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Abstract
The respiratory regulatory system is one of the most extensively studied

homeostatic systems in the body. Despite its deceptively mundane physiological function,
the mechanism underlying the robust control of the motor act of breathing in the face of
constantly changing internal and external challenges throughout one's life is still poorly
understood.

Traditionally, control of breathing has been studied with a highly reductionist
approach, with specific stimulus-response relationships being taken to reflect distinct
feedback/feedforward control laws. It is assumed that the overall respiratory response
could be described as the linear sum of all unitary stimulus-response relationships under a
Sherringtonian framework. Such a divide-and-conquer approach has proven useful in
predicting the independent effects of specific chemical and mechanical inputs. However,
it has limited predictive power for the respiratory response in realistic disease states when
multiple factors come into play. Instead, vast amounts of evidence have revealed the
existence of complex interactions of various afferent-efferent signals in defining the
overall respiratory response.

This thesis aims to explore the nonlinear interaction of afferents in respiratory
control. In a series of computational simulations, it was shown that the respiratory
response in humans during muscular exercise under a variety of pulmonary gas exchange
defects is consistent with an optimal interaction of mechanical and chemical afferents.
This provides a new understanding on the impacts of pulmonary gas exchange on the
adaptive control of the exercise respiratory response. Furthermore, from a series of in-
vivo neurophysiology experiments in rats, it was discovered that certain respiratory
neurons in the dorsolateral pons in the rat brainstem integrate central and peripheral
chemoreceptor afferent signals in a hypoadditive manner. Such nonlinear interaction
evidences classical (Pavlovian) conditioning of chemoreceptor inputs that modulate the
respiratory rhythm and motor output. These findings demonstrate a powerful gain
modulation function for control of breathing by the lower brain.

The computational and experimental studies in this thesis reveal a form of
associative learning important for adaptive control of respiratory regulation, at both
behavioral and neuronal levels. Our results shed new light for future experimental and
theoretical elucidation of the mechanism of respiratory control from an integrative
modeling perspective.
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Chapter 1 Introduction

The essence of living organism survival is the maintenance of a stable constant internal

environment of the body. From glucose to temperature, water to oxygen, the body

continually strives to regulate all its physiological states in the face of various

disturbances. Claude Bernard, the founder of modern physiology, coined the concept of

milieu intirieur, and he suggested that:

The constancy of the internal environment is the condition that life

should be free and independent... So far from the higher animal being

indifferent to the external world, it is on the contrary in a precise and

informed relation with it, in such a way that its equilibrium results from

a continuous and delicate compensation, established as by the most

sensitive of balances. (Bernard, 1878, 1974)

It would take nearly fifty years before this concept of biological stability received

renewed attention. To describe this concept, physiologist Walter B. Cannon coined the

term homeostasis in 1926 in his seminal work, The Wisdom of the Body (Cannon, 1932),

which presented the first notions of a biological automatic controller. However, the

body's high-dimensional organization and sophisticated dynamical interactions largely

preclude thorough understanding of such a robust regulation mechanism (Somjen, 1992;

Dworkin, 1993; Poon & Siniaia, 2000).



The respiratory system is probably one of the most extensively studied

physiological systems. Current understanding of respiratory control is built upon a variety

of classic respiratory reflex responses such as CO2 or hypoxic chemoreflex, lung inflation

and deflation reflexes and exercise hyperpnea reflex, etc. Such Sherringtonian stimulus-

response analyses are useful in predicting the independent effects of specific chemical

and mechanical inputs, from a traditional reductionist view. All of these reflex responses

have been extensively studied and, for the most part, independently of one another for the

sake of simplicity. However, the predictive power of these reflex models is limited when

multiple factors come into play together. A major limitation of the classical chemoreflex

model is that it cannot explain the isocapnia hyperpnea response during exercise. This

discrepancy has led to the general postulation of a distinct "exercise stimulus" that feeds

forward to the chemoreflex feedback loop as an "exercise reflex" (Grodins, 1950).

However, despite extensive explorations for over a century, the putative "exercise

stimulus" has remained elusive to this date (Forster, 2000).

In contrast to the assumption of afferents independence of the classical

Sherringtonian reflex model, considerable evidence indicates that distinct classes of

respiratory afferent inputs might interact with one another when applied concomitantly.

For example, it has long been recognized that lung stretch receptors activation may

interact with chemical drive in control of inspiratory and/or expiratory muscle activity

(Kelsen et al., 1977; Mitchell et al., 1982; Mitchell et al., 1990; Ainsworth et al., 1992).

Such afferent interactions have potential significance in certain clinical applications such

as positive end-expiratory pressure (PEEP) or continuous positive airway pressure

(CPAP), or certain disease states such as chronic obstructive pulmonary disease or lung

transplant, where the resultant exaggeration (due to lung inflation) or total absence

(deafferentation) of vagal afferent inputs may alter the chemoreflex regulation of

breathing. Such interactions also have important physiological implications in that they

indicate a much more complex central processing of these respiratory afferent inputs than

the conventional reflex models imply.

Presently, there is limited information about how afferent information arising

from chemoreceptors and mechanoreceptors are processed and integrated centrally and



how they may interact with one another. Baji6 et al. (1994) reported that peripheral

chemoreceptor and pulmonary stretch receptor inputs interact linearly in modulating

certain medullary neurons in the dorsal respiratory group and caudal ventral respiratory

group in dogs, and a nonadditive interaction in other caudal VRG neurons. Tonkovic-

Capin et al. (2000) showed that the interaction between arterial CO 2 tension and

pulmonary stretch receptor-mediated modulations of caudal medullary, expiratory

bulbospinal neuron activity is mainly additive, but synergism between Paco2 and

excitatory inputs is also present. However, little is known about how these afferent inputs

affect the activities of other pontomedullar neurons when presented together and how

such interactions may influence respiratory activity.

The mammalian lower brain has traditionally received little attention in regard to

its intelligence. However, as evidenced by the precision, robustness, versatility and

reliability in physiological control, the traditional reductionist view is inadequate in

explaining the common complex scenario of physiological control especially when

multiple factors come into play. In fact, the respiratory system demonstrates sustained

capability of adaption and memory as in the higher brain (reviewed in (Eldridge &

Millhorn, 1986a); (Poon & Siniaia, 2000)). Examples of such processes are numerous

and include responses to the following inputs: carotid sinus nerve and carotid

chemoreceptors (Eldridge, 1974; Eldridge & Gill-Kumar, 1978; Millhorn et al., 1980;

Zhang & Mifflin, 1995; Mifflin, 1997), hypoglossal nerve (Jiang et al., 1991), hypoxia

(Fregosi, 1991b; Georgopoulus et al., 1992; Bisgard & Neubauer, 1995; Bach & Mitchell,

1996), and vagal nerve fibers from pulmonary stretch receptors (Stanley et al., 1975;

Karczewski et al., 1976).

In this thesis, we explore the interactions of respiratory afferents and their

implications for intelligent respiratory control from both experimental and modeling

aspects. We show that nonlinear interactions between respiratory afferents provide a

consistent picture over a wide range of experimental and physiological scenarios, that

contradicts the assumptions of additivity, reducibility and superposition characteristics in

the classical reflex model. Such interactions have been emphasized in the rapidly

growing fields of systems biology and systems medicine, which are important in



advancing our understanding of how our body works as an integrated system (Ahn et al.,

2006b, a).

1.1 THESIS OUTLINE

Chapter 2 provides a review of the organization of the respiratory system,

anatomically and functionally. We provide evidence that respiratory control is not merely

a simple reflex but possess more sophisticated computation.

Chapter 3 contrasts integrative and reductionist approaches in biological system

modeling, with particular emphasis on the respiratory system. This chapter sets the stage

for the integrative approach taken in this thesis.

Chapter 4 investigates the interaction of mechanical and chemical feedback

signals from a computational approach. We hypothesize that an optimal respiratory

control model provides consistent prediction for the exercise respiratory control under

various pulmonary gas exchange defective conditions by integrating both chemical and

mechanical respiratory signals. The optimization framework is shown to provide a

convenient mathematical tool to predict a wide range of respiratory responses with a

conceptually simple but generalized theory.

Chapter 5 investigates the interaction of peripheral and central chemoreceptors

using an experimental approach. We test the influence of the CO2 background on the

subsequent hypoxic response in both phrenic motor output and dorsolateral pons

respiratory neurons activity. Furthermore, we demonstrate the important role of

dorsolateral pons in the C0 2-0 2 interaction. We also show that gain modulation of

hypoxic response by central input represents a form of associative learning in respiratory

control. Several clinical implications regarding this interaction are suggested.

Chapter 6 summarizes the findings and suggests directions for future investigation.
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Chapter 2 Background

The respiratory control system is a multi-input multi-output nonlinear system (Poon,

2000). The system comprises a mechanical plant (respiratory mechanics and muscles)

and a chemical plant (pulmonary gas exchange) that are controlled by respiratory neurons

in the medulla and pons regions of the brainstem. Extensive studies over the past century

have accumulated an enormous collection of knowledge about the respiratory system.

Translating these scientific findings into clinical practice becomes critical, as in many

other biological research fields (Saijo, 2002; Mankoff et al., 2004; Horig et al., 2005).

2.1 RESPIRATORY FEEDBACK

The two major inputs to the respiratory control system for normal autonomic

respiratory regulation are the mechanical and chemical feedbacks. These two sensory

modalities play the most significant role in modulating the respiratory rhythm in terms of

tidal volume and phase durations (i.e. inspiratory and expiratory duraitons). These

feedback pathways are also critical for proper responses during various acute or chronic

stressful conditions that occur during exercise or chronic lung disease, for example.



2.1.1 Mechanical Feedback

The motor act of breathing rhythmically inflates/deflates the lungs by altering the

pleural pressure. The change in lung volume is sensed by slowly adapting pulmonary

stretch receptors (SARs) in the airways. These receptors transmit information to the

dorsal respiratory neurons and pontine nuclei via myelinated afferent fibers of the vagus

nerve (Ezure et al., 1998). The SARs are phasically stimulated by lung expansion and

exhibit small tonic activities throughout the respiratory cycle. The classic Hering-Breuer

inflation reflex (HBIR) describes the inhibitory effect of lung inflation and subsequent

SAR activation on inspiration (Breuer, 1868b; Breuer, 1868a). This 'reflex' is presumed

to protect the lungs from overexpansion. Recent studies have revealed that the fictive

HBIR in rats undergoes dynamical changes in the form of non-associative learning

(habituation and desensitization) that provides necessary temporal and frequency filtering.

The dynamics are modulated by NMDA (N-methyl-D-aspartate) receptors (Poon et al.,

2000a; Siniaia et al., 2000a; Poon & Siniaia, 2000b; Poon & Young, 2006b; MacDonald

et al., 2009).

Other mechanical sensory receptors include the irritant and J-type receptors

(Taylor et al., 1989). The irritant receptors, or rapidly adapting receptors (RARs), are

located in the lung epithelium, and respond to noxious chemical or mechanical agents.

RARs activity is also transmitted via myelinated fibers of the vagus nerve, and is less

sensitive to lung inflation compared to SARs. Stimulation of RARs causes broncho-

constriction, coughing, sneezing and general increases in ventilation.

The third receptor type called J-receptors are unmyelinated C-fiber vagal nerve

endings that respond to vascular distension and fluid increases in the interstitium.

Activation of these J-receptors can cause hyperpnea and dyspnea. Due to the high

activation threshold of these unmyelinated C-fibers, small current stimulation of the

vagus nerve is unlikely to activate them.



2.1.2 Chemical Feedback

The primary function of the respiratory system is to regulate blood gas

concentration. There are two classes of chemoreceptors that continuously monitor the

blood chemistry states, peripherally and centrally.

Two peripheral chemoreceptors exist: carotid and aortic bodies. The carotid

bodies are located high in the neck at the bifurcation of the common carotid arteries.

These receptors sense changes in arterial Po2, Pco2, and pH. Carotid body activity is

transmitted to the brainstem via a small branch of the glossopharyngeal nerve called the

carotid sinus nerve (CSN) (Black & Torrance, 1967) and also referred to as Hering's

nerve. Carotid body is stimulated mainly by a decrease in Po2 and increases in H*/Pco 2.

In human, the aortic bodies play a smaller role in peripheral detection and do not respond

to changes in Po2.

Unlike the peripheral chemoreceptors, the loci of central chemoreceptor are still

being debated. A number of brainsten regions have been shown to be CO2/H+ sensitive,

including ventrolateral medullary surface, nucleus of solitary tract, locus coeruleus,

medullary raphe, retrotrapezoid nucleus (RTN), rostroventrolateral medullar, pre-

B6tzinger's Complex (pre-BQtC), cerebellar fastigial nucleus (reviewed in Dean & Nattie,

2010). In recent years, RTN at the ventrolateral medullar surface is suggested to be the

principal site of intracranial C02/H+ chemoreception (Guyenet et al., 2008). Their tonic

activity likely supplies a general background excitation to the respiratory central pattern

generator (RCPG) (Duffm, 1991).

2.2 BRAINSTEM RESPIRATORY CONTROL CENTER

Respiratory neurons are densely populated in three main brainstem areas: the dorsal

respiratory group (DRG), the ventral respiratory group (VRG) and the pontine respiratory

group (PRG).



2.2.1 Dorsal respiratory group (DRG)

The DRG is comprised of mainly inspiratory neurons located in the ventrolateral

subnucleus of the nucleus of the solitary tract (NTS) (Cohen & Feldman, 1984).

Extensive monosynaptic excitatory projections to the phrenic nucleus in the spinal cord

are identified from the neurons in the DRG (Fedorko et al., 1983; de Castro et al., 1994).

Furthermore, the NTS is the principal site of terminations of respiratory-related

sensory afferents, including SARs, RARs, and peripheral chemoreceptors. Inhibitory

projection to the B6tzinger's Complex (B6tC) and retrotrapezoid nucleus (RTN) have

been identified. Commissural subdivision of NTS relays neurons for peripheral

chemoreceptors and it provides important excitation to VRG (Takakura et al., 2006;

Takakura et al., 2007).

2.2.2 Ventral respiratory group (VRG)

The VRG is a column of respiratory neurons in the ventrolateral medulla. It is

commonly divided into the following subdivisions: para-facial respiratory group (pFRG),

B6tzinger's Complex (B6tC), pre-B6tzinger's Complex (pre-BQtC), rostral VRG

(primarily inspiratory neurons) and caudal VRG (primarily expiratory neurons). The

inspiratory (I-Aug) neurons in rostral VRG project monosynaptically to motoneurons in

the phrenic nucleus that innervate the diaphragm while expiratory (E-Aug) neurons in

caudal VRG innervate the abdominal and expiratory intercostal motoneurons. The BtC

consists of a large population of expiratory neurons that provides extensive inhibitory

projections within VRG, to NTS and to the phrenic nucleus.

Pacemaker-like neurons have been identified in pre-BtC (Smith et al., 1991) and

pFRG (Onimaru et al., 1987, 1988; Onimaru & Homma, 2003) which are thought to

generate inspiratory and expiratory rhythms respectively. How the two rhythm generators

coordinate with each other to set the respiratory rhythm remains unclear. Our recent



modeling work suggests that they interact in a two-way "handshake" process via a

sequence of excitation-reverse inhibition-postinhibitory rebound excitation (Wittmeier et

al., 2008).

2.2.3 Pontine respiratory region

Respiratory neurons are mostly found in the dorsolateral (dl-pons) and the

ventrolateral (vl-pons) pontine areas.

2.2.3.1 Dorolateral pons

Two major structures constituting the dl-pons are the K6lliker-Fuse nucleus (KFN)

and the parabrachial nucleus (lateral and medial), commonly termed the "pneumotaxic

center" (Lumsden, 1923a). The dl-pons has extensive reciprocal projections with VRG,

NTS and the phrenic motor nucleus. Using single-unit extracellular recording in

combination with juxtacellular labeling, the functional taxonomy and topographic

distribution of pneumotaxic respiratory neurons in the rat dl-pons have been

systematically characterized (Song et al., 2006). Six subtypes of respiratory neurons,

phasic or phase-spanning have been identified.

The pneumotaxic center is traditionally thought to play an ancillary role in

inspiratory-expiratory phase transition by providing a fail-safe mechanism for inspiratory

off-switch (IOS) secondary to vagal proprioceptive feedback. Recently, the role of dl-

pons in mediating chemoreflex responses has been increasingly recognized (Foumier &

Kinkead, 2008; Nuding et al., 2009; Song & Poon, 2009a, 2009b; Bonis et al., 2010;

Boon & Milsom, 2010).

2.2.3.2 Ventrolateralpons/AS area

A5 is not a well-defined anatomical structure, it includes a noradrenergic cell

group scattered in the vl-pons. The vl-pons has been shown to specifically control



expiration (Jodkowski et al., 1997). Furthermore, the vl-pons has an important role in

shaping the post-hypoxic depression of respiration (Dick & Coles, 2000).

2.3 TRADITIONAL VIEW OF RESPIRATORY CONTROL

AND LIMITATIONS

Traditionally, control of breathing has been understood in terms of a set of

stimulus-response relationships presumably reflecting various afferent

feedback/feedforward control mechanism. Such Sherringtonian stimulus-response

analyses are useful in predicting the independent effects of specific chemical and

mechanical inputs under well-controlled experimental conditions. However, less attention

has been put on the interaction of these inputs, that the response when different stimuli

are presented simultaneously.

A long unresolved problem in respiratory control is the isocapnic exercise

hyperpnea, defined as an automatic increase in respiratory ventilation geared to metabolic

demands with near constancy of arterial CO 2 and pH levels. The

chemoreflex/mechanoreflex feedback model implies the existence of a feedforward

signal from an exercise-related input. However, despite extensive search over the past

century, none of the hypothesized feedforward mechanisms have been demonstrated

conclusively as the true "exercise stimulus" obligatory to exercise hyperpnea (Mateika &

Duffin, 1995; Ward, 2000; Eldridge et al., 2006; Secher et al., 2006; Waldrop et al, 2006;

Yu & Poon, 2006).

Furthermore, the available evidence reveals a distinct multiplicative (synergistic)

component in the ventilatory response to concomitant exercise and hypercapnia such that

CO 2 responsiveness is potentiated during exercise (Poon & Greene, 1985; Poon, 1989;

Mitchell & Babb, 2006). Ventilatory response to chemical or exercise input is also

potentiated by increases in physiological dead space and shunt (e.g. in congestive heart

failure patients). Such sensorimotor integration characteristics are ignored in the



oversimplified reflex model which mistakenly considers all respiratory inputs as additive

to the "exercise stimulus"

Clearly, the deceptively mundane motor function of breathing is not a trivial task of

"as-easy-as-breathing". Breathing is regulated by the brain continually throughout life

without fail in the face of constant physiologic and environmental challenges, which can

easily surpass the most robust man-made controller. Accumulating evidences show that

the respiratory control system undergoes more intelligent computation involving various

memory, adaptation and gating mechanisms (Eldridge & Millhorn, 1986a; Poon &

Siniaia, 2000).

2.4 EVIDENCE OF INTELLIGENT RESPIRATORY

CONTROL

Two forms of intelligent behavior evidenced in respiratory control are

nonassociative and associative learning.

Habituation and sensitization are two common forms of nonassociative learning that

are exhibited in many neuronal structures of mammalian and invertebrate nervous systems

(Thompson & Spencer, 1966; Groves & Thompson, 1970; Poon, 1996a; Cohen et al., 1997).

According to the classic Dual-Process Theory (Groves & Thompson, 1970), habituation is a

progressive reduction in physiological response that occurs upon repetitive application of

the same stimulus. On the other hand, sensitization is the progressive amplification of a

response following a repetitive stimulus. In simple invertebrate nervous systems, habituation

and sensitization have been shown to result from activity-dependent phasic depression and

enhancement of synaptic efficacy respectively (Kandel, 1978; Cohen et al., 1997).

Associative learning is the learning process that is dependent on the pairing of two

inputs. Two forms of associative learning have been extensively studied: operant

conditioning and classical (Pavlovian) conditioning.



In operant conditioning, an individual modifies an action-outcome association by

reinforcement/punishment. On the other hand, classical (or Pavlovian) conditioning

involves repeatedly pairing an unconditioned stimulus (which unfailingly evokes a

reflexive response) with another previously neutral stimulus (which does not normally

evoke the response). Upon learning, response occurs both to the unconditioned stimulus

and to the other, originally neutral stimulus (now referred to as the "conditioned

stimulus"). The response to the conditioned stimulus is termed a conditioned response.

2.4.1 Nonassociative learning in the chemical and mechanical feedback

pathways

Recent studies have demonstrated various forms of nonassociative learning that

process mechanical and peripheral chemical feedback afferent signals in respiratory

control (Siniaia et al., 2000a; Young et al., 2003b; Poon & Young, 2006a). For instance,

the inspiratory duration is modulated by peripheral chemical feedback through short-term

potentiation (STP) of the inspiratory motor activity which can be modeled as leaky

integrators that are only intact during inspiratory phrase but not expiratory phrase (or they

are logically gated to inspiratory circuitry). On the other hand, the expiratory circuit is

modulated by a hypoxia-induced short-term depression (STD), with post-stimulus

rebound, of respiratory frequency mediated by neurons in the ventrolateral pons.

Such STD behavior is also revealed in the classic Hering-Breuer inflation reflex

through vagal modulation of the expiratory circuitry. Blockade of N-methyl-D-aspartate

receptors (NMDA-R) has been shown to slow the response of these learning processes

(Poon et al., 1999b; Siniaia et al., 2000b).

STP can function to nullify the steady-state errors in homeostatic regulation and

STD may help to filter out any large and undesired tonic bias and hence, recalibrate the

controller's sensitivity to new operating states. NMDA-R may serve to adaptively adjust

the optimal response speed of such nonassociative learning mechanisms.



2.4.2 Clinical implications from models of nonassociative learning

These nonassociative learning mechanisms have important implications for

respiratory control in various respiratory disorders (Young, 2002). During hypoxia, the

initial increase in respiratory frequency may be compensated by the adaptation in the

primary and secondary chemical feedback pathways that act to restore the expiration time.

In the absence of such adaptation, it can be predicated that prolonged hypoxia may

provoke unremitting tachypnea along with impaired pulmonary gas exchange due to

premature emptying of the lungs, resulting in an adverse departure from homeostasis with

increased breathing effort.

In certain chronic obstructive pulmonary diseases such as emphysema, bronchitis

and asthma characterized by over-inflation of the lungs, pontine desensitization could

protect against possible apnea resulting from the Hering-Breuer reflex due to augmented

vagal feedback. Alternatively, the pontine respiratory center may be viewed as a "fail-

safe" mechanism for averting apneusis in the event of vagal feedback breakdown, which

accompanies certain chronic or acute restrictive lung diseases.

Our recent report showed that overexpression of either sensitization or

desensitization of the Hering-Breuer inflation reflex occurs in two contrasting mutant

mouse models of Rett syndrome. Rett syndrome is an autism-spectrum disorder caused

by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2)

(Amir et al., 1999). Mecp2 mutant mice exhibit either spontaneous repetitive apnea

(Viemari et al., 2005; Poon & Song, 2007; Stettner et al., 2007; Abdala et al., 2010) or

tachypnea (Song et al., 2011) depending on whether the Hering-Breuer reflex is

sensitized or desensitized. Another important translational application is our recent

demonstration that abolition of desensitization by pontine lesion in vagi-intact rats may

disrupt the entrainment of the respiratory rhythm to mechanical ventilation (MacDonald

et al., 2007).



2.4.3 Associative interaction of vagal and carotid chemoafferent inputs

Associative learning in respiratory control similar to classical studies in Aplysia

(Glanzman, 1995) and cerebellum (Thompson, 1988) has not been widely investigated.

However, preliminary data in our previous studies indicate that these vagal mechanical and

carotid chemoafferent inputs may also interact associatively, evidencing strong chemical-

mechanical interaction. Importantly, the adaptation to carotid sinus nerve (CSN) input was

greatly attenuated by vagal input but not vice versa, suggesting that the vagal pathway may

inhibit the CSN pathway but not the other way around.

A possible neural correlate for such associative interaction is suggested by our

preliminary data. These date show that late-E neurons (expiratory neurons firing in the late

expiratory phase with an augmenting pattern (Song et al., 2006)) in dl-pons receive

convergent inhibitory vagal input and excitatory CSN input, such that any CSN adaptation

effect on TE mediated by these neurons would be necessarily suppressed by vagal feedback.

Previous modeling study demonstrated that a Hebbian feedback covariance learning

rule is a plausible mechanism to achieve optimal respiratory control by correlating

mechanical and chemical feedback in order to adapt the controller gain (Poon, 1996c).

2.5 SUMMARY

Section 2.4 shows evidence that the respiratory control system undergoes various

form of learning processes. It is apparent that the traditional simple reflex model does not

provide the full picture of the system behavior. Instead, a wide variety of complex

respiratory behaviors may arise as a learned behavior from sophisticated computation in the

brainstem. In this thesis, we demonstrate how afferent interactions may contribute to various

learned respiratory behaviors.
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Chapter 3 Integrative and

Reductionist Approaches to

Modeling of Control of Breathing'

3.1 INTRODUCTION

Systems biology is a classic discipline which has its root when Norbert Weiner

(Wiener, 1948) first coined the term "cybernetics". Engineers have a long history of

getting inspirations from biology. The wings of Icarus might be considered one of the

first "flying machine" models of birds. Although it is just a Greek myth, it shows

human's innate appreciation for modeling biological designs. Today, mathematical or

computer modeling of biological systems is used to improve our understanding of

biological phenomena in their full complexity. The traditional approach adopted by

biologists for analyzing biological systems is via a strategy of reductionism (Lazebnik

2002; Sorger 2005; Strange 2005; Ahn, Tewari et al. 2006; Ahn, Tewari et al. 2006; Pugh

and Andersen 2008). A complementary approach is via the method of integrative

modeling based on physical principles. This integrative framework will likely facilitate

the collaboration of researchers from such diverse disciplines as biology, chemistry,

1 To appear as the opening chapter of Lecture Notes in Mathematics (LNM BIOS) for Graz volume



physiology, engineering, computer science, and mathematics to bring out the best of

systems biology. S

In this chapter, we examine the criteria of a good mechanistic model based on

reductionist or integrative approaches. We then discuss the reductionist view and

integrated view in the modeling of the respiratory control system.

3.2 REDUCTIONIST VIEW OF BIOLOGICAL MODELING

Reductionism is a divide-and-conquer approach to tackle complex phenomena by

parsing the problem into smaller, simpler and more tractable components. It has served as

an important guiding principle which has proved tremendously useful in understanding

many biological problems. However, there are also drawbacks to this approach.

Organisms are definitely more than just the sum of their individual parts. The

reductionist approach makes several key assumptions in studying biological systems:

1. A singular factor determines each behavior.

The goal of reductionism is to isolate a single factor to account for each observed

behavior. The pharmaceutical community believes that there is a single malfunction

for each disease that needs to be cured. Hence, a miracle drug targeting the site of

malfunction will solve the problem. Although this is a reasonable assumption for

many cases, it does not always apply for more complex situations. For instance, how

living habit and genetic factors together affect a person's health (Ahn et aL, 2006b)?

A young immuno-compromised man with pneumococcal pneumonia will get the

same antibiotics treatment as an elderly woman with the same infection. A

'personalized medicine' approach is more desirable but is infeasible with the

reductionist view (Wellstead et al., 2008).



2. Response is linearly additive of several factors

Reductionism partitions the problem into many pieces, each studied separately. The

total response is then viewed as the superposition of these individual effects. This

approach is easily executable but it neglects any nonlinear interactions among

components.

3. Only static or steady-state response matters

Cannon(1932) in his book The Wisdom of the Body first coined the term

"homeostasis", describing how our body maintains stability and constancy robustly in

the face of stress. However, the focus on constancy in the steady state ignores the

ubiquity of dynamic behaviors like oscillations and chaos, which may also be

important for our body to function. For instance, circadian rhythms and heart rate

variability are examples of periodic and chaotic behaviors that may be integral to the

maintenance of homeostasis.

3.2.1 The Physiome Project and Multiscale Model

The Physiome Project is one of the major efforts to integrate physiology and engineering

(Hunter & Borg, 2003). It provides a coherent framework to integrate the vast amount of

DNA sequences, protein structures and signal transduction pathways data into

mathematical models which can facilitate the analysis of complex interaction among

these systems of different sizes and time scales. It is an important international effort to

apply systems engineering approach to physiological modeling and develop standard

languages to facilitate sharing of models and information among different research teams.

The Physiome Project is premised on the notion of "multiscale modeling" in which

components on different spatial and temporal scales are integrated into a single model.



This is accomplished by combining physiology from molecular level to cell, organ and

systems levels. Although the term "multiscale modeling" has been often interpreted as

multi-structural modeling across spatiotemporal scales (White et al., 2009), it is

increasingly recognized that this modeling approach has its limitations also as it may risk

under- or overfitting of parameters and the resulting errors could propagate between

models and across spatiotemporal scales (although the benefits of model integration are

sometimes considered to outweigh such error costs) (Ortoleva et al., 2009; Qutub et al.,

2009). Broadly speaking, multiscale modeling could involve any analytical approach that

allows increased predicitivity (without sacrificing robustness) by extension or

generalization of any modeling "scale," including structural or spatiotemporal scale,

analytical scale (Ortoleva et al., 2009) or computational scale (Taufer et al., 2009).

Current models of chemoreflex or exercise hyperpnea are predictive of the ventilatory

responses to chemical and metabolic challenges respectively but are generally non-

predictive of breathing pattern variables. On the other hand, classical optimization

models from the 1950's that consider work of breathing as an objective function for

respiratory control have been limited to the prediction of pattern variables such as

respiratory frequency but not total ventilation (e.g. Mead (1960a)). Generalized

optimization models that integrate both chemical challenges and work of breathing into

an overall control objective (Poon et al., 1992a) can be highly predictive and multiscale

(multi-functional scale) in that they can simultaneously predict both total ventilation and

breathing pattern responses (including instantaneous inspiratory motor output) to a

combination of chemical, mechanical and metabolic challenges (see Eq. 4.5) as

encountered in a variety of physiological and clinical states (on a multi-disease scale).



3.3 ENGINEERING AND PHYSICS VIEW OF
INTEGRATIVE MODELING

The field of physics is traditionally highly reductionistic and multiscale in that it seeks to

identify the elemental particles or forces of nature on the smallest spatiotemporal scale

that underlie physical phenomena on a macroscale. On the other hand, it is also highly

integrative in its quest to discover the physical laws (Newton's law, thermodynamics etc.)

that unify diverse physical phenomena from quantum to cosmic scales in order to predict

complex behaviors based on first principles. Integrative modeling aims to describe how

different system components interacting based on physical principles may give rise to

emergent behavior of the system. Elucidation of the integrative mechanisms is important

for a conceptual understanding on the working principle of the system behavior, as

opposed to an empirical or phenomenological (black box) model.

Engineering and physics approach to integrative modeling has a long history in studying

mechanical, fluid, thermal, chemical, electronic and other physical systems. Engineering

and physical system equations help to specify the behaviors of individual components

and their interactions based on physical laws. The strength of such an integrative

modeling approach is that it provides a quantitative description of the interaction of

different variables in the system based on the physical mechanisms involved. This leads

to an experimentally testable unified theory which can span multiple system scales.

Hence, engineers have the right analytical tools for designing complex machines. There

are several basic performance measures of any engineering control system: stability,

robustness and sensitivity. Stability requires a system's states to remain within a finite

space over time with a bounded input. Robustness states that a system can favorably

maintain its performance under conditions that it is not designed for. Sensitivity states

how small a change can a system detect and respond to.



Engineering systems theory has provided the necessary mathematical tools for us to

design and evaluate the performance of control systems, and to understand the underlying

mechanisms. During the 1940s, the introduction of frequency-domain methods (e.g.

Nyquist, Bode) made it possible for engineers to design linear closed-loop control

systems that satisfied some performance requirements. Root-locus method was then

developed by Evans in the early 1950s. Nowadays, engineers commonly have to deal

with multiple-input-multiple-output (MIMO) and nonlinear systems. Classical control

theory, which deals with only linear single-input-single-output (SISO) systems, has

become inadequate.

There are many reasons for studying nonlinear systems. First, linear control assumes a

small range of operation. Its performance is inevitably compromised or the model may

become unstable when the required operation range is large and hence nonlinearity

becomes significant. Furthermore, some systems may not be linearizable even within a

small working range. These "hard" nonlinearities include Coulomb friction, saturation,

dead-zones, backlash and hysteresis. Nonlinear controllers are generally more robust to

model uncertainties. Since most systems are inherently nonlinear, a good nonlinear

controller model can be paradoxically simpler and more intuitive than a linear model

(Slotine & Li, 1991; Ogata, 1997).

3.4 TOP-DOWN (INTEGRATIVE) VS BOTTOM-UP
(REDUCTIONIST) APPROACH TO BIOLOGICAL
MODELING

Integration and reductionism represent two complementary approaches to study complex

biological systems (Young & Poon, 2001b). Reductionism lays the groundwork for

biological modeling by providing experimental evidence of discrete system elements at

the microscopic scale. This bottom-up approach is an efficient strategy to match observed

microscopic evidence with observed macroscopic behavior. For instance, gene-targeting



studies attempt to correlate defects of a single gene with abnormalities at the behavioral

level. Although this approach will undoubtedly generate useful information for inductive

reasoning, the correlation between microscopic and macroscopic events may not be

straightforward for complex biological systems (Gerlai, 2001). Thus, direct combination

of prime data at the microscopic level may not always lead to understanding of biological

mechanisms and prediction of behaviors at the macroscopic level. On the other hand, top-

down approach translates integrated phenomena at the macroscopic scale into hypotheses

about various microscopic system elements and their interactions. Such deductive

reasoning helps to formulate a general integrative principle for the system under study.

Both top-down and bottom-up approaches are necessary for studying biological systems

which are typically highly complex and multidimensional. Over the past decades,

biological research has accumulated so much data that the underlying system is beyond

comprehension without formal analytical tools. Lazebnik (2002) tells how a biologist

might attempt to fix a radio in a different way than does an engineer. Thus, biologists

may construct a system diagram of the radio in the form of "all-too-well recognizable

diagrams, in which a protein is placed in the middle and connected to everything else

with two-way arrows". It is of very slim chance that a radio can be fixed this way. The

key difference is that engineers have a formal set of language to describe an electronic

device systematically and quantitatively (resistance, capacitance, Kirchhoffs circuit laws,

etc). Hence, a trained electronics engineer can unambiguously comprehend a circuit

diagram of the radio or any other electronic devices. This shows that reductionism

becomes powerless when dealing with multi-dimensional problems.

Yet, top-down approach is necessarily speculative and controversial, especially when the

system is complex. Advances in bottom-up approach facilitate top-down investigation.

On the other hand, controversies in top-down approach raise scientific inquiries which

can lead to potential revolutionary ideas. The process of proving or disproving these ideas

will lead to new insights for reducing the search space in the bottom-up approach. Hence,



proper combination of top-down and bottom-up approaches is necessary to elucidate

complex biological systems. A model is fully validated when bottom-up meets top-down.

3.5 CRITERIA OF A GOOD MECHANISTIC MODEL

Biologists and engineers see modeling in different ways. So then, what is a good

model? Pugh and Andersen (Pugh & Andersen, 2008) suggested seven characteristics of

a good model. We summarize below four key criteria that we think are most important

for a model to be useful.

1. Embody first principles of the system based on physical and chemical laws

A good model should be physically realistic and reasonable. It also means the model

should incorporate all applicable first principles quantitatively and dynamically.

2. A minimum model

A good model does not have to include every fine details of the system. A model is a

tool to provide the intuition to understand the mechanisms underlying a system. An

overly complex model may obscure understanding of the system. A simple yet

sufficient model should be the best model.

3. Summarize existing results with mechanistic insight

The sine qua non of a good model is that it is consistent with existing observed

phenomena, both qualitatively and quantitatively. A good model should be general

enough to be consistent with a wide variety of system behaviors. A curve fit to the

data is not sufficient; a good model should provide mechanistic insight.

4. Predict behaviors distinct from the data the model is based on

A useful model necessarily has to predict phenomena beyond those it is based on. If a

model has no prediction power, it is simply a curve fitting machine. A good model

can predict a wide range of different phenomena that may be surprising or even



counterintuitive, such as predicting the Earth is round instead of flat. The prediction

will help to guide further experiments to uncover more mechanisms underlying the

system.

3.6 CONTROL OF BREATHING: REDUCTONISM VS
INTEGRATION

3.6.1 Limitations of classical reflex models: a case for sensorimotor
integration

The respiratory control system is a multi-input multi-output nonlinear system

(Poon, 2000). The system comprises a mechanical plant (respiratory mechanics and

muscles) and a chemical plant (pulmonary gas exchange) that are controlled by

respiratory neurons in the medulla and pons regions of the brainstem. Extensive studies

over the past century have accumulated an enormous collection of knowledge about the

respiratory system. Translating these scientific findings into clinical practice becomes

critical, as in many other biological research fields (Saijo, 2002; Mankoff et at., 2004;

Horig et al., 2005).

However, the effectiveness of such translational research has been limited by the

traditional reductionist paradigm which assumes a simple reflex model of respiratory

control (Wasserman et al., 1986; Haouzi, 2006; Waldrop et at., 2006). This classical

reflex model assumes additive, reducible and superposable characteristics of afferent

signals (Figure 3.1a) from chemical, mechanical and exercise stimuli (Mateika & Duffin,

1995; Ward, 2000; Eldridge et at., 2006; Secher et at., 2006; Waldrop et at., 2006; Yu &

Poon, 2006).



In fact, a complex physiological system is more than simply the sum of its parts

(Strange, 2005). There is evidence that various afferent and efferent signals are integrated

by the respiratory controller in a sophisticated way to define the overall ventilatory

response (Figure 3.1b). For instance, the available evidence reveals a distinct

multiplicative (synergistic) component in the ventilatory response to concomitant

exercise and hypercapnia such that CO 2 responsiveness is potentiated during exercise,

and vice versa (Poon & Greene, 1985; Poon, 1989; Mitchell & Babb, 2006). Ventilatory

response to chemical or exercise input is also potentiated by increases in physiological

dead space and shunt (e.g. in congestive heart failure patients). Such sensorimotor

integration characteristics are ignored in the oversimplified reflex model which

mistakenly considers all respiratory inputs as additive to the "exercise stimulus" (Figure

3.1a). Hence, translational research cannot be effectively conducted without a unified

model of respiratory sensorimotor integration that can account for such complex

behaviors. The optimization model of ventilatory control first proposed in (Poon, 1983a)

has proved to hold promise for this purpose.
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Figure 3.1 Two views for respiratory control (a) Classical reflex model assumes additive,
reducible and superposable characteristics of chemical, mechanical and exercise stimuli;
(b) The optimization model integrates various afferent-efferent signals in a single model
to characterize the complex interactions among these signals. (Poon et al., 2007)



3.6.2 Optimal sensorimotor integration in respiratory control

a. Formulation of the model

M.J. Purves once queried (Purves, 1979): "What do we breathe for?".

The primary purpose of breathing is to meet metabolic demands, as evidenced by

the apparent respiratory homeostasis during exercise. An implicit objective is to maintain

chemical homeostasis as well as minimize the energy consumption in the act of breathing.

Furthermore, the respiratory system also faces constant challenges of many other causes

such as the need for varying behavioral (feeding, smelling, blowing, vocalization, breath-

holding, posture, emotion, defecation), physiological (panting, thermal hyperpnea) or

defense (coughing, sneezing, emesis, eructation, hiccup) measures. Apparently, the

respiratory control system is intelligent enough to maintain a delicate balance between

these conflicting objectives.

Poon (1983b, 1987b) first introduced the following cost function to integrate the

chemical and mechanical costs of breathing (Figure 3.2):

J= J +J, = [a(Pcc -fi 2 +lni,2  (3.1)

The terms Je , J,, in Eq. 3.1 represent the competing chemical and mechanical

costs of breathing (a, p are parameters) in conformance to Steven's power law and

Weber-Fechner law of psychophysics respectively (Stevens, 1961). The term WV. is a

measure of the work rate of breathing subject to the mechanical limitation of the

respiratory system.

The optimal total ventilation VE is one that minimizes J (Eq. 3.1) subject to the

gas exchange process and mechanical constraint thus weighing the chemoafferent

feedback against the respiratory motor output. The resultant optimal solution simulates



the linear VE~ PaCO2 relationship during CO 2 inhalation and proportional VE - VCO 2

relationship during exercise as follows (Poon, 1983b, 1987b):

2 (p VC02YEo 863a2Paca - Vco (3.2)
2 (1 -VD / VT)

-V
VE (3.3)1+VEO iv.

Hence, the controller gain is not constant but may be adjusted to track the

metabolic VCO2.

Equation 3.1 has been extended (Poon et al., 1992a) to model the integrative

control of VE and respiratory pattern, by expressing W explicitly in terms of the

isometric respiratory driving pressure P(t). The mechanical plant in this case is defined by

the following equation of motion:

P(t) = V(t)R + V(t)Ers (3.4)

whereby all ventilatory variables can be derived successively from the P(t) waveform as

follows:

P(t ) -+>V (t), V (t ) -+ V,T,T E --+VI, (3.5)

where R. , E, are respectively the total (extrinsic and intrinsic) respiratory resistance and

elastance; V(t), V(t) are instantaneous respiratory airflow and volume; T, and TE are

inspiratory and expiratory durations. V, T1 and TE together determine the total ventilation.

This integrated model captures both the optimal ventilatory response characteristics of Eq.

3.2, and the corresponding optimal respiratory pattern.



Glossary

J Total cost of breathing

Jc Chemical cost of breathing

Jm Mechanical cost of breathing

PaCo2 Arterial CO2 partial pressure

a Chemoreceptor sensitivity

13 Chemoreceptor response threshold

Work rate of breathing

E Total ventilation

Maximal ventilatory output

QM Metabolic CO2 production rate

R.s Total respiratory resistance

Ers Total respiratory elastance

Q0) Instantaneous respiratory airflow rate

V(t) Instantaneous respiratory volume

T1  Inspiratory duration

TE Expiratory duration

P(t) Isometric inspiratory driving pressure measured at functional residual capacity (FRC)

3.6.3 Hebbian feedback covariance learning model of respiratory
motor control

The optimization model represents an intelligent control system in our breathing.

The next question is: what is the brain mechanism that optimizes our breathing? A

Hebbian feedback covariance adaptive control paradigm which conforms to the

neurophysiological system was proposed based on the Hebbian covariance learning rule

(Figure 3.3). Figure 3.3 is hence an engineering realization of the respiratory optimal

controller (Figure 3.2). The synaptic weight that determines the optimal input-output



relationship is computed by correlating the corresponding intrinsic fluctuations that are

ubiquitous in physiological signals (Young & Poon, 1998).

Hebbian synaptic plasticity was first postulated by Hebb over 50 years ago as a

mechanism of learning and memory (Hebb, 1949). The classical Hebbian model (Hebb,

1949) states that the strength (or gain) C of a synaptic connection is modified according

to an adaptation law of the form:

dC
-- = k(y -u) (3.6)
dt

where y, u are mean firing rates of input and output neurons, respectively, and k is an

adaptation constant. This synaptic adaptation law has been widely taken as the basis of

NMDA receptor-dependent long-term potentiation (LTP) in some hippocampal and

neocortical neurons.

However, there are some limitations to the classical Hebbian model, not the least

the inevitable occurrence of runaway instability and irreversible saturation resulting from

sustained or random coactivity of interacting neurons, leading to difficulties in its

implementation (Poon, 1996d; Young, 1997; Young & Poon, 2001c). Moreover, the

dependence of the classical Hebbian model on pre- and post-synaptic activities local to

the adapting neuron does not lend itself to feedback control applications. To circumvent

these difficulties, a stochastic synaptic adaptation law called Hebbian feedback

covariance adaptation has been proposed (Young & Poon, 2001c). Instead of pairing the

mean input and output activities of the controller neuron, the new adaptation law

modifies the synaptic strength by correlating the temporal variations of the pre- and post-

synaptic neural activities about their respective mean values. Here, the pre- and post-

synaptic activities of the controller neuron correspond to the feedback signal and control

signal, respectively. This adaptive control paradigm can be viewed as a reinforcement



learning system driven by spontaneous, random perturbations in the control and feedback

variables (Figure 3.3). The new adaptation law becomes,

= k,(y-u4)-k2C-g(6y,Nu;y,u) 
(3.7)

dt

where 8u and Sy are the temporal variations of the pre- and post-synaptic neural activities

about their respective mean values and g(-) is some positive definite function, which acts

as a decay term to avoid saturation. Depending on the sign of the constant ki, the

algorithm can describe synaptic LTP (for k, > 0) or LTD (long-term depression) (for ki <

0).

The Hebbian feedback covariance controller is stochastic in nature and employs a

direct adaptive control approach. The controller gain, C, is updated according to the

input/output relationship of the system, without explicit estimation of the plant

parameters. In addition, the adaptive controller can be designed in such a way to optimize

a certain objective function (which is essentially the Lyapunov function (Slotine & Li,

1991)). By applying the Barbalat's lemma (Slotine & Li, 1991), the objective can be

guaranteed to converge to a minimum value at steady state.

The discussions of the algorithm so far have focused on static input-output

relationship only. In reality, systems are usually governed by dynamical relationships as a

result of, for instance, slow time constants and time delays. Young and Poon (2001c)

modified the original algorithm for dynamical systems by introducing a near-term

objective function, Q. The Hebbian covariance feedback law is applied to the near-term

objective function which, with some suitable transformations of the state variables, will

lead to minimization in the long term.

To illustrate, consider a first-order nonlinear system,



9= q(y,u) (3.8)

The steady state solution is obtained as,

yo = f(u) (3.9)

An intermediate variable z is defined as a filtered version of the original state

variable y,

z(y, ',u)= f(u) (3.10)

such that z -> yo as f(u) -+ f(u,). Hence, the system becomes static in z, and the same

algorithm can be applied on this intermediate (or filtered) state variable with a near-term

objective function defined in z and u. In steady state, the near-term objective function

converges to the long-term objective function. The same approach is generally applicable

to systems of higher order.

The Hebbian feedback covariance control is computationally simple compared to

conventional self-tuning or model-reference adaptive control, which generally require a

prescribed reference model or desired trajectory. On the other hand, it is also a form of

reinforcement learning with an implicit reinforcement signal, namely the covariance of

the filtered state and the control signals.

Hebbian feedback covariance control has been successfully applied to the

modeling of the respiratory system to predict the optimal adaptation behaviors during

exercise and CO2 inhalation (Young, 1997; Young & Poon, 1998). Moreover, robustness

to noise disturbances is also verified with simulations. Further experimental evidence is

required to identify the neural correlates of such an algorithm in respiratory control. This

Hebbian feedback covariance control has a substantial mathematical background. It

shows an example in which reverse engineering is applied to a physiological system

toward developing a biologically-inspired engineering control paradigm. Such a



paradigm may transcend its biological counterpart to suggest a general engineering

control theory that is applicable to any practical system.

Figure 3.2 Simplified block diagram of the optimization model of respiratory control.
Sensorimotor feedback signals are integrated by an intelligent controller which produces
optimal ventilatory drive and breathing pattern that are most cost-effect for meeting
metabolic demands, subject to the constraints imposed by the mechanical plant and
chemical plant. The functional block "G" represents the transmission gains for
sensorimotor integration.

Dyspnea (respiratory discomfort) may involve the processing of similar signals by the
higher brain (the somatosensory cortex and limbic system).
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Figure 3.3 Hebbian Feedback Covariance Control Paradigm

The controller gain, C, is adapted based on the covariance between the input (y) and
output (u) signals. Dotted line indicates the original control scheme for static system. To
account for system dynamics, a filter is added to transform the plant output, y into an
intermediate variable.



3.6.4 Cheyne-Stokes breathing from different engineering control
perspectives

Cheyne-Stokes breathing is of significant clinical concern. It is a respiratory

abnormality when a person's breathing wax and wane periodically. It is occurring more

frequently in patients with chronic heart failure and left ventricular systolic dysfunction,

normals at high altitude, or during sleep. There have been extensive analytical studies

about the mechanism of Cheyne-Stokes. Three possible views are discussed below.

Cheyne-Stokes breathing as system instability

Cheyne-Stokes breathing has been studied on the basis of engineering stability. It

has been suggested that Cheyne-Stokes breathing is a result of instability of the

respiratory control system based on chemoreflex, as the above mentioned conditions

increase the gain and/or phase lag of the system. A vast variety of engineering theory is

concerned about the stability of a control system, especially linear time-invariant system.

Khoo (1982) has performed an extensive analytical study, based on Nyquist's stability

criterion, on the dependence of stability of respiratory control system on different

parameters and physiological conditions. The analysis determines the local stability of the

system about the equilibrium state using a linearized system. An unstable combination of

system parameters will diverge the states from the equilibrium, and will be bounded by

saturations in chemoreceptors, gas exchange process and mechanical limitation of

actuators, and hence oscillate. This study represents one of the very successful systematic

applications of engineering theories in the study of cardiorespiratory phenomena. It has

led to many subsequent studies of Cheyne-Stoke breathing and the mechanisms of

possible treatment.

Cheyne-Stokes breathing as limit cycle

It should be noted that Cheyne-Stoke breathing can also be interpreted as a stable

limit cycle. Limit cycle is an important phenomenon in nonlinear systems, and is distinct



from the oscillation in linear systems (Figure 3.4). A marginally stable linear system may

also oscillate. However, the amplitude of a limit cycle is independent of the initial

condition, while the oscillation of a marginally stable linear system has its amplitude

determined by its initial condition. Furthermore, the oscillation of a marginally stable

linear system is not robust and is very sensitive to changes in system parameters. On the

other hand, limit cycle may be viewed as a "stable" state. A unique mathematical tool for

determining existence and stability of limit cycle is available (Slotine & Li, 1991) and

may be useful in further study of Cheyne-Stokes breathing.

Cheyne-Stokes breathing as an optimal pattem

Ghazanshahi and Khoo (1993) has suggested that Cheyne-Stokes breathing is

actually an optimal breathing pattern at high altitude when the respiratory system is

highly stressed. They suggested that Cheyne-Stokes, or more generally periodic breathing,

is a cost effective way to breathe when respiratory demand is high. They showed that

despite the large fluctuation in blood gas concentration, on average gas transport is more

efficient in periodic breathing, and it also saves muscular efforts. The chemical cost is

lowered by the large breath to reduce dead space ventilation hence maintaining blood gas

homeostasis; while mechanical cost is lowered by the apnea period which partially offset

the increased work during the breathing phase.
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Figure 3.4 Limit cycle a) Stable, b) unstable, c) semi-stable (Slotine & Li, 1991)
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Chapter 4 Mechanical-Chemical

Interaction underlies Optimal

Respiratory Control in Gas

Exchange Defects 2

4.1 INTRODUCTION

Breathing is an innate motor act that is basic to survival. This deceptively

mundane ("as-easy-as-breathing") motor function is regulated by the brain continually

throughout life without fail in the face of constant physiologic and environmental

challenges. In cardiopulmonary diseases, control of breathing is compromised but

remains surprisingly sturdy as compensatory mechanisms set in to restore homeostasis

until the disease progresses to the point of breakdown with acute/chronic respiratory

failure. Precisely how such robust automatic control is accomplished and what makes it

finally fail in disease states remains poorly understood.

2 Research supported by American Heart Association Pre-doctoral Fellowship



Classical models of respiratory control assume a simple, fixed reflexogenic

controller with additive, reducible and superposable characteristics of chemoreceptor and

mechanoreceptor afferent signals. This chemoreflex/mechanoreflex feedback model

implies the existence of a feedforward signal from an exercise-related input in order to

explain the control of exercise hyperpnea - an automatic increase in respiratory

ventilation geared to metabolic demands with near constancy of arterial CO2 and pH

levels. However, despite extensive search over the past century, none of the hypothesized

feedforward mechanisms has been demonstrated conclusively as the true "exercise

stimulus" that is obligatory to exercise hyperpnea (Mateika & Duffin, 1995; Ward, 2000;

Eldridge et at., 2006; Secher et at., 2006; Waldrop et al., 2006; Yu & Poon, 2006). These

controversies raise serious questions regarding the validity of such oversimplified models.

A novel model of respiratory control based on a general optimality principle

proposed previously (Poon, 1983a) has proved to be capable of synthesizing a vast array

of respiratory phenomena. The model addresses the important question of how the

respiratory controller balances multiple competing objectives in order to optimize the

work of breathing while striving to maintain homeostasis of arterial CO2 and pH levels in

a unified framework. The resultant optimal controller encapsulates many salient

characteristics of respiratory control including distinct ventilatory responses to exercise,

CO2 inhalation and increased respiratory dead space (VD) to tidal volume (VT) ratio as

well as C0 2-exercise and VD/V-exercise interactions and ventilatory load compensation,

all without the need for an explicit putative "exercise stimulus". The success of coherent

predictions by the optimization model over a wide variety of physiological conditions

makes it a more useful tool than the conventional reflex model for translation between

clinical observations and physiological mechanisms. The present study will explore the

capability of such optimization model on predicting the exercise ventilatory response

imposed by various clinical and physiological conditions that compromise gas exchange

efficiency. Specifically, our study will explain the difference that increased dead space in

congestive heart failure leads to normocapnic exercise response while in external dead

space breathing, it leads to hypercapnia.



4.2 BACKGROUND

4.2.1 Traditional notion of dead space

Oxygenation of blood and elimination of carbon dioxide from the blood requires

efficient pulmonary ventilation and gas exchange. Nevertheless, ventilation is never

perfect and a portion of the ventilation of every breath is inevitably wasted, physically

and/or functionally (dead space). Such waste is further exaggerated under various

cardiorespiratory diseases and physiological conditions. Increased dead space fraction

has been shown to be a useful diagnostic measure for predicting mortality in acute

respiratory distress syndrome (Nuckton et al., 2002). Furthermore, mechanical ventilation

tubing imposes additional apparatus dead space to the respiratory circuit. Understanding

its impact on patients' respiration will suggest necessary precautions to minimize its

adverse effects (Mapleson, 1954; De Robertis et al., 1999; De Robertis et al., 2010).

The notion of "dead space" has a century-old history and is important in

characterizing the defects of gas exchange efficiency under various conditions. Riley's

three compartment model provides a simple idealized picture of imperfect gas exchange

in respiration (Riley & Cournand, 1949, 1951). In his model, the three compartments are

an ideal lung unit, a dead space volume and shunt in blood stream. Dead space is the

volume that is being ventilated but not perfused; while shunt is the part that is perfused

but not ventilated. Neither of them contributes to gas exchange.

Bohr (Bohr, 1891) first calculated the dead space (VD) using the following

equation based on mass balance:

VD F-c
we ECr2
VT F(41

where



VT = tidal volume

Fco2 = Average volumetric fraction of carbon dixoide in mixed expired gas

FACo 2 = Average volumetric fraction of carbon dixoide in alveolar gas

(equivalently, Pco2 can be used instead of Fco 2)

With the difficulty of defining FACO2 unequivocally, especially in the presence of

inhomogeneity, Enghoff (Enghoff, 1938) modified Bohr's equation by replacing alveolar

partial pressure with arterial (Paco 2 ) and the dead space is now named physiological dead

space.

The physiological dead space is commonly divided into two compartments. The

first compartment, anatomical dead space, is the volume of the conducting airways and

tubing in the ventilator circuitry. The second, alveolar dead space, is commonly referred

to as the volume of nonperfused alveoli and can include effects due to

ventilation/perfusion mismatch.

4.3 GENERALIZED GAS EXCHANGE EQUATION AND
OPTIMAL RESPIRATORY CONTROL FOR
PULMONARY GAS EXCHANGE DEFECTS

4.3.1 Notion of dead space in gas exchange equation

Traditionally, the problem of pulmonary gas exchange is captured as the quantity

VD/VT in the steady state gas exchange equation as follow:

KV
PaCO2 = ICo2 + co2 (4.2)

YE (1-VD /VT )

where PIC02 is the partial pressure of inhaled C0 2; V1Co2 is the metabolic CO2 production

rate; VE is the total ventilation; VDIVT is the dead space to tidal volume ratio; K = 863 is a

constant to reconcile STPD (standard temperature (0 *C), barometric pressure at sea level



(101.3 kPa) and dry) and BTPS (body temperature, pressure and saturated) conditions

and for unit conversion.

Clinical measure of VD/VT using Enghoff-Bohr's equation is useful for

quantifying severity of disease in a patient. However, various causes of gas exchange

defects may confuse or complicate the measurement of dead space (Fletcher et al., 1981;

Tang et at., 2005; Drummond & Fletcher, 2006; Hedenstierna & Sandhagen, 2006).

Furthermore, the quantity VD/VT itself does not provide a full picture for the impact of

the gas exchange defects on respiratory control without understanding the specific nature

of the gas exchange problem.

To provide a better understanding of the problem of gas exchange, especially for

its impact on control of breathing, we will look into the problem from the first principle.

Dead space is commonly investigated using a single breath test for carbon dioxide

(SBT-C0 2), whereby expired carbon dioxide fraction is plotted against expired volume

(Figure 4.1). The area under the expired CO2 curve represents the volume of CO2 being

eliminated in the tidal volume. On the other hand, the area between the Paco2 line and the

curve represents the volume of CO2 that is not eliminated by the tidal volume due to any

non-ideal gas exchange condition, which commonly includes contribution from alveolar

dead space and airway dead space (Fowler, 1948; Bartels et at., 1954; Langley et at.,

1976; Fletcher et al., 1981; Lucangelo & Blanch, 2004; Drummond & Fletcher, 2006).

PCo2 C02 not eliminated
due to alveolar dead space

.... . ................. . ...... PaCO2

PETCO2

Figure 4.1 Expired CO2 trace
002 eliminated with illustration of "dead

space". Total "dead space"
normally comprises alveolar

Volume VT and airway dead space
Airway
dead space



The amount of CO2 removed by ventilation of volume VT with gas at CO2 tension

of PaCO2 at steady state is equal to the metabolic production of CO2 , Vco2.

KVco 2 .J Pc0 2 -dV

1X 1T PC02 -dV

=Vx V (4.3)

=Vr xP-co
VT X EC02

where PKc0 2 is the mixed expired CO2.

Under ideal condition, assuming homogenous and steady state condition, arterial,

alveolar, end-tidal and mixed expired CO2 are indistinguishable from one another.

PECo2 = Paco2 (4-4)

However, in reality or under any gas exchange defects, mixed expired CO2 partial

pressure ECO2 deviates from PaCO2. Without loss of generality, the gas exchange

equation can be written as

KVco2 =VT x (Paco2 - APco 2) (4.5)

or in the equivalent form using total ventilation (VE = VT x freq) instead of tidal volume

(VT), the gas exchange equation becomes:

KV
'aCo2 ~ -co2 + PC02 (4.6)

VE

where co2 is a measure to indicate the average deviation of the expired CO2 trace

from the PacO2 level and hence VT x APCo 2 represents the area between the horizontal line

indicating PacO2 level and the expired CO2 curve. This area is commonly used as a

measure of the "dead space". but it actually has a broader meaning incorporating different

situations of gas exchange defects (e.g. shunts, non-uniform gas mixing, etc.). It also



represents the inhaled CO2 (PIco 2) as in the traditional gas exchange equation. It will be

helpful for our understanding of the respiratory response to various clinical and

physiological conditions.

4.3.2 Role of dead space in optimal respiratory control

The impact of gas exchange defects on respiratory control is considered in the

framework of optimal respiratory control. Consider the optimization problem similar to

(Poon, 1987a):

min J = min(J,+ J.)= minf{a(Pco -Q}2 +1InY2
V E VE V E a02V

(4.7)
st. PaCO2 = C'~0 2 +K.co2

The total cost of breathing is the sum of chemical (Jc) and mechanical (J.) cost (a,

are parameters). The optimization is constrained by the gas exchange equation (Eq. 4.6).

R E A Pco2 Vco2

Figure 4.2 Block diagram of optimal respiratory CO 2 control



To obtain the optimal VE,

a!
-- =0

C9VE

-> 2a 2(pc2 -/3) + =0
aV E VE

aaCO2 K-C02 CAPc02

8VE VE2 E

VE* =a 2 (Paco2 {Kco2 VE2

The term -VE 2 OAPCO2 in Eq. 4.9 accounts for the impact of various pulmonary

gas exchange defects on the optimal respiratory response. This will be elaborated in

several different conditions in the following sections.

4.4 THE OPTIMIZATION MODEL (MODIFIED FROM
POON'S MODEL)

In the present study, the optimization is performed as follow:

miJ = mn a(Paco
VE E

V2
+ In '

VE
(lqEma

(4.10)

KV
s.t. Pacoz = ARco2 + .Co 2

V.

-> minW
VT,freq

(4.11)
S.t. Y E =VT -freq

where

(4.8)

APC02

aV E

(4.9)



where a = 0.1, p = 37 Torr and VEmax = 160L/min (Poon, 1987a).

4

A mechanical limitation factor 1 - E/Ema is included in Eq. 4.10 to

produce a more realistic prediction. (VEmax defines the maximal ventilation that can be

sustained by the respiratory muscle.)

The optimal total ventilation 9V is determined by minimizing the sum of chemical

and mechanical cost similar to (Poon, 1987b) (Eq. 4.10). The second optimization

equation (Eq. 4.11) gives the optimal combination of tidal volume and breathing

frequency corresponding to V* by minimizing the mechanical cost index, W. In the

present study, only tidal volume and frequency are of concern. The underlying

assumption for separating the breathing pattern optimization from the ventilation

optimization is that the chemoafferent signal has little effect in altering the breathing

pattern. We argue that the swing of chemical signal is comparatively slower than breath-

to-breath variation. Therefore, it is beyond the bandwidth of the pattern controller. As

such, breathing pattern is primarily determined by mechanical factors.

It is assumed that the mechanical cost index, W of breathing is the weighted sum

of the power output required for inspiration and the mean squared acceleration which

accounts for the smoothness of muscle movement. Similar cost index has been

considered in various studies (Yamashiro & Grodins, 1971; Hamiliiinen & Viljanen,

1978a; Himiliinen & Viljanen, 1978b; Himaliuinen & Sipili, 1984; Poon et al., 1992b).

Furthermore, a linear dynamic model of the lung mechanics is assumed. Hence, the

mechanical cost index can be formulated as follow:



=freq + AY 2 dt , s.t. P(t) = RY (t)+ EV (t) (4.12)

1 V

VC _

where P(t) is the driving pressure, V(t), V(t) and V(t) are the airflow volume, velocity

and acceleration respectively; VT is the tidal volume; freq is the breathing frequency; R

(= 3cmH 20 L:' si) and E (= 10 cmH20 I') are the overall system resistance and

stiffness respectively; Vc (= 5 L) is the lung vital capacity.

Without assuming a specific airflow pattern, the mechanical cost of breathing is

estimated as follows:

V -Vr

V - VTe freq
V ~ VT e freq 2

Such that,

1 V
L(Vc ( RV + EV )V+--

=freqf (+Ej +AV 2 dt (4.13)
Vr

1-
L VC

1 1R V | .freq2  +12 E freq | % '(V , freq 2

Vc

The four parameters r/, r2, n and 2' are dependent on the actual airflow profile

and the relative weight between the two terms in W (Yamashiro & Grodins, 1971;



Hamalainen & Sipila, 1984). To produce a realistic breathing pattern, they are determined

here by fitting the simulated pattern to the clinical data of a normal subject from

(Wasserman et al., 1997), and it is assumed that these parameters remain relatively

constant over the range of conditions tested.

To determine the parameters, the mean values of the data point in Fig. 3 in

Wasserman et al. (1997) were extracted graphically, denoted as VT,Data, freqata and

VEData. The optimal set of the parameters to predict the clinical data was determined by

minimizing the following error function:

ez = Y ~1[(KVTDatai - VT,Predicted) 2 + (freqDatai - freqreacteat)2] (.4

where VT,Predicted and freqPredicted are the tidal volume and breathing frequency

predicted by Eq. 4.13 based on PE,Data-

The fitting result with the clinical data is shown in Figure 4.3. The values of

parameters obtained are as follow:

r/- 1; r12= 1; n 1; and '= 0.005

Clinical Data
-- SimulationL Adj-R2 = 0.93 = 0.85

2. 2 Adj-R' 08

1.5 -21 1

20 40 60 20 40 60
VE (L/min) VE (L/min)

Figure 4.3 Simulated breathing pattern fitted to clinical data to determine parameter
values for mechanical work index.



4.5 GAS EXCHANGE EQUATION UNDER DIFFERENT

PULMONARY GAS EXCHANGE DEFECTS

4.5.1 Congestive heart failure

Congestive heart failure (CHF) patients suffer from reduced cardiac output. This

leads to reduced or no pulmonary perfusion to well ventilated lung unit (Wasserman et al.,

1997). The condition can be simplified with a parallel dead space (Figure 4.4), where a

portion of the tidal volume is wasted in a lung unit of volume VD which does not receive

perfusion, hence no gas exchange occurs. As a result, gas in the perfused lung unit (VT-

VD) will be in equilibrium with PaCO2 while gas in the non-perfused unit (VD) will remain

at the partial pressure as the inspired gas (Pco 2 = 0). During expiration, the gas from the

two units will mix together. The result is that the mixed expired PCO2 will be lower than

PaCo2 as shown in the expired CO 2 trace in Figure 4.4.

Parallel Dead Space
Pco2

vD -------------------- PaCO2

Volume

Figure 4.4 Illustration of parallel dead space, VD, and the corresponding expired CO2

trace.



Assuming complete mixing, the gas exchange equation can be shown:

freq (VT freq VDO freqT ECO2

aCO2 ~ ECO2 v aCO2
T

KVc V
PaCO2 v2 + D PaCO2 (4.15)

VE VT

VE (1VD /VT)

where the severity of the disease can be reflected by the ratio VDNT. VD/V1 remains

relatively constant from rest to exercise in these patients (Wasserman et al., 2005).

Furthermore, these patients are also found to develop lung restriction and reduced

vital capacity (Wasserman et al., 1997).

4.5.2 Right-to-left shunts

Patients with significant right-to-left shunt have a portion of blood flow by-

passing the ventilated lung unit (shunt blood). Hence, a shunt allows venous blood of

higher Pco2 to reach the end capillary side without undergoing gas exchange. When the

clean blood (blood that passes through the ventilated lung unit and is in equilibrium with

the alveolar gas at PACo2) reaches the end capillary side, it will mix with the shunt blood

and the resultant blood PaCo2 will be increased by the shunt blood, and hence higher than

PCo2 in the expired gas as shown in the expired CO 2 trace in Figure 4.5. The expired CO2

trace is similar to CHF (Figure 4.4) and hence right-to-left shunt is often confused with a

true alveolar dead space (Hedenstiema & Sandhagen, 2006).



Right-to-Left Shunt

PC02 .................... Paco2

Volume

Figure 4.5 Illustration of right-to-left shunt and the corresponding expired CO 2 trace.

The effect of shunt can be modeled based on conservation of mass (Kuwabara &

Dcncalf, 1969; Mecikalski et al., 1984). The gas exchange equation will become:

KVco, ( s / Gr ) Fco2

PaCO2  + . . . (4.16)
VE SQT (1 -Q/QT)

where QT and Qs are the total cardiac blood flow and shunt blood flow; S is the CO 2

solubility in blood. QT is taken as a linear function of fco2 (Astrand et al., 1964).

QT =8.51. Vco2 +3.66 (4.17)

Equation 4.16 suggests that the shunt is like a pseudo "inhaled CO2", which is

dependent on the shunt ratio, Qs /QT ratio, CO2 solubility and the ratio of co 'QT.

4.5.3 External Dead Space

External dead space has been commonly used for challenging the respiratory

system. However, the underlying mechanism is very unclear. External dead space (e.g.

equipment dead space in a ventilatory circuit) is usually taken as an additional component

to the physiological dead space indicated by its physical volume (Wasserman et al.,

2005). However, we show that it is of quite a different nature compared to an alveolar

(parallel) dead space like in CHF.



To gain some qualitative insight regarding the problem, we examined the

evolvement of CO2 along the airway pathway during a breath cycle by considering the

one-dimensional convection-diffusion equation (derived in Scherer et al., 1972; Scherer

et al., 1988):

V _Po $_ + Pco2 1 [ D,,, A aPc02  S

V at V, az V 0z L az V' (4.18)

S( z,t )=0 C2 C2('0 (b)
NT

where

z Weibel's generational (geometric) coordinates

t time

VA(z,t) Alveolar volume at generation z at time t to account for tidal volume

Ve(z) Airway volume of generation z

Q (z, t) Volumetric air flow rate in generation z at time t

Dmo Molecular diffusivity of CO2

A(z) Total airway cross sectional area of generation z

L(z) Airway length in generation z

NA(z) Number of alveoli in generation z

NT Total number of alveoli in Weibel's lung

QB Total cardiac output
PBco2 Pulmonary arterial blood Pco2

.z C02 solubility in blood

The term S(zt) in Eq. 4.18 represents the evolution of CO2 from the blood into

lung air space. It is a function of local concentration gradient of CO2 between the blood

and alveolar; as well as local blood flow. A sinusoidal air flow pattern is assumed.

A modified Weibel's Lung Model was used to describe the geometry of the lung

system, which provides realistic human dimensions of airway (Weibel, 1963; Schwardt et

al., 1991). Briefly, the Weibel's lung model divides the trachio-brochial tree into 24

generations of airway branching (Oh generation being the opening of trachea). This model

provides detailed anatomic dimensions of each generation from measurement of a human



lung (V(z), L(z), A(z), NA(z)). In this simulation, generations 0-16 are conductive

pathways while generations 17-23 are alveolated airways which can expand (VA(zt)) to

account for the tidal volume. (Refer to (Scherer et al., 1988; Schwardt et al., 1991) for

more details)

To account for the change of blood CO2 tension due to change in total ventilation

(and breathing pattern), we incorporated the following dynamics of CO 2 in a tissue

compartment. It is assumed that blood leaves the lung at tension in equilibrium with the

alveolar gas. The blood passes through a tissue compartment which generates CO 2 at a

rate of VCo2 and is carried away by the blood. The blood will leave the tissue

compartment at a concentration of PBCO2 and circulate to the lung. Diffusion is assumed

to reach equilibrium very quickly.

dPBCo 2  QB CO2 CP2  Vco2
dt V 0 2  bVTco2

VA (z,t) -Pc0 2 (z,t) (4.19)

PACo2 (t = V (b)

z

where PACo2 is the mean Pco2 over the alveolar space, Vco 2 is the metabolic CO2

production; VTco2 is the tissue CO2 storage, and b is the tissue CO2 dissociation. See

Appendix A for details of numerical simulation method.

To simulate the effect of external dead space (Tube), additional conductive airway

was added beyond the 0* generation of the Weibel's lung model. To account for the

concentration gradient inside the tube, the tube was divided into MDs generations of equal

length and cross-sectional area. Hence, the dead space volume can be changed by

changing MDs. A sample simulation programmed in Matlab using MDs = 10 (resulting in a

tube of volume Vej = 1L) is shown in Figure 4.6.
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Figure 4.6 Distribution of Pco2 along the airway over a breath cycle in the presence of an
external dead space. Tube volume VD,. = IL.

This simulation shows a significant amount of residue CO2 left in the tube at the

end of expiration. The residual CO2 significantly clogs the airway during the subsequent

inspiration to the extent that it takes 60% of the inspiratory duration before fresh air

reaches the alveolar units. Figure 4.7 shows the expired CO 2 trace as measured at both

the mouth and the end of the tube. Here, the APc0 2 in external dead space has two

components. The area between the two curves indicates the amount of CO2 that would be

re-inhaled in the next breath cycle, while the area between PaCo2 and the mouth curve

indicates other intrinsic gas exchange defects of the body and additional gas exchange

defects due to the dead space volume and gas mixing.

Figure 4.8 shows AP02 increases with the size of the dead space. As a result, the

amount of CO2 rebreathing significantly increases with larger the dead space. In practice,

a finite amount of CO 2 is always reinhaled as a result of the presence of external dead

space. It is also shown that AP02 is dependent on the breathing pattern (Figure 4.9). For

Tube Mouth Lune



the same external dead space, APc0 2 is reduced as breathing becomes deeper and slower

with the same total ventilation.

Figure 4. 1OA summarizes the results from a series of simulations with a range of

combinations of Vr and breathing frequency. This figure shows that APco 2 decreases

with increasing total ventilation (or tidal volume) at fixed breathing frequency, and APco2

increases with high breathing frequency and small tidal volume combinations at fixed

total ventilation. This breathing pattern dependence is a result of changes of gas diffusion

efficiency, where larger VT and slower breathing allows more thorough gas mixing and

deeper penetration of fresh air.

Figure 4.10B shows APco 2 as a function of VEover a range #co2 when VT and

breathing frequency are obtained from minimization of Eq. 4.12. APco 2 decreases

monotonically with VEand increases with Vco2-
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Figure 4.7 Expired CO2 trace at mouth (red) and at end of tube
of APco2 are illustrated.
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Figure 4.9 Dependence of APco2 on breathing pattern (1) rapid shallow (dashed lines); (2)
normal (solid line) and (3) slow deep (dash-dot lines) with constant total ventilation. (Red
lines represent expired CO 2 trace at mouth and blue lines represent expired CO 2 trace at
end of tube.)
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Figure 4.10 (A) APco2 as a function of total ventilation and breathing frequency; (B)

APco2 as a function of VE at three levels of VC0 2 (VT and breathing frequency are obtained

from minimization of Eq.4.12). (VDex -L).

These simulation results showed that

APc02 = APC02 (E'f VDex VCO2 (4'20)

In fact, APco 2 now represents CO2 breathing from the tube and its concentration is

breathing pattern dependent. APco 2 reaches significant size especially with a large dead

space, which is high enough to result in hypercapnia (Poon, 1992).



4.6 THE EFFECT OF EXTERNAL DEAD SPACE,
PARALLEL DEAD SPACE AND SHUNT ON
OPTIMIZATION OF RESPIRATORY CONTROL

4.6.1 Congestive heart failure

Using Eq. 4.15, the optimal respiratory response of CHF can be shown as follow

by referring to Eq. 4.9:

.. r~KV
2 y 02 _g) KC02

VE 2aCO 2  C -V /V (4.21)

Eq. 4.21 predicts an augmented exercise ventilatory response as the metabolic

CO 2 was effectively "scaled up" by a factor of I/(1-VD/VT). To illustrate the idea, the

condition of CHF was simulated as follows.

The increase in dead space to tidal volume ratio was modeled on the basis of

(Jones et al., 1966), where the dead space was shown to be a linear function of tidal

volume:

VD =C VT +C 2  (4.22)

In normal subjects, CI = 0.077 and C2 = 0.138 (L) as suggested by (Jones et al.,

1966). For CHF, the values were chosen as C1 0.45 and C2 = 0.005 (L). The choice of

these values so that the VJJ/VT ratio was higher than normal and it remained relatively

constant as exercise became more vigorous as suggested in (Sullivan et al., 1988;

Wasserman et al., 2005). Clark et al. (1995) has shown that increased breathing

frequency in CHF patient does not contribute to increased V7E - VCO2 slope. In addition,

Vc (= 3.5L) and E (= 20 cmH 20 L-1) were decreased and increased, respectively, in CHF

patients.

Figure 4.11 shows the results of our simulation of exercise responses in healthy

subjects and CHF patients. The simulation shows several key clinical observations in



CHF patients compared to healthy subjects (Wasserman et al., 1997). First, the

augmented exercise response in CHF shows an increased slope in VE - VCO2 curve.

Second, Paco2 remains in the nonnal range in CHF patient over the range of exercise

level concerned. Furthermore, the rapid shallow breathing pattern in CHF is reproduced

as a result of increased lung stiffness and reduced vital capacity. The simulated pattern

was compared with the clinical data in (Wasserman et al., 1997).
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Figure 4.11 Simulated exercise respiratory response of CHF patient compared with
normal subject. CHF patients demonstrated augmented ventilation, with a rapid shallow
pattern. The dashed lines are clinical data adopted from (Wasserman, K., Y.-Y. Zhang, et
al., Circulation, 1997.). Prediction of breathing pattern is characterized by adj-R 2 values.



4.6.2 Right-to-left shunts

Using Eq. 4.16, the optimal respiratory response of right-to-left shunt can be

shown as:

VE _ 2 aCO2 -#)KC 0 2  (a)

OS / Or )c -o2 (4.23)
PICo2 =(b)

Sar (1-- aS /r T)

Here, from the perspective of control of breathing, the exercise ventilatory

response is not different from breathing CO 2. The inhaled CO 2 partial pressure is

indicated by Eq. 4.23b.

Figure 4.12A shows the results of our simulation. This simulation is consistent

with two key clinical observations in right-to-left shunt (Sietsema et al., 1988). First, the

exercise response is augmented with increasing shunt, as a result of multiplicative "C0 2"-

exercise interaction. Second, PaCO2 remains within the normal range (<45mmHg) even

when the shunt reaches 50% at relatively high exercise intensity. Figure 4.12B shows the

change of the size of the equivalent "inhaled C0 2" as shunt increases at rest

(Vco2 = 0.2L / min ) and a moderate exercise level ( Vc,2 = 1.4L /min ). The curve is

relatively flat when QS /QT <60% but increases quickly beyond that. Hence, the

normocapnia in shunt is a result of generally low concentrations of "inhaled C0 2".

However, it increasingly challenges the respiratory system, and when, for instance, the

cardiac output fails to catch up with increasing work rate, patients may become

hypercapnic.
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Figure 4.12 (A) Simulated exercise respiratory response of two levels of right-to-left

shunt compared with normal. Increased shunt fraction is associated with augmented

ventilation. (B) Change of APco 2 as a function of shunt fraction and metabolic CO 2.

4.6.3 External Dead Space

Equation 4.20 shows that APco 2 is now an explicit function of total ventilation

VE (and breathing pattern). Referring to the optimal solution in Eq. 4.9, which is repeated

here:

VE -a (aCO2 p) KVC02 -

Pico2 -APco2 > 0

2 AP0 2
E 2 CO2aVE /

Note, we have assumed that breathing pattern (VT, f) is determined solely by

mechanical factor (Eq. 4.13), and VT and f can be expressed as functions in only V, .

Therefore,

CO2 = C02(VE ,(VE.), VDx, 1 C02 APCO2 (VE I VDa, 1 4C.2

(a)

(b)
(4.24)

-VCO2 = 0.21-_VCO2 = 1.4

(4.25)



From Figure 4.10B, we can deduce that aAPCo 2 < 0. Therefore, the external dead
aVE

space leads to an effective metabolic CO 2 load larger than the true metabolic CO 2 load:

KYco2 - ZE 2 CO2 > KYco2 (4.26)
avrVE

Equations 4.24 and 4.26 predict stronger potentiation of VE - VCo 2 slope by

external dead space compared to CO 2 breathing ( aAPC2 = 0) with matched PaCO2
aVE

(hypercapnia or normocapnia). Intuitively, increasing VE in dead space loading can

remove the additional CO 2 load in both of terms KVC2and APCo 2 in the gas exchange
VE

equation, while APco 2 is constant independent of VE in CO 2 breathing. As such, one has

more incentive to increase 'E to restore PaCo2 towards normal level. Consequently, the

augmented potentiation of VE - VC02 in dead space loading is consistent with an optimal

strategy for homeosatsis. Equation 4.24 shows that external dead space has a primary

effect of inhaled CO 2 (PIco 2 = APco 2 ) and with secondary effect like an apparent parallel

dead space effect (Eq. 4.26).

To illustrate the idea, we obtain the following empirical expression of APC0 2 from

the above simulations, with parameters adjusted to mimic the results in (Poon, 1992):

(-(VE + 20)
APc02 :=A exp + B

20

A = 256.5Vc0 2 +90 (4.27)

B = 8.7Vc 0 2 +11

Figure 4.13 shows the result of the simulation of external dead space loading

compared with CO 2 inhalation. The simulation shows several key observations from

experimental studies on healthy human subjects breathing through an external dead space

(Poon, 1992). First, exercise ventilatory response is augmented by both external dead

space and inhaled CO 2 , while the VE - VCo 2 slope is larger in dead space breathing than

in CO 2 breathing. Second, both experimental conditions result in hypercapnia.

Furthermore, under both situations, normal breathing patterns are acquired.



-Normal

60 -- External DS M

E 40, E 4 6 ~

w20 0

0.2 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 1 1.2
VCO2 (L/min) VCO2 (L/min)

2 25
1 20

15
0. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

10 20 30 40 50 60 10 20 30 40 50 60
VE (L/min) VE (L/min)

Figure 4.13 Simulated exercise respiratory response of external dead space loading
compared with normal and inhaled CO 2. External dead space resulted in a stronger
augmented exercise ventilatory response than inhaled CO 2. Both cases results in
hypercapnia with normal breahting pattern.

4.7 DISCUSSION

The present study shows that an optimal respiratory control model of mechanical-

chemical interaction consistently predicts some key characteristics of exercise ventilatory

response in a range of pulmonary gas exchange defect problems (Figure 4.14). It

provides a powerful framework to understand the mechanisms underlying control of a

complex physiological system, which significantly surpasses the capability of the

traditional reductionist approach.
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4.7.1 Optimization as a framework for afferent interaction in
homeostatic control

Optimization strategy in respiratory control has been well recognized as in other

biological systems, owing its root to Darwinian theory. The fact that infinitely many

combinations of tidal volume and frequency can achieve the same ventilation suggests

that there is a specific strategy for a natural choice of breathing pattern. The optimization

of breathing pattern based on a certain mechanical work index has been addressed by a

number of investigators (Mead, 1960b; Yamashiro & Grodins, 1971; Hamilainen &

Viljanen, 1978a; Hiilainen & Viljanen, 1978b; Himalainen & Sipila, 1984). The

implicit assumption is that ventilation is determined solely by the reflex response to

various chemical stimuli (chemoreceptors and exercise stimulus). Instead, the optimal

respiratory control hypothesis proposed by Poon (1983a, 1987a) suggests that the

brainstem may adaptively adjust its controller gain to track the metabolic CO2, instead of

using an independent exercise stimulus adding linearly to the chemoreflex, in order to

maintain isocapnia.



The present study shows that the optimization model is capable of reproducing

some key characteristics of exercise ventilatory response under different conditions of

pulmonary gas exchange defects as observed clinically and experimentally. The model

provides a convenient framework to understanding the overall effect of multiple risk

factors impacting the system from a behavioral level. This integrative model may be

extended to explain behaviors involving multi-systems. For instance, the conflict between

thermoregulation and respiration is well recognized (von Euler, 1961; Squire, 2006),

especially in furred animals. These animals are not able to remove excess heat by

sweating. Hence, they have to rely on panting for thermoregulation during exercise,

especially under high ambient temperature (Schmidt-Nielsen et al., 1970; Goldberg et al.,

1981; Baker, 1982; Schroter et al., 1987; Nijland & Baker, 1992; Entin et al., 2005;

Robertshaw, 2006). As such, thermoregulation and blood gas homeostasis compete for

the same machinery, the act of breathing, especially when the animal is stressed by

environmental heat/coldness or exercise. The conflict can be resolved by optimizing the

overall need for homeostasis of body temperature and blood gas chemistry. Recent

studies show that feedback afferent signal of inspiratory drive by central chemoreceptor

and feedforward signal of body temperature by cutaneous thermoreceptor converge at

LPBN in the dorsolateral pons (Nakamura & Morrison, 2008; Poon, 2009). These studies

support the notion of brain computation involving simultaneous information about blood

gas concentration and body temperature. In light of this example, the concept of

optimization deserves further exploration to generalize to other homeostatic systems.

4.7.2 Different mechanisms underlying isocapnic augmented exercise
hyperpnea in CHF and shunt

CHF patients and patients with significant right-to-left shunts are found to

maintain normal Paco2 even during exercise. These seemingly similar behaviors were

shown to result from different mechanisms from the perspective of control of breathing.

The effect of CHF on gas exchange is a homogenous increase of dead space while right-

to-left shunt mimics airway CO2 loading. The optimization model predicts augmented



exercise ventilatory response as a result of increased effective "metabolic C0 2" and C0 2-

exericse synergistic interaction respectively. The model also provides a quantitative

predictor for the impacts of various physiological factors on the exercise response and

blood gas homeostasis.

4.7.3 Mechanisms of potentiation of exercise ventilatory response by
added dead space: Optimization vs. short term modulation

In a series of goat and human studies (Mitchell, 1990; Wood et al., 2008, 2009),

Mitchell and colleagues demonstrated that exercise ventilatory response was potentiated

by added dead space, similar to the report in (Poon, 1992). The authors called the

potentiation "short term modulation (STM)". They proposed that STM is elicited by

feedforward excitation of serotonin release in ventral spinal cord as a result of increased

resting ventilatory drive in added dead space. Serotonin receptor activation on respiratory

motor neurons would increase their excitability and hence amplify the descending

respiratory drive from brainstem respiratory premotor neurons.

In the present study, we demonstrate mathematically that such potentiation by

added dead space can be explained with a general optimization scheme of respiratory

control (Section 4.6.3). Hence, the serotonin-dependent STM may represent the execution

of such optimal decision computed in the brain stem respiratory control center.

4.7.4 Influence of chemical afferent signal on breathing pattern
revealed by comparing airway CO2 and dead space loading

Hypercapnia resulting from external dead space loading in subjects adopting a

normal breathing pattern (Poon, 1992) suggests that the brainstem controller does not use

the degrees of freedom of VT and breathing frequency independently to minimize the

dead space effect to restore normocapnia (hence, reducing chemical cost). In this case,



Equations 4.10 and 4.11 are integrated into one single optimization problem. For instance,

one can increase ventilation by increasing VT alone such that a smaller APc0 2 can be

obtained compared to the other way.

This provides the basis for considering chemical factor in ventilation optimization

but not breathing pattern optimization. This distinction may result from the different

bandwidth between dynamics of chemical afferent signals (slower) and phasic

mechanical feedback (faster, breath-by-breath). On the other hand, McParland et al.

(1991) reported bradypnea at high work rate during dead space loading. More

investigation will be required to further elucidate the role of chemical signal on

determining breathing pattern.

4.8 CONCLUSIONS

This study show that an integrative optimization respiratory control model provides

consistent prediction of exercise respiratory response under a variety of chemical

challenges. The model demonstrates, from the behavior level, an adaptive mechanism of

the respiratory control by integrating mechanical, chemical and metabolic factors.



Appendix A: Numerical simulation for external dead space
See also (Scherer et al., 1988)

Assuming a sinusoidal airflow pattern,

P= 1 Va sin wt (A.1)

where w = 27nf /60 and f is the breathing frequency.

The numerical simulation is formulated as following. We used At as the time step

and the time index n 1, 2, ... N; Az as the lung airway generational step and the

generational index i = 1, 2, .... M. For the simulation here, Az = 1 and At = 1 x

10-s~5 x 10-3 sec with specific time step chosen to produce a stable simulation.

if i < zA, Q(i,n) =l(n)

if i > zA, Qn) = V(n) (- =ZA NA

where zA is the first alveolar generation.

VA(i, n) = NA(i)(V() + VT) (A.3)NT

where VAr is the total alveolar volume at the beginning of inspiration.



For inspiration:

VA(m, n) -Pco2 0, n + 1) - Pco 2 (i, n)]
+Vc i) A t .

Dmol {rPco2(i,n) - PC0 2 1

VC (I ' Az

+ (i, n)
+ e (i

Pco2 (i, n) -Co2 Az - 1, n)]
Az

-A (i)I A (i -1/
A(i /L(i - 1)

I Az2

+( 0 BA( JBCo2(n)- Co2(i, n))

(A.4)

The boundary conditions are:

Pco2(0,n) = 0

+VA(M, n) Pco2(M, n + 1) - Pco 2 (M, n)

Vc (M) A t

_Dmo 1 A (M - 1) -PCo2(M, n)
Vc (M) L (M - 1)

-- PCo 2(M
AZ2

+ V(M) NT BA(C2 - JPc0 2 (M, n))

(A.5)

1, n)]



For expiration:

VA(i, n) Pco2 (i, n + 1) - Pco 2 (i, n)

V(i) At

Dmoi

VL(i)

A(i)

L (i) L

+ $,n) PC02  + 1, n) - Pco 2 G, n)
V+ () Az

Az 2

1 NA B W
+ Qc()N BA( JBCO2 - PCo2 (U, n))

(A.6)

The boundary conditions are:

PC0 2 (0, n) = PC02(1, n)

[1+ VA(M, n) Pco2 (M, n + 1 ) - Pco 2 (M, n)

Vc (M) A t

Dmot A (M - 1) PCoz (M, n)
Vc(M) L(M - 1)

1 NA (M)
+V(M) NT OBA jBCo2 ~ CO2(,)

(A.7)

[1 +

-Pco2(M - 1, n)]

AZz



For blood-tissue gas exchange,

PBCO2(n +1) - PBCO2(n) SQ

VTC02 (PACO2(n)- PBCO2(n)) + VC0 2bVTCo 2

z ZA PCO2(i, n) VA (i, n)
PAC02(n) izA VA (i, n)

(A.8)

Parameters values:
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Chapter 5 Central-peripheral

Chemoreceptors Interaction

Revealed a Form of Pavlovian

Conditioning

5.1 INTRODUCTION

Respiratory chemoreflex response is determined by signal from the central and

peripheral chemoreceptors. Extensive research in past decades has afforded rich

understanding of the complex patterns, development and mechanisms of the ventilatory

responses to hypoxia (Powell et al., 1998; Waters & Gozal, 2003; Kumar & Prabhakar,

2007; Teppema & Dahan, 2010) and hypercapnia (Sovik & Lossius, 2004; Guyenet et al.,

2010; Hodges & Richerson, 2010; Nattie, 2011) in health and in disease. A generally

accepted simplification in current mathematical models of human respiratory system is

that the two feedback signals add linearly (pure additive) to determine the total "reflex".
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However, a significant number of reports presented contradictory observations of

purely additive (Van Beek et al., 1983; Daristotle & Bisgard, 1989; Clement et al., 1995;

StCroix et al., 1996), hypoadditive (Gesell et al., 1940; Tenney & Brooks, 1966; Ou et al.,

1976; Berger et al., 1978; Giese et al., 1978; Eldridge et al., 1981; Adams & Severns,

1982; Smith et al., 1984; Day & Wilson, 2007, 2009) or hyperadditive (Adams et al.,

1978; Robbins, 1988; Blain et al., 2010) interaction of the two chemoreceptor feedback

signals. These reports suggest that central and peripheral chemoreceptor afferents are not

simply relayed by pontinemedullary respiratory neurons to the respiratory controller.

Rather, they are likely to be integrated in a more sophisticated manner in modulating

ventilatory pattern.

Acute hypoxia is known to exert complex time-dependent influences on both

inspiratory drive and inspiratory/expiratory rhythms through the induction of short-term

potentiation (STP)(Gesell et al., 1942; Eldridge & Millhorn, 1986b; Fregosi, 1991a;

Wagner & Eldridge, 1991; Hayashi et al., 1993; Poon et al., 1999b; Poon & Siniaia, 2000;

Young et al., 2003a) and depression (STD, or post-hypoxia frequency decline) (Hayashi

et al., 1993; Coles & Dick, 1996; Poon et al., 2000). Poon (Poon et al., 1999a) proposed

that carotid sinus nerve (CSN) drive likely enhances the efficacy of neurotransmission

from a tonic (e.g. central chemoreceptor) drive through STP, which has a computational

equivalent as a neural integrator (Poon, 1996a). Young et al. (Young et al., 2003b)

showed that a bank of such neural integrators operate in parallel in modulating the

respiratory pattern by providing necessary frequency and temporal filtering. Hence,

central and peripheral chemoreceptors may also interact dynamically through STP/STD.

The question of interest is where in the brain does this interaction occur.

Traditionally, the pontine "pneumotaxic center" (Lumsden, 1923b; Song et al., 2006) is

thought to contribute importantly to the post-inspiratory (post-I) phase of the respiratory

rhythm controlling the inspiratory off-switch (IOS) (Dutschmann & Herbert, 2006; Smith

et al., 2007) and provide a fail-safe mechanism for the IOS secondary to vagal feedback.

In recent years, it has been increasingly recognized that the dorsolateral and ventrolateral

pontine regions may contribute importantly to the modulation of both mechanoreceptor

and chemoreceptor reflexes in regulating the respiratory rhythm (Alheid et al., 2004;
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Song & Poon, 2004). Lesioning of various regions in the dl-pons, including K611iker-

Fuse nucleus (KFN) and medial (MPBN) and lateral parabrachial nucleus (LPBN), has

distinct effects on phrenic response to hypoxia and hypercapnia (Song & Poon, 2009a,

2009b). These sites may constitute the potential loci for the hypercapnia-hypoxia

interaction to occur.

By applying the state-of-art in-vivo multielectrode recording system, we identify

and characterize respiratory neurons in dl-pons that respond to hypoxia and/or

hypercapnia, as well as the form of interaction that occurs when the stimuli are presented

together. Our findings suggest that the hypercapnia-hypoxia hypoadditive interaction

represents a form of associative learning for activity-dependent and pairing-specific STP

and STD of chemoreflex responses.

5.2 METHODS

5.2.1 Animal preparation

Experiments were performed on 27 adult, male Sprague-Dawley rats (330-380 g,

Charles River Laboratories, Wilmington, MA). All experimental protocols were reviewed

and approved by the M.I.T. Committee on Animal Care in accordance with published

guidelines. Animal were injected with atropine sulphate (0.025 mg, s.c.), then

anesthetized with urethane (Sigma, 1.5 g/kg, i.p.). Trachea was intubated for artificial

ventilation. The femoral vein and artery were cannulated for administration of infusing

solution (Lactated Ringer's solution, 0.05-0.1 m/min) or monitoring arterial blood

pressure, respectively.

Rats were paralyzed with pancuronium bromide (Sigma, initial dose 0.5 mg, i.v.,

supplemented every hour at 0.1 mg, i.v.) and ventilated with hyperoxic medical air (40%

02 balance N2 ) using a CWE AVS-1 ventilator. A respiratory gas analyzer (CWE Gemini)

was used to monitor end-tidal 02 and C02 levels (PET02 and PETC02). The latter was

maintained at 5.0±0.2% (38±1.5 mmHg) or 5.5±0.2% (41.8±1.5 mmHg), which was the

C0 2-recruitment threshold (Boden et al., 1998) plus 1.0% or 1.5%. Body temperature
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was maintained at 36.5±0.2 *C with a temperature controller (CWE, TC-831). During the

experiment, the depth of anesthetization was checked regularly. Whenever a noxious

stimulus (clamping the hind paw) caused changes in pupil size, respiration and heart rate

or elicited a withdrawal reflex, a supplemental dose of urethane (1/10 original dosage)

was given intravenously to maintain adequate depth of anesthesia.

The right phrenic nerve and both vagus nerves were isolated and severed at the

cervical level using a ventral approach. The head of the rat was then fixed in a stereotaxic

frame (KOPF 1430, David Kopf Instruments, Tujunga, CA) in a tilted position (with

Bregma 1.5 mm higher than Lambda) with the dorsolateral pons being readily accessible

from a vertical dorsal approach. A craniotomy was performed at interaural level. Dura

and pia were carefully removed. The exposed brain surface was covered with petroleum

jelly.

5.2.2 Microelectrode arrays

Two different layouts of microelectrode arrays (2x8 or 4x4) were used to record

neuronal signals from the dorsolateral pons (Microprobes, Inc., Gaithersburg, MD). Each

electrode in the array was spaced by 250 pm in rows and columns. The impedance of

each individual electrode ranged from 0.5 - 2 MO as measured at 1 kHz, 5 nA. The

electrode array was inserted into the dorsolateral pons (stereotaxic coordinates: -0.20

(caudal) -+0.2 mm (rostral) to the level of lambda, 2.3 - 2.4 mm lateral to midline, and

7.0- 8.5 mm below lambda surface) with a direct drive micropositioner (David Kopf

Instruments, CA) at a speed of 1 pm/sec.

5.2.3 Recording

The pontine area of interest was first searched with low impedance single

tungsten microelectrode, based on stereotaxic coordinates, for loci where electrical
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microstimulation produces specific respiratory response (Baxter & Olszewski, 1955;

Cohen, 1971). Once located, neuronal activities were recorded and data acquired with a

microelectrode array using a multichannel acquisition processor (MAP, Plexon Inc. TX),

sampled at 40 kHz. Single-unit activities with >3:1 signal-to-noise ratio were sorted on-

line and later confirmed with an off-line sorting algorithm based on PCA decomposition

(OfflineSoter, Plexon Inc.). Only single units with clear separation from the noise cluster

(Figure 5.1) and with minimal spike collisions (spikes with >1 msec Interspike interval)

were used for further analyses. Recording loci were confirmed with electrical lesioning of

the recording location.

A B

Figure 5.1 A. Local field potential recording in one channel of multielectrode array. B.
PCA decomposition of signals in (A) indicating that the neuron cluster is readily
distinguishable from the noise cluster.

To monitor respiratory motor output, the separated right phrenic nerve was

exposed from dorsal approach and mounted on a bipolar platinum wire electrode (FHC,

Bowdoin, ME). The raw phrenic discharge signal (Phr) was amplified (CyberAmp 380,

Axon Instruments, Molecular Devices, Sunnyvale, CA) and integrated with a Paynter

filter (time constant 15 ms). Raw and integrated phrenic nerve discharge, tracheal

pressure, end-tidal CO 2 and stimulation marks were filtered, digitized (5 kHz) and fed

into the MAP system through A/D subsystem (National Instruments, TX) and recorded

along with neuronal spike trains.
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5.2.4 Protocols

The animal was normally ventilated with hyperoxic gas (40% 02). The CO 2

recruitment threshold (C0 2-RT) was determined by hyperventilation to apnea followed

by gradual return to normal ventilation. The end-tidal CO2 at the reappearance of first

phrenic inspiratory burst was the C0 2-RT (-4.3% or 32.7mmHg). The end-tidal CO 2 was

then further increased to -5.3% (CO 2-RT plus 1%) and maintained at this value for

baseline ventilation. Three types of tests were performed with brief hypoxia being

applied under (1) hypercapnic (H), (2) eucapnic (N), or (3) hypocapnic (L) background.

For hypoxia test under eucapnic background, the animal was maintained at baseline

ventilation whereas for hypoxia test under hypocapnic background, the animal was first

hyperventilated with hyperoxic gas until the end-tidal CO2 was decreased to the C0 2-RT

(rhythmic phrenic discharge remains). In both cases, after stabilizing for 3-5 min at the

eucapnic or hypocapnic levels the ventilation gas was switched to 8% 02 (balance N2) for

30-45 sec before switching back to normal. For hypoxia test under hypercapnic

background, the ventilation gas was first switched to carbogen (5% CO2 balance O2) for 5

min until the phrenic discharge stabilized, and then to 8% 02 - 5% CO2 (balance N2) gas

mixture for 30-45 sec before switching back to carbogen. In all cases the flow rate of test

gases was carefully adjusted to be identical to that of baseline ventilation. At least 15 min

was allowed between any two tests until the phrenic discharge completely returned to

pre-test levels.

5.2.5 Data analysis

Inspiraotory duration (TI), expiratory duration (TE) and breathing frequency were

computed for each respiratory cycle from Phrenic signal. Amplitude of inspiratory motor

output (.Phr) was measured as the peak of the integrated Phr signal.

Only neurons that showed clear respiration modulation were of interest in this

study. Respiration-modulated neurons were first classified as I- or E-neurons depending
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on whether they fire during the I- or E-phase of phrenic activity. Further categorization

was based on the temporal firing pattern referencing to the breathing cycle using a

perievent raster analysis, following standard procedures as in (Song, et al. 2006). Average

firing frequencies of the neurons were calculated for inspiratory (I-activity) and

expiratory (E-activity) phases respectively. They were calculated for each breath cycle as

the number of spikes/T1 or number of spikes/TE.

Phrenic and neuronal hypoxic responses were fitted with multi-exponential (order

1 - 4) functions using least squares regression anaylsis (see Discussions).

ON: Y -Yo + A(1-e-"Ti) and OFF: y = o + AieTi

where ON referred to hypoxic response and OFF referred to post-hypoxia recovery. y(t)

is the phrenic motor output (amplitude, frequency, T1 and TE) or neuronal firing

frequency at time t, yo is the pre-hypoxia baseline level, A; and T are the gains and time

constants of the exponential functions.

Time constants were first obtained separately for each CO2 background by the

best exponential fit using Origin (OriginLab Inc., MA). The average time constant values

over the three CO2 background were then used as the common time constant for all three

levels of CO2 for further fitting.

Least squares regression of the phrenic discharge and neuronal firing frequency

determined Ai for different CO2 level as follow:

e" T,~ le&t'T2 .. 1e1Tm Y1 A.

1-e-'N~A Yl __~N2__~NO

L e tN/T' 1eftN/T2 etN OT

where m is the order of the multi-exponential function and N is the number of data

points. Typically, 1 m 5 4 and N> 20.
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MA=Y

-> A* = (MT M)~M TY

Similar computation was used for OFF data as well.

The relative gains, A;, of the exponentials under the three conditions for each data

set was normalized with the overall average gain under normocapnic condition. The

normalized gains were then averaged across neurons/animals for testing statistical

significance. Statistical significance was tested using Student's t-test with confidence

level of 95%.

5.2.6 Histology

At the end of the experiment, electrolytic lesions were made at the recording sites

with a tungsten microelectrode (tip diameter 1-2 pm, impedance 0.5-1 M92; Micro

Probes, Gaithersburg, MD). The lesion current was 100 pA, anodal D.C., lasting 30 sec.

Then the animal was euthanized with an overdose of urethane (2 g/kg, i.v.) and

immediately perfused transcardially with 300 ml of heparinized saline followed by

another 300 ml of chilled paraformaldehyde solution (4% in 0.05 M PBS). The brain was

removed, post-fixed and cut into 100-pm coronal sections on a vibratome (Leica VTS

1000, Leica Microsystems, Richmond, II). Sections were then stained with cresyl violet

and checked microscopically for the loci of recording.
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5.3 RESULTS

5.3.1 Interaction of hypercapnia and hypoxia in phrenic motor output

Hypoxia under normocapnia elicited the typical phrenic response as shown in

earlier studies in our group and others (Song & Poon, 2009a) (Figure 5.2). Specifically,

hypoxia induced a gradual increase in JPhr amplitude and a gradual decrease of Ti,

followed by a slow recovery of both components towards baseline values upon

withdrawal of hypoxia. In other words, hypoxia elicited short term potentiation (STP) in

both JPhr amplitude and T1. Alternatively, TE was initially shortened rapidly which was

followed by a gradual prolongation, showing short term depression (STD). Upon removal

of hypoxia, TE rebounded above the baseline value and then decreased gradually back to

baseline. The response of breathing frequency essentially mirrored that of TE.

Our data demonstrate hypoadditive hypercapnia-hypoxia interaction in phrenic

motor response similar to the recent reports by Day and Wilson (Day & Wilson, 2007,

2009). In Figure 5.2, it is clear that the strength of the hypoxia response was modulated

by the level of CO 2 background the animals were exposed to. In particular, the response

of JPhr amplitude and breathing frequency (as well as TE) was stronger under lower CO 2

background. The interaction was also revealed in the post-hypoxic frequency decline

(PHFD) but in a more complex manner. In addition, despite the initial apneusis, T1

response under hypocapnic background was able to catch up with those under higher

C02 level, showing hypoadditive interaction as well, this response was not demonstrated

in Day's study (Day & Wilson, 2009). Hence, it was shown that phrenic hypoxic

response was conditioned on the central input.
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Figure 5.2 Response of phrenic discharge amplitude and timing components to hypoxia

under varying CO 2 backgrounds in one rat.

5.3.2 Neuronal recording loci

Next, we determined whether the dl-pons respiratory neurons demonstrated

similar chemoreflex conditioning.

Respiratory neurons were recorded in the dl-pons region including both LPBN

and KFN to investigate their relevance to the hypoxia-hypercapnia interaction. Figure

5.3A shows an image of the brain slice with a lesion next to scp (superior cerebellar

peduncle) to show the recording location. The neurons that were tested for hypoxia-

hypercapnia interaction were marked in Figure 5.3B to show the spread of recording loci.
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Figure 5.3 Recording loci. (A) Electrolytic lesion was made at the end of the experiment
to mark the recording site. (B) Loci of 4 types of respiratory-related neurons in KFN and
LPBN exhibiting hypoadditive C0 2- 02 interaction.

5.3.3 Neuronal response to hypoxia and hypercapnia

A total of 166 respiratory neurons were tested against hypoxia (I-neurons: 140 vs.

E-neurons: 26) and 159 neurons were tested against hypercapnia (I-neurons: 127 vs. E-

neurons: 32) (Table 5.1). Neurons are considered responsive if the peak stimulated firing

frequency is beyond 1 SD from the mean baseline firing frequency.

The neurons recorded were heterogeneous both in the baseline firing and their

response to hypoxia and hypercapnia. Their baseline firing frequency spanned two orders

of magnitude and the percentage change induced by the stimuli spanned as much as three

orders of magnitude.
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Total Excited Inhibited No Total E~xcited Iniitedt~ No

response response

E-I 118 93 1 24 100 49 12 39

Pure-I 17 12 0 5 9 5 0 4

Recruited I 5 5 0 0 18 18 0 0

eE17 2 14 1 22 3 15 4

wE/late-E 9 9 0 0 10 10 0 0

Table 5.1 Summary of types and corresponding response to hypoxia and hypercapnia for
all respiratory neurons recorded.

Overall Hypoxic Response of Respiratory Neurons

We surveyed the overall responsiveness of I- and E-neurons to hypoxia and

hypercapnia respectively, to further support the role of dl-pons in chemoafferent

signaling.

The recorded neurons showed about 83% of the I-neurons were excited by

hypoxia challenge. Average firing frequency increase was comparable between I-phase

and E-phase (79% vs. 77%). 5 neurons, which were originally silent, were recruited by

hypoxia.

On the other hand, all except one E-neuron were responsive to hypoxia. 11 of

these neurons were excited by hypoxia. The excitation was primarily evoked in the E

activities of the neurons, while 3 of them had also significantly extended the firing into

the I-phase.
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Overall Hypercapnic Response of Respiratory Neurons

About 66% of the I-neurons were responsive to hypercapnia. 54 neurons

increased their firing during hypercapnia and 12 of them were suppressed (mostly in the

E-activity). In addition, 18 neurons were primarily silent and were recruited by

hypercapnia.

All except 4 E-neurons were responsive to hypercapnia. 8 of them had only their

firing in E-phase increased by hypercapnia with no significant change in I-activity. 15 of

them were initially suppressed.

5.3.4 Neuron subtypes and their hypoxic responses

Four subtypes of respiratory neurons are of specific interest for C0 2-0 2

interaction in the current study. 12 inspiratory neurons and 7 expiratory neurons were

tested for the interaction.

Pure-I neuron (Figure 5.4)

Pure-I neurons (I neuron in (Song et al., 2006)) fired exclusively during I-phase

both in baseline and during hypoxia/hypercapnia stimulation. Both hypoxia and

hypercapnia increased their firing frequency. Most of these neurons only increased their

firing in I-phase and remained silent during E-phase all through. However, a subset of

them had pre-I activity recruited by hypoxia but not hypercapnia. Upon removal of

hypoxia, their firing frequency gradually returned to the pre-hypoxia level. These neurons

showed hypoxic STP similar to .Phr amplitude and T1.

The effect of hypoxia on I-activity of these neurons was significantly reduced as

the level of CO 2 background increased, demonstrating similar hypoadditive interaction as

in phrenic discharge. These neurons tended to reach a similar peak I-firing frequency

during hypoxia under all three CO2 backgrounds. But for some neurons, the peak firing

frequency was relatively smaller under hypocapnia background possibly due to delayed

hypoxic response under low central excitatory input.
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E-I neuron (Figure 5.5)

The E-I neurons were the majority of respiratory neurons recorded. They started

their firing from the E-phase with an augmenting firing frequency and acquired

maximum firing frequency in early or mid I-phase. The firing continued until the end of

inspiration phase or trailing into the post-inspiratory phase. They responded to hypoxia

and hypercapnia by increasing both I- and E-activity. Hypoxia induced STP in these

neurons, followed by a gradual after-discharge, in similar way as in pure-I neurons. The

effects of hypoxia on both I- and E-activity of these neurons were significantly reduced

as the level of CO2 background increased, demonstrating similar hypoadditive interaction

as in phrenic discharge.

eE neuron (Figure 5.6)

The eE neurons fired almost exclusively in the E-phase and acquired peak firing

frequency in early E-phase, followed by a decremental firing pattern. They showed

similar hypoxic response as the inspiratory neurons, except that only E-activity was

excited. Some eE neurons were suppressed by hypercapnia and hypoxia, but they were

not included for further investigation in this study.

The sample neuron in Figure 5.7 also demonstrated hypoadditive C0 2-0 2

interaction. But now, the peak firing frequency during hypoxia under hypocapnic

background exceeded that under hypercapnia.

(eE neurons were not including in the averaging of E-neurons)

wE (whole phase E)/late-E neuron (Figure 5.7)

wE/late-E neurons recorded fired almost exclusively during E-phase. They had

flat (wE) or augmenting (late-E) firing pattern over the E-phase of respiration. Their E-

activity increased rapidly when subject to hypoxia, and soon flattened out or even started

to decrease. Furthermore, some neurons extended their firing into the I-phase during
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hypoxia but not hypercapnia alone. Upon removal of hypoxia, their average E-firing

frequency dropped quickly in the first few breaths due to both increased inter-spike

intervals and shortened firing duration, where they tended to fire only in the later phase of

expiration. Neuronal firing may further decrease gradually beyond the baseline level.

Eventually, neuronal firing slowly returned to the pre-hypoxic baseline.

The wE/late-E neurons showed STD response similar to phrenic TE and breathing

frequency. Peak firing of these E-neurons was even higher under low CO 2 despite the

delayed response in some of them.
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Figure 5.4 A sample pure-I neuron (A) Firing pattern of neuron presented as perievent
raster referenced to respiratory cycle; (B) Hypoxic response (separated into inspiratory and
expiratory components) under different CO 2 background showing hypoadditive interaction;
(C) Time-stamped spike trains representaiton of hypoxic response under different CO 2
background.
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Figure 5.5 A sample E-I neuron (A) Firing pattern of neuron presented as perievent raster
referenced to respiratory cycle; (B) Hypoxic response (separated into inspiratory and

expiratory components) under different CO 2 background showing hypoadditive
interaction; (C) Time-stamped spike trains representaiton of hypoxic response under

different CO 2 background.
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Figure 5.6 A sample eE neuron (A) Firing pattern of neuron presented as perievent raster
referenced to respiratory cycle; (B) Hypoxic response (separated into inspiratory and
expiratory components) under different CO 2 background showing hypoadditive
interaction; (C) Time-stamped spike trains representaiton of hypoxic response under
different CO 2 background.
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Figure 5.7 A sample wE/lateE neuron (A) Firing pattern of neuron presented as perievent
raster referenced to respiratory cycle; (B) Hypoxic response (separated into inspiratory
and expiratory components) under different CO 2 background showing hypoadditive
interaction; (C) Time-stamped spike trains representaiton of hypoxic response under
different CO 2 background.
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5.3.5 Model Fitting

Overlaying the normalized phrenic/neuronal hypoxic response under different

CO 2 backgrounds suggested that CO 2 input has no significant influence on the time

constants of the dynamic responses. To investigate this hypothesis, we fitted the data in

Figure 5.2 with multi-exponential curves using least-squares regression analysis (See

section 5.2.5).

Figure 5.8 shows that the STP and STD effects of all phrenic components for all

three CO 2 backgrounds can be well fitted by multi-exponential models with the same

time constants for all three conditions but with varying amplitudes (Table 5.2). This

remarkable consistency of the STP and STD time constants under all three conditions

suggests that the hypoadditive effect of hypoxia and hypercapnia is due to a negative

influence of hypercapnia on the gains (but not time constants) of the STP and STD

integrators and differentiators. The goodness of fits was revealed by the adjusted-R2

values. Adjusted-R 2 values averaged to 82% for ON phase over hypocapnic and

normocapnic background. The low Adjusted-R2 values in hypercapnic background was

primarily due to the small hypoxic response compared to the intrinsic variance.

Furthermore, better fits were obtained in the ON phase compared to OFF phase.

In a similar fashion as in Figure 5.8, we performed the same multi-exponential

curve fitting on an E-I neuron and a late-E neuron (Figure 5.9). Again, we show that the

neuronal response can be well fitted by multi-exponential models with the same time

constants for all three conditions but with varying amplitudes. The quality of fitting was

similar as in phrenic data, while the fitting in OFF phase seemed to be better (Table 5.3).
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Figure 5.8 Mutliexponential curve fitting to breath-by-breath phrenic data, using the

same time constants over three different CO 2 background. Results suggested that

hypercapnic input altered only the gains of the learning dynamics but had little influence

on its time course.
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ON

TI = 7.43s

OFF

TI = 71.45s

Hypercapnic Normocapnic Hypocapnic Hypercapnic Normocapnic Hypocapnic

Al 0.011 0.12 0.19 0.011 0.12 0.18

Adj-R2  0.13 0.86 0.88 <0 0.41 0.88

ON OFF

TE TI = 11.82s, T2 = 11.54s T = 119.23s, T2 = 31.45s;
T3 = 2.34s, T4 = 1.44s

Hypercapnic Normocapnic Hypocapnic Hypercapnic Normocapnic Hypocapnic

Al -28.96 -68.61 -91.09 -0.39 -0.32 -1.41

A2 28.93 68.83 91.56 0.37 0.20 1.41

A3 -1.07 -2.21 -2.68

A4 1.24 2.45 2.79

Adj-R 2  0.34 0.86 0.63 0 0.43 0.79

ON OFF

Frequency T= 11.82s, T2 = 11.18s T1 = 233.27s, T2 = 11.52s;
T3 = 2.64s, T4 = 2.59s

Hypercapnic Normocapnic Hypocapnic Hypercapnic Normocapnic Hypocapnic

A l -7.65 -16.72 -36.21 -0.072 -0.044 -0.27

A2 7.62 16.72 35.91 0.18 0.20 0.74

A3 -19.11 -28.14 -51.62

A4 19.11 28.16 51.40

Adj-R 2 0.46 0.79 0.66 1 0.04 0.19 0.83

Table 5.2 Coefficients of curve fitting for phrenic data in one animal (Figure 5.8).
Adjusted-R 2 values were shown. ON referred to hypoxic response and OFF referred to
post-hypoxia recovery.
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I r

Figure 5.9 Mutliexponential curve fitting to breath-to-breath neuronal firing (top: E-I

inspiratory firing; bottom: wE/late-E expiratory firing) data, using the same time

constants over three different CO 2 background. Results suggested that hypercapnic input

altered only the gains of the learning dynamics but had little influence on its time course.

ON

TI = 10.27s, T2 = 17.01s

Hypercapnic

4.60

-0.81

0.14

Normocapnic,

88.14

-95.37

0.67

Hypocapnic

154.37

-154.40

0.71

OFF

T I = 133.07s , T2- 35.67s;
T3 = 1.95s, T4 =- .87s

Hypercapnic Normocapnic

-0.91

1.24

-18.06

-21.45

0.64

-27.45

36.66

-393.53

390.31

0.89

Hypocapnic

-19.20

33.18

-205.42

208.40

0.95
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Table 5.3 Coefficients of curve fitting for neuronal data in two sample neurons (Figure

5.9). Adjusted-R 2 values were shown. ON referred to hypoxic response and OFF referred

to post-hypoxia recovery.
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Figure 5.1 0Al and Figure 5. 1OBI show the overall curve fitting results of all I-

and E-neurons as compared to phrenic T1 and TE respectively. Hypoadditive C0 2-0 2

interaction in both neuronal activity and phrenic TI/TE was revealed by the decrease in

gains of the exponential terms as the CO 2 background increased (difference between bars

under different CO 2 backgrounds are all statistically significant, p<0.05). STP in I-neuron

and phrenic T1 comprised one exponential term while STD in E-neurons and phrenic TE

comprised two exponential terms (positive and negative). Relative gains of I-neuron and

phrenic T1 STP decreased as CO 2 level was raised, similarly in E-neuron and phrenice TE

STD. Moreover, the two gains of the STD changed in parallel, suggesting that CO 2 input

has homogenous effects on the two exponential components.

Figure 5.1 0A2 and Figure 5.1 0B2 show that neuronal and phrenic activities were

highly correlated in both inspiratory and expiratory components (R2 = 0.80 and 0.92

respectively). This suggests that they may share a common mechanistic basis.

Figure 5.11 show similar plots as in Figure 5.10 for post-hypoxia recovery.

Phrenic T1 and I-neuron activity still showed hypoadditive interaction, following the

stimulated response (difference between bars were statistically significant, except for

phrenic TI between Low and Normal CO 2 background) (Figure 5.11 A1). A weak positive
2correlation was shown (R = 0.32) (Figure 5.11A2). On the other hand, hypoadditive

interaction in the recovery of phrenic TE and E-neuron activity was unclear (Figure

5.11 B1) and no apparent correlation was observed (Figure 5.11B2).
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Figure 5.10 Left panels: Averaged gains of multiexponential curve fitting (normalized to
normocapnic condition) for phrenic and neuronal activity over three different CO 2
background during hypoxia stimulation. Right panels: Correlation between gains of
phrenic TI/TE and I/E-neurons mutliexponential curve fitting. (A) Phrenic T, vs. I-
neurons (n=12); (B) Phrenic TE vs. E-neurons (n=7). * indicates statistically significant
difference from normal C02 condition (p<0.05).
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Figure 5.11 Left panels: Averaged gains of multiexponential curve fitting (normalized to
normocapnic condition) for phrenic and neuronal activity over three different CO2
background during post-hypoxia recovery. Right panels: Correlation between gains of
phrenic TI/TE and I/E-neurons mutliexponential curve fitting. (A) Phrenic T, vs. I-
neurons (n =12); (B) Phrenic TE vs. E-neurons (n=7). * indicates statistically significant
difference from normal C02 condition (p<0.05).
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5.4 DISCUSSION

In summary, our results show that: 1) hypoadditive C0 2-0 2 interaction in phrenic

motor output, consistent with the recent report in (Day & Wilson, 2009); 2) a significant

number of respiratory neurons in dl-pons were chemosensitive; 3) demonstrate

hypoadditive C0 2-0 2 interaction in multiple types of respiratory neurons in the dl-pons;

and 4) hypoadditive C0 2-0 2 interaction was primarily due to a negative influence of

hypercapnia on the gains (but not time constants) of the STP and STD. Such activity-

dependent and pairing-specific modulation of hypoxic response indicates a certain form

of associative learning or Pavlovian conditioning underlying CO2 -0 2 interactions. The

strong correlations between phrenic and neuronal activity in C0 2-0 2 interactions suggest

that dl-pons are likely neuronal correlates for such interactions.

5.4.1 Controversy about chemoreceptors interaction in phrenic motor
output

Day and Wilson (Day & Wilson, 2009) used a dual perfused rodent preparation to

show hypoadditive interaction between central and peripheral chemoreceptors. They

showed that the most apparent interaction happened in respiratory frequency (mainly

through the effects of TE), which also translated into neural total ventilation

(total ventilation = freq x tidal volume) .

In the present study, we have shown similar C0 2-0 2 interaction in all the phrenic

variables, including .Phr amplitude, TI, TE and breathing frequency, suggesting that the

interaction is a general phenomenon for various components of phrenic motor output.

These additional findings may be a result of using different animal preparations or

stimulation protocols. The homogenous effect of chemoafferent interactions over all

respiratory variables also suggests that chemoreceptors information may play a small role

in determining breathing pattern.

126



Conversely, (Blain et al., 2010) showed hyperadditive central-peripheral

chemoreceptors interaction in awake animals. They argued that state of consciousness

could affect the interaction (Smith et al., 2010b). On the other hand, their study differed

from the study of Day and Wilson and our study in that they administrated central

chemoreceptor stimulation under different background of peripheral chemoreceptor

activity. We suggest that the way of conditioning, central-to-peripheral or peripheral-to-

central, may result in different interactions. Further studies addressing these hypotheses

will help to clarify the contradicting reports.

5.4.2 Recording loci of respiratory neurons

Using microelectrode arrays in neuronal recording has the advantage of increasing

the chance of hitting the neurons of interest. However, the drawback is the difficulty in

identifying the exact loci of recording of individual electrode. At the end of each

experiment, the electrode array was replaced by a single tungsten electrode for electrical

lesioning to mark the approximate location of recording, with an inevitable small error in

the reinsertion location. A previous study showed that phasic respiratory neurons mainly

populated around PBN and KFN in dl-pons (Song et al., 2006). By referencing to the

stereotaxic coordinates of these brain regions, it helped to confine our search for phasic

respiratory neuron in these specific regions.

5.4.3 Role of dl-pons in chemoafferent signaling

In the present study, we have shown that respiratory neurons in LPBN and KF,

two subdivisions of the dorsolateral pons "pneumotaxic center" in the rat (Song et al.,

2006), are chemosensitive. Such capability of processing chemoreceptor inputs is

consistent with previous studies that showed that lesions of LPBN change the hypoxic

and hypercapnic response of phrenic motor output (Song & Poon, 2009a, 2009b). The

hypoxic/hypercapnic response of individual respiratory neurons in these regions has not
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been previously addressed in detail. A recent report (Nuding et al., 2009) investigated the

general excitory/depression nature of PRG neurons. They showed that roughly 1/3 of the

neurons (including both respiratory modulated and tonic neurons) in PRG were

responsive to at least one of the chemoreceptor stimulation. Our current results show that

a majority of neurons recorded (all respiration modulated) over a wide area of dl-pons

were responsive to either central or peripheral stimulation.

Most current models of respiratory central pattern generator assume that the pons

provides only a tonic drive to the medullary rhythmogenic network where the three-phase

inspiratory, expiratory (I, E) and post-I rhythm is thought to arise (Smith et al., 2007;

Abdala et al., 2009; Rubin et al., 2009; Molkov et al., 2010; Rubin et al., 2010). This

basic assumption is being challenged by our present demonstration that many pontine

inspiratory and expiratory-modulated neurons contribute to hypoxic-hypercapnic

afferents integration in a phase-specific (instead of tonic) manner. These new findings

suggest necessary revision of these models which will improve their predicting capability.

5.4.4 Associative learning (Pavlovian conditioning) in respiratory
chemoreflex control

An important implication of the hypoadditive C0 2-0 2 interaction is that the

hypoxic ventilatory response is not simply reflexogenic as generally thought. Rather, the

activity-dependent and pairing-specific induction of STP and STD by hypoxic-

hypercapnic stimuli suggests a unique form of classical (Pavlovian) conditioning, in

which the response to a "conditioned stimulus" (hypoxia) is modulated (in this case,

depressed) by temporal pairing with an "unconditioned stimulus" (hypercapnia) (Pavlov,

1960; Poon & Siniaia, 2000), similar to classical studies in Aplysia (Glanzman, 1995) and

cerebellum (Thompson, 1988) except that the memory is short-term instead of long-term.

Such associative learning challenges traditional models of respiratory control based on a

Sherringtonian long-loop reflex paradigm (Sherrington, 1906; Tin et al., 2010) and
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support an optimization model we proposed (Poon, 1993, 1996b; Poon, 1996c; Young &

Poon, 2001a; Poon et al., 2007). The current study further provides the first systematic

investigation of the neural correlates of these learning processed that will potentially

unify our findings at cellular level.

The mechanism of this CO2-02 associative learning is still unknown but it seems

to play an important role in gain modulation of STP/STD of hypoxic response. Young's

(Young et al., 2003b) studies suggested that peripheral chemoreceptor inputs are relayed

centrally by a bank of parallel neural integrator and differentiator pathways that provide

STP and STD modulations of inspiratory amplitude, T1 and TE with varying time

constants and gains. STP/STD have been proposed to be a computational equivalence of

a neural integrator/differentiator in processing peripheral chemoafferents to the

respiratory central pattern generator (Poon, 1996e; Poon et al., 1999a). The neural

integrator can be described by the following first-order linear dynamic system:

Y(s) A .

X(s) (sT;+1)

Equivalently the overall response of these neural integrators, assuming mutual

independence, can be described by the following multi-exponential functions:

ON: Y = Yo +XA(1-e ) and OFF: y =y + Aje-
i i

Each (Ai, T,) pair described the gain and the time constant of an individual

neural integrator. Note that the time constants may be different between the stimulated

response and the recovery (Poon et al., 1999b; Young et al., 2003b). Here, real-valued

exponents are used since Young's (Young et al., 2003b) studies using 4 min electrical

stimulation of carotid sinus nerve did not demonstrate any oscillatory response.

Using this model fitting, we show that STP and STD in both phrenic and neuronal

activities can be well fitted by the neural integrator models with the same time constants

over all three CO2 background but with varying gains,. This remarkable consistency of
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the STP and STD time constants under all three conditions suggests that the hypoadditive

effect of hypoxia and hypercapnia is due to a negative influence of hypercapnia on the

gains (but not time constants) of the STP and STD integrators and differentiators. Thus,

Pavlovian conditioning or associative learning of the hypoxic response occurs when

paired with a CO2 stimulus and this learning effect affects only the amplitude of learning

but not its time course.

The post-hypoxic recovery demonstrates a more complex behavior, particularly in

the expiratory components and no apparent trend of interaction (hypoadditive, additive or

hyperadditive) was shown (Figure 5.11 B). This suggests that a different form of C0 2-0 2

interaction may underlie post-hypoxic recovery. In fact, ventrolateral pons (vl-pons)

contains many wE (Dick & Coles, 2000) and eE (Guyenet et al., 1993) neurons and they

have been shown to mediate post-hypoxic frequency decline of respiration (Dick & Coles,

2000). Consequently, vl-pons may constitute another potential site for chemoreceptor

interaction, and potentially exert additional influence specifically at the recovery phase of

expiratory activities.

5.4.5 Implications for respiratory rhythmogenesis, respiratory
instability/apnea and acclimatization

These new findings impact the traditional view of pure summation of

chemoreceptor inputs in mathematical modeling. As such, the concept of relative

contribution of peripheral and central chemorecetors (Berkenbosch et al., 1979; Heeringa

et al., 1979) has to be taken with caution.

The present work will also have profound implications in transforming current

models of respiratory instability in obstructive sleep apnea or central apnea. Sleep apnea

has been suggested to arise from respiratory instability which leads to periodic breathing

in sleep. Sleep apnea incidence is correlated with higher respiratory loop gain and/or

increased feedback delays (Khoo et al., 1982). All of these models assume additive

chemoreceptor feedbacks to the exclusion of pontine-mediated STP/STD or Pavlovian
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conditioning effects during apnea-induced hypoxia episodes (Cherniack & Longobardo,

2006; Topor et al., 2007; Sands et al., 2009; Cheng et al., 2010; Duffin, 2010). The

hypoadditive effect presently demonstrated between hypoxic and hypercapnic stimuli in

inducing inspiratory STP and expiratory STD implies that the overall chemoreceptor gain

(and hence, loop gain) is decreased during apnea episodes with concurrent hypoxia and

hypercapnia. Such apnea-induced decrease in loop gain provides an "automatic gain

control" (AGC) mechanism (Green, 1983) that adaptively mitigates respiratory instability,

in agreement with a self-tuning optimization model of respiratory control we proposed

(Poon, 1993, 1996b; Poon, 1996c; Young & Poon, 2001a; Poon et al., 2007).

Finally, the hypoadditive C0 2-0 2 interaction in inducing STP and STD via

Pavlovian conditioning may also contribute to the increased hypoxic-hypercapnic

ventilatory chemosensitivity during early acclimatization to high altitude (Rahn et al.,

1953; Forster et al., 1971; Sato et al., 1992; Fatemian & Robbins, 1998) (reviewed in

(Smith et al., 2010a)), an important survival strategy allowing increased responsiveness

to abrupt hypoxia in the face of ensuing hypocapnia and respiratory alkalosis. Such an

increase in loop gain during poikilocapnic hypoxia explains the increased incidence of

sleep apnea at high altitude (Khoo et al., 1982; Waggener et al., 1984). Elucidation of the

pontine neuromodulation processes integrating hypoxic and hypercapnic inputs at the

cellular level will provide a mechanistic basis for understanding and managing such

respiratory control abnormalities.

5.5 CONCLUSIONS

The present studies show a form of associative learning of central-peripheral

chemoreceptor interaction, which is modulated by respiratory neurons in the dl-pons.

Such adaptive control paradigm provides a powerful gain modulation mechanism in

respiratory control, which is hitherto evidenced only in the higher brain (Salinas & Thier,

2000; Chance et al., 2002).
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Chapter 6 Conclusions and Future

Work

This thesis challenges the traditional Sherringtonian reflexogenic view of respiratory

control, which assumed that response is linearly additive due to multiple factors. In a

series of computational and experimental studies, we have shown that:

1. At the behavior level, the respiratory response in humans during muscular

exercise under a variety of pulmonary gas exchange defects seems to follow an

optimization strategy of mechanical and chemical afferents interaction. Model

predictions are consistent with some key clinical and experimental observations in

a range of pulmonary gas exchange defect problems. The optimization model

provides a powerful tool to help understanding the underlying control mechanism

in the face of various pulmonary gas exchange defects, including CHF, right-to-

left shunt and external dead space. We also discuss the risk factors that would

impacts the capability to maintain blood gas homeostasis. The model also

suggests that mechanical-chemical afferent interaction has a stronger influence on

total ventilation than breathing pattern.
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2. At the neuronal level, certain respiratory neurons in the dorsolateral pons in the

rat brain stem integrate central and peripheral chemoreceptor afferent signals in a

hypoadditive manner, evidencing classical (Pavlovian) conditioning of

chemoreceptor inputs that modulate the respiratory rhythm and respiratory motor

output. This shows the first neuronal correlates of C0 2-0 2 interaction. Such a

unique form of associative learning provides a powerful gain modulation

mechanism that has profound implications in respiratory stability during sleep

apnea. Elucidation of the pontine neuromodulation processes integrating central

and peripheral chemical inputs at the cellular level will provide a mechanistic

basis for understanding and managing such respiratory control abnormalities.

The top-down and bottom-up approaches both point to a novel adaptive control

paradigm underlying the autonomic regulation of respiration, which is beyond the scope

of the traditional Sherringtonian reflex framework.

M. Tenney once exhorted: "The physiologist keeps the whole always in mind. He

accepts the tactical necessity of reductionism to understand the parts, but, once done, it is

for him only the beginning, never the end. Synthesis is his overriding strategy." (quoted

from Remmers (2005)).

Consideration of such system complexity is challenging but essential for

understanding how the physiological systems function in disease states, which is not

likely to be explained by a single genetic or molecular deficit.

6.1 FUTURE WORKS

6.1.1 Modeling

The optimization model provides a convenient framework for integrating multiple

factors by incorporating their mutual interactions. It is of great interest to further examine
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the model in a wider scope of physiological and clinical conditions. For instance, the

paradox of obesity hypoventilation syndrome (OHS) (a.k.a. Pickwickian syndrome) is a

clinical paradox (Mokhlesi & Tulaimat, 2007; Piper & Grunstein, 2007) that is

distinguishable from eucapnic obesity (Olson & Zwillich, 2005) and obstructive sleep

apnea (Rapoport et al., 1986; Kessler et al., 2001; Banerjee et al., 2007). The alveolar

hypoventilation is characterized by a marked reduction in VT and increase in VD/VT

(Auchincloss et al., 1955). The pathogenesis of OHS is not fully understood, but it has

commonly been ascribed to either "can't breathe" (chest wall and respiratory muscle

disorder) and "won't breathe" (ventilatory drive disorder) mechanisms (Teichtahl, 2001;

Jubber, 2004). However, neither of them alone has proved to totally account for

hypercapnia in OHS (Gilbert et al., 1961; Zwillich et al., 1975; Leech et al., 1991;

Cherniack, 2008b, a).

Another longstanding clinical paradox is that some patients with chronic

obstructive pulmonary disease (COPD) appear to be more prone to CO2 retention and

hypoxemia ("blue bloaters") than others ("pink puffers"). COPD patients are faced with

combined mechanical (increased resistance in small airways, hyperinflation) and

chemical (mismatch of pulmonary ventilation and perfusion) challenges. Early studies

ascribed such discrepancy to the manifestation of two distinct phenotypes of COPD

(bronchitis and emphysema) with differing impairments of pulmonary mechanics and

pulmonary gas exchange (Filley et al., 1968). In a group of patients with mixed

presentations of COPD, blue bloaters reportedly had a fivefold greater incidence of

chronic bronchitis and a seven-fold greater incidence of cor pulmonale (failure of the

right side of the heart brought on by long-term high blood pressure in the pulmonary

arteries and right ventricle of the heart) than pink puffers (Javaheri et al., 1981). However,

the etiologies of COPD may be highly heterogeneous and the phenotypes are often mixed

(Makita et al., 2007), so the situation is more complicated than originally thought.

These clinical paradoxes represent complex physiological problems which cannot

be resolved by traditional reductionist approach. Hence, the optimization model is a

useful tool to examine the relative contributions of varying chemical, mechanical and

metabolic factors with direct clinical implications.
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6.1.2 Experimental

This thesis has focused on the role of respiratory neurons in dl-pons on C0 2-0 2

interaction. Similar experimental approach can be applied to other brain stem regions,

which may also contribute to this or other form on respiratory afferent interactions, for

instance, vl-pons and intertrigeminal nucleus.

On the other hand, the limitation of the multi-electrode recording technique used

here is that it does not allow further characterization of the neurochemical basis of the

afferents integration. Instead, a multibarrel extracellular recording/microiontophoresis-

pressure microinjection technique can be employed, which will allow us to functionally

characterize the recorded neurons both electrophysiologically and neurochemically

simultaneously. These techniques will provide further knowledge about the

pharmacological mediator for the afferent interactions of interest.
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