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Characterizing Nonlinear Heartbeat Dynamics Within
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Zhe Chen∗, Member, IEEE, Emery N. Brown, Fellow, IEEE, and Riccardo Barbieri, Senior Member, IEEE

Abstract—Human heartbeat intervals are known to have non-
linear and nonstationary dynamics. In this paper, we propose a
model of R–R interval dynamics based on a nonlinear Volterra–
Wiener expansion within a point process framework. Inclusion of
second-order nonlinearities into the heartbeat model allows us to
estimate instantaneous heart rate (HR) and heart rate variability
(HRV) indexes, as well as the dynamic bispectrum characteriz-
ing higher order statistics of the nonstationary non-Gaussian time
series. The proposed point process probability heartbeat interval
model was tested with synthetic simulations and two experimental
heartbeat interval datasets. Results show that our model is useful
in characterizing and tracking the inherent nonlinearity of heart-
beat dynamics. As a feature, the fine temporal resolution allows us
to compute instantaneous nonlinearity indexes, thus sidestepping
the uneven spacing problem. In comparison to other nonlinear
modeling approaches, the point process probability model is useful
in revealing nonlinear heartbeat dynamics at a fine timescale and
with only short duration recordings.

Index Terms—Adaptive filters, approximate entropy (ApEn),
heart rate variability (HRV), nonlinearity test, point processes,
scaling exponent, Volterra series expansion.

I. INTRODUCTION

THE HUMAN heartbeat is regulated by the autonomic ner-
vous system, and as a result, heart rate (HR) and heart

rate variability (HRV) measurements extracted from the ECG
are important quantitative markers of cardiovascular control [1].
A healthy heart is influenced by multiple neural and hormonal
inputs that result in variations of the interbeat interval duration.
Specifically, various nonlinear neural interactions and integra-
tions occur at the neuron and receptor levels, and underlie the
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complex output of structures such as the sinoatrial (SA) node
in response to changing levels of sympathetic and vagal activ-
ities [55]. The complex nature of heartbeat dynamics has been
widely considered and discussed in cardiovascular literature.
Although detailed physiology behind these complex dynamics
has not been completely clarified, several nonlinearity measures
of HRV have been pointed out as important quantifiers of com-
plexity of cardiovascular control and have been proved to be of
important prognostic value in aging and diseases [4], [25], [26],
[46], [58], [60], [62].

Many physiological signals are known to be nonlinear and
nonstationary. In biomedical engineering, various nonlinear in-
dexes, such as the Lyapunov exponent, the fractal exponent, or
the approximate entropy (ApEn), have been proposed to char-
acterize the nonlinear behavior of the underlying physiological
system (e.g., [2]). It has been suggested that such nonlinear-
ity indexes might provide informative indicators for diagnosing
cardiovascular or brain diseases. Notably, some difficulties have
been often encountered when validating these indexes, such as
the presence of noise or artifact, the limited size of data samples,
or the low sampling rate of the observed signals. All these issues
shall be kept in mind when new statistical indexes are estimated
from real signals recorded from a nonlinear system.

In characterizing the nonlinear heartbeat dynamics, both lin-
ear and nonlinear system identification methods have been ap-
plied to R–R interval series [19], [20], [61]. Examples of higher
order characterization for cardiovascular signals, include non-
linear autoregressive (AR) models, Volterra–Wiener series ex-
pansion, and Volterra–Laguerre models [2], [32], [33], [36].
Several authors have demonstrated the feasibility and validity
of nonlinear AR models, suggesting that future HR dynamics
studies should put greater emphasis on nonlinear analysis [19],
[20], [31], [61]. However, none of these models have included
nonlinear elements in a framework based on a precise statis-
tical characterization of the heartbeat generation process, and
all of mentioned studies used either beat series (tachograms) or
discretionarily interpolated R–R time series instead of deriving
model estimates. In this paper, we apply nonlinear modeling to
heartbeat dynamics using a point process paradigm. The point
process theory is a powerful statistical tool able to character-
ize the probabilistic generative mechanism of the heartbeat at
each moment in time, thus allowing for estimation of instanta-
neous HR and HRV measures [7], [8]. Furthermore, inclusion
of second-order nonlinear terms to the point process model of-
fers an opportunity to monitor dynamic higher order spectra
indexes [39], [40].

The paper is organized as follows. Section II presents
some background on nonlinear system identification by
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Volterra–Wiener series expansion. Section III gives a brief expo-
sition of probabilistic point process model theory for heartbeat
intervals, derives the instantaneous HR and HRV indexes, and
reviews the adaptive point process filtering algorithm as well
as the goodness-of-fit tests. Section IV is devoted to the in-
stantaneous higher order spectral analysis and derivation of the
dynamic bispectrum estimate, as well as the nonlinearity test
for R–R interval series. Section V describes the synthetic data
generated to test the models, as well as two experimental heart-
beat datasets. Section VI presents the experimental results on all
datasets using the point process models, discussing model se-
lection, nonlinearity assessment, performance comparison, and
irregularity characterization. Finally, discussions and conclu-
sion are given in Section VII.

II. VOLTERRA SERIES FOR NONLINEAR

SYSTEM IDENTIFICATION

The Volterra series expansion, based on the Volterra theorem,
is a general method for nonlinear system modeling and identi-
fication [36]. In functional analysis, a Volterra series denotes a
functional expansion of a dynamic, nonlinear, and time-invariant
function. The Volterra series allows for representation of a wide
range of nonlinear systems. Because of its generality, Volterra
series expansion has been widely used in nonlinear modeling in
engineering and physiology [2], [31], [36]. For instance, com-
putational procedures based on a comparison of the prediction
power of linear and nonlinear models of the Volterra–Wiener
form have been applied to measure the complex dynamics of
the heartbeats [6]. However, it shall be pointed out that all of
these nonlinear models used only raw R–R intervals without
modeling the point process nature of the heartbeats.

Consider a nonlinear single-input and single-output system
y = g(x). According to the Volterra series theory, the nonlinear
system can be expanded by a (finite or infinite) set of kernel
expansion terms

y(t) = k0 +
M −1∑
m=0

k1(m)x(t − m)

+
M −1∑
m=0

M −1∑
n=0

k2(m,n)x(t − m)x(t − n) + · · · (1)

where M is the memory of the nonlinear system. Equation (1)
only includes up to the second-order nonlinear term in the
Volterra series expansion, however, inclusion of higher order
terms is possible. The Volterra kernels {k0 , k1 , k2 , . . .} describe
the dynamics of the system, each of which is associated with
Volterra coefficients at different kernel orders and different time
lags. Estimation of the Volterra coefficients is generally per-
formed by computing the coefficients of an orthogonalized
series, and then, recomputing the coefficients of the original
Volterra series. A common method is based on the least squares
optimization [36]. In this paper, we apply a point process adap-
tive filtering approach to recursively estimate the time-varying
Volterra coefficients.

III. HEARTBEAT INTERVAL POINT PROCESS MODEL

A random point process is a random element whose values
are “point patterns” on a set, where a point pattern is specified
as a locally finite counting measure [23]. Specifically in the
time domain, a simple 1-D point process consists of series of
binary (0 and 1) observations, where the variables 1 marks the
occurrence times t ∈ [0,∞) of the random events. Mathemat-
ically, we let N(t) define a continuous-time counting process,
and let its differential dN(t) denote a continuous-time indica-
tor function, where dN(t) = 1, when there is an event (such as
the ventricular contraction) or dN(t) = 0, otherwise. Point pro-
cess theory has been widely used in modeling various types of
random events (e.g., eruptions of earthquakes, queueing of cus-
tomers, spiking of neurons, etc.) where the timing of the events
are of central interest. Bearing a similar spirit, the point process
theory has been used for modeling human heartbeats [7], [8],
[16]. The point process framework primarily defines the prob-
ability of having a heartbeat event at each moment in time. A
parametric formulation of the probability function allows for a
systematic, parsimonious estimation of the parameter vector in a
recursive way and at any desired time resolution. Instantaneous
indexes can then be derived from the parameters in order to
quantify important features as related to cardiovascular control
dynamics.

A. Heartbeat Interval

Suppose we are given a set of R-wave events {uj}J
j=1 de-

tected from the ECG, let RRj = uj − uj−1 < 0 denote the jth
R–R interval, or equivalently, the waiting time until the next
R-wave event. By treating the R-wave as discrete events, we may
develop a point process probability model in the continuous-
time domain [7].

Assuming history dependence, the probability distribution of
the waiting time t − uj until the next R-wave event follows an
inverse Gaussian model:

p(t) =
(

θ

2πt3

)1/2

exp
(
−θ[t − uj − µRR(t)]2

2(t − uj )µ2
RR(t)

)
(t > uj )

where uj denotes the previous R-wave event occurred before
time t, µRR(t) represents the first-moment statistic (mean) of
the distribution, and θ > 0 denotes the shape parameter of the
inverse Gaussian distribution, whose role is to model the tail
shape of the distribution (when θ → ∞, the inverse Gaussian
distribution becomes more like a Gaussian distribution). As p(t)
indicates the probability of having a beat at time t given that a
previous beat has occurred at uj and µRR(t) can be interpreted
as signifying the most probable moment when the next beat
could occur. By definition, p(t) is characterized at each moment
in time, at the beat as well as in-between beats. We can also
estimate the second-moment statistic (variance) of the inverse
Gaussian distribution as σ2

RR(t) = µ3
RR(t)/θ. The use of an in-

verse Gaussian distribution to characterize the R–R intervals’
occurrences is motivated by the fact that if the rise of the mem-
brane potential to a threshold initiating the cardiac contraction is
modeled as a Gaussian random walk with drift, then the proba-
bility density of the times between threshold crossings (the R–R
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intervals) is indeed the inverse Gaussian distribution [7]. In [16],
we have compared heartbeat interval fitting point process mod-
els using different probability distributions, and found that the
inverse Gaussian model achieved the overall best fitting results.
The parameter µRR(t) denotes the instantaneous R–R mean that
can be modeled as a generic function of the past (finite) R–R
values µRR(t) = g(RRt−1 , RRt−2 , . . . , RRt−h), where RRt−j

denotes the previous jth R–R interval occurred prior to the
present time t. In our previous work [8], [14], [16], the history
dependence is defined by expressing the instantaneous mean
µRR(t) as a linear combination of present and past R–R inter-
vals (in terms of an AR model), i.e., function g is linear. Here,
we propose to include the nonlinear terms of past R–R intervals
by defining the instantaneous RR mean as follows:

µRR(t) = a0(t) +
p∑

i=1

ai(t)RRt−i

+
q∑

k=1

q∑
l=1

bkl(t)(RRt−k − 〈RR〉t)(RRt−l − 〈RR〉t)

(2)

where 〈RR〉t = 1/h
∑h

k=1 RRt−k . Here the coefficients a0(t),
{ai(t)}, and {bkl(t)} correspond to the time-varying zero-,
first-, and second-order Volterra kernel coefficients. The zero-
order coefficient a0 accounts for the nonzero mean of the R–R
series. Equation (2) can be interpreted as a discrete Volterra–
Wiener series with degree of nonlinearity d = 2 and memory
h = max{p, q} [6]. As µRR(t) is defined in a continuous-
time fashion, we can obtain an instantaneous R–R mean es-
timate at a very fine timescale (with an arbitrarily small
bin size ∆), which requires no interpolation between the
arrival times of two beats. Given the proposed parametric
model, the nonlinear indexes of the HR and HRV will be
defined as a time-varying function of the parameters ξ(t) =
[a0(t), a1(t), . . . , ap(t), b11(t), . . . , bqq (t), θ(t)].

B. Instantaneous Indexes of HR and HRV

HR is defined as the reciprocal of the R–R interval. For t
measured in seconds, a new variable r = c(t − uj )−1 (where
c = 60 s/min) can be defined in beats per minute (bpm). By
the change-of-variables formula, the HR probability p(r) =
p(c(t − uj )−1) is given by

p(r) =
∣∣∣ dt

dr

∣∣∣p(t) (3)

and the mean and the standard deviation of HR r can be de-
rived [7], [8], as given by µHR and standard deviation σHR ,
respectively

µHR = µ̃−1 + θ̃−1 (4)

σHR =
[2µ̃ + θ̃

µ̃θ̃2

]1/2
(5)

where µ̃ = c−1µRR and θ̃ = c−1θ.
It is known from point process theory [7], [8], [13] that the

conditional intensity function (CIF) λ(t) is related to the in-

terevent probability p(t) with a one-to-one relationship

λ(t) =
p(t)

1 −
∫ t

uj
p(τ)dτ

. (6)

The estimated CIF can be used to evaluate the goodness-of-
fit of the proposed heartbeat interval point process probability
model. The quantity λ(t)∆ yields approximately the probability
of observing a beat during the [t, t + ∆) interval in the sense
that [23]

λ(t) = lim
∆→0

Pr{N(t + ∆) − N(t) = 1|Ht}
∆

where Ht denotes all of available history information (subject
to causality) up to time t.

C. Adaptive Point Process Filtering

In order to track the unknown parameters of vector ξ in a
nonstationary environment, we can recursively estimate them
via adaptive point process filtering [8]. Upon time discretization,
we have the following equation updates at discrete-time index k:

ξk |k−1 = ξk−1|k−1 (7)

Pk |k−1 = Pk−1|k−1 + W (8)

ξk |k = ξk |k−1 + Pk |k−1(∇ log λk )[nk − λk∆] (9)

Pk |k =
[
P−1

k |k−1 + ∇λk∇λT
k

∆
λk

−∇2 log λk [nk − λk∆]
]−1

(10)

where P and W denote the parameter and noise covariance
matrices, respectively, ∆ = 0.005 s denotes the time bin size,
and ∇λk = ∂λk/∂ξk and ∇2λk = ∂2λk/∂ξk∂ξT

k denote the
first- and second-order partial derivatives of the CIF with
λk = λ(k∆), respectively. The indicator variable nk = 1, if
a heartbeat occurs in time ((k − 1)∆, k∆] and 0, otherwise.
The point process filtering described in (7) through (10) can be
viewed as a “point process analog” of the Kalman filtering (for
continuous-valued observations). In (7) and (8), the a priori
estimates ξk |k−1 and Pk |k−1 are computed, while in (9) and
(10), the a posteriori estimates ξk |k and Pk |k are computed.
In (9), [nk − λk∆] can be viewed as the innovations term
computed from the point process filter, and (10) is derived based
on a Gaussian approximation of the log posterior. Clearly, as
the innovations term is likely to be nonzero even in the absence
of a beat, the parameters are always updated at each step.

Once the vector ξ has been estimated within (0, T ], one can
compute the probability density function (pdf) p(t) as well as the
CIF estimate λ(t) [from (6)] in time interval (0, T ].Furthermore,
we can compute the cumulative log-likelihood (denoted by L)
of the point process observations [13], [23]

L =
∫ T

0
log λ(τ)dN(τ) −

∫ T

0
λ(τ)dτ

time discretization≈
T /∆∑
k=1

(nk log λk − λk ) ≡
T /∆∑
k=1

�k (11)
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where the indicator variable dN(τ) = 1 (or nk = 1), if a beat
occurs at time τ (or within the time interval ((k − 1)∆, k∆]) and
dN(τ) = 0 (or nk = 1), otherwise. The log-likelihood function
(11) defines the logarithm of the joint probability of all ran-
dom events (i.e., beats), and the second equality holds when
the bin size ∆ is sufficiently small, and �k = nk log λk − λk

approximates the instantaneous log-likelihood function �(t) =
log λ(t)(dN(t))/dt − λ(t).

D. Model Selection and Goodness-of-Fit Tests

Our method requires the user to predetermine a proper model
order {p, q} for the Volterra series expansion. In general, a trade-
off between model complexity and goodness-of-fit arises when
a point process model is considered. In practice, the order of the
model (2) may be determined based on the akaike information
criterion (AIC) (by prefitting a subset of the data using either
point process filter or local likelihood method [7], [35]) as well
as the Kolmogorov–Smirnov (KS) statistic in the post hoc anal-
ysis. For different values p and q, we can compare the AIC and
choose the parameter setup with the minimum AIC value

AIClinear = −2L + 2(p + 2)

AICnonlinear = −2L + 2(p + q2 + 2)

where dim(ξ) = p + q2 + 2 denotes the dimensionality of pa-
rameter vector ξ in the nonlinear model. Once the order {p, q}
is determined, the initial Volterra coefficients will be estimated
by the method of least squares [59]: specifically, the coefficients
{ai} are optimized by solving a Yule–Walker equation for the
linear part using the first 200 sample points, and the coefficients
{bij} are estimated by fitting the residual error via least squares.
Here, we use a separate estimation instead of a joint estimation
procedure for the Volterra coefficients because we like to pre-
serve the interpretation of the linear AR coefficients (such as
the stability, which is assured by keeping the roots inside the
unit circle). A joint estimation procedure is possible based on
orthogonal projection, cross correlation, or least squares [36],
[59], but it may destroy the structure described by the linear AR
coefficients {ai}, which will be used to estimate the parametric
AR spectrum defined later.

The goodness-of-fit of the point process model is based on
the KS test [13]. Given a point process specified by J dis-
crete events: 0 < u1 < · · · < uJ < T , the random variables
zj =

∫ uj

uj −1
λ(τ)dτ are defined for j = 1, 2, . . . , J − 1. If the

model is correct, then the variables vj = 1 − exp(−zj ) are in-
dependent, uniformly distributed within the region [0, 1], and
the variables gj = Φ−1(vj ) (where Φ(·) denotes the cumula-
tive distribution function (cdf) of the standard Gaussian dis-
tribution) are sampled from an independent standard Gaussian
distribution. To compute the KS test, the vj s are sorted from
smallest to largest, and plotted against the cdf of the uniform
density defined as (j − 0.5)/J . If the model is correct, the
points should lie on the 45◦ line. The 95% confidence inter-
val lines are defined as y = x ± 1.36/(J − 1)1/2 . The KS dis-
tance, defined as the maximum distance between the KS plot
and the 45◦ line, is used to measure the lack-of-fit between the
model and the data. The autocorrelation function of the gj s:

ACF(m) = 1/(J − m)
∑J−m

j=1 gj gj+m , can also be computed.
If the gj s are independent, ACF(m) shall be small (around 0
and within the 95% confidence interval 1.96/(J − 1)1/2) for
any lag m.

IV. QUANTITATIVE TOOLS: SPECTRAL ANALYSIS

AND NONLINEARITY TEST

A. Instantaneous Higher Order Spectral Analysis

Given the Volterra–Wiener expansion for the instantaneous
R–R interval mean {µRR(t)}, we may compute the time-varying
parametric (linear) autospectrum

Q(f, t) =
σ2

RR(t)
|1 −

∑p
k=1 ak (t)e−j2kπf |2 . (12)

By integrating (12) in each frequency band, we may compute
the index within the very low frequency (VLF) (0.01–0.05 Hz),
LF (0.05–0.15 Hz), or HF (0.15–0.5 Hz) ranges. In addi-
tion, let B(f1 , f2 , t) =

∑q
k=1

∑q
l=1 bkl(t)e−j2kπf1 e−j2lπf2 de-

note the Fourier transform of the second-order kernel coeffi-
cients {bkl(t)} (all of which together are viewed as discrete
samples from a 2-D impulse response function). From (2), it is
known that [39], [40]

B(−f1 ,−f2 , t) ≈
C(f1 , f2 , t)

2Q(f1 , t)Q(f2 , t)
(13)

where C(f1 , f2 , t) denotes the bispectrum (Fourier transform
of the third-order moment). Note that we use the approxima-
tion “≈” instead of equality “=” in (13), since the equality
only strictly holds when the input variables are jointly Gaus-
sian, which is not necessarily true in our case. The bispec-
trum is an important tool for evaluating the presence of non-
linearity in stationary time series [9], [39], [40]. From (13),
we then can estimate the dynamic bispectrum C(f1 , f2 , t).
From the Parseval theorem, we also know that that the sum
(or integral) of the square of a function is equal to the sum
(or integral) of the square of its transform, namely |bkl |2 =
|B(f1 , f2)|2 = |B∗(−f1 ,−f2)|2 = |B(−f1 ,−f2)|2 (the second
equality follows from the conjugate symmetry property), or
|bkl | = |B(−f1 ,−f2)|.

Let b(t) denote a vector that contains all of coefficients
{bkl(t)}, in light of (13), we may compute an index that quan-
tifies the fractional contribution of the linear terms on the total
power as follows:

ρ(t) =
|Q(f, t)|

|Q(f, t)| + |C(f1 , f2 , t)|

≈ 1
1 + 2|b(t)| · |Q(f, t)| (14)

where | · | denotes either the norm of a vector or the modulus of a
complex variable. The spectrum norm defines the area integrated
over the frequency range under the spectral density curve. Since
the norm units of spectral and bispectral density are the same,
their ratio ρ(t) is dimensionless (note that the unit of {bkl} is in
1/second, and the unit of norm |Q(f, t)| is in second, thus their
product is unitless). As a function of the estimated parameters,
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this index can also be estimated at each moment in time and
is updated at the beat as well as in-between beats. The ratio ρ
defined in (14) can be viewed as a dynamic counterpart of the
following static power ratio:1

Ratio =
power spectrum

power spectrum + bispectrum
(15)

where the power spectrum and bispectrum will be calculated by
Fourier transform using the observed (nonequally spaced) R–R
interval time series (with a stationarity assumption). A lower
value of the ratio (15) implies that the fraction of the bispectral
power is higher, thus pointing at a more significant nonlinear
component in the time series.

It shall be noted that the frequency units appearing in Q(f, t)
and B(f1 , f2 , t) are both cycles/beat, since the autoregression
of µRR(t) is conducted on previous beats instead of previous
instantaneous {µRR(t − i)}. This alternative modeling strategy,
however, would require a large number of tags in the linear AR
model to compensate for the use of fine timescale. Another way
to compute the spectra of interest in the unit of cycles/second is
to consider the estimated {µRR(t)} or {µHR(t)} series and com-
pute the power spectrum or bispectrum using a direct method.
However, this would require a windowing technique and would
not allow for instantaneous estimates. As a consequence of the
change from cycles/second to cycles/beat, certain spectral dis-
tortion between the spectrum of counts (SOC) and the spectrum
of interval (SOI) might be expected [11], [24], [37], [48], es-
pecially when the beat-to-beat intervals have a large variance.
As this issue could become critical when precise estimate of
specific oscillatory frequencies are needed, its effects are less
noticeable in total power computations.

B. Nonlinearity Test

In the literature, there are many nonlinearity indexes being
proposed for time series analysis, such as the correlation di-
mension [29], the Lyapunov exponent [2], [29], [51], the time-
reversibility index [29], [50], and the prediction error [6]. Com-
mon methods require the computation of surrogate time series
in order to construct a hypothesis test. The standard proce-
dure is to assume Gaussianity and stationarity, and to perform
a Fourier transform followed by phase randomization and in-
verse Fourier transform (such a procedure preserves the first-
and second-order moment statistics while discarding the phase
information). In this paper, we consider a specific established
time-domain method [9] as applied to the R–R time series for
testing the presence of nonlinearity in the heartbeat intervals.

The test developed in [9] uses a phase scrambled bootstrap
technique for testing the presence of nonlinearity of a time series
based upon the third-order moment statistics. The basic idea of
this method is to compare the estimated third-order moment of
the tested series with a set of limits generated from linear sta-
tionary phase scrambled bootstrap data: large differences shall

1As one reviewer pointed out, the ratio defined in (15) hardly reaches close
to 0, and the reviewer also suggested to define an alternative ratio index
(power spectrum − bispectrum)/power spectrum, which is bounded between
0 and 1.

Fig. 1. Synthetic R–R interval series and its estimated indexes µRR (super-
imposed on R–R series), σRR , µHR , and σHR , using a nonlinear model (10,4).

indicate nonlinearity or possibly nonstationarity [9]. The null
hypothesis assumes that the given time series is linear and sta-
tionary. The result of the hypothesis test is either H = 0 (which
indicates that the null hypothesis is accepted and P > 0.05) or
H = 1 (which indicates that the null hypothesis is rejected with
95% confidence). In the considered simulated series and real
recordings, we restricted the test to short-term dependence by
setting the number of laps M = 8, and a total of 500 bootstrap
replications were simulated for every test.

V. DATA

In order to test the tracking ability of the nonlinear point pro-
cess model, and to compare its performance with the standard
filter with only linear dynamics, we generate a synthetic heart-
beat dataset. Specifically, without postulating a second-order
nonlinear system as assumed in our model, we used the chaotic
Rössler time series governed by the following differential equa-
tions [49]:2

dx

dt
= −z − y

dy

dt
= x + ay

dz

dt
= b + z(x − c).

The time series were simulated by the Runge–Kutta integration
using conditions a = 0.15, b = 0.20, and c = 10.0, with step
size of 0.01. A total of 3000 data points were generated, one for
every three x-axis values was chosen, and 1000 data points (rep-
resenting the generated R–R intervals) were finally selected.The
simulated deterministic time series is illustrated in Fig. 1 (first
panel). The nonlinearity test described earlier indicates the syn-
thetic time series are significantly nonlinear (H = 1 and P <
1e-6).

In order to validate the proposed algorithms’ performance as
related to real physiological dynamics, we have considered two
experimental datasets. The first heartbeat dataset was recorded

2Of note, the heartbeat dynamics reflected in the synthetic set are not directly
associated with real physiological generation mechanisms, and it is neither
implied that the heartbeat dynamics be chaotic.
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TABLE I
RESULTS OF MODEL SELECTION FOR SYNTHETIC DATA

Fig. 2. Instantaneous heartbeat statistics computed from a representative sub-
ject (subject 11, control, supine, from the autonomic blockade protocol [53])
using a nonlinear model. In the first panel, the estimated µRR (black trace) is
superimposed on the recorded R–R series (gray trace).

under the “autonomic blockade assessment of the sympathova-
gal balance and respiratory sinus arrhythmia” protocol. De-
tailed description of the experimental data was given in [53].
The recorded R–R interval time series last about 5 min for each
epoch. In the drug administered state, after a control record-
ing stage in rest condition, either atropine (ATR, 0.04 mg/kg iv
over 5 min, parasympathetic blockade) or propranolol (PROP,
0.2 mg/kg iv over 5 min, sympathetic blockade) was deliv-
ered to the subject. In the double blockade (DB) epoch, the
inputs from both sympathetic and parasympathetic branches of
the autonomic nervous system were suppressed [53]. A total of
17 healthy volunteers participated in the study. Due to space
limit, the results of four representative subjects (two from the
ATR group and two from the PROP group, both were randomly
selected) are listed in Table I. These four subjects have been
tested and reported on a previous analysis with a linear predic-
tive model [14], [16]. In Fig. 2, we show the R–R interval series
of one representative subject in the control supine condition.

The second heartbeat dataset, which was retrieved from a pub-
lic source: Physionet (http://www.physionet.org/) [28], consists
of R–R time series recorded from 12 congestive heart failure
(CHF) patients (from BIDMC-CHF Database) and 16 healthy
subjects (from MIT-BIH Normal Sinus Rhythm Database). Each
R–R time series was artifact-free (upon human’s visual inspec-

Fig. 3. Instantaneous indexes computed from a representative healthy subject
(recording no. 16483, MIT-BIH Normal Sinus Rhythm Database from Physionet
[28]) using a nonlinear model. In the first panel, the estimated µRR (black trace)
is superimposed on the recorded R–R series (red trace).

tion and artifact rejection) and lasted about 50 min (small seg-
ments of the original over 20 h recordings). In Fig. 3, we show
the R–R interval series from one representative healthy subject.
Since these recordings have longer durations, they have been
deemed as particularly suitable for studying complex heartbeat
interval dynamics [42], [46].

VI. RESULTS

A. Model Selection and Goodness-of-Fit Tests

Using the synthetic dataset, we have conducted several anal-
yses to assess model order selection for both linear and nonlin-
ear models. The results of AIC and KS statistics are shown in
Table I, which are computed from fitting all simulated data
points. As seen from Table I, according to AIC, the best fit is
given by the nonlinear model (8,4), followed by (10,4), whereas
according to the KS statistic (smaller KS distance), the best fit
is given by the nonlinear model (10,4). Overall, it is important
to notice that for the same level of model complexity, the non-
linear model generally achieves a better KS statistic than the
linear model, but only when the predictive power from the lin-
ear part is sufficient—this can be seen from the relatively poorer
performances of nonlinear models (4,4) and (5,9) in Table I. In
this analysis, we selected the nonlinear model (10,4) as the the
optimal nonlinear model (with estimated instantaneous indexes
shown in Fig. 1), for which the KS plot and autocorrelation plot
for fitting the synthetic heartbeat data are shown in Fig. 4. As a
comparison, the KS plot from the linear AR(14) model is also
shown (see Fig. 4, left panel). It is worth noting that we have
also simulated a linear Gaussian AR model for the R–R time
series and have compared the performance between the linear
and nonlinear predictive models—it was found that goodness-
of-fit performance by the linear model is generally better than
the one by a nonlinear model with the same model complexity
(data not shown).

For the two experimental datasets, we also conducted a pre-
liminary model selection analysis (based on the AIC using the
first 5-min recordings). Specifically, for testing the linear model
alone, AIC analysis indicated p = 8 as the optimal linear order
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Fig. 4. (Left) KS plots obtained from a nonlinear (10,4) model (solid line) and
a linear AR(14) model (dotted line) for fitting the synthetic heartbeat interval
data. (Right) Autocorrelation plot from the nonlinear (10,4) model. The dashed
lines in all plots indicate the 95% confidence bounds.

TABLE II
RESULTS FROM SELECTED FOUR SUBJECTS IN FIRST

EXPERIMENTAL DATASET

in almost all cases. In order to keep the number of unknown
parameters relatively small, while the size of parameters from
both linear and nonlinear models remain approximately the same
(for fair comparison), we set p = 8 for linear modeling and em-
pirically set p = 4 ∼ 6 and q = 2 for nonlinear modeling. The
fitting results are summarized in Tables II and III. Some repre-
sentative tracking results are shown in Figs. 2 and 3, and their
respective KS plots are illustrated in Figs. 5 and 6. In general,
the results related to model fitting improvement vary among

subjects in both datasets, and in some subjects we also found
that the nonlinear model did not improve the goodness-of-fit
compared with the linear model with equal model complexity.

B. Nonlinearity

Model selection and goodness-of-fit tests on synthetic data
validate the nonlinear quantification as evaluated by the point
process framework, demonstrating that indexes, such as the ρ
and ratio (defined in (14) and (15), respectively) are able to pro-
portionally and correctly discern between series with linear and
nonlinear prevailing dynamics. Based on the model with the best
fit (i.e., the nonlinear model (10,4) in Table I), the ratio and the
mean ρ value are computed as 0.40 and 0.49, respectively, for
the simulated R–R series generated from the Rössler equations.
For other simulated R–R time series with a linear Gaussian
AR model, these values’ estimates typically range from 0.91
to 0.99 (from various Monte Carlo simulations, data not
shown).

In the first experimental dataset, the nonlinearity test showed
that the level of nonlinearity varies from different postures and
pharmacological conditions. For instance, all R–R time series in
the control upright condition failed to reach significance in the
nonlinearity test (see Table II). In addition, a higher presence of
nonlinearity was observed when injecting ATR (control→ATR
and PROP→DB), where parasympathetic modulation is absent,
in contrast, lower nonlinearity (or higher linearity) was observed
when injecting PROP (control→PROP and ATR→DB), where
vagal activity is absent. Computation of the ratio and mean
ρ statistics indicated that they typically had greater values in
supine than in upright condition, suggesting that nonlinear in-
teractions (LF: 0.01–0.15 Hz) become more prevalent due to the
increase of cardiac sympathetic nerve activity and the reduction
of vagal nerve activity. We did not observe consistent changes
during the ATR or PROP administration.

In the second experimental dataset, from the results of the
nonlinearity test (see Table III), it appeared that 15 out of 16
R–R time series from the healthy subjects showed significant
nonlinearity (P < 0.05), whereas in the CHF group, 5 out of 12
R–R time series failed to reach significance (test level 5%). Our
test result confirms that the heartbeat dynamics from healthy
subjects are more nonlinear to some degree. The fact that a
lower degree of nonlinearity was found in the CHF patients
suggests that pathological conditions might reduce the nonlin-
earity in the heartbeat interval series, which is also consistent
with previous finding that a healthy heartbeat presents more
pronounced nonlinear dynamics [5], [26], [27], [46], [62].

The nonlinearity effect from the second experimental dataset
can also be observed in the computed time-averaging ρ index
(within the LF range, 0.05–0.15 Hz). Generally, a time series
with higher nonlinear dynamics would result in a lower ρ value,
since the coefficients in the second-order Volterra terms would
have relatively greater values [see (14)]. Note that the index
ρ can be computed in a dynamic fashion, as the instantaneous
estimate is obtained at each single time step. This is arguably
more accurate than the batch estimate [ratio, defined in (15)],
since the data are likely to be nonstationary. When the time
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TABLE III
RESULTS FROM 28 SUBJECTS (12 CHF AND 16 HEALTHY) IN SECOND EXPERIMENTAL DATASET

Fig. 5. KS plot comparison between linear (top) and nonlinear (bottom) mod-
eling (subject 11, control, supine).

series is close to be purely linear, both ρ and ratio will be close
to 1. Statistical test (rank-sum test) show that these two indexes
reveal significance differences between the CHF and healthy
groups (P < 0.002), with a higher level of nonlinearity in the
healthy group (median ρ 0.9258 and median ratio 0.9564) than
the CHF group (median ρ 0.9663 and median ratio 0.9995). It

Fig. 6. KS plot comparison for the healthy control subject 16483 (top linear
versus bottom nonlinear).

seems that the dynamic ρ index could detect higher level of
nonlinearity possibly due to its more versatile nature than the
ratio index. Particularly in the CHF group, the ratio indexes
across all subjects seem to saturate to the level of pure linearity.
Results in Table III present all of estimated statistics for each
subject being analyzed. Fig. 7 shows two examples of tracking
nonlinearity for one healthy control and one CHF subject.
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Fig. 7. Two tracking examples of dynamic nonlinearity index ρ(t) for one
healthy control and one CHF subject. Note that the y-axis range of the second
and fourth panels are different, where numbers in the boxes indicate the mean
value averaged over time.

In comparing the two dynamic indexes in the second and
fourth panels of Fig. 7, the more complex heartbeat structure
in the healthy subject is revealed by substantial dynamic varia-
tions in the ρ index, associated with frequent marked increases
in nonlinearity (note the drops of the ρ index below 0.85 at
around 1200, 1750, 2050, and 2600 s). In contrast, a much less
variable (and more uniformly linear) index is observed in the
CHF patient. Clearly, the instantaneous index is useful in re-
vealing different dynamic signatures of nonlinearity between
healthy and CHF subjects that could not have been observed by
using any other method.

C. Performance Comparison

The performance comparison between the proposed nonlin-
ear Volterra modeling and the standard linear modeling was
measured by the KS distance: the smaller the KS distance, the
better the model fit. The comparative results are summarized in
Tables II and III for the first and second experimental datasets,
respectively. In the first experimental dataset, it is observed that
nonlinear Volterra modeling generally improves the model fit,
especially when the R–R time series exhibit more nonlinearity
(i.e., smaller p-values in the nonlinearity test). Overall, among
a total of 17 × 6 = 102 epochs, 87% (89/102) of fittings im-
proved in terms of the KS statistic. The same observation can
also be found in the second experimental dataset (improvement
were found in 71% (20/28) subjects), although neither linear
nor nonlinear models being tested, thus far has fully passed the
KS test (i.e., all points within the 95% confidence bounds).

The imperfect fitting performance in both experimental
datasets confirms that modeling real heartbeat dynamics (in a
probabilistic sense) remains a challenging task. The lack of fit
in some experimental heartbeat series may be due to the fact
that the choice of the inverse Gaussian distribution is insuffi-
cient for characterizing the highly complex dynamics involved
in these nonstationary heartbeat time series (which sometimes
involve dramatic transient changes, or possibly, a sudden switch

to a different physiological state), or it may be also due to the
fact that we have not included cardiovascular covariates in this
analysis. Meanwhile, increasing the model memory and includ-
ing covariates might improve goodness-of-fit, but it might not
necessarily improve the AIC statistics. Determining an optimal
tradeoff between complexity and performance remains an is-
sue that needs to be standardized by further research. In our
experiences, choosing a proper probabilistic model and infor-
mative covariates is more crucial and effective than increasing
the model order in improving the goodness-of-fit. To this extent,
further investigation will be required to improve our model.

D. Quantification of Self-Similarity Via Scaling Exponent

Nonlinearity is often related to the complexity (regularity or
predictability) of the random time series. For heartbeat time se-
ries, many nonlinearity measures, such as the ApEn [44], [45],
sample entropy [34], [47], multiscale entropy [21], [57], and
Poincaré plot [12], have been proposed to study the irregularity
of the heartbeat [22], [52]. Specifically, complex dynamics have
been observed in heartbeat interval series from healthy sub-
jects [27], [46], and there have been growing interests in devel-
oping nonlinearity indexes able to characterize the irregularity
of heartbeat dynamics in both healthy and pathological condi-
tions [4], [30], [42]. Research effort has been largely devoted to
characterizing such nonlinear behavior at different timescales
using relatively short recordings [3]. In time-series analysis, de-
trended fluctuation analysis (DFA) is a method for determining
the statistical self-affinity of a nonstationary signal [41], [42].
Essentially, DFA constructs a trend based on polynomial fit-
ting to extract and quantify fluctuations at different time scales,
which is useful for detecting long-range correlations in time
series. Hence, it may reveal the fractal structure of time series
that often appears to be a long-memory process with power-law
decaying autocorrelation function. Specifically, let x(t) denote
the time series of length N , whose fluctuation are to be studied,
an integrated series y(k) is computed as follows:

y(k) =
k∑

t=1

(x(t) − x), k = 1, . . . , N

where x denotes the sample average of {x(t)}. The resultant
y(k) series is then divided into n-length subsequences without
overlap, and for each subsequence, a linear regression yn is
fitted against k. The root mean square error fluctuation between
y(k) and the local linear trend yn (k) is defined as follows:

en =

√√√√ 1
N

N∑
k=1

(y(k) − yn (k))2

and the power-law behavior en ∝ nα is characterized by DFA.3

The advantage of DFA over other conventional methods (e.g.,

3As an outcome, DFA computes the scaling α-exponent that is similar to the
Hurst exponent. Notably α = 0.5 indicates that x(t) is uncorrelated white noise
(or y(k) is a random walk), α < 0.5 implies the signal x(t) is anticorrelated
(i.e., negative correlation), α = 1 implies 1/f noise and long-range correlation,
and α = 1.5 indicates Brownian noise (i.e., the integration of white noise).
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Fig. 8. Representative plots of log F (n) versus log n for computing the slope
parameter α in DFA. (a) Two healthy control subjects. (b) Two CHF subjects.
Note that in the healthy subjects, there appears a “crossover” phenomenon in
scaling, which is less obvious in the CHF subjects. All plots are produced using
the estimated µRR series from about 50-min-long raw R–R recordings.

spectral analysis) for estimating the fractal exponent α is that
it is able to detect long-range correlation for nonstationary time
series and also to avoid false detection of long-range correlation
due to artifact [42]. Several authors have tried to apply DFA to
the raw heartbeat interval analysis for characterizing its fractal-
like scaling properties [38], [42], [43]. Here, it is our intention
to investigate the estimate of this method computed from differ-
ent timescales using the second experimental dataset. Specifi-
cally, we computed the DFA α-exponent, using both the original
R–R time series and the estimated µRR(t), for each subject. The
fine temporal resolution (5 ms) enabled us to reveal the fractal
structure of the evenly spaced continuous-time signals without
using any interpolation technique. We also computed the two-
scale DFA α1 and α2 exponents (assuming α1 ≥ α2) using the
estimated µRR(t) (we did not compute two-scaled DFA expo-
nents using raw R–R series due to the small number of sample
points). The purpose of computing two-scale α-exponent is to
investigate if there is a presence of the so-called “crossover”
phenomenon reported in [42]. Our analysis showed that the
healthy control subjects have a clear crossover point in scaling
(i.e., the data points can be fitted better with with two straight
lines with two different slope parameters α1 and α2), whereas
the the crossover point is less obvious in the CHF subjects. An
example of this finding on four subjects (two from each group)
is illustrated in Fig. 8.

To evaluate the statistical differences between the healthy
and CHF groups for the indexes computed from our method
and DFA, we also conducted a nonparametric test under the null
hypothesis that the medians of two sample groups are equal.
The results are summarized in Table IV. As seen from the ta-
ble, on average the CHF patients have lower HRV and greater
HR. The insignificance of the α-exponent computed from the
R–R time series might be due to the insufficiency of samples,
in contrast, the α-exponent estimated from µRR(t) seems to
be more accurate in characterizing the group difference (using
24 h recordings, it was reported in [42] that the scaling exponent
statistic computed from raw R–R time series is 1.24 ± 0.22 for
the CHF group and 1.00 ± 0.11 for the healthy group). Also, we
found that using the µRR(t) estimates, the α1 and α2 exponents
both show significant differences between healthy and CHF
groups, with α2 appearing slightly more discriminating (P <

TABLE IV
MEAN±STD GROUP STATISTICS OF STATISTICAL INDEXES COMPUTED FROM

SECOND EXPERIMENTAL DATASET

Fig. 9. Scatter plots of some estimated statistics for 12 CHF (triangle) and 16
healthy (circle) subjects.

1e-3) than α1 (P = 0.042). Furthermore, the gap between the
α2 and α1 exponents is noticeably bigger in the healthy subjects,
confirming the presence of the crossover phenomenon. Hence,
the HR, HRV, ρ-index, and scaling α-exponent statistics can
serve as useful metrics to distinguish the healthy and pathologi-
cal conditions given relatively short heartbeat recordings. As an
illustration, Fig. 9 presents a few scatter plots of selected mean
estimated statistics between 12 CHF and 16 healthy subjects.

E. Connection to Other Methods

As evidenced from our data analysis, the method presented
here provides some new perspectives to characterize and mea-
sure the nonlinear dynamics of the heartbeat interval. Our quan-
tification can also be combined with other nonlinearity indexes
(e.g., the DFA) previously proposed in the field. Hence, our
method can serve as a complementary tool for assessing the non-
linearity of heartbeat R–R time series. For instance, we can apply
any desired nonlinearity index, such as the popular ApEn [44], to
the estimated instantaneous µRR(t) series (see Table IV). ApEn
is a statistical measure, which indicates the degree of random-
ness and regularity as applied to time series [10]. As an example,
we computed the ApEn(m, r) statistic for both the R–R interval
series and the estimated µRR series. For the R–R interval series,
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we set r = 0.15 ∼ 0.25, and m is either 1 or 2. The ApEn values
in Table IV reflect the group mean ± STD statistics, whereas
each subject’s statistic is averaged from the estimates com-
puted on a number of 5-min nonoverlapping segments. For the
estimated µRR series, we set r = 0.1 ∼ 0.15 and used the es-
timate at 100 ms timescale, so each 5-min segment contains
3000 samples for evaluating ApEn. As seen from Table IV, no
statistical difference was found between two groups while using
the raw R–R series. Varying the combination of parameters m
and r did not change the qualitative statement about the group
difference, although higher values in the mean ApEn statistic
(computed with the raw R–R series) from the CHF group indi-
cate a more erratic behavior in R–R interval series due to the
loss of circadian variation [10]. In contrast, significant differ-
ences were found between the two groups (CHF versus healthy;
rank-sum test, P < 0.01) when using the estimated µRR se-
ries, interestingly, the mean ApEn statistics computed with the
estimated µRR series are all higher in the healthy group. This
suggests that the use of our instantaneous indexes examines
different levels of irregularity and enhances the discriminating
power of the ApEn metric between the pathologic and control
groups.

VII. DISCUSSION AND CONCLUSION

We have presented a method for characterizing nonlinear dy-
namics of the human heartbeat within a point process paradigm.
Unlike other nonlinear modeling methods developed in the lit-
erature, our point process probability model computes time-
varying nonlinear indexes simultaneously with instantaneous
HR and HRV statistics. Based on the second-order Volterra–
Wiener series expansion, we have devised an adaptive point
process filter to track the kernel coefficients and estimate the
instantaneous parametric autospectrum and bispectrum, as well
as the dynamic power ratio. It is noteworthy that it is also possi-
ble to incorporate a physiological covariate (such as respiration
or blood pressure measures) into (2) of the point process model
and produce further instantaneous indexes from their dynamic
cross spectrum and cross bispectrum [17], [18]. Our model and
method proposed here can be viewed as a further extension of
previous models [8], [14], [16], which expands the horizon of
modeling human heartbeat intervals.

Unlike other paradigms for estimating nonlinearity indexes
developed in the literature [21], [26], [44], [57], our method is
formulated within a probabilistic framework specifically devel-
oped for point process observations (the R–R intervals). More-
over, most other nonlinearity indexes are derived from nonpara-
metric models, whereas our model is purely parametric and the
analytically derived indexes can be evaluated in a dynamic and
instantaneous fashion. We believe these strengths will enable
our method as a useful tool for assessing nonlinear dynamics
of heartbeat intervals in a nonstationary environment. Mean-
while, just like other approaches, our method also has caveats:
besides the increased computational complexity, our model also
requires sensible initial estimates of ξ and W , which might need
to be reestimated from time to time in a dramatically changed
environment.

Timescale is an important issue to evaluate the nonlinear
nature of a physiological signal. It has been shown in [57] that
different dynamical systems can exhibit similar nonlinearity sig-
natures depending on the sampling time or sampling interval,
and that similar systems can show different degrees of nonlinear-
ity by varying the timescale. This is naturally anticipated, since
a purely irregular or nonlinear time series would have a spe-
cific range of dependence or correlation statistic in time.4 The
point process framework provides us a reliable tool to examine
the unevenly spaced heartbeat intervals at very high temporal
resolutions, without resorting to any interpolation method. By
performing a proper “up-sampling” using the estimate from our
point process model, information can be discovered in a way
that the original observed data cannot reveal. Furthermore, un-
like other methods that might require large sample size (while
directly operating on the raw R–R intervals), the point process
method is potentially useful to examine short recordings of the
physiological signals of interest. Certainly, the estimate at fine
temporal resolution from the point process method is achieved
at the cost of increasing computational complexity and requires
a tradeoff approach by the practitioner.

The nonlinearity test provides a quantitative measure of the
regularity of a tested time series [5], [9], [56]. In the study
of the autonomic blockade protocol, it was found that the
level of nonlinearity varies from different postures and phar-
macological conditions, which essentially influence the sympa-
thetic/parasympathetic balance in the autonomic nervous sys-
tem. In comparing the healthy and CHF subjects, the heartbeat
exhibits lower nonlinear dynamics in the pathological condi-
tion, which was confirmed by both the nonlinearity tests and the
relative linear/nonlinear power ratio. These quantitative nonlin-
earity indexes can reveal statistical differences between groups
with different cardiac conditions. We have also applied two
well-established nonlinearity indexes: α-exponent and ApEn,
to the estimated µRR series. Results under specific hypothesis
testing reveal significant group differences between the healthy
and CHF groups. Importantly, we have showed that by chang-
ing the timescale, our method can reveal different nonlinear-
ity signatures. Further interpretation on the effect of timescale
change on the nonlinearity indexes will be the subject of future
investigation.

Finally, to conclude the paper, the probabilistic point process
framework provides a new characterization for human heart-
beat interval that allows us to estimate instantaneous indexes
of HR and HRV, as well as indexes derived from the (linear)
autospectrum and (nonlinear) bispectrum. Our experimental re-
sults in both synthetic and experimental heartbeat data, have
demonstrated that our proposed point process model is use-
ful in characterizing the inherent nonlinearity of the heartbeat
dynamics. In the near future, we are planning to pursue this
direction further in order to validate our new measures on more

4For example, in the study of the chaotic Rössler time series used in Section V,
it was observed that the ApEn statistic at different sampling rates varies quite a
bit (range from 0.18 to 0.58, for the setup of m = 2 and r = 0.2), and the value
does not monotonically change according to change in the sampling rate.
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experimental studies, and investigate their potential use in real-
time monitoring for clinical practice.
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