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Abstract

The electric power grid is recognized as an essential modern infrastructure that poses
numerous canonical design and operational problems. Perhaps most critically, the
inherently large scale of the power grid and similar systems necessitates fast algo-
rithms. A particular complication distinguishing problems in power systems from
those arising in other large infrastructures is the mathematical description of alter-
nating current power flow: it is nonconvex, and thus excludes power systems from
many frameworks benefiting from theoretically and practically efficient algorithms.
However, advances over the past twenty years in optimization have led to broader
classes possessing such algorithms, as well as procedures for transferring nonconvex
problem to these classes.

In this thesis, we approximate difficult problems in power systems with tractable,
conic programs. First, we formulate a new type of NP-hard graph cut arising from
undirected multicommodity flow networks. An eigenvalue bound in the form of the
Cheeger inequality is proven, which serves as a starting point for deriving semidefinite
relaxations. We next apply a lift-and-project type relaxation to transmission system
planning. The approach unifies and improves upon existing models based on the DC
power flow approximation, and yields new mixed-integer linear, second-order cone,
and semidefinite models for the AC case. The AC models are particularly applicable
to scenarios in which the DC approximation is not justified, such as the all-electric
ship. Lastly, we consider distribution system reconfiguration. By making physi-
cally motivated simplifications to the DistFlow equations, we obtain mixed-integer
quadratic, quadratically constrained, and second-order cone formulations, which are
accurate and efficient enough for near-optimal, real-time application.

We test each model on standard benchmark problems, as well as a new bench-
mark abstracted from a notional shipboard power system. The models accurately
approximate the original formulations, while demonstrating the scalability required
for application to realistic systems. Collectively, the models provide tangible new
tradeoffs between computational efficiency and accuracy for fundamental problems in
power systems.
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Chapter 1

Introduction

1.1 Motivation

The electric power grid is an integral part of all modern societies. Since the first public

electricity supply was constructed in 1881 in Godalming, England, the power grid

has steadily grown to accommodate continually increasing usage of electric power;

consumption in the United States went from roughly four to forty quadrillion Btu

from 1949 to 2009 [3].

A critical debate of the late 1880's was the so-called 'war of the currents' be-

tween Thomas Edison, who advocated direct current, and George Westinghouse, a

proponent of the alternating current technology developed by Nicola Tesla [74]. The

winning argument was that it was much easier using available technologies to change

voltage levels with AC, permitting flexibility between high voltage transmission and

lower voltage generation and end usage. Part of Edison's opposition to and initial

dismissal of AC transmission was rooted in the higher level of mathematics necessary

to understand it, which was not accessible to him. Basic AC power flow is how-

ever relatively easy to model with complex arithmetic and differential equations; yet,

as will be seen in this thesis, many modern problems in power systems that would

be straightforward to analyze in the DC case are in fact quite difficult due to the

complexity of the resulting equations in the AC case.

Many of the problems made difficult by the presence of AC power flow terms



are at the system level, containing information about generation, loads, and their

interconnections. While already difficult to analyze in simple two-bus cases, system-

level descriptions typically involve large, networked systems of equations, further

compounding the difficulty. Simply finding the power flow for a given operating

condition, arguably the most fundamental system-level task in power systems, is

complicated by convergence of standard algorithms to non-physical solutions [124].

The same basic power flow, in varying forms, is a central component of almost all more

detailed problems, many of which have existed since the inception of the grid, and yet

remain core to modern problems. Consider, for example, the following. Microgrids,

small, potentially autonomous power systems sustained by local generation, have

introduced new stability issues [79], which are often additionally challenging because

of the fact that many microgrids will have distributed or renewable generation, much

of which is inherently intermittent [102]. Stability, a canonical problem in its own

right, must of course include information about power flow [83]. A second example is

deregulation [109], which has introduced economic objectives in power flow, changing

how generation is selected [126], and consequently necessitating new approaches to

transmission planning [49]. Lastly, next generation naval ships will be largely electric,

and will have unique generation and loading profiles for which new approaches to both

stability and distribution design will be needed [44,128].

As the size of and number of interconnections in power systems continues to grow,

it has become increasingly apparent that not only are system-level problems such as

those indicated above present, but that their consideration is essential to truly de-

signing and operating for realistic scenarios. The specific justification for system-level

modeling and the motivation behind this work are rooted in two contexts: the mod-

ern electric grid and the all-electric ship. In addition to most operational objectives

being global functions, e.g. resistive losses, system-wide phenomena like instability

and blackouts [8] have made apparent the fact that local design and operation are not

adequate, particularly in the presence of economic factors [91]. Similarly, tightly cou-

pled physics necessitate system-level approaches if efficient operation is to be achieved

for the all-electric ship [26,47,128].



Many system-level problems like those discussed above can be posed as opti-

mizations; indeed, the first minimum spanning tree algorithm was developed for the

purpose of designing an electrical network in Moravia [23,24]. Now a variety of such

problems exist, such as transmission system planning and distribution system recon-

figuration, two subjects of this thesis. The main computational difficulty with the

associated optimization problems are that they are large, and large problems simply

take longer to solve. Additional difficulties in power system problems are caused by

discreteness and nonconvexity, each of which is a manifestation of the curse of di-

mensionality [15]. The size of and presence of discrete quantities in power systems

is shared across a number of modern infrastructures in which optimization plays a

large role, for example transportation and communication networks. A distinction

arises from the nonconvex mathematical description of AC power flow; it is the goal

of this thesis to identify and apply the most suitable tools available for ameliorat-

ing this aspect, transforming intractable problems into ones amenable to conventional

mathematical programming tools.

Mathematical programming approaches to power systems problems came to promi-

nence in the 1960's and 1970's, primarily in the context of designing transmission

networks [57] and power flows [45]. Tools available at the time restricted models to

either efficient but highly simplified linear programs or descriptive but inefficient non-

linear programs. This development proceeded until the 1990's, when heuristic meth-

ods gained popularity for their ability to treat complicated optimization problems as

"black boxes" [80,127]. On problems with nice properties, however, heuristics exhibit

much slower convergence than classical algorithms because much of the available in-

formation is never utilized. There are indeed many nice properties to be exploited in

power system optimization problems. There has furthermore been significant progress

over the past twenty years in convex optimization, namely conic optimization meth-

ods such as second-order cone and semidefinite programming [25,93,118], as well as

in systematic procedures for approximating nonconvex problems as conic programs

with adjustable accuracy [85,101,111]. We apply a subset of these tools and obtain

efficient new approaches which are applicable to longstanding existing problems, as



well as newer problems built upon older frameworks such as those discussed here.

In this work, a practical viewpoint is adopted in which tractability is associated

with existence of mature, efficient software tools; for example, although NP-hard,

we consider mixed-integer linear programming an 'easy' framework to solve problems

within due to the efficacy of standard algorithms [108]. Thus, each portion of this

thesis in some way concerns transforming a difficult, large optimization problem into

one amenable to established methods.

1.2 Overview and contributions

Chapter 2 is intended to provide background relevant to the contributions of this

work. First, models of AC power flow are summarized, as well as the DC power flow

simplification. We discuss conic optimization and why it is effective, followed by a

brief description and two examples of lift-and-project relaxations. A literature review

is then given for the three areas of contribution, after which we are able to provide a

unified description of the thesis.

In Chapter 3, we extend the Cheeger inequality of spectral graph theory to multi-

commodity flow networks. The result is used to construct semidefinite lift-and-project

relaxations for a multicommodity flow network version of the Cheeger constant, which

is a generalization of the sparsest cut. We then discuss as a potential application the

use of matrix perturbation theory to estimate the probability a single-commodity flow

network is feasible.

In Chapter 4, we address transmission system planning. First, prior work on lin-

earized DC models is summarized and framed in terms of lift-and-project relaxations,

following which the same viewpoint is applied to the AC case. The result is a spec-

trum of linear models based on the DC approximation, and an entirely new set of

models for the full AC case, which had previously only been handled using full non-

linear approaches and heuristics. Specific formulations pertaining to shipboard power

systems are given near the end, followed by computational examples which include a

new benchmark case abstracted from a notional shipboard power system.



Chapter 5 covers distribution system reconfiguration. An efficient, mixed-integer

quadratic model is formulated using the simplified DistFlow equations, and shown

theoretically to produce radial configurations. Then, more accurate quadratically

constrained and second-order cone approximations to the full DistFlow equations

are derived, which once incorporated into the reconfiguration problem are able to

accommodate a wider range of objectives. Under the loss minimization objective, the

mixed-integer quadratic model is an order of magnitude faster than times reported

in the literature.

We conclude in Chapter 6 by summarizing the contents of this thesis and identi-

fying some venues for future research.
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Chapter 2

Background

In this chapter, we provide brief technical foundations and literature reviews for the

contributions of this thesis. Specifically,

" The technical material of Chapter 3 with the first part of the literature review

is largely self-contained, but Sections 2.2 and 2.3 highlight common threads it

shares with with Chapters 4 and 5.

" Sections 2.1, 2.2, and 2.3, as well as the second part of the literature review are

used in developing new transmission planning models in Chapter 4.

" Sections 2.1 and 2.2 and the third part of the literature review form a basis for

Chapter 5 on distribution system reconfiguration.

We conclude this chapter with a paragraph on the work's connecting themes and

a comment on mixed-integer conic optimization.

2.1 Steady state power flow

As stated in the Introduction, a significant distinction between electric power sys-

tems, terrestrial and shipboard, and other large infrastructures is the nonlinear and

moreover nonconvex dynamic description of AC power flow. In this section, we sum-

marize the most popular formulations of AC power flow, all of which in general result



in nonconvex feasible sets when incorporated into optimizations with voltage vari-

ables [92]. We restrict our focus to the steady state, for which the complex equations

for AC power flow are given by [124]

sig = 'viVf' y~g - V;,y$'J

siL 
(2.1)

i

where i and j are bus indices, v is complex bus voltage, y admittance, s power flow,

and sL the power generated or consumed at a bus. It is often convenient to separate

(2.1) into real and imaginary parts; this can be done in two ways. In the polar

formulation, the basic variables are the voltage magnitude and phase angle, while

in the rectangular formulation voltage is expressed in terms of real and imaginary

components:

v = |vIej6 = w + jx. (2.2)

Historically, the polar formulation has seen wider usage because it is a more convenient

starting point for deriving approximations. It is written

Pu = gij v|2 I- |viv| (gij cos(Oi - Oj) + bij sin(Oi - 0))

qij = -bivv - |v|j|v| (gij sin(Oi - 0j) - bij cos(0i - Oj))

S Pij L (2.3)

where p and q are real and reactive power flows, pL and qL are real and reactive bus

load and generation, and g and b are conductance and susceptance.

DC power flow [124], the most severe approximation one can make without going

to network flow [4,76], is obtained by assuming

" Per unit voltage magnitudes: lvil 1 pu

" Negligible line resistances: gig << bi --+ gi= 0

" Small voltage angle differences: sin(Oi - 0) 02 - O



(2.3) then reduces to

f= bi (6 - O6)

E p (2.4)

through which flows can be found for by solving a system of linear equations. It is

clear upon inspection of (2.4) why this linearization is commonly referred to as DC

load flow: if voltage angle and susceptance are replaced by voltage and conductance,

one obtains Ohm's law for direct current networks. Until recently, power transmission

was primarily AC, and the nickname for linearized power flow caused little confusion;

however, given the increased usage of direct current transmission both at the high

voltage transmission [11] and low voltage distribution [12] levels, a shift towards

'linearized' terminology may be appropriate.

In this work, we also use rectangular coordinates, in which case (2.1) is given by

Pij g(w + xi) + bij(wixj - wjxi) - gij(xixj + wiw1 )

qj = -bij(w? + x) + gyj(wxj - wjxi ) + bij(xixj + 'wiwv )

Pij = (2.5)

The advantage of using (2.5) over (2.3) is that only quadratic polynomial nonlin-

earities appear, enabling concise application of the polynomial relaxations and conic

optimizations discussed in the next two sections.

2.2 Conic optimization

Within convex optimization are special classes of problems which can be solved in

polynomial time [6, 7, 78], which is to say that the computational effort it takes to

solve a problem instance to within a prescribed error tolerance is in the worst case

proportional to a polynomial in the number of variables and constraints. We note

that no such guarantees exist for any metaheuristic, such as those mentioned in



the Introduction. Problems within these classes are expressible by linear equality

constraints plus a particular cone constraint; the most well known and straightforward

is the standard form linear program:

min cTz st. Az = b, z > 0.

The constraint z > 0 corresponds to the linear cone, or the positive orthant. Second-

order cone [93] and semidefinite [118] programming are successive generalizations,

which, although slower, are also solvable in polynomial time. Second-order cone and

seinidefinite constraints respectively have the form

||Az + b|| < cT z +d and X > 0,

where >- denotes positive semidefiniteness (i.e. yTXy > 0 for all vectors y), and

the two-norm. We mention that, in practice, linear programming is often solved with

the simplex algorithm, which has exponential worst case performance, but sometimes

outperforms interior point methods, and leads to elegant mixed-integer constructions.

The application of conic optimization is nearly as broad as that of optimization

itself; since the introduction of the simplex algorithm [371, linear programming has

found usage across engineering and science. Second-order cone and seinidefinite pro-

gramming have more recently been used in developing both new formulations and

relaxations in a number of fields, for example structural optimization [17], stochastic

programming [93], robust optimization [16], and systems and control [100].

2.3 Lift-and-project relaxations

A relaxation of an optimization problem is any other optimization problem with a

lower objective; of course, such a general definition is useless. Given an optimization

problem based on certain data, we are more precisely interested in constructing easier

optimization problems which take the same data as input, and produce tight lower

bounds. The tools of choice in this thesis fall under what are known as lift-and-project



methods. In words, lift-and-project methods trade problems in difficult settings for

larger problems in easier settings.

An initial application of lift-and-project methods was binary variables, which can

be constrained polynomially with the equality z 2 = z [94,112]. The approach then

gained substantial attention for the 0.878 semidefinite programming max-cut relax-

ation of [60]. In Chapter 3, we use spectral graph theory and semidefinite pro-

gramming to relax a new class of multicommodity cut problems in similar fashion.

Lift-and-project relaxations, particularly semidefinite versions, have since seen broad

application via extremely general polynomial programming formulations [85,101,111].

In Chapter 4 we employ this perspective towards transforming nonconvex polynomial

constraints into linear and then second-order cone and semidefinite constraints.

Before proceeding, we demonstrate the lift-and-project variant of [111] on two

examples. First, consider the following bilinear optimization problem:

min z 1 (z2 - 1)
z

s.t. zi > 1, z2 > 2

A relaxation is formulated as follows. Add the redundant constraint (zi -1)(z 2 -2) 2

0, and substitute a new variable y for all instances of ziz 2 . The relaxation is given by

mm y - zi

s.t. zi > 1, z2 > 2, y - 2zi- z2 + 2 > 0

In this manner we lift polynomial problems with nonlinear constraints and objectives

into higher dimensional spaces. Approximate solutions are obtained by then project-

ing the optimal relaxed solution onto the original space, which for our purposes means

simply eliminating the new variables from the relaxed solution. Here, the minima of

the original and relaxed problems are both one, with zi = 1, z 2 = 2, and y = 2. We

say that a relaxed solution is tight if it coincides exactly with that of the original

problem. Tightness is certified by the factorability of new variables into the original



ones; in this example, Y = ziz2. Although here the relaxed and actual minima are

identical, it is not true in general, and usually will not be the case for transmission

system planning problems.

Substitutions of any order can be performed within this framework, and it has

been shown that as larger and larger constraint products are formed, the relaxation

converges to the true optimum [87]. However, the sizes of the resulting linear programs

grows rapidly, and so a compromise must be made at some point between accuracy

and practicality.

As a second example, consider the optimal power flow relaxation of [89], which we

make use of in Section 4.3.2. Take the rectangular coordinate formulation of power

flow given in (2.5), and include it as constraints in an optimization problem with

objective

fi (pf). (2.6)

Typical objectives include quadratic functions representing generator fuel costs [124],

or real power loss, which is equal to the total generator power outputs minus the

total demand. Create a vector X = [wi, xI, ... , wn, Xn]T, and set the 2n by 2n matrix

W = XXT. Then the following optimization problem is equivalent to (2.6) with (2.5)

as constraints:

min fi (pf) (2.7)
W,p,q,ph,qL

s.t. p gj(WV,i + Wi+n,i+n) + bij(Wi,j+n - Wj,i+n)

- gij(Wi, + Wi+n,j+n) (2.8)

qij -b i/(W, + Wi+n,i+n) + gij(Wj+n - Wj,i+n)

+ b (W , + Wi+n,j+n) (2.9)

p L = L (2.10)
pii-

qij = qL (2.11)

W=XXT (2.12)



In the above optimization, the only source of nonconvexity is W = XX". A

semidefinite relaxation in the spirit of [60] is obtained by replacing W = XXT with the

equivalent pair W >- 0 and rank(W) = 1, and then dropping the latter constraint; we

can interpret this as lifting the 2n voltage variables to the 2n(n + 1) distinct variables

in W. In [89], the relaxation is shown computationally to be exact on a large number

of realistic instances, and dual conditions are given for assessing whether a given

solution is tight.

2.4 Literature review

In each of the following three chapters, some subset of the prior contents of this section

will be applied to a problem in or pertaining to power systems. We now provide a

basic discussion of and literature review for each topic.

2.4.1 Spectral graph theory and multicommodity flow net-

works

Spectral graph theory, much of which concerns inequalities between eigenvalues of

the graph Laplacian and NP-hard combinatorial optimization problems [33], traces

its roots to a result in Riemannian geometry [28] and the identification of a connection

between the smallest non-zero Laplacian eigenvalue and graph connectivity [53]. A

lower and upper bound on a related eigenvalue quantifying bottlenecking in Markov

chains was established in [42]. At present spectral graph theory sees broad application,

including other theoretical contexts like expander graphs [10] and NP-hard graph

cuts [97], divide and conquer algorithms [114], VLSI layout [84], and graph clustering

and partitioning [99,115].

Network flow is a nearby but for the most part disjoint field concerning a sim-

ple model of how quantities or commodities can travel through a capacitated graph

or network [76]. A central result is the Max-Flow Min-Cut theorem [50, 75], which

established the equivalence between the maximal flow that can be sent through a



graph and the smallest capacity cut separating source from destination, and explains

the computational tractability of many single commodity network flow problems [4].

Applications of network flow are vast; broad examples include communications, trans-

portation systems, and shipping routes, to name a few. There has been substantial

theoretical interest in NP-hard graph cuts arising from the multicommodity case [72],

namely the sparsest cut [114,119]. Initial work began with linear programming ap-

proximations [90], and subsequent approaches have utilized the more general semidef-

inite programming along with randomized rounding procedures based on the max-cut

relaxation of [60].

2.4.2 Transmission system planning

Transmission system planning is the straightforward problem of where to construct

new transmission lines. For terrestrial systems, the problem is nearly always transmis-

sion system expansion planning, with the purpose of reinforcing an existing network

to accommodate new load and generation. An additional note is that we specifically

consider static, short-term transmission system expansion planning; the dynamic and

long-term variants are both built upon the simpler version considered here.

As mentioned in the Introduction, an early optimization based approach led to the

development of the first minimum spanning tree algorithm by Boruvka [23,24]. The

first mathematical programming formulation appeared in [57], which set a standard

followed by nearly all subsequent approaches; a survey may be found in [88].

The equations of AC power flow combined with additional nonconvexity intro-

duced by line construction variables necessitated the use of DC formulations, which

up until recently in [106] accounted for all of the literature in the field. Approaches to

the DC formulation may be divided into two sets: metaheuristics [105], e.g. genetic

algorithms and particle swarms, and linear programming approximations [5,107], no-

tably the transportation, hybrid, and disjunctive models [21,66,68,110,121].

More recently, models have been expanded to contain additional factors, such as

uncertainty [31] and economics [49].



2.4.3 Distribution system reconfiguration

Transmission systems carry power at high voltages over often long distances. Distri-

bution systems, which are fed from transmissions systems by subtransmission lines,

provide load to end users at lower voltages. Distribution systems often have loops,

but are operated in a radial or tree configurations with certain switches open to enable

detection and isolation of faults and failures [20]. A network may have numerous ra-

dial configurations attainable by different combinations of open and closed switches,

and, in the absence of reliability objectives, switches may be used to alternate con-

figurations based on secondary objectives, e.g. minimizing resistive losses [36]. These

objectives, under the label quality of service, are also of significant interest to the

all-electric ship [43]. In [13], the problem was considered further, and new objectives

as well as a new power flow formulation specific to radial networks were introduced.

Substantial analysis of the so-called DistFlow equations ensued [29, 30]; however,

nearly all optimization approaches which followed made little use of their structure,

using heuristics and metaheuristics to address the problem in black box fashion [40],

as well as multiobjective approaches [39]. Relatively recently, a mixed-integer nonlin-

ear programming approach was taken [81]. Separate from the terrestrial literature, a

direct current mixed-integer linear programming formulation was used to reconfigure

a shipboard power system for the purpose of restoring service to loads in the event

of damage [26].

2.5 General perspective

In this chapter, conic programming has been identified as a relatively easy framework

to solve optimization problems within, and lift-and-project methods as a general tool

for transferring intractable optimization problems to conic programming; the bulk of

this thesis focuses on applying this scheme to classical problems in power systems.

Fig. 2-1 depicts the relationships between each subject of this thesis. Conic opti-

mization is the unifying tool, and is used to optimize transmission planning, recon-

figuration, and ultimately approximate a new kind of multicommodity flow network



Figure 2-1: Relationships between chapters

cut.

An additional complication enters through integer variables. At present, linear

and quadratic programming are the only mathematical programming frameworks

with robust and efficient mixed-integer counterparts; however, as will be seen in

this thesis, many mathematical descriptions of power systems are well approximated

second-order cone and sernidefinite expressions, yet contain large numbers of discrete

variables. Mixed-integer second-order cone programming is an active area of research

for which there is the expectation of eventually achieving the sophistication of the

linear analogue [46,120], and it is similarly within reason to expect subsequent devel-

opment in the semidefinite case. In our discussions, we present mixed-integer linear

and quadratic formulations as practical options, but also introduce mixed-integer

second-order cone and semidefinite models in anticipation of future capabilities.



Chapter 3

Spectral graph theory and

multicommodity flow networks

3.1 Introduction

Spectral graph theory [33] offers powerful tools for analysis and design of systems

which are well modeled by graphs. However, many systems have important features

not captured by purely graphical descriptions. Flow networks [4,76] describe a wide

variety of such systems, for example electric power grids and communication networks,

yet have a minimal level detail additional to the underlying graph. In this work, we ap-

ply spectral graph theory to flow networks. We formulate a class of Laplacian matrix

pencils for undirected, multicommodity flow networks and a Cheeger-like parameter

which generalizes the sparsest cut [90,114,119], and relate them with bounds similar

to the Cheeger inequality [28,33, 42, 53]. When there are many commodities, finding

the correct eigenvalue entails solving a combinatorial optimization problem, for which

we formulate a semidefinite relaxation using the methodologies of [111] and [85]. In

addition to flow networks, the multicommodity case may have application to many

computer science problems modeled by cuts generalized by our development, such as

graph partitioning [90], divide- and-conquer algorithms [114], and VLSI layout [84].



3.2 Background

3.2.1 The Laplacian of a graph and the Cheeger constant

We are given an undirected, connected graph G with vertices V(G), edges E(G), and

corresponding adjacency matrix A. The Laplacian of G is defined as L = D - A where

D is a diagonal matrix with D,, = d, = E A,,. The normalized Laplacian is L =

D 1/2 LD- 1/2, and its eigenvalues can be written 0 = A <A, < - An-1 < 2. The

eigenvalues of L are equivalent to those of the generalized eigensystem Lx - ADx = 0,

which is referred to as the pencil (L, D); for convenience we use this notation [61].

A fundamental construct from which many eigenvalue results originate is known as

the Rayleigh quotient [71], which we now examine. Suppose J and K are symmetric

matrices, let y be a vector, and consider the equation Jy - Ky = 0. Multiplying

by yT, we have y TjY - 6yTKy = 0, and hence 6 = 2__; this ratio is known as the

Rayleigh quotient. To facilitate intuition about the mechanics employed later, we

now give a basic theorem about the Rayleigh quotient:

Theorem 1 (Rayleigh-Ritz). Let 6 min be the minimum eigenvalue of the pencil (J, K),

where J and K are positive semidefinite. Then

6min = mm Y .

y y TKy

Proof. Let 6, ... , o, and y1, ..., y,, be the ascending-ordered eigenvalues and corre-

sponding eigenvectors of (J, K). We first observe that we can equivalently minimize

over vectors y for which yTKy = 1, since clearly no vector of zero length about

K will be a minimizer if J and K are positive semidefinite. Since J and K are

symmetric positive semidefinite, Y1, ... , yn can be chosen orthonormal about K, and



y = (IYI + - - - + (n for some with (|| = 1. We can then write

mm = min y Tjy
Y y'I'Ky y:yTKj=1

= min (61Y1 + -+ (snn)T j ( 1y1 + -+ (nyn)
O:Ilt=1

= min (61y1 + + (ny.)T K (161y1 + + (nonIYr)
:I0il=1

= min (06i + - - 2 + 6ln)
001l=1In

The minimum is clearly attained for i 1 and (2 0, which completes

the proof. One can use a nearly identical argument to show that

yT Jy
6max = max , .

Y y2 Ky

In Section 3.4.1, we will need to take special care when the second matrix in

the pencil is indefinite. The Courant-Fischer theorem [71] is a generalization of the

Rayleigh-Ritz theorem, which characterizes all of the eigenvalues in the spectrum in

terms of subspaces spanned by the eigenvectors. We will make immediate use of the

following characterization of the second smallest eigenvalue:

62 = min .j
yY1 yTKy

We now return to the pencil (L, D). Let f be a function assigning a complex value

f (v) to each vertex v, where the notation f denotes the vector of these values. The

Rayleigh quotient of (L, D) is

E,-" (f(U) - f(v))

E f (v)2dv

where the sum subscript u - v denotes summation over all pairs of vertices connected

by edges. The first nonzero eigenvalue, often called the algebraic connectivity [53],



satisfies

.n, Zu(f(u) - (V))2

f_LD1 f(v) 2de

The Cheeger constant [28, 33,42, 53], sometimes referred to as the conductance,

is a measure of the level of bottlenecking in a graph, as illustrated in the left plot of

Fig. 3-1. It is defined

x min(vol(X), vol (X))'

where C(X, X) is the set of edges with only one vertex in X, IC(X, X) uxv, A,

and vol(X) = d,. h is related to the algebraic connectivity by what is known

as the Cheeger inequality:

2h > A x>h
2

3.2.2 Flow networks

A flow network is a weighted graph on which flows travel between vertices by way of

the edges [4, 76]. In this work we only consider undirected flow networks. Suppose

further that we have a multicommodity flow network with m different types of flows

or commodities [72], and that we are given a supply and demand vector for each

commodity i, p , which satisfies E p= 0.

We denote the flow of commodity i from u to v by gi(u, v), and the weight of

the edge between u and v by c(u, v), which we refer to as a capacity. In this work,

we equate capacities with edge weights such that the capacity of an edge, c(u, v), is

identical to its weight in the graph adjacency matrix, A. We say that a flow network

is feasible if there exists a flow gi : V(G) x V(G) -+ R+ satisfying E> 1 gi(u, v) <

c(u, v), and E gi(u, v) - gi(v, a) = p'.

Network flow straightforwardly model a large number of real systems, and quan-

tities p' and c(u, v) deserve some concrete interpretation; as the remainder of this

thesis is specific to electric power systems, which are crudely approximated by single-

commodity flow networks, they are an appropriate context. The vector of supply and

demand p is analogous to a vector of bus load (demand) and generation (supply).

The capacity of an edge c(u, v) in this case represents a transmission line thermal



limit, restricting the flow of real or apparent power. The structure of the Laplacian

matrix of capacities, L, however, has identical structure to the standard bus admit-

tance matrix [124]; here it is essentially the same matrix, but with capacities rather

than admittances.

For many purposes, a network with multiple sources and sinks can be reduced to

one with a single source and sink by introducing a super-source and super-sink [76],

for example maximizing the flow through a network. As will be seen in the next

section, this simplification is not compatible with our development, and so we allow

as many vertices as are in the network to be sources or sinks provided that the total

flow is conserved.

3.3 A flow-based Cheeger constant

We identify a quantity which measures bottlenecking of flows rather than graphical

structure, a shown in the right plot of Fig. 3-1, and is in fact a generalization of the

sparsest cut [90]. We begin with the single commodity version. Define

q = m in .X)I
X vE6x Pv

The denominator is the flow that would be sent from X to X in the absence of edge

capacities. By the max-flow min-cut theorem, the actual flow from X to X can be

no greater than |C (X, X) [50,75]. In fact, it is well known that q > 1 is also a

sufficient condition for the existence of a feasible flow [56,70]; an implication is that

q is not NP-hard when there is only one commodity.

Before discussing the multicommodity case, we give a brief example for which the

introduction of a super-source changes the value of q. Consider a three vertex line

graph with p = [1, -2, 1 ]T and c(1, 2) = 3 and c(2, 3) = 2. Simple calculation gives

q = 2 and C(X, X) = c(2, 3) for this network. Now append a super-source with

Ps 2, connected to vertices one and three by edges of unit capacity, and set pi and

p3 to zero. The optimal q for the modified network is q = 1, and furthermore the



C(X) C(X. X)

* Sources
* Sinks

Figure 3-1: Graph bottlenecking as measured by h (left) versus flow bottlenecking as
measured by q (right)

optimal cut has changed so that vertices one and three are now on the same side.

Hence the usual simplification of multi-source, multi-sink problems to single-source,

single-sink problems is not applicable here.

We now generalize q to multicommodity flow networks. Let r E {-,1}m and

p E p', where Wi is element i of r,, and define

S(X) = max 1 pv.
vEX

Because the objective is linear in n, it is equivalent to the continuous linear opti-

mization problem in which r, E [-1, 1]". The purpose of the maximization is merely

to ensure that the net-demand which would leave set X of each commodity has the

same sign. We then define the multicommodity version to be

q = min (X) (
x S(X)

(3.1)



which in matrix form is given by

xT Lx
q = min , L (3.2)reGO,1}Th,, zT Pax|'(32

where P, is a matrix with pr on the main diagonal and zeros elsewhere.

q also has the minimax network flow formulation

q = minmax r

S 77 - -7 = AK Vv (3.3)

0 < gO71 < AV VU -v

-1 < t" < 1 Vi

Intuitively, we are optimally consolidating the supplies and demands into a single

commodity, the maximum flow of which is equal to the minimum cut by the max-

flow min-cut theorem and the result of [56,70].

3.4 Laplacians for flow networks

We now derive Cheeger-like inequalities for eigenvalues of flow normalized Laplacians.

Note that we have not assumed feasibility, rather only that E, p = 0 for each

commodity i. The pencil (L, PK) is a natural starting point because its smallest

magnitude eigenvalue is a continuous relaxation of q. However, it is defective, which

is to say that an eigenfunction is missing. It has two zero eigenvalues corresponding

to the constant eigenfunction; in the simplest case of a two vertex network, the

eigenvalues provide no meaningful information.



3.4.1 Variational formulation

We can see why (L, P) is defective by considering the quotient

fT PKf
f T Lf

It is undefined at f = 1, but approaches infinity as f approaches 1 from any direction.

Now consider the perturbed pencil (P, L + al1T) for a > 0, the eigenvalues of which

are one over those of (L + aliT, P'): it is similar to vL + a11TP L + ali1, which

can be real symmetric because L + al1T is positive definite. By the Rayleigh-Ritz

theorem [71], the largest positive and negative eigenvalues satisfy

fTpf f Tpf
sup and inf .

f fTU(L+ a1lT)f f fT(L+ a11T)f

As a approaches zero, the two eigenvalues will approach positive and negative infinity.

This is distinctly a consequence of 1 being in the null space of L and the fact that

1"P,1 = 0; were the latter not true, only one of the eigenvectors could converge to 1

and not cause the quotient to switch signs.

The zero eigenvalue of (L, P) does have a generalized eigenfunction, as guaranteed

by the Jordan canonical form theorem [71]. Solving the equation (L - OP.) x = P1

yields x = Ltp", where Lt is the Moore-Penrose pseudo-inverse of L.

We rectify (L, P,) by adding an infinite rank-one perturbation. Consider either

of the pencils limboc (L + brr', P,) and limbo (L, P, + brrT), where r E R" is not

orthogonal to 1. They will respectively have an infinite and a zero eigenvalue, both

corresponding to the eigenfunction r, and will share the remaining eigenvalues and

eigenfunctions.

Because both matrices of the pencil are real symmetric and the left matrix is

positive definite, the eigenvalues and eigenfunctions are real and admit a variational

characterization. The magnitude of the smallest, which we denote p, has the varia-



tional characterization

pr =Jiminf fT (L + brrT) f
b-+c~o f [Tp 1

fILf 
(4)

= inf . (3.4)
f1r fTPJ

Define

= min /. (3.5)

Even for the simple case in which r is not a function of r,, a continuous relaxation of

(3.5) is not guaranteed to have a unique global minimum. This is evident from the

reciprocal

(p) =1 max sup f T ,~f
fir fTLf

which is the maximum of the pointwise supremum of a family of linear functions of

K, and hence a convex maximization problem [25]. A consequence is that there is

no easy way of computing pf when there are many commodities; however, when the

number of commodities is small, it may be straightforward to guess the optimal K,

or simply try all of the likely ones. Furthermore, convexity does guarantee that the

optimal K is at a corner, and thus the continuous relaxation is equivalent to the binary

formulation.

3.4.2 Bounds on p'

We have the following Cheeger-like inequality:

Theorem 2.

q | rv| >r> qh JE re|

vEX rv - vG r| 2 ( dv v |r |/dv'

where X is the vertex set associated with q and r E R".

Proof. The structure of our proof for the most part follows that of the Cheeger in-

equality given in [33]. Although we assume unit capacities, the proof straightforwardly



extends to networks with non-negative capacities by generalizing the definition of the

Laplacian to allow for weighted graphs.

We begin with the upper bound. Define the function

f(v) = ZEX ,r 1  if vEX

- Eg raif ) (E X- ZUEXTrU i*~

where X is the optimal vertex set associated with q. Let ri and r12 be optimal for

(3.1) and (3.5), respectively. Substituting f into (3.4) gives

r

- C (X) (ZICX rV + Evcg r )2

q E, r,)I
EE u- ZEqk& rV

We now prove the lower bound. Let f be the eigenfunction of limbo(L +

brrT, P) associated with p . Order the vertices in V(G) so that If(vi) I If(vi+1)|

for i = 1, ... ,I n-1. For each i define the cut Di {{j,k} E E(G) I 1 <j i < k < n},

and set

a = minD
Isi<n 2

By definition, ac > q regardless of whether or not i, = 2. We have

r E ~, (f(v) - f (U))2 E (f(v) + f(U))2

P:f (v)2p? E_, (f (u) + f (V))2

(E If(u) 2 - f (V)212
2E f (V)2pr? E" f (V)2dv

__ (ZI f(v) 2 - f(v+1)2| D 1)2

2 f(v) 2p'2 E" f(v) 2dv

by Cauchy-Schwartz

by counting

- (EVEg rVS(X) (Y:EX 7-r )2



f(v,) 2  f (vi+1)2) a L p )2

2E, f (v) 2p' 2 LV f (v) 2d

2(i (f (V,)2 - f (V,+1) 2) z3  12)

2 L, f(v) 2pg2 J, f(v) 2dv

q2 (zi f(v )2 (Li pK2 -

2> f v) 2p!2 LV f(v) 2dv

q 2(L f (7v,2

2E L f v ) 2p 2 L
q2  f (V) 2p 2

2 Lv f (v) 2dv

by the definition of a

by the triangle inequality

V-2 ) ) 2

f(v) 2dv

Switching to matrix notation and noting that P'ffTP 2 f - -f T Lf, we simplify

further so that

q2 fTLf

2prfT Df

Multiplying through by pIr and taking the positive square root, we have that

r > q fTLf
2fTDf

> q

where Ar is the smallest eigenvalue of the pencil limbso(L + brrT, D).

A, may not be an intuitive quantity in some cases, so we also derive a slightly

looser but more revealing lower bound, which is a function of A, and thus h, by the

Cheeger inequality. Using similarity and the substitution I = Di1/2f, we have

y q 2l l ^

Because D1 / 2 1 is in the null space of L, 1 in the numerator can be replaced with its



projection onto the orthogonal complement of D112 1, which we denote projD1/2 1 1)

The minimum possible ratio of their lengths is given by

m m I |projD1/21 1L)(C) 1 m i - projDl/21 (C)I (36)
cLD - 1/ 2 r 11C11 cLD -1/2r IlCil

The minimizing c is

-= projD-1/2r1 (D1/21) = Di/21 - projD-1/2r (D 1/2 1)

Substituting , into (3.6), after some algebra, yields

|1TTri I ,r,|
IDi/21||||JD-1/2r|| g/E d- *,r2d

Let k be a vector the same length as I and parallel to projD1/2 11 (1). We then have

,tr > q03 kTEk
V21TJ

2 q 21111 12

q0

qhp
2

3.4.3 Orthogonality constraints

It is important that the upper bound stays finite for all networks of interest; for some

r, there are certain networks which will cause the denominator to be zero, constituting

an effective blindspot in ptr. For analysis of a single network, one might heuristically

construct an r for which it is clear that this can not happen. Design and optimization

however require that the upper bound remains finite for all possible networks, or else

an algorithm may simply seek out networks for which the upper bound is infinite.



We now examine several choices of r.

1. The maximum possible lower bound is qh/2, which is attained by r = D1.

Unfortunately, the upper bound then becomes

itD1 qvol (V(G))

v- Vol(X) - vol (X)I'

which is infinite if the sums of the degrees on either side of C (X, X) are equal.

This is reflected in p D1 as well: consider a symmetric 'dumbbell' network in

which two identical halves are connected by a single edge, and assume that all

vertices in one half are unit sources and in the other half unit sinks of a single

commodity. As the size of the halves is increased, it can be observed that 1 D1

grows despite qi decreasing as one over the number of vertices.

2. q has a number of interpretations in which being larger is better, so we are

interested in choices for which it is the only non-constant factor in the upper

bound. Let Y C X or Y C X. If we choose r to be

if V Y (3.7)

0 if v G Y

the bound becomes

q y qh vol(Y)
2 vol(V(G))

This may somewhat impractical for most choices of Y, particularly in contexts

in which the edges and hence X can change. However, if Y is the singleton z,

X need not be known, and vol(Y) is simply replaced by d2 . The formulation is

simple in this case, but the dependence on the vertex z and the potential 1/fn

factor in the lower bound may be undesirable.

3. Rather than using a single orthogonality constraint, taking the minimum of two

eigenvalues can result in an upper bound which is always finite. For a vertex set

N, let N+ (N-) denote the subset for which p"' > 0 (pgi < 0), 7) e N, where



Ki is optimal for (3.1). Consider

{ p v E V(G)+ _ pK
s 0 and s 0

0 v E V(G)~ 0

and set W = min {p*, p" }. The upper bound of the minimum of the two

resulting eigenvalues is

P18 < min
q ZvEV(G)+ PVK;i

ZVEX+ Pr7) - ZIIE)+ Pr1
EX EV(G)- Pv J

Observe that

2S(X)
vEX

>§ K1

VEX+

Because the numerators are equal, we have

13 q Ev |pglI|
p <

-- 2S(X)

which is finite because S(X) is always greater than zero. Under certain con-

ditions, p" is bounded above by q, as shown in the computational example in

Section 3.7.1 and by the following lemma.

Lemma 1. Suppose V(G)+ C X or V(G) C X. Then I < q.

Proof. Let P+ (P-) be a matrix with s+ (s-) on the main diagonal and zeros

elsewhere, and let x be the minimizer of (3.2). We have

SxT Lx
q =

|xT Lx

|XTP+x + xTP-xI

V E V(G)-

V £ V(G)+
(3.8)

-E
vEX

pvi

VEX+ VEX- VEX-



> min { &x T } by the definiteness of P+ and P-
-- rxTPFx' |xT P-x|

> min min min by the assumption
XE{0,1},xis- xTP+x E{0,1},x1s+ xTP-XJ

. . TLx . TLx.'
mm mm T mm

xc{0,1},xls IxTprI .E{0,1},xIs+ IxTP

>min min x min
,18 xT lx' ,,xs+ |xT P,x|= m n mp " IJTP x .

-min/L 
it S+

4. Lastly we mention a complex orthogonality condition, for which the theory of

the preceding section does not hold. Define

tV {K

.pK

if p, > 0

if p, < 0

Based on observation, we conjecture the following bound:

q I pg1| I

2S(X) - _

3.4.4 Calculation via orthogonal transformation

One method by which to numerically compute p using standard eigenvalue solvers

is to approximate the limit of the pencil with a large number in place of b. This

can be unsatisfactory because if the number isn't large enough, the approximation is

poor, while if it is too large numerical inaccuracies may arise, particularly for large

networks. An orthogonal transformation can instead be used to obtain the exact

answer.

Let R be an orthonormal matrix with first column equal to r/ |rJ|. Because

eigenvalues are invariant under orthogonal transformation, those of limc,, 0 (RT LR +

bRT rrTRI R T PR) are identical to those of limc--(L + br rT, P,). Let L' and P' be



the respective bottom right n - 1 by n - 1 submatrices of RTLR and RTPR. The

eigenfunction with the infinite eigenvalue is the last column of RTLR, and hence the

remaining eigenvalues (among which is p') are given by the reduced pencil (L', P'),

which can be solved by any generalized eigenvalue algorithm. We remark that when

r = 6, this amounts to simply removing row and column z from L and P.

3.5 An alternate relaxation of q

We now examine a slightly different formulation of q and arrive a quantity similar

to I , but which scales as capacity over flow squared. This has relevance in cer-

tain scenarios such as electrical current flow, which is conserved in networks, yet is

proportional to the square root of power loss.

Consider the minimization
xTLx

mm
rE{0,1} IXTprlI

If K = Ki, the minimum is q. Relaxing x to take on continuous values and introducing

the constraint |xT = 1 yields

xT Lx
min (3.9)

(3.10)

We first make two observations: ', is the sole finite eigenvalue of the pencil (L, pKpKT),

and the optimal x associated with y, Ltp/y, is proportional to the generalized

eigenvector of the zero eigenvalue of (L, P,,).

Let

= min'ys, (3.11)
K

and let K3 be optimal. A continuous relaxation of , is again of little value here:

because Lt is positive semidefinite, it becomes a concave minimization problem, for

which there will likely be multiple local minima.

We bound 'y from above using q in the same fashion as pi.



Lemma 2.
< q

- S(X)

Proof. Let
1 if v C X

X(v)~ {(X)
0 if v EX

Substituting x into (3.9), we have

S C (X,X)

S(X)2

S(X)"

We can draw further comparison with current flow by considering resistive power

loss in a direct current electrical network. Let p be the vector of currents entering

and exiting the network through the vertices. Define the admittance Laplacian LA

to be the Laplacian with admittance (one over resistance) edge weights. The total

power dissipated is

p'Lp,

which is exactly 1/-y for the single commodity case.

3.6 Semidefinite programming with many commodi-

ties

When there are many commodities, the minimizations over rK in (3.5) and (3.11)

can pose intractable combinatorial optimization problems. Since its application to

the max-cut problem [60], semidefinite programming [25,118] has seen wide usage in

developing relaxations for NP-hard problems, the most pertinent example here being

the sparsest cut problem [9,10,59]. We apply the methodology of [111] and [85] to



(3.5) and (3.11) and obtain simple semidefinite relaxations of Pr and -Y. As applied

to the sparsest cut problem, these relaxations are less accurate than those based on

geometric formulations [9, 10], but constitute a new approach in approximating the

more general q.

3.6.1 Relaxing ptr

As shown in the previous sections, the orthogonality condition can be chosen so that

p' is a lower bound for q. We formulate a semidefinite programming relaxation of

(3.5), which consequently is also a relaxation of q.

p' can be expressed in terms of semnidefinite programming as the following mini-

max problem:

min max (
K,

(3.12)
(P < rlim L + brrT

b-+oo

-1< K <1 Vi

As long as the graph is connected, h, q and therefore pr are greater than zero,

and so (3.12) is strictly feasible. We can thus replace the inner maximization with its

dual and obtain the equivalent bilinear semidefinite program

min Tr LZ
K,Z

TEr rr Tz o(3.13)

TrZPK= 1

0 < Z

-1 < 0 < 1 Vi

where Tr denotes the trace operator.

If the first constraint is dropped, we obtain the result of applying the original

max-cut relaxation of [59] to (3.2); this modification is of course always zero, as it

corresponds to the defective pencil (L, P.). The first constraint makes the relaxation



nontrivial, and can be designed according to Section 3.4.3.

The second constraint of (3.13) is bilinear and hence nonconvex. We proceed to

formulate the simplest nontrivial relaxation within the framework of [85, 111]. Let

P' be a diagonal matrix with p%, the vector of commodity i's supplies and demands,

on its main diagonal. Note that P, KP 2 . Introduce a matrix W' for each

commodity i, and substitute W for each instance of the product r/Z. An additional

constraint on each W is constructed by taking the product of the last two constraints.

The resulting semidefinite relaxation is given by

min Tr LZ

Tr r rZ = o

Tr rrTWt = 0 Vi (3.14)

Tr PiWi = 1
i= 1

0 - Z

-Z -< W - Z Vi

As stated, (3.14) is an unwieldy relaxation due to the large number of new variables

introduced. When r is an indicator vector, we can reduce the size by recognizing that

often most vertices are not sources or sinks of most commodities, for example in the

sparsest cut problem, in which each commodity is attached to only two vertices.

Let 'r = 1 (without loss of generality one can relabel the vertices so that any

vertex, e.g. that of maximum degree, is the first). Define A to be the set of vertices

v for which pV is nonzero. Let Z (Mi) denote the IM'j by IMl principal submatrix

of Z induced by the set M', and likewise let P (M 2 ) denote the corresponding |M'l

by |MI submatrix of P'. Note that the condition Z - 0 implies that every principal

submatrix of Z is positive semidefinite. Again substituting a matrix W' wherever

rZ(M') appears, we have the equivalent semidefinite program



min Tr LZ

Wl = 0 Vi: 1 E M" (3.15)

rr Pi (Mi) Wi = 1

i=1

0 -< Z

- Z ( Mi) -< Wi -. Z ( Mi ) Vi

If, given an optimal solution Z and I/ to (3.14) or (3.15), there exists R' E [-1, 1]

such that Z RiJWt (respectively Z (M') = kjW') for each i, Z and R' are optimal

for (3.13). In general, however, the relaxation is not tight, so we suggest the following

rounding heuristic: if Tr W' > 0, set Ri = 1, otherwise set R" = -1 for each i. Once R

is known, the corresponding approximation to q is equal to the optimum of the linear

program obtained by removing the outer minimization of (3.3) and setting K = R.

A natural question is whether linear relaxations can be directly formulated from

(3.3). Repeating the steps used to obtain (3.14) from (3.12), one can apply the

relaxation of [111] to the resulting bilinear program. We observed that a 'second order'

linear relaxation was uniformly zero; while higher order relaxations are possible, they

are cumbersome in size, and furthermore it has been shown that the corresponding

semidefinite relaxations of [85] are more efficient and numerically superior [86].

3.6.2 Relaxing y

The reciprocal of (3.11) can be written

Tni Tni

max PT Ltp- max K ix p Ltpj.
,E{-1,1}m KE{_1,11m Y



A simple semidefinite relaxation in the fashion of [59] is

m m

max ((KipiT LW
i=1 j=1

(3.16)

Kii = 1  Vi

K - 0

3.7 Computational results

3.7.1 One commodity

Although a substantial fraction of spectral graph theory applications deal directly

or indirectly with NP-hard combinatorial optimization problems, we first focus on

the single commodity case, which for the most part falls within the scope of linear

programming and faster algorithms [4]. Our motivation comes from the amenability of

eigenvalues to certain techniques not shared by linear and semidefinite programming,

e.g. perturbation theory [116,122].

We study the proximity of q to three variations of p from Section 3.4.3 as functions

of size and edge density. The three eigenvalues considered are P" (3.8), P ., and p"

(3.7), where z is the vertex of largest degree and X is the minimizer of q. Relative

error, defined e(x) = |1 - x/ql, is averaged over 1,000 randomly generated, 100-vertex

flow networks with unit capacities, which are generated as follows. An Erd6s-R6nyi

random graph with edge formation probability PER is sampled [52]; since PER directly

determines the expected number of edges, we use it as a parametrization of edge

density. If the graph is disconnected, a new one is drawn, since q and Ar are trivially

zero in this case. For each graph, a random vector p of supplies and demands is

drawn from the normal distribution N(O, I), and then E p, /n is subtracted from

each element so that E p = 0.

Tables 3.1 and 3.2 summarize the results. e (P") increases gradually, and e (p")

and e (p6x) tend towards the same value, approximately approaching 0.12 from above

and below, respectively. As PER is increased, e (pZ) increases, but e (ps) and e (p



decrease. We can see why this is so for e (p) by applying a basic result from

spectral graph theory. On a complete graph, A= n/(n - 1), and Theorem 2 reduces

to q > p > q vol(X)/2(n - 1)2. It is common in this case for X to contain all but

a few vertices; when IX| = n - 1, the lower bound is q/v 2. p', which did not exceed

q in any trial, also exhibits error decreasing with PER-

Table 3.1: Mean relative errors of each eigenvalue on single-commodity networks with

PER =10/n as a function of n.
n 100 1200 300
e (p') 0.14 0.13 0.12

e (,6) 0.54 0.58 0.60

e(p,6 0.11 0.12 0.12

Table 3.2: Mean relative errors of each eigenvalue on single-commodity, 100-vertex
networks as a function of PER-

PER 1/10 1/2 9/10

e (p") 0.14 0.085 0.084
e(p) 0.54 0.70 0.73

e (p 0.11 0.013 0.0016

3.7.2 Multiple commodities

We now examine the quality of the relaxation (3.15) as a function of the number

of commodities m and the number of vertices per commodity nc. In each case, 100

30-vertex flow networks were randomly sampled as in the previous example with

PER = 1/2, and mean relative error was computed for pt its semidefinite relaxation,

ji6, and the corresponding rounding approximation to q, 'j. The vertices associated

with each commodity were randomly assigned with uniform probability. Semidefinite

programs were solved using the convex optimization tool CVX [65] and solver SeDuMi

[117].

Tables 3.3 and 3.4 show that as both m and nc are increased, the tightness of

the eigenvalue and semidefinite bounds do not change significantly, but the ultimate

approximation error of 4 increases.



Table 3.3: Mean relative errors on five-commodity per node, 30-vertex networks as a

function of m.
m 4 8 12

e (q) 0.023 0.045 0.089
e ([AZ) 0.46 0.47 0.46

e (pAZ) 0.46 0.47 0.45

Table 3.4: Mean relative errors on 10-commodity, 30-vertex networks as a function of

n(.

nc 10 20 30

e(4) 0.066 0.12 0.19
e (pAZ) 0.46 0.42 0.39

e ([AZ) 0.47 0.43 0.40

3.8 Application: Stochastic flow networks

Probabilistic modeling provides a natural means for handling inherent uncertainty, yet

few approaches exist outside of Monte Carlo simulation for stochastic flow networks;

see [77, 104]. Of prime importance is feasibility: can a given network deliver the

supplies at the sources to sink demands, and, moreover, what is the probability it can

do so under stochastic conditions?

In this section we investigate the distribution of p when the vertex flows are

stochastic. Ideally, one would want the exact distribution of pz. If we approach the

problem using finite random matrix theory [48, 98], even in the case of deterministic

capacities we inevitably must find a diagonal matrix Fz associated with a given set of

eigenvalues. This is known as a multiplicative inverse eigenvalue problem, and must

be solved numerically, e.g. using a Newton's method based procedure [32]. Moreover,

a given set of eigenvalues can correspond to as many as n! diagonal matrices Fz [55],

and so, given the nature of the underlying problem, neither an analytical expression

or an efficient numerical procedure seem likely to exist for random flows, let alone

random capacities. We instead consider two approximate approaches: bounds using

the eigenvalue inequalities of Weyl, and a scaled approximation using perturbation

theory. Unfortunately, in all but contrived cases the bounds of this section are im-

practically loose; they are included here however for thoroughness.



3.8.1 Bounds using Weyl's theorem

When only the vertex flows are random, we can use Weyl's theorem [71] to develop

analytical expressions for the probability inequality

prob(t ;> 3) < prob(q > #) prob(p > aB), a = AGdz
2vol (V(G)) (.7

The bound follows from Theorem 1 and the fact that if events A and B both occupy

the same sample space and A -+ B, then prob(B) > prob(A). Assume that vertex z

conserves flow, and that the rest are drawn from the n - 1 dimensional multivariate

distribution prob(p); vertex z is typically referred to as the swing bus or slack node.

Let Lz and Pz be L and P each with row and column z removed.

The condition -Lz < -yPz -3 LZ, -y 2 0 is equivalent to the positive definiteness

of the matrices L2 + 7Pz and L2 - 7P2. We approximate this condition using the

following theorem by Weyl [71]:

Theorem 3. (Weyl) Let A and B be Hermitian matrices with eigenvalues a1 < ...

an and b1 < .-. < bn, and let c1 < - - - < cn be those of A + B. Then

ai-j+1 + b < ci, j=1,...,i, (3.18)

and

ci < ai+j + bs-,j = 0, ..., In -Z. (3.19)

Let B+ = LZ + -YE[P2] and B- = LZ - -yE[Pz], and let 6+ < ... < ;6+1 and

1- .- n _ -1 be their eigenvalues. Let P = Pz - E[PZ], and let 1 < ...

be its diagonal elements. From (3.18) we have

prob (pz 2 7) = prob B+ + 2- 0 0 nB~ - 7 0)

> prob 6+ + yminPi > 0 o - maxpi > 0)

prob ( -3± Kyp3 S1- . (3.20)



We bound prob (pZ > y) from above using (3.19). If B+ + -yP and B- - yP are

positive definite, then

0O5 min6,+ + yr , jn 1,...,n-1, (3.21)

and

0 < min 6- - yP, j =1,-.., n - 1, (3.22)

which are equivalent to

-y yp3 S9 . (3.23)

By relaxing (3.23), we can disregard the ordering of the Pj and obtain

prob (p > y) < prob (-o± <yp3 - . (3.24)

We can construct sharper upper bounds by imposing assumptions on the density

of p. Using the law of total probability, prob(p > y) is bounded above by

prob(pz ;> -y) < [ prob ( - _ . S 5 of G S , (3.25)
S \j-+i< y~~) ;ns

where S is a permutation of the indices 1, ... , n - 1. If the fi have overlapping sample

spaces, dependencies make (3.25) difficult to evaluate analytically. We consider a spe-

cial case in which (3.25) simplifies dramatically. Assume that the Pi can be organized

into groups such that all Pi in a particular group have the same distribution, and the

distributions different groups do not overlap. Let the index sets be T 1, ..., Tm, ordered

according to increasing sample spaces. Let Sk be the set of orderings for index set

Tk, and let the S E Sk be indexed Sk, I - 1, ... ,ITkl!. We can then rewrite (3.25) as

prob(pz > y) > Ji prob (u n -67-, si(I) 5J) (3.26)
k \SBSk jETk

Let R' be the set of all size m subsets of {1, ... , Tk J!}. Repeatedly applying the



identity prob(A U B) prob(A) + prob(B) - prob(A n B), we eventually obtain

prob(p > -y) < Z(-1)"± 1 E3prob - YP (3.27)
k m=1RR

3.8.2 Approximation using perturbation theory

We can approximate prob(pi > y) using standard eigenvalue perturbation theory

[122]. This formulation also allows us to consider uncertainty in graph structure, the

interpretation of which we discuss later in this subsection. We consider the reciprocal

eigensystem: we know that p' > y if the largest magnitude eigenvalue of (-yPZ, L') is

in the interval [-1, 1]. Let vi, ... , v_ 1 be the eigenvalues of (E[Pz], E[Lzj) ordered by

decreasing magnitude, and x1, ..., xn-1 be the corresponding eigenvectors normalized

about E[Lz]. Again let Pz =Pz - E[Pz] with diagonal elements Pi, i = 1, ..., n - 1.

Also let Lz = Lz - E[Lz] with elements li, i = 1, ... , n-1, j = 1, ... , n -1. If we regard

L and P to be respective perturbations to E[LZ] and E[PzJ, we have the following

approximation:

prob (pz y) prob (h1  X T + x[ (Pz + x, 1/x) , (3.28)

where t is can be any number from 1 and n - 1. Equation (3.28) approximates the

probability that the t largest magnitude eigenvalues remain in [- 1, 1]. When t = n- 1,

this can be an intractably high dimensional integral; however, noting that there are

often only a few large magnitude eigenvalues to a given pencil, a highly accurate,

easily computable approximation is obtained by setting t to a much smaller number.

Equation (3.28) involves a weighted sum of random variables. It is straightforward

to evaluate when each variable is Gaussian, but other types are not easily approached.

For example, one might wish to model thermal effects on line capacity in a power

grid using exponential random variables, or even line failures with Bernoulli random

variables. Unfortunately neither of these cases have analytical expressions. In Section

3.8.2 we focus our attention on Gaussian uncertainty exclusively in the supplies and



demands.

We note one apparently applicable distribution: the half-normal distribution,

which is one side of a zero mean Gaussian distribution. This may be a reasonable

approach to modeling stochastic capacity degradation, which results in exclusively

changes to line capacity. Weighted sums of half-normal random variables remain

half-normal, and hence admit convenient analytical expressions.

Estimating prob(q > -y)

The preceding constructions are unfortunately far from sharp enough to reliably es-

timate prob(q > -y). Theorem 1 suggests a method by which to construct better

estimates: since p' is bounded above and below by linear factors of q, assume that

prob(q > -y) has a shape similar to that of prob(p > -y). Let 0 = q/pz, where the

overbar indicates evaluation at mean values. We then can estimate prob(q > -y) with

prob(pz > -y) and the formulas of the previous section.

The accuracy of this approximation depends on how close the distribution of Pu is

to q and the accuracy of the perturbation. The former seems to degrade with growing

network size, and the perturbation, as is to be expected, degrades as variance grows.

Example: reliability assessment of a power system

As a potential application of perturbations to pf, we consider reliability analysis of

electric power systems. The probability a network flow approximation to a transmis-

sion system is feasible is a well-known quantification of reliability, and there have been

efforts toward incorporating such a measure into design methodologies [31]. However,

formulations are typically limited to analytical calculation of the probability load ex-

ceeds demand, without regard for network constraints, or rely on expensive Monte

Carlo simulation of load flow [20]. The analytical approximations of the previous

subsection offer an efficient circumvention of Monte Carlo simulation while retain-

ing information about network structure and capacity; specifically, if uncertainty is

Gaussian, we may use the analytical approximation (3.28) with the shift suggested

above as a proxy for Monte-Carlo simulation.



0.8-

0.6 -

0.4 --

/ P(qy)
0.2 - P(O z Y)

S -- - Perturbation approximation

0 '
0.8 1 1.2 1.4 1.6

Y

Figure 3-2: IEEE 118 bus test system feasibility pdf's. Increasing along the -Y-axis
implies 'higher' feasibility.

We apply our approximations to the IEEE 118 bus test system, a standard testbed

in electric power system design and analysis [2]. Loads and generation are assumed

to be at their maximum values, with the designated swing bus balancing flow. Edge

capacities are uniformly 500, and generation, load, and topology are as in [2].

Supplies and demands, which here represent generation and loads, are drawn

from a joint normal distribution with the following covariance structure. Weekly

data from [67] indicates that the standard deviation of the loads is approximately ten

percent, and so we set the standard deviation of each bus i to 0-u = ps/10, where pi is

the mean supply or demand at node i. The covariance between any two loads is zero,

as is that between any two generators. Since we expect generation to track load, we

set the covariance of a load bus i and a generator bus j to be o = pijpj/(1OOnL),

where nL is the number of load buses.

The resulting cumulative distributions are shown in Fig. 3-2. The 'exact' (1000

Monte Carlo trials) probabilities of feasibility prob(q > 1) and prob(Ofp > 1) are re-

spectively 0.85 and 0.86, and the probability estimated by the fifth-order perturbation

approximation is 0.86.



The point at which the curves in Fig. 3-2 cross one on the -y axis is the probability

the network will be infeasible. The shifted eigenvalue distrubution nearly overlaps the

true feasibility distribution, and the error between the perturbation approximation

and the true distribution is approximately one percent. This is a particularly accurate

instance, but unfortunately such performance cannot be guaranteed in general.

3.9 Summary

We have defined a class of Laplacian matrix pencils and a new cut parameter for

undirected, multicommodity flow networks. The parameter, which is a generalization

of the sparsest cut, bounds the smallest magnitude eigenvalue of each pencil via a

Cheeger-like inequality. The eigenvalue is used to formulate senidefinite relaxations,

the quality of which is assessed in computational examples.

There are a number of potential venues for further development. The most obvious

is the extension to directed flow networks; a Laplacian and Cheeger inequality exist

for irreversible Markov chains [34], but the formulation implicitly normalizes edge

weights, precluding an edge capacity interpretation. Better relaxation constraints,

which do not necessarily correspond to eigenvector orthogonality conditions, are likely

to exist. To this end, flow network versions of other spectral graph theory results,

e.g. Poincare and Sobolev inequalities [33,42], may be useful in devising and perhaps

bounding them. The distributions of p' and y under random sources and sinks

have many applications, for example an electric power grid with intermittent wind or

solar generation [123]; approximate formulations have been derived, but more reliable

estimates are necessary before practical applicability is attained.
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Chapter 4

Transmission system planning

4.1 Introduction

Static transmission system planning is a network design problem in which lines are

selected from a candidate set to meet certain physical requirements while minimizing

investment and operational costs [88,107]. Linearized or 'DC' power flow is a standard

simplification of AC power flow [124], which is usually too computationally intensive

a representation of electrical physics for usage in optimization; only recently has this

problem been approached in full [106]. For network design problems in which the

existence of a line may be a variable, even linearized power flow becomes nonlinear,

and furthermore, non-convex.

Current approaches to can be divided into two classes: metaheuristics [105] and

classical algorithms [5,107]. This work falls among the latter, the primary focus of

which is circumventing the non-convexity of DC transmission system planning. This

has traditionally been accomplished through linear relaxations, namely the so called

transportation and disjunctive models [107].

Relaxed solutions such as those from the hybrid and disjunctive models are of-

ten infeasible for the original problem, but can contain a significant portion of the

true optimal solution, thus reducing the size of the original problem, which may be

intractable when approached directly [107]. Furthermore, the distance to feasibility

is often slight, and thus the chance of obtaining an optimal or near optimal solution



through modification to a relaxed solution is often higher than when attempting to

solve the original problem, which may have many local minima. Later in this chapter

we elaborate on how a relaxed solution may be used to obtain feasible solutions within

a nonlinear programming approach.

We apply the lift-and-project relaxations for polynomial optimization problems

[85, 111] to transmission system planning. The approach is broadly applicable; we

employ it here with the intention of both formulating new models and illustrating

its potential for usage in power system optimization. First, we approach the DC

power flow case and obtain a hierarchy of linear models, which includes the hybrid

transportation [68] and disjunctive [21, 66,110,121] models, the latter of which we

make more flexible. The relaxation is then applied to the full AC case, yielding a

linear AC model which to our knowledge is the first of its kind.

The DC and AC models are tested on several standard examples from the trans-

mission system planning literature. The new DC models demonstrate improved ef-

ficiency, and the AC models compare well with existing nonlinear approaches while

retaining the efficiency of linear DC models. We also introduce a new benchmark test

case based on the all-electric ship [44], a prototypical micro-grid design application,

for which the disjunctive and transportation models are entirely unsuitable, as noted

above.

4.2 DC power flow

4.2.1 Network design

In the standard DC load flow network design problem, we are given the following

additional parameters: a line investment vector c, a vector of generation and demand

p, normalized susceptances b, and normalized flow limits f. Also given are the number

of lines present in the existing network, r/0, and the number of additional lines which

may be constructed, 7. Let F denote the set of buses, Qo the set of existing lines,

and Q the set of candidate lines. We follow the notational conventions that unless



otherwise specified, single subscripts denote members of F', double subscripts members

of , and i ~ j summation over Qo U Q.

(2.4) is incorporated into a network design framework by making the susceptances

b linear functions of the line quantities r$0 and q. The nonlinear DC load flow network

design problem is given by

NLDC min cij hj (4.1)

s.t. f 3 pi (4.2)

fj- bij (q'? + r7ij) (Oi - 0j) = 0 (1,)c Q0 U Q (4.3)

< 9.+ qjf (4.4)

0 < mij , _ ij E N (4.5)

where the variables 0 are bus angles, TI candidate lines, and f power flows. Constraints

(4.1), (4.2), (4.4), and (4.5) are standard flow network design constraints [95]. The

main difficulty in using the above formulation is the additional constraint (4.3): it is

bilinear and hence non-convex.

4.2.2 Linear models

We first reformulate NLDC in a way which, upon application of the relaxation of [111],

leads to a class of disjunctive models. Eliminate the variables f by substitution of

constraint (4.3), and rewrite NLDC

NLDCS min ci>Ci% (4.6)
0,77

SAt. >3 j (TI + )( -0 - (4.7)
jj 77-j (0J j) =

bj I0 - OI <_ f7i (i, j) E Qo (4.8)

b 6j - OB l friij (4.9)

0 < Thg S Wij, q E N (4.10)



(4.9) is required to preserve the equivalence of NLDCS and NLDC. If (4.8) alone was

enforced over all the lines, artificial constraints on angles would arise between buses

that were not directly connected.

We derive an additional constraint set which is implicit in (4.8), but leads to a

tighter relaxation. Consider a line (i, j) E Q, and let sig be a path connecting i and

j through Q0 . Summing constraint (4.8) along siJ and multiplying by bij gives

bij |0, - 0| I Mi (i, j) C Q. (4.11)

where MsI = bij E(k,l)Esj fkl/Xkl. Clearly (4.11) is sharpest when sij is the shortest

path through the graph induced by Q0 with edge weights fkl/:kl, (k, 1) E o, which

matches the result stated in [21]. If no path between the nodes i and j exists in Qo, sij

can be set to the longest path through the existing and candidate networks [21]. This

however is an NP-hard calculation that contributes little accuracy; Mi can instead

be set to some sufficiently large number, e.g. E(ijj)EQuOo ij/bij.

We now apply the relaxation to NLDCS with constraint (4.11). We develop a

second-order linearization by introducing the variable (ij = bjjrij(02 - 03), and then

constraining ( with (4.9) and products of (4.8), (4.10), and (4.11). For example, we

obtain constraint (4.17) by multiplying Mij - bij|Oi - Ojl from (4.11) with Weg - r/ij

from (4.10), and then substituting (j wherever bir 7ij(O - 0,) appears.

We thus have the following relaxation:

LDC min cijr/j (4.12)

s .> jj + bij 0 (O, - 0j) = i(4.13)

biji|6 - Oil fi (i, j) E Q0 (4.14)

0 < r/hi < 77j (4.15)

( <j I min{Mij, fj}r/ij (4.16)

(ij - bijgj (0, - 0j) I < Mi (Oik - r/ij) (4.17)

0 rij < Wii, r/ij E N (4.18)



For comparison, the original disjunctive model, which only admits a binary for-

mulation, is

DM min cj k9  (4.19)
i-j k

s.t. b j( -) + (= (4.20)
~-i k

b 6I O - OjI fg (i,j) E Q0  (4.21)

< kg9 (4.22)

- bt (0, -)| Mj (1 - jn) (4.23)

kE {0, 1} k =1, .,p (4.24)

DM and LDC are quite similar; indeed LDC can be straightforwardly transformed

to a binary problem which is identical to DM save constraint (4.22), which is looser

than (4.16), its counterpart in LDC. Moreover, line quanta may be aggregated in any

fashion, so that a particular discrete variable may represent any number of candidate

lines between one and gg. From this perspective, DM and LDC represent opposing

ends of a spectrum, which in general becomes less accurate and more efficient as one

moves from -l binary variables to a single integer variable per line.

We remark that if we apply the substitution (j = b1 j (O6 -6O) to NLDCS without

forming any constraint products, the flows are only constrained by line capacities, and

we obtain a hybrid model [107] in which flows in existing lines are governed by DC

power flow, and in new lines by the network flow [4, 76].

4.3 AC power flow

There has been little work to date on transmission system planning using AC power

flow. A notable recent approach is [106], in which a full AC model is solved by

an interior point method in tandem with a constructive heuristic algorithm. We

now derive linear models for AC transmission system planning which are similar in

structure and size to the disjunctive models of the previous section. Solutions can be



used in the same fashion as those from linear DC models, and hence the new models

mark a significant improvement in the overall design procedure via removal of the DC

approximation.

Let s, v, and y respectively denote complex powers, voltages and admittances, and

let p, y, q, and q respectively be lower and upper real and reactive power limits, e.g.

if bus i is a purely real load, p and P are both equal to the load value, and q = 0.

The remaining notation is identical to the previous section. The basic AC power flow

model is then given by

NLAC min cjijij (4.25)

SAt. s y = (77 + 77ij) (v)ily* - vi,*y -) (4.26)

p Re sij < Pi (4.27)

q< Im sij _< qj (4.28)

v , vil T7i (4.29)

si I| : (r/fyj + 77ij) 3ij (i, j) (E Q0 U Q (4.30)

0 < r/7y < Tjj, r/7j E N (4.31)

Note that although line variables and parameters are non-directional, i.e. r/i% = r/j,

3ij = Jj and so on, sending and receiving power flows sij and sji are not.

4.3.1 Linear models

We first must rewrite NLAC in terms of real, polynomial constraints so we may begin

to build a relaxation. Let y = g + jb, v = w + jx, s = p + jq, and let bs = b + bs",

where bsA is the line shunt susceptance. NLAC is then given by

NLACS min cij Tjj (4.32)
r),p,q,w,x,

s.t. p j = (r/0 + r 1 ) (bij(wixj - wjxi)

-9j(xzjx + wiwj) + gij(W2 + XI)) (4.33)



qij (Vj + r7i) (q2 3 (wixj - wj Xj)

+bijxix + wiw?)) - b ( + X 2)) (4.34)

P. < Pij < Pi (4.35)

9. < qjj < 1i (4.36)

E 2 < W2 +X 2 < ;u (4.37)

p 3+ q2j < 1i 7j i

(i) EQo U Q (4.38)

0 <; i i 7J i , E N (4.39)

Constraint (4.38) represents a slight obstacle: although it can be expressed poly-

nomially, fourth order products of the original variables are involved, rendering the

size of the resulting relaxation impractically large. We instead approximate it so that

p and q are involved linearly. A few options are apparent; for example, introduce the

constants TI and r 2 , and replace (4.38) with

I q ( +1+) 2 (4.40)

Notice, for example, that by setting r1 and T
2 to one, we obtain a more conservative

constraint than (4.38), which is no longer a relaxation, while by setting T 2 to zero,

we relax (4.38) by only limiting the flow of active power. Although we have opted to

approximate (4.38) with a single constraint, any piecewise linear approximation can

be accommodated.

Define the new variables:

2 +2

pij = bj(wix, - wxi) - gij(xixj + wiw ) + gj(W2 + x2)

Vi. = 9g(wixj - w ) + bi(xixj + wiw ) - b (w2 + X )



ij = i(bi(wix - wxi) - gi(xix + wiw) + gij(wi + xi))

#j =ris (gij(wix' - wxi) -+ bi(xixj + wiwi) -bi(w + x 2))

Certain symmetries are present in these variables, which we use to form additional

constraints. Before showing them, we first give a brief example illustrating why

they exist; suppose yij is substituted for the product xjxj; the implicit constraint

yij = ygj follows from the fact that xjxj = x3 xi. The following constraints are

similarly formed by taking linear combinations of (4.33) and (4.34) and performing

the above substitutions to relate new variables from i to j and j to i:

- - l'Z) = (g?. + bijb"3) (cai - aj)
gij ( pij - pji ) - bij (vij - i ) = j g+bij -a

bij (,ij + ij) + qi (vii + vji) =(g bi - g b') (ai + aj )

gij ($ij - $ji) - bij (#4ij - ji)= (g'1 + bijbs ) (6ij - oSj)

bij ($1j + $ji) + gij (@$ij + V'ji) = (gijbij - gijb') (6ij - ogi)

Let 1 denote the set on which the variables yi, v, 0, $, CV, , and 6 satisfy these

equalities. Forming constraints containing up to second-order terms and substituting

the new variables, we have

LAC min > cirji (4.41)

s.t. {p, v, $, z, , E @(4.42)

Pi> r 7wpig + $iJ 5p (4.43)
3

q z 4 vtg + <i3 < qj (4.44)
3

)2 < < T)
_i - a- U (4.45)

2 r/ij < o5j < i ij (4.46)

v ( rij) ih a - oij Uj ( - r (4.47)

T§ pijj| + Tiij I | < _ij (i, j) E Qo (4.48)



- # + K r v _ -V Ig < - (mj -r)

' 1 , r/g E N

(4.49)

(i, j) E Qo (4.50)

(4.51)

LAC is quite similar to LDC and the disjunctive model. p and # respectively

represent active power flows in the existing and new networks, and yi and # similarly

represent reactive power flows. Constraint (4.50) is directly analogous to (4.17);

unfortunately, it cannot be extended to lines not in the preexisting network, because

(4.48) does not reduce to an expression with only i and j indices when summed along

paths from i to j through Qo.

As with the disjunctive model, we are also able to formulate a binary

which is less efficient but more accurate:

version

LACB min c r
'-'j k

s.t. rp + < p

k

v1 1" + < i
k

v <a < U

2 r < 6k < -u2 k

v (1 rk) < a - o6 <; U2 (1 -Tr/)

'K 1 j - T "i k i
r # I + rT.JO < 9r/ Ik

rj p ) - '|+ 3 - i j s 1 /)

7i E 0, 1} k =1,.,kg

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(i, j) E Qo (4.60)

(4.61)

Note that LAC has roughly two to four times the number of constraints in LDC,

depending on the choice of ri and r2 ; essentially, any system LDC or the hybrid

model is applicable to is within the scope of LAC as well. The same parity exists for

DM and LACB.

r, |I| +

0 < r/g <



4.3.2 Semidefinite and second-order cone models

In [89], the standard constraints of AC optimal power flow are convexified via a

semidefinite relaxation in the style of [60], as described in detail in Section 2.3. To

summarize, the basic approach is to define a column vector X of the real and imag-

inary bus voltages w and x, and then substitute the symmetric matrix W for XXT

subject to the constraint rank(W) = 1 and W - 0, where - denotes matrix semidef-

initeness. Dropping the rank constraint yields the relaxation.

A dual formulation of the power flow equations is used in [89] to eliminate unnec-

essary variables; it is more convenient here to remain with the primal variables. The

size of the positive semidefinite constraint W > 0 can be alleviated by sparsifying W

and instead using the relaxed condition

W,i WJ Wi,i+n Wi,j+n

Wi,i Wi~J Wi,i+n Wj,j+n 0(-23,2 A) ~ +f ~ 0 (4.62)

Wi+n,i Wi+n,j Wi+n,i+n Wi+nJ+n

W+n,i W +n,j Wj+n,i+n WJ+n,j+n

for each line (i,j). We denote the above submatrix i 3W, and substitute the 4 x 4

matrix A's for each instance of the product rijh-W. In addition to symmetry, A'i

is implicitly constrained so that At = A3,7 At] Al- , A3 - Aj, A A =

A-' A-"~ and A']- Alt

We then have the following mixed-integer semidefinite program:

SDAC min cij (4.63)
%P,9,4#,Win (i,j)EOUQ

st. W >- 0 or ''W S 0 (4.64)

0 - Aj - i ''W (4.65)



pij = g1i(Wi,i + Wi+nan) + bij(Wi,j+n - Wjan)

- g{jy(W, + Wi+n,j+n) (4.66)

q = -b'I ( + Wi+nut+n1) + gtj (Wi.j+n - Vj i+i)

+ b (Wij + Wi+n,an) (4.67)

-i .1  \ 33~, 14 2

gi(A + A() (4.68)

1+ A'3) + g31j(A 14 - A2'

bij (An + A") (4.69)

p<T/gPu + #i < i (4.70)

ij7 qij + #iyj :! gj (4.71)3

2. 2z7~q2 ±Vj T (4.71)
Li < W,i + Wi+nin < U (4.72)

<; + <; (4.73)

Vr l A + di < 2 g (4.74)

-' ) < 7qij (W,i + Wi+niAn)

- A". - An < ( - Tl) (4.75)

24 (ins - r7ij) < 7g (Wjj + Wan,jn)

- A2 - A'4 < j (i - Tli) (4.76)

2 + g2. < (,E (4.77)

2 + v2 < T,2 g (4.78)

(% p - 4 ) 2 + (%jgij- ,,) 2 < (ij Nig (i,j) E Qo (4.79)

0 < q< 2E N (4.80)

Using SDAC as a starting point, we can straightforwardly construct a second-

order cone relaxation (SOCAC) via the fact that positivity of all two by two principal

minors is a necessary condition for positive semidefiniteness [82]. The relaxation is

thus obtained by replacing W - 0 (or OW >- 0) and igAi & OW with the second-



order cone constraints

W+ni+t 2 0

A -2,> 0

w 2 < wi,iWwy
W nWziWj+n'.j+n1

Wz?+ny- Wi+n,i+nWj,j

W n,+n -<W+n,i+nW+n,j+n

12

Az 
2

14

23

'Ai.) A Z'.
11 22

A23 A" '11 44

AijAzj
22 33

2
(0i~jWi, - A12) 2 (7i, - A1) (0ujW,3 - A2%)

(g isn- AN) 2  (p Wi - Aij) (g2 W3±js±n - AN)

- Aj )2 < ' -AA 2)j(ij Wi+n,j -A) 2 - ( Wj - Ai ) (7j Wi+n,i+n - A )

(%j Wi+nj+n - AiNj) 2 ( jj Wi+n,i+n - 'Ai) (44yns~ S

for each line (i, J). As with the linear models, it is straightforward to formulate more

accurate but less efficient binary versions of both models.

4.4 Related problems of interest

Thus far we have focused on general AC systems. In this section we consider two

specific variants arising from the all-electric ship and microgrids in general.



4.4.1 Direct current systems

DC distribution systems have received consideration for the electric ship [35], indus-

trial applications [12], and microgrids [73], and give rise to an analogous transmission

planning problem; however, in a DC system, assuming prescribed bus voltages v,

the basic model is entirely linear without modification. Although it is straightfor-

ward, we include it here for completeness. Let f be a line current, and let r be

line resistance. For conciseness we assume current generation and loading, but note

that buses with prescribed power generation or consumption can be accommodated

without sacrificing linearity. The DC distribution design model is given by

DC min c (4.81)

s.t. f p (4.82)

r f - (ql -+ rkj)(Vi - Vo) = 0 (4.83)

f .( + qg)fg (4.84)

0 < 7 , 7jU E N (4.85)

4.4.2 Multiple scenarios

There are a number of extensions to transmission system planning which contain the

basic formulation. In this section we discuss examples in the context of electric ship,

to highlight that the developments in this chapter fit easily within such extensions.

Unlike a terrestrial system, a ship may encounter multiple highly different sets of

loads, each occurring independently, for example traveling at high speed and combat.

Varying structural parameters also need to be taken into consideration in addressing

failures through contingency analysis. A simple approach would be to simply optimize

with each load bus consuming the maximum power over all scenarios; this however,

may lead to highly conservative designs.

We can instead produce designs that are not overly conservative by creating con-

straints and variables for each scenario or contingency, and optimizing the same ob-



jective. Suppose we are given ns scenarios, and for each scenario k = 1, ... , ns we

have a set of parameters indicated by the superscript k. Using a separate set of vari-

ables for each set of power levels, we have the following multiple scenario transmission

planning problem:

MSAC min r/I

s.t. s = {r + r (vkvk* k* - v k

pk < Re s k< pk Vk

qk<Im s k q Vk

vk< v v< Vk

k < (r/ 0 + ri ) S k0 j - i , ri

0Oj < TIij 77j EI

(i,j) EQo U Q, Vk

From here, relaxations may be developed by identically applying the procedures

of the previous section.

4.5 Design framework

As stated, an optimal solution to a relaxed problem is unlikely to be feasible for

the original problem. In this section, we express precisely our comment from the

Introduction to this chapter on making use of relaxed solutions. Suppose that rf is a

solution to the relaxation LAC, and we are interested in a good feasible solution to

NLAC, since optimality is too much to ask for most realistically sized problems.

We then suggest reinforcing r via the following nonlinear model, which can be

solved using any nonlinear approach, e.g. branch and bound with sequential quadratic



programming [18].

NLACR min c gr (4.86)

s.t. s= (r1 + r + nij) (voyl - vivy) (4.87)

p Re s Ai (4.88)

< Im sjj < qi (4.89)

v% |v i (4.90)

Sij (r+ +I <) 1 (i, j) E Q0 U Q (4.91)

0 < r/0 < _ , r/ij EN (4.92)

The solution r + r*, where T1* is feasible for the above, is clearly feasible for

NLAC. If r contains a substantial part of the true optimal solution, then the cost of

NLACR landing in a local minimum is likely to be far less severe than with NLAC.

Furthermore, if line limits are not too much larger than the feasible solution, the

computational cost of solving NLACR will be considerably less than that of solving

NLAC due to the reduction in size of the number of integer solutions.

4.6 Computational results

In this section we compare the performance of our models to existing approaches. The

resulting mixed integer linear and second-order cone programs were solved using the

modeling language AMPL [54] and solver CPLEX [1] on a desktop computer represen-

tative of current standards. Objectives are given in terms of relative (unitless) values

to facilitate comparison. Mixed integer semidefinite programs were enumeratively

modeled in CVX [65] and solved with SeDuMi [117].



4.6.1 DC models

The main advantage in using LDC over DM is the retention of constraint (4.17)

without the introduction a large number of binary variables. Of course, this constraint

only has influence when iij is not too much larger than the optimal rij. We compare

the models on the 46-bus, 79-line Brazilian system of [68,103] and the 24-bus, 41-line

IEEE reliability test system [67,96], respectively shown in Figs. 4-1 and 4-2. In the

original Brazilian system, line additions are unlimited, effectively nullifying constraint

(4.17) and reducing LDC to the hybrid model of [107]. We modify the Brazil system

so as to observe the differences in using LDC by setting Yij = 2 for all (i, j) E Q.

We give the objective value and running time of DM and LDC, as well as the

hybrid model of [107] in Table 4.1. In both cases, LDC achieves an objective between

the hybrid model and DM, while requiring twice the time of the hybrid model and

substantially less time than DM. In practical terms, LDC has similar efficiency to

but greater accuracy than the hybrid model, and thus, like the hybrid model, can be

applied to much larger problems than the disjunctive model.

Table 4.1: Efficiency of DC models
Model DM LDC Hybrid

Obj. Time Obj. Time Obj. Time
IEEE RTS 4.01 1.25 3.61 0.62 3.45 0.35
Brazilian 1.63 10.36 1.45 1.61 1.41 0.71

4.6.2 Linear AC models

We demonstrate LAC on two of the example systems from [106], which are AC versions

of the Garver's six bus, fifteen-candidate line system [57], shown in Fig. 4-3 and the

Brazilian test system of the previous section. Tables 4.2, and 4.3 show the objective

value and solution reported for the nonlinear approach in [106] (NL) and obtained

by the linear model LAC with T2 = 1 and r 2 = 0 for all (i, j) E Q. Problem data,

including preexisting networks Q0, can be found in [106]. Running times in seconds

are reported for each linear model as well. In the 'line additions' section of each table,



Figure 4-1: 46-bus Brazilian system (from [68]). Dashed lines represent candidate ad-
ditions without existing lines, and solid lines existing lines (which are also candidates
for additions).
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Figure 4-2: 24-bus IEEE reliability test system (from [96])
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the left column indicates which line a given row corresponds to, and the other columns

how many additions to that line were made by each algorithm; lines not listed were

changed by none of the algorithms. LACB performed identically to LAC on these

examples, and so is not shown. Note that we do not consider reactive power source

allocation, and so our solutions for the latter two examples correspond to slightly

different scenarios than those in [106]; we include the solutions for thoroughness.

Table 4.2: Garver's six bus system
Model NL [106] LAC, T2 = 1 LAC, 'r 2 = 0
Obj. 260 190 160
Time - 0.18 0.13

Line additions with no preexisting network
1-5 1 1 0
2 - 3 1 2 0
2-6 3 1 2
3-5 2 2 2
4-6 3 2 2

Table 4.3: Brazilian system
Model NL [106] LAC, r 2 = 1 LAC, r2 = 0
Obj. 10.258 10.800 8.254
Time - 7.4 3.3

Line additions
5-6 2 2 0
5-11 0 0 2
6-46 1 1 0
11-46 0 0 1
12-14 0 1 0
14-26 0 1 0
18- 19 0 0 1
19-25 1 0 0
20-21 1 2 2
20-23 0 2 1
24-25 1 0 0
28-31 0 1 1
31-32 0 1 1
42-43 1 2 2
42-44 1 0 0



Figure 4-3: Candidate with existing networks (solid) and candidate without existing
networks (dashed) in Garver's six bus system (from [107])



On the six bus system with Qo = 0 (Table 4.2), LAC with r2 = 1 produces a

feasible solution that has a lower objective than that reported in [106], highlighting

its immediate applicability. WithT' = 0 an infeasible, relaxed solution is found in

less time. A number of other feasible solutions with objectives between 200 and 260

are easily found using the infeasible solution by simply enumerating over the set of

single additions; we do not list them because none are superior to that found with

T2=1.

On the Brazilian system, both variants found solutions close to that given in [106]:

by setting r2 = 1, a more conservative solution is obtained, which can in fact have a

higher objective than the nonlinear solutions, whereas setting r2 = 0 yields relaxed

solutions in considerably less time. Note that these results also confirm that a certain

measure of discretion must be applied when interpreting relaxed solutions: some of

the obtained solutions are likely to be infeasible, and would require reinforcement

before being implementable. This point is revisited in later sections.

4.6.3 Nonlinear AC models

In this section we test SDAC and SOCAC on the six bus example of [106] with

preexisting lines. Also included is LAC, with the following piecewise linear flow

limits:

Kpij I (j + 119.) i +(4.93)

pij| + Iqij| I 2 (i + n') 9ij.

Tables 4.4 show the objective value and solution reported for the nonlinear ap-

proach in [106] (NL) and obtained by the linear (LAC), second-order cone (SOCAC),

and semidefinite (SDAC) models. LAC and SOCAC each found solutions with the

same objective; SOCAC, however, found three, whereas LAC found six, which in-

dicates that SOCAC eliminated more low quality solutions than LAC. SDAC found

three solutions with a higher objective than the other models. The bottom portion

of Table 4.4 shows a single solution obtained by each model.

We note that the capacity constraint (4.38) is captured exactly in SOCAC and



Table 4.4: Garver's six bus system
Model NL [106] LAC SOCAC SDAC

No. solutions - 6 3 3
Obj. 160 80 80 100

Line additions to a preexisting network
2-6 2 2 2 1
3-5 2 1 1 2
4-6 2 0 0 1

SDAC, but can only be approximated within LAC. Thus, in this case, LAC corre-

sponds to a looser nominal constraint set, putting it on slightly weaker footing than

SOCAC and SDAC.

4.6.4 Shipboard power system

Shipboard systems have much shorter lines than terrestrial systems, and can have

significant amounts of reactive power consumption, invalidating the assumptions of

DC power flow and hence necessitating the use of an AC model. In this section

we use LAC to optimize the a power system abstracted from a notional shipboard

distribution system. Note that our intent is not to describe a specific design for the

electric ship, but to solve an abstraction representative of its scale and heterogeneity,

which can serve as a foundation for more detailed modeling.

Shipboard distribution system

We apply LAC to a 19-bus, 46-candidate line example which was abstracted from a

notional shipboard power system [22]. Tables 4.5 and 4.6 contain all relevant problem

data. Reactive power limits are assumed to be one tenth of real power limits (as

in [106]), reactance and resistance are both set to length over line capacity, line costs

to length times capacity, and 71 to two for all lines. The initial layout, r/0, encodes the

power converter modules' (PCM) ring-bus arrangement. There are varying voltages

levels throughout the ship, and so to maintain the simplicity of this example voltage

limits are not enforced in this example. The flow limit approximation (4.93) was

again used here.



The solution was obtained in 1.0 seconds on a standard laptop. Table 4.7 and

Fig. 4-4 show which lines were selected (including the base design). Inspection shows

that large loads are connected directly to large generators, as expected. Non-intuitive

connections, or lack of connection elsewhere are generally due to the fact that the

z-distances are not evident in the figure, and that certain connections were simply

not part of the allowable set in Table 4.5.

Table 4.5: Line data

Line Length (in) Is (MW) IO q Line Length (m) Is (MW) I q0
1-4
1 - 5
1 - 9
1 - 10

1 - 14

1 - 15

1 - 16

1 - 17

2 - 4
2- 5
2- 9

2 - 10

2 - 14

2 - 15

2 - 16

2 - 17

3-4
3- 5
4- 5
4- 6
4- 7
4-9
5- 6
5- 7
5 - 10

5 - 15

23.4
14.9
19.6
43.3
55.5
75.6
37.6
13.5
13.7
24.6
20.9
53

57.4
85.3
47.3
14.8
17

21.3
38.3
50.3
81.7
27.8
29.6
63.4
28.4
61.9

20.3
20.3
20.3
20.3

20.06
20.06

40
40
3.3
3.3
3.3
3.3

3.06
3.06

23
23
0.6
0.6
0.6

20.3
3.3
0.6

20.3
3.3
0.6

0.36

6- 9
6 - 10

6 - 14

6 - 15

6 - 16

6 - 17

7- 9
7 - 10

7 - 14

7 - 15

7 - 16

7 - 17

8- 9
8 - 10

9 - 14

11 - 14

11 - 15

12 - 14

12 - 15

13 - 14

13 - 15

14 - 15

16 - 18
16 - 19

17 - 18

17 - 19

27.5
16.4
25.6
48.7
10.7
31.2
58.9
35

16.2
17.3
35.5
62.6
21

22.9
42.7
14.4
19.1
43.1
24.6
39.5
32.8
33.5
62.1
70.1
41.8
33.8

20.3
20.3

20.06
20.06

40
40
3.3
3.3

3.06
3.06
23
23
0.6
0.6

0.36
0.12
0.12
0.12
0.12
0.12
0.12
0.12
21.5
21.5
21.5
21.5

Multiple scenarios

We now give a brief example illustrating the application of Section 4.4.2 to the ship-

board example, now with two sets of demands loosely representing turning left and
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Figure 4-4: The existing network for the shipboard example, r0, on the left, and
the solution with existing network on the right. Buses are arranged geographically
according to x and y coordinates given in Table 4.5 (the aspect ratio has been modified
to aid viewing), with squares denoting loads and circles generation. Note that Buses
17 and 18 are not connected to Bus 3.



Table 4.6: Bus real power limits and locations
Bus p (kW) P (kW) x (in) y (in) z (in)

1: fwd. mn. gen. 0 35000 18.0 2.1 5.8
2: fwd. aux. gen. 0 3500 23.5 -2.1 5.8
3: PCM 2a -500 -500 22.1 0 5.6
4: PCM la -500 -500 33.8 -2.7 3
5: PCM la -500 -500 10.4 7.0 8.2
6: aft mn. gen. 0 35000 -10.4 0.6 5.8
7: aft aux. gen. 0 3500 -43.0 -0.6 5.8
8: PCM 2a -500 -500 -4.7 0 5.6
9: PCM la -500 -500 8.5 -5.2 3
10: PCM la -500 -500 -18 7 8.2
11: PCM 2a -100 -100 -40.8 0 5.6
12: port rud. -50 -50 -68 4.1 3.0
13: stbd. rud. -50 -50 -68 -4.1 3
14: PCM la -100 -100 -30.8 -1.8 3
15: PCM la -100 -100 -50.9 6.4 8.2
16: port motor -37000 -37000 -14.9 4 3
17: stbd. motor -37000 -37000 13.4 -4 3
18: port rdr. -2300 -2300 30 4.2 20
19: stbd. rdr. -2300 -2300 30 -4.2 20

Table 4.7:
Line
1-5
1- 17

2-5
3-4

6- 16

7- 15

8-9
9- 14

11- 14

12- 15

13- 15

17- 18

17- 19

LAC solution
Additions

1
1
1
2
1
1
1
2
1
1
1
1
1

right via asymmetric propulsion. The power specifications, which differ from the first

example only in the last four buses, are given in kW in Table 4.8. The remaining

parameters are determined as in the first shipboard example.

Table 4.9 show the solution given by LAC as adapted to the multiple scenario



Table 4.8: Bus real power limits for two scenarios
Bus P P P, P T)2

16: port motor -37000 -37000 -1000 -1000
17: stbd. motor -1000 -1000 -37000 -37000
18: port rdr. 0 0 -2300 -2300
19: stbd. rdr. -2300 -2300 0 0

formulation MSAC. Table 4.9 and Fig. 4-5 show the solutions obtained for each

individual scenario, the result of simply overlaying the separate solutions (taking the

maximum of each solution over all lines), and lastly the solutions given by the multiple

scenario formulation. Note that because no scenario fully utilizes generation capacity,

the generator at bus seven is unused.

Table 4.9: LAC solution for two scenarios
Line Scenario 1 Scenario 2 Overlayed Together
1-5 0 1 1 1

1- 17 0 1 1 1
2 - 17 1 0 1 0
2-4 0 1 1 1
3-4 1 1 1 1
6-16 1 1 2 1
7-10 1 0 1 0
8-9 0 1 1 1
8-10 1 0 1 0
11-14 2 2 2 2
11-15 2 2 2 2
12-15 1 1 1 1
13-14 1 1 1 1
14-15 1 1 1 1
17-18 0 1 1 1
17-19 1 0 1 1

4.6.5 Interpretation of results

In Section 4.5, the immediate next step to finding a relaxed solution is posed. We now

discuss its tractability in light of this section's numerical examples. The performance

of LAC on the six-bus system demonstrates the immediate gains from using a relax-

ation instead of a nonlinear approach at the outset: an objective of 110 is obtained
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by simply adding a single line to the solution in Table 4.2, a substantial improvement

over the nonlinear heuristic's solution, which has an objective value of 160. The ob-

jective improvement further evidences the safeguard from bad local minima provided

by using a relaxed solution as input data.

In the absence of an initial solution (relaxed or otherwise), NLACR represents

the transmission system planning problem in full. The reinforcement of the relaxed

solution is an application of NLACR, and illustrates the simplification enabled by

relaxations: the addition could be identified by inspection, or could have easily been

found through a brute force approach over a smaller number of discrete variables,

reduced by the relaxed solution. In a larger problem, enumeration will likely still be

too expensive, but we can similarly expect nonlinear branch and bound approaches

to become more effective.

4.7 Summary

Using lift-and-project-based mixed-integer conic relaxations, we obtain mild improve-

ments over existing linear DC models, and formulate the first conic AC models, which

compare well with the more expensive nonlinear approach of [106]. As an alterna-

tive approach, the AC model substantially simplifies transmission system design by

circumventing DC approximations.

There are multiple venues for future work in this context. One is the development

of a general purpose software tool along the lines of the Gloptipoly [69] semidefinite

relaxation suite, but which automatically generates linear relaxations of a specified

order and calls linear rather than semidefinite solvers. Within power system design

and operation there is an abundance of optimization problems complicated by low-

order polynomial nonlinearities arising from electrical physics. The scale and often

discrete nature of these problems calls for mixed integer linear and, pending further

advancement, conic programming approaches. Complementary to the application of

relaxations is the systematic development of procedures to augment relaxed solu-

tions, e.g. for solving the nonconvex, mixed integer nonlinear program in Section



4.5. Clearly there are a plethora of approaches to such a problem, and it is unlikely

that a single, comprehensively superior one exists for a large, NP-hard problem like

transmission planning; yet, a strong pairing will strengthen the applicability of ei-

ther approach by simultaneously addressing the infeasibility of relaxations and the

scalability problems of basic formulations.
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Chapter 5

Distribution system

reconfiguration

5.1 Introduction

Distribution system reconfiguration entails choosing the combination of open and

closed switches which optimizes certain performance criteria while maintaining a ra-

dial network topology [13,29]. We develop new mixed integer quadratic (QP) [19],

quadratically constrained (QCP), and second-order cone programming (SOCP) [93]

formulations. The new formulations are accurate and easily solved to optimality us-

ing commercial software, enabling reconfiguration to be performed with higher or

even real-time frequency. Such capability will be fundamental to minimizing losses

and maintaining power quality modern distribution systems facing highly variable

loads, e.g. from electric vehicles. A second application venue is the all-electric ship,

for which quality of service, e.g. maintaining voltage levels, has been identified as

a central objective [43). The formulations, implicit in which are new load flow ex-

pressions for radial networks, extend beyond reconfiguration to many radial network

optimization problems, such as sizing and location of capacitors [14] and distributed

generation [27].



5.2 The DistFlow equations

We will make extensive use of the DistFlow equations for radial AC networks [13].

Let pij and qij denote the real and reactive powers at bus i going to j, vi voltage

magnitude, and pL and qf real and reactive loads at bus i. Let V be the set of buses,

E be the set of lines, and rij and xij be line resistance and reactance. Unless other-

wise specified, single-subscript constraints are over all i in V, and double-subscripted

constraints are over all (i, J) in E. The DistFlow equations are given by

p + 2

Pijk = pji - rij pL (5.1)

k:(i,k)EE 

2+ q )
( qik = qji - xij V 2 qj (5.2)

k: :(i, k) c- E J

vi = V2 - 2 (rig pji + xijqji) + (r2y + X v. 7 7 (5.3)

5.3 Quadratic programming

In this section we use the simplified DistFlow equations [13], which are obtained by

dropping all quadratic terms and (5.3). Let Es be the subset of E with switches, VF

be the subset of V which are feeders, pF and qf, i E VF, be real and reactive powers

from the feeders, and M be a sufficiently large disjunctive parameter. The following

is a mixed integer QP for loss minimization [19].

min ( rz rjj(p + qi) (5.4)
P,q,y,z E

(i~j)

St. pg - pi= V/V (5.5)
j:(i,j)EE

3 ji -qij = Ci V/VF (5.6)
j:(ij)EE

>3 FS pij = p i t V F (5.7)
J: (ij)CE

q ij = qi iF V F (5.8)EE
j: (2,j )E E



0 < pzj < Mzjj (5.9)

0 < qij < Mzij (5.10)

zU > 0 (5.11)

Zif = 0 f E VF (5.12)

zj + zi= 1 (i, j) E E\ES (5.13)

zj + Zi = Yij (i, j) Es (5.14)

zgi = 1 (iE V\VF (5.15)
j:(ij)EE

Yj E {0, 1} (i, j) E ES (5.16)

The radiality constraints are similar to those of [26] and [81]. Two variables zij

and zji are associated with each line designating which direction, if any, flow may

travel. With each switched line is associated a single binary variable yij, which is

zero if the switch is open and one if closed. We must now show that this scheme

always results in a radial configuration.

Lemma 3. Any feasible z must be zeros and ones, and for each feeder it describes

the edges of an unweighted, directed tree graph with a root node (arborescence).

Proof. Assume y is fixed, and let EY = {(i, j) E Es : yij 1} U E\E'. Consider a

path through EY beginning at a feeder, which we label bus zero. For any (0, i) E EY,

zoi = 1, and, by (5.15), zij = 1 for any j c V\{0}; we see by induction along the

path that any z on a path from the feeder must be oriented such that it is zero

going 'in' and one 'out', and therefore no two paths originating at a feeder can meet

(forming a loop if they are from the same feeder). If a loop is formed which does not

contain a feeder, its buses are not receiving any flow, and (5.5) and (5.6) cannot be

satisfied. We conclude that z must describe an arborescence for each feeder; to do

so, EY must itself be composed of trees, and hence any feasible y results in a radial

configuration. E



5.4 Quadratically constrained programming

If we extend our framework to QCP, we enhance our modeling capability in three

ways. First, line flow limits can be expressed p 2 + q < S2 , where S denotes line

capacity; these are new constraints. Second, recognizing that the equalities in (5.5)

and (5.6) are identical to requiring that the flow into a bus be greater than the

load plus the outgoing flow, losses may be approximated within flow conservation by

replacing (5.5) and (5.6) with

pji - pij - rij (p2 + q i) ;> p (5.17)
j:(ij) E E

qji - qij - xij (p2 + q 2 ) > qf (5.18)
j:(i,j)EE

Then, with losses accounted for in flow conservation, the sum of the feeder flows

EyVF p may be equivalently (and more efficiently) used as a loss reduction objec-

tive. Third, the load balancing formulation of [29] is accommodated by adding the

constraint py + q2 
2 S?.t and minimizing the objective t.

5.5 Second-order cone programming

SOCP [93] is a polynomial-time generalization of convex QCP. Its mixed integer

counterpart is an active area of research [46, 120], and is currently handled by some

commercial solvers. We derive an SOCP approximation of the DistFlow equations

in which only the last term in (5.3) is dropped. The approximation is obtained by

replacing (5.17) and (5.18) with the following constraints:

p =pi - pij (5.19)
j:(ij) C E

-q + q5 i - qj (5.20)
j:(ij) C E

V? < o + M (1 - zji) (5.21)

- ; > v - M (1 - zji) (5.22)



rij (p2. + q?.) < (5.23)

Xij (p~ i- +q 2 ) < i) q2 (5.24)

vi < - 2 (ri jpji + xijqji) + M (1 - z i) (5.25)

i> - 2 (Tijpji + xijqji) - M (1 zji) (5.26)

=1 pu i (5.27)

We are again using disjunctive constraints in (5.21), (5.22), (5.25), and (5.26), which

are only 'active' when zji = 1. The purpose of the extra variables Pi and qi is to put

the constraints into an SOCP form recognizable by commercial solvers. Note that for

a fixed network, these constraints constitute a new radial power flow approximation.

5.6 Computational examples

In this section we use each model to reconfigure the 32-bus test system of [13] shown in

Fig. 5-1 and the 70-bus test system of [39] for the loss minimization and load balancing

objectives as given in sections 5.3 and 5.4, and maximizing minimum voltage, which is

accommodated linearly by maximizing t subject to t < v for all i. For load balancing,

the p.u. capacity of each line was somewhat arbitrarily assumed to be the reciprocal

of its impedance's magnitude. We note that minimum voltage maximization with

the simplified DistFlow equations is actually a linear program. The resulting mixed

integer programs were solved using the modeling language AMPL [54] and solver

CPLEX [1] on a desktop computer representative of current standards. Tables 5.1

and 5.2 give per unit objectives, load flow values computed for the corresponding

configuration, and computation times for each model.

Each model found the optimal loss-minimizing switch configuration [81], which was

determined to be optimal by enumeration in [63]. The QCP and SOCP models each

found the same load balancing solution, with open switches (8,21), (9,10), (14,15),

(28,29), and (31,32). As stated earlier, this load balancing formulation cannot be

modeled within QP. The QP and SOCP models each found the same maximum

minimum voltage, with switches (7,8), (9,10), (14,15), (28,29), and (32,33) open.



Figure 5-1: 32-bus test system (image from [81]). Solid and dashed lines respectively
indicate open and closed switches in the nominal configuration.
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Table 5.1: Optimization objectives, load flow values,
32-bus test system of [13]

and computation times for the

Model QP QCP SOCP
Loss minimization

Objective 0.01273 0.01343 0.01404
Load flow 0.01395 0.01395 0.01395
Time (s) 0.30 1.43 12.80

Load balancing
Objective - 0.04134 0.04169
Load flow - 0.04146 0.04146
Time (s) - 2.31 18.06

Minimum voltage maximization
Objective 0.94253 0.94107 0.94082
Load flow 0.9412871 0.9412865 0.9412871
Time (s) 2.09 7.34 18.67

The QCP model found a very slightly worse solution with (9,10) open instead of

(10,11).

The second, larger example shown in Fig. 5-2, on which no particular approach

exhibited better accuracy, is included to demonstrate the scaling of each approaches

computation time. Objectives and load flow values are shown in Table 5.2, and Tables

5.3, 5.4, and 5.5 contain corresponding optimal configurations. Only switches that

are open in at least one solution shown, with open switches denoted 0 and closed

1. The SOCP model is too slow for a system this size; clearly new algorithms must

be developed before it is pragmatic. The QP model retains much of its efficiency,

particularly for loss minimization, for which it required under a second. The QCP

model again took times between the QP and SOCP models.

Lastly, we comment on the disparity between computation times across objectives:

it must be recalled that these formulations are all NP-hard, and while some of the

solvers employed are mature technologies, it is impossible to guarantee an efficient

route to a solution. That said, the times obtained by the QP model are attractive,

and suggest real-time applicability. Furthermore, they are an order of magnitude

faster than times reported for recent heuristics: in [51], a genetic algorithm required

7.2 seconds on the 32-bus test system and 160 seconds on the 70-bus test system to



minimize losses. Table 5.6 provides computation times for various approaches tested

in [63] on the 33-bus system, as well as that of [81]: no other method both finds the

optimum and is faster than QP.

Table 5.2: Optimization objectives, load flow values,
70-bus test system of [39]

and computation times for the

Model QP QCP SOCP
Loss minimization

Objective 0.02640 0.02852 0.03031
Load flow 0.03016 0.03018 0.03016
Time (s) 0.92 10.10 11310.48

Load balancing
Objective - 0.4394 0.4428
Load flow - 0.44126 0.44132
Time (s) - 226.24 1306.94

Minimum voltage maximization
Objective 0.9223 0.9191 0.9186
Load flow 0.9247 0.9199 0.9199
Time (s) 40.59 737.10 4738.44

Table 5.3: Loss minimization solutions for the 70-bus test system of [39]. Only
switches that are open in at least one solution shown, with open switches denoted 0
and closed 1.

Line QP QCP SOCP
9-15 0 0 0
21-27 0 0 0
28-29 0 0 0
37-38 0 1 0
40-44 0 0 0
43-38 1 0 1
49-50 0 0 0
62-65 0 0 0
67-15 0 0 0

As a final examination of scaling, we evaluate the computation time of QP as

a function of the number of lines, where each line is a switch. Each data point

corresponds to a randomly generated network with between ten and ninety buses,

separated by increments of ten. Resistances and reactances are drawn from uniform

random variables between zero and one, and real and reactive loads from uniform
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Figure 5-2: 70 bus test system in nominal tree configuration (image from [38]).



Table 5.4: Load balancing solutions for the 70-bus test system of [39]
Line QCP SOCP
8-9 1 0

14-15 0 1
21-27 0 0
27-28 0 1
29-64 1 0
42-43 1 0
43-38 0 1
45-60 0 0
48-49 0 0
62-65 0 1
65-66 1 0
67-15 0 0

Table 5.5: Voltage maximization solutions for the 70-bus test system of [39]
Line QP QCP SOCP
9-15 0 0 0
21-27 0 0 0
28-29 0 0 0
36-37 1 1 0
37-38 0 1 1
43-38 1 0 1
49-50 0 0 0
58-59 0 1 1
59-60 1 0 0
62-65 0 0 0
67-15 0 0 0

random variables between zero and one-hundred. Twenty trials were performed for

each number of buses. Fig. 5-3 shows the increase in time with number of discrete

variables; as one would expect of an NP-hard problem, the increase in computation

time is severe.

5.7 Summary

We have introduced three new convex, mixed integer programming models for dis-

tribution system reconfiguration. On an example, the QP model is by far the most

efficient, yet also obtains good solutions, evidencing its practicality for very large



Table 5.6: Comparison of computation times (s) from a 2006 comparative study of
reconfiguration algorithms for loss minimization on the 32-bus test system [63].

Algorithm [ time (s) Optimal?

[51] 7.2 yes
[81] 0.11 no
[41] 1.99 yes
[64] 0.87 yes

[113] 0.14 no
[62] 1.66 yes
[63] 0.96 no
QP 0.30 yes
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Figure 5-3: Average computation time versus average number of switches for loss
minimization of randomly generated distribution networks, shown on normal (left)
and logarithmic (right) y-axes

systems. The SOCP model appears to be more reliable in producing good solutions,

but rather expensive computationally; it is however reasonable to expect substantial

improvements in mixed integer SOCP algorithms in the near future, in which case

the SOCP model will become a more scalable option.
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Chapter 6

Conclusion

In this thesis, two older problems in power systems and a new problem in spectral

graph theory have been addressed. We now conclude by identifying some future

directions and broader connections with modern power systems, starting with the

latter.

The sparsest cut has been the subject of much recent theoretical investigation,

primarily concerning semidefinite programming relaxations coupled with rounding

procedures. The new quantity q introduced in Section 3.3 generalizes the sparsest

cut, and thus invites new analysis both of situations unmodeled by the sparsest cut,

and of previously studied cases via the connection between spectral graph theory, a

semidefinite programming perspective, and flow networks. Significant gains may be

possible via a better embedding of network nodes. The eigenvalue pr in Section 3.3

maps flow network nodes to the real line. In contrast, recent successful relaxations of

the sparsest cut embed graph vertices in the sphere, and therefore one might expect

that there exists a superior relaxation of q which embeds network nodes in a sphere;

however, such an approach would sacrifice eigenvalue specific perspectives. We note

that because sparsest cut relaxations can be derived by lift-and-project procedures,

their corresponding bounds may inform more general analyses, which include other

lift-and-project relaxations such as those in Chapter 4.

Despite their respective problem statements having existed in distilled mathemat-

ical formats for many years, the results of Chapters 4 and 5 broadly inform other
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problems in power systems via the accuracy and efficiency with which convex conic

constraints can approximate steady state AC power flow. These expressions appear

ubiquitously in both static and dynamic power system problems, and it is the author's

opinion that for many such problems, there are conic optimizations by which they are

well represented, and which can be reached either by a lift-and-project procedure or

physics-based approximations. Thus there are many venues for future research within

this theme, a few of which we name here:

" Component placement: Placement of components such as capcitors [14] and

FACTS devices [58] is determined by their effect on power flows, and hence

optimization must contain AC power flow constraints. Incorporation of convex

conic formulations will allow optimization of component placement over much

larger system sizes, rather then smaller, separate parts.

" Market pricing: All economic models are based on the DC power flow approxi-

mation [125], which neglects reactive power, loss, and voltage. A more detailed,

conic formulation of optimal AC power flow can include information about losses

and voltage and retain strong duality, yielding new 'price' quantities from mul-

tipliers associated with loss and voltage constraints.

" Dynamic optimization and control: Many new problems in power are inherently

dynamic, for example storage, a primary use of which is buffering the grid from

unpredictable spikes in renewable outputs. A discretized dynamic optimization

problem must have AC power flow constraints at each stage. The dynamic

problem, whether via a dynamic programming or Pontryagin based approach,

will hence inherit the convexity of each stage, making the larger problem more

tractable.

This is of course an incomplete list, but serves to demonstrate that AC power flow

is foundational to nearly all power system problems, many of which can and should

be formulated as optimizations. By expressing these problems as conic programs, the

tractability of numerous problems in power systems is greatly enhanced.
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