95% and 92% for 300
3
 and 

400
3
, respectively. This is an important result, as it suggests 

that the optimum bundle size for 3D LBM problems can be 

determined in an a priori fashion for a specific architecture. 

 

5. APPLIED PERMEABILITY EXPERIMENT 

 The permeability of reservoir rocks to single and 

multiple fluid phases is of importance to many enhanced oil 

recovery procedures. Traditionally, these data are 

determined experimentally from cored samples of rock. To 

be able to perform these experiments numerically would 

present significant cost and time savings, and therefore it is 

the focus of the present study. 

 The multi-core framework, using the SPH solver, was 

applied to numerically determine the porosity-permeability 

relationship of a sample of Dolomite. The structural model 

geometry was generated from X-ray microtomographic 

images of the sample, which were taken from a 4.95mm 

diameter cylindrical core sample, 5.43mm in length and with 

an image resolution of 2.8m. This produced a voxelated 

image set that is 1840×1840×1940 in size. Current hardware 

limitations prevent the full sample from being analyzed in 

one numerical experiment, therefore sub-blocks (see the 

insets in Figure 5) of voxel dimensions 200
3
 were taken 

from the full image set to carry out flow testing and map the 

porosity-permeability relationship. 

 

 
Figure 5.  Results of the Dolomite permeability tests 

undertaken using SPH and the multi-core framework. 

Experimental data [45] are included for comparison. 

 

 The assemblage of SPH particles was initialized with a 

density of approximately one particle per voxel. Fluid 

particles (i.e. those located in the pore space) were assigned 

the properties of water (0 = 10
3
kgm

-3
,  = 10

-6
m

2
s

-1
) and 

boundary particles located further than 6h from a boundary 

surface were deleted for efficiency. The four domain 

surfaces parallel to the direction of flow were designated no-

flow boundaries and the in-flow and out-flow surfaces were 

specified as periodic. Due to the incompatibility of the two 

rock surfaces at these boundaries, periodicity could not be 

applied directly. Instead, the experimental arrangement was 

replicated by adding a narrow volume of fluid at the top and 

bottom of the domain. Finally, all simulations were driven 

from rest by a constant body force equivalent to an applied 

pressure differential across the sample. 

 The results of the permeability tests are graphed in 

Figure 5 and experimental data [45] relevant to the grain 

size of the sample are included for comparison. It can be 
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seen that the numerical results lie within the experimental 

band, suggesting that the presented numerical procedure is 

appropriate. As expected, each sub-block exhibits a different 

porosity and by analyzing a range of sub-blocks a porosity-

permeability curve for the rock sample can be defined. 

 

6. CONCLUDING REMARKS 

 In this paper a parallel, multi-core framework has been 

applied to the SPH and LBM numerical methods for the 

solution of fluid-structure interaction problems in enhanced 

oil recovery. Important aspects of their implementation, 

including spatial decomposition, data structuring and the 

management of thread safety have been briefly discussed. 

 Near linear speed-up over 24 cores was found in testing 

and peak efficiencies of 92% in SPH and 95% in LBM were 

attained at 24 cores. The importance of optimal cache 

blocking was demonstrated, in particular in the LBM 

results, by varying the distributed computational task size 

via the size of the nodal bundles. This minimized the cache 

misses during execution and the latency associated with 

accessing RAM. In addition, it was found that the optimal 

nodal bundle size in the 3D LBM could be transferred to 

larger problem domains and achieve similar performance, 

suggesting an a priori technique for determining the best 

computational task size for parallel distribution. 

 Finally, the multi-core framework with the SPH solver 

was applied in a numerical experiment to determine the 

porosity-permeability relationship of a sample of Dolomite 

(i.e. a candidate reservoir rock). Due to hardware 

limitations, a number of 200
3
 sub-blocks of the complete 

microtomographic image of the rock sample were tested. 

Each sub-block was found to have a unique porosity and 

corresponding permeability, and when these were 

superimposed on relevant experimental data the correlation 

was excellent. This result provides strong support for the 

numerical experimentation technique presented. 

 Future work will extend testing of the multi-core 

framework to 64-core and 256-core server architectures. 

However, the next major numerical development lies in the 

extension of the fluid capabilities in SPH and the LBM to 

multiple fluid phases. This will allow the prediction of the 

relative permeability of rock samples which is essential to 

drainage and imbibition processes in enhanced oil recovery. 
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