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Abstract

The numerical calculation of integrals is central to many computer
graphics algorithms such as Monte-Carlo Ray Tracing. We show
that such methods can be studied using Fourier analysis. Numerical
error is shown to correspond to aliasing and the link betweenprop-
erties of the sampling pattern and the integrand is studied.The ap-
proach also permits the unified study of image aliasing and numer-
ical integration, by considering a multidimensional domain where
some dimensions are integrated while others are sampled.
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1 Introduction

Sampling is at the heart of two central issues in computer graph-
ics: image antialiasing and Monte-Carlo integration. Theyare inti-
mately related, and it has been clear that antialiasing involves some
numerical integration since we usually can only point-sample the
image function. However, to a few exception, there has been little
connection between aliasing and Monte-Carlo integration.

In this text, we argue that Fourier analysis is a powerful tool to
understand numerical integration techniques such as Monte-Carlo
estimators. Fourier analysis can characterize both the integrand and
the sampling pattern, as well as their interaction. Fourieranalysis is
also the tool of choice to study aliasing, a critical issue incomputer
graphics where numerical integration is needed for each pixel to
generate a discrete 2D images that suffers not only from integration
noise at each pixel, but also from 2D aliasing across pixels.

The present text focuses on theoretical insights. It has been work
in progress for way too long, and I have decided to publish the
current state as a tech report. The list of open issues is still long and,
in particular, includes importance sampling and the convergence of
estimators when the sampling rate is increased.

We hope that the combination of the present perspective on nu-
merical integration and recent frequency analysis of lighttransport
and other rendering effects, e.g. [Ramamoorthi and Hanrahan 2001;
Durand et al. 2005; Egan et al. 2009; Soler et al. 2009; Egan etal.
2011a; Egan et al. 2011b]

The insights in this document have been used to derive some
of the sampling rate in work on the Fourier analysis of motionblur
[Egan et al. 2009]. The careful reader will have noticed a factor of 2

in the sampling rate we derived there, which comes from the revised
Shannon sampling theorem derived in the present document.

1.1 Overview

We express Monte-Carlo and numerical integration in terms of sig-
nal processing, where a sampling step is followed by a summation
step. Sampling potentially results in aliasing, which results in error.
Precisely, we show that numerical error is the aliasing at the DC.
Said differently, it is the sum of the frequency-by-frequency prod-
uct of the integrand spectrum and the sampling pattern spectrum
(the dot product between the two spectra). A final expressionis
that error corresponds to the correlation between the integrand and
the sampling pattern.

This allows us to study how different types of integrands and
sampling patterns interact. In particular, we derive a revised sam-
pling theorem that states that a function can be perfectly integrated
if it is sampled at at least its maximum frequency. This is a factor
of two compared to Nyquist and Shannon.

We then study the multidimensional case involved in image syn-
thesis, where each pixel is both a sample of a continuous function
and the result of a numerical integration across dimensionssuch as
time (for motion blur), lens (depth of field), or incoming illumina-
tion. We show that the Fourier analysis of the higher-dimensional
case (2D xy times time, times lens, etc.) allows us to expressboth
antialiasing issues and numerical integration error. In particular, it
shows how error due to numerical integration might result instruc-
tured artifacts when sampling is poorly chosen, such as the use of
the same random sequence for all pixels.

1.2 Related Work

The two most related papers are Cook’s stochastic sampling [1986]
where he studies the effect of non-uniform sampling and compares
blue noise and jittering, and Mitchell’s spectrally optimal sampling
[1991]. In particular, Mitchell’s work studies numerical integra-
tion using Fourier analysis, but we feel that the signal processing
perspective is sometimes hidden below the surface and we seek to
emphasize it in this document.

Ouellette and Fiume [2001] look at numerical integration and
compare various estimators for 1D integrals, specifically in the con-
text of linear light source. They characterize the spectrumof the
sampling patterns but do not use it directly for error analysis.

Fourier analysis has been applied to the numerical computa-
tion of integrals of periodic functions, [Gautschi 1997] p155 [Boyd
2011] p457. Usually restricted to the trapezoid rule and nota full
signal processing/aliasing perspective. It has also been shown that
the numerical error predicted by various schemes such as trapezoid
or Simpson can be extremely conservative for periodic function,
and that considering functions in terms of their Fourier series can
be used to derive better error bounds for periodic functions[Weide-
man 2002].



2 Basic Monte-Carlo Integration
(1D, uniform sampling)

We first study the simple case of a 1D integral and show that it
can be expressed in terms of signal processing and that errorcorre-
sponds to aliasing.

We seek to evaluate

I =
∫ 1

0
f (x) dx (1)

This is, by definition, the DC of the Fourier transform off .

I = f̂ (0) (2)

A numerical scheme such as a Monte-Carlo estimator withN
uniform samples is:

IN =
1
N

∑
f (xi) (3)

where thexi are random samples distributed uniformly across the
domain. In this document, we focus on one instance of this integra-
tor (for a given set ofN samples) while the Monte-Carlo literature
usually considers the randomprocess where thexi are random vari-
ables. In our case, thexi can come from a random sequence gener-
ator, but might also correspond to other numerical schemes such as
trapezoids or Simpson.

A more general integrator has weights for each samples, which
can come from importance sampling or other derivations suchas
polynomial approximations in the case of Simpson.

IN =
∑

wi f (xi) (4)

The weights often sum to 1, but not always. For example, impor-
tance sampling exists both in a normalized or unnormalized form.

2.1 Sampling theory
We separate the numerical scheme into two steps, sampling and
summation. Similar to sampling theory, we define the sampling
function

S (x) =
∑

wiδ(x − xi) (5)

whereδ is the Dirac characteristic function. That is,S is non-zero
only at thexi and integrates to 1 if thewi sum to 1. If thexi are
regularly distributed, we get the traditional Dirac train used in uni-
form sampling. For Monte-Carlo integration, thexi are randomly
distributed andS is Poisson noise.

Estimators are usually expressed as a discrete sum over thexi.
However, now that we have sampled the integrand, we can consider
that the estimator is a continuous integral:

IN =

∫
S (x) f (x) dx (6)

That is, we firstsample the functionf and we then take the integral,
which corresponds to the DC of the sampled integrand.

We then express this succession of sampling and integrationin
the Fourier domain. Sampling is a multiplication in the primal, and
therefore a convolution in the Fourier domain

Ŝ . f = Ŝ ⊗ f̂ (7)

This convolution generates well-known aliasing effects. IfS is the
regular sampling impulse train, thenŜ is also a regular impulse train
and we obtain the traditional replicas off̂ in the Fourier domain.
If S is a Poisson distribution of samples, its Fourier spectrum has
energy at all frequencies, and the effect of aliasing is more “diffuse.”

We can now express Monte-Carlo integration or any other
sampling-based numerical scheme by noting that Equation 6 is the
DC of the sampled integrand:

IN =
(
Ŝ ⊗ f̂

)
(0) (8)

In summary:
Monte-Carlo integration can be seen in the Fourier domain as
a convolution by the spectrum of the sampling pattern followed
by the extraction of the DC (value at frequency 0).
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Figure 1: Fourier pipeline for Monte-Carlo integration.

Dot product perspective We expand the convolution integral
and express equation 8 as:

IN =

∫
Ŝ (ω) f̂ (−ω) dω (9)

and becausef is real we can replacêf (−ω) by the conjugate of̂f :

IN =

∫
Ŝ (ω) f̂ ∗(ω) dω (10)

The numerical estimation of the integral of f using a sam-
pling pattern S is the dot product between their spectra.

This is not surprising since it is also a dot product in the primal,
and the Fourier transform is simply an orthonormal change ofbasis,
which preserve dot products.

As an extreme case of this formula, consider the original integral,
which can be expressed as the sampling by a constant function.
That is, the sampled function is the integrand multiplied byS (x) =
1. In this case, the Fourier transform ofS is a Dirac and is zero
everywhere else, leading to an error of 0.

2.2 Error analysis
We study numerical error due to a given sampling patternS . Com-
pared to the true integral in Eq. 2, the only difference is the convo-
lution by the sampling pattern. We first consider the common case
where the spectrum ofS has a DC component̂S (0) = 1, because the
wi some to 1. This means that the error in Monte-Carlo integration
is due to the other parts of the spectrum ofS .

The error in Monte-Carlo integration can be expressed in the
Fourier domain as the aliasing caused by the sampling pattern
at the DC.



IN − I = f̂ (0)−
(
Ŝ ⊗ f̂

)
(0) (11)

In the dot product perspective, we first consider sampling pat-
terns that sum to one. In this case, the DC term (ω = 0) in equation
10 is the exact integral. This means thaterror is the dot product
between the spectrum of f and the spectrum of S where the DC
is replaced by zero.

Expressed differently, error is the correlation between the
sampling pattern and the integrand spectra.

If the sampling pattern does not sum to one, which can hap-
pen with importance sampling,the error has an additional term,
which is the true integral multiplied by the difference between
the DC of the sampling pattern and one.

2.3 Regular sampling (Trapezoid):
revised Nyquist criterion

When thexi are regularly distributed over the domain, we obtain
Trapezoid integration1. The spectrum̂S is also a Dirac comb, and
we are in the presence of traditional aliasing where the original
spectrum is regularly replicated. This means that the integration
error is due to the frequency content at the sampling rate andits
multiples. For example, if the function to be integrated is asine
wave at the sampling frequency, we get a systematic bias because
f (xi) is the same value for allxi.

However that if the integrand is band-limited and the sampling
rate of our estimator satisfies the Nyquist criterion, the integration
is exact. Not surprising, but always good to know.

Better still if we are undertwice the Nyquist limit, the integral
is still correct because aliasing occurs but does not affect the DC.
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Figure 2: The aliasing due to different sampling patterns.

An integral can be numerically estimated exactly if the in-
tegrand is regularly sampled at a rate that is higher than its
maximum frequency (half the Nyquist rate).

A similar result is known in the numerical integration literature
where the integration of trigonometric polynomials is studied, e.g.
[Gautschi 1997] p. 155, but is usually not expressed in termsof
sampling rate and aliasing in signal processing.

2.4 Poisson sampling and Monte-Carlo integration

Poisson sampling In basic Monte-Carlo integration, thexi are
purely random and independent. This means thatS is Poisson and
its spectrumŜ is flat (except at the DC) and the phaseφ(ω) is ran-
dom.

1Regular sampling is also what you obtain with Quasi-Monte-Carlo in-
tegration with the Halton sequence for a power of two number of samples.

This sampling pattern is the most agnostic of all: it createsalias-
ing or all frequencies, all frequencies equally contributeto error.
As a result, it’s very general and makes no assumption on the fre-
quency content of the integrand. However, if the integrand has less
energy in the high frequencies, it can be wasteful.

Review of MC convergence and variance By construction,
the contributionf (xi) of a sample of a Monte-Carlo estimator has
the variance of the integrandf . Recall that when multiplying a
function by a scalar, the variance gets multiplied by the square of
the scalar:σ2(k f ) = k2σ2( f ). When adding two functions, their
variances are added together as well as their covariance:σ2( f+g) =
σ2( f ) + σ2(g) + cov( f , g). In basic Monte-Carlo integration, thexi

are iid, which means that the their covariance and that of thef (xi)
is zero. As a result, since we addN terms and multiply by 1/N, we
obtain

σ2

(
1
N

∑
f (xi)

)
=

1
N
σ2( f ) (12)

Since the error (standard deviation) is the square root of the vari-
ance, we obtain the 1/

√
N convergence of Monte-Carlo integration.

Variance and power spectrum Recall that the variance of a
function is the integral of its power spectrum minus the DC:

σ2( f ) = E( f 2) − E( f )2 (13)

=

∫
f 2(x) dx − DC( f )2 (14)

and according to Parseval’s theorem, we have
∫

f 2(x) dx =∫
f̂ 2(ω) dω, therefore

σ2( f ) =
∫
| f̂ |2(ω) dω − DC( f ) (15)

That is, the variance is the integral of the power spectrum except at
the DC. This is already providing an insight about the link between
Fourier analysis and Monte-Carlo integration.

Fourier analysis of MC convergence We have seen that the
error is the dot product between the sampling spectrum and the in-
tegrand spectrum (minus the DC). This means that the squarederror
is

E[(I − IN)2] = E

(∫ Ŝ (ω) f̂ (ω) dω

)2 (16)

We expand the square and the expected value integral note that
all the cross term vanish becauseŜ is random2. This gives

E[(I − IN)2] =
∫

E
[
Ŝ 2(ω) f̂ 2(−ω)

]
dω (17)

and we can take thêf terms out because the expected value is with
respect toS :

E[(I − IN)2] =
∫

f̂ 2(−ω)E
[
Ŝ 2(ω)

]
dω (18)

Since the expected power spectrum ofS is flat (random samples),
we obtain the variance multiplied by a constant that represents the
power spectrum ofS . Below we derive that this constant is 1/N.

2.4.1 Simpler derivation

The power spectrum of a Poisson process is known to be a diracv2δ
in the center and av flat spectrum for a Poisson process at ratev.

2I probably miss the−ω terms, which probably result in real value.



Worst case analysis when all phases interfere negatively with
integrand spectrum and you get the sum of the absolute valuesof f̂
and the L1 norm of the spectrum of the integrand (minus the DC as
usual).

2.5 Study of different sampling patterns
Non-uniform weights For a fixed DC, the energy (variance) of
a sampling pattern is bounded from below by the energy of the pat-
terns where all weights are equal. Therefore the power spectrum
of all sampling patterns is higher than that of the one with uniform
weights (Parseval). This suggest that, without additionalknowl-
edge, the best strategy is to have all samples have the same weight.

Simpson The Simpson estimator is an extension of trapezoid
that integrates second-order polynomials exactly. However, we
show that its frequency properties are not ideal.

Thecompound Simpson scheme is:

I s
N =

1
3N

(
f (0)+ f (1)+

∑
4 f [(2i − 1)h] + 2 f (2ih)

)
+O(h4) (19)

This corresponds to a sampling pattern that has different weights
for the various Diracs.

The Fourier transform is just a shifted version of that of thereg-
ular Dirac comb. This is in line with experiments that showedthat
Trapezoidal methods often do better than Simpson’s scheme [Cruz-
Uribe and Neugebauer 2002].

Blue Noise A blue noise sampling pattern has no low frequency
(see Figure). As a results, the aliasing is restricted to thehigh fre-
quencies. This pattern is great when the integrand has less energy
in the high frequencies.

2.6 Error as a function of the integrand
Recall that the error of an integrator is the integral of the frequency-
by-frequency product of the spectrum of the integrand and that of
the sampling patterns. This means that if we know that some bands
of frequency have more energy in the integrand, the samplingpat-
tern should seek to have less energy there.

Natural signals are known to have a 1/ω spectrum. The lower
energy in the high frequencies means that aliasing there won’t cause
as much numerical error for integrators. This means that a sampling
pattern that exhibits blue-noise properties

Similarly, uniform sampling improves better than 1/
√

N when
the integrand has a falloff in the spectrum because it has no energy
before the period of the sampling pattern.

3 Multi-dimensional case and dependent
integrals

In computer graphics, Monte-Carlo estimators are usually not used
to compute a single integral but to compute the values of a 2D ar-
ray of pixels. The accuracy of each integral is not the only issue,
and the visual noise introduced is paramount for image quality. For
example, it is well known that using the same random sequencefor
all pixels in an image results in structured error that is extremely
objectionable. How can we study the effect of the sampling strate-
gies on image quality? We show below that it can be easily studied
using multidimensional Fourier analysis.

3.1 2D Fourier version
We consider a simplified case where we have a 1D scanline of pixels
and each pixel comes from a 1D integral, for example the integra-
tion of a linear light source or integration over time for motion blur.

We call the scanline dimensionx and the other onet. One version
of the problem is

I(x) =
∫

f (x, t)w(t) dt (20)

wherew(t) is the weight over time (e.g. a hat corresponding to
shutter time). A version with antialiasing is

I(x) =
∫ ∫

f ⊗ ℓ(x, t)w(t) dt (21)

whereℓ is a prefilter. For antialiasing, we need to first samplef and
then perform a Monte-Carlo integration of the prefilter convolution
(supersampling). The motion blur integral can also be seen as a
convolution. For simplicity, we can note w’(x,t) the convolution
kernel corresponding to both motion blur and antialiasing.

In practice, we first samplef through supersampling, and per-
form the convolutions on this sampled version.

IS (x) = [( f S ) ⊗ w′](x) (22)

Note that we started with a 2D integrandf and eventually slice it
into a 1D image. In the Fourier domain, the multiplication becomes
a convolutionŜ ⊗ f̂ , the convolution a multiplication bŷw′, and
slicing is an integral overωt.

ÎS (ωx) =
∫ [

( f̂ ⊗ Ŝ )ŵ′
]
(ωx, ωt) dωt (23)

Sampling creates the usual replicas. The convolution by the
prefilter/exposure kills high frequencies but the replicas inside that
window remain.

What is the error for a given spatial frequencyωx? It is the inte-
gral overωt of the aliases for that spatial frequency.

Note that negative interference can happen and reduce the ef-
fect of aliasing. This is similar to the 1D case where the DC term
received the integral of the aliases.

Mitchell’s spectrally optimal sampling This integration over
ωt made Mitchell [1991] advocate sampling patterns that avoida
cylinder of low spatial frequencies. However, note that only the
aliases inside the (soft) window defined byŵ′ contribute to the er-
ror. It is not different from traditional aliasing. This is why we
respectfully disagree with his conclusions. The sampling patterm
should just push frequency content outside the bandwidth ofthe
antialiasing/shutter exposure filter.

The problem in Mitchell’s argument is that he considers the spec-
trum of the integrand without the effect of sampling and looks at the
effect of convolution and integration over that spectrum. However,
sampling and these operations do not commute and one has to start
with sampling to derive the correct spectra. This error is surprising
because the previous section of his paper does contain the correct
derivation of the sampled spectrum.

L2 error We can compute the L2 error over the image. According
to Parseval, we can compute it directly in the Fourier domain:

||I − IS || =
∫

(I(x) − IS (x))2 dx (24)

=

∫ (
Î(ωx) − ÎS (ωx)

)2
dωx (25)

=

∫
ωx

[∫
ωt

(
(Ŝ ′ ⊗ f )ŵ′

)
(ωx, ωt) dωt

]2

dωx (26)

The first integral is on values while the second one is on square.
As a result, the total L2 error is smaller than by the varianceof the
aliases.



Interlude How does this relate to our simple 1D case where
Monte-Carlo integration extracted the DC? Why do the higherωt

matter now? This is because they are cross frequencies in both time
and space, and they have an effect on the spatial frequencies of the
final image.

Maybe we can look at it another way. At eachx, the image value
is the DC of S restricted tox multiplied by f , convolved byw′. This
restriction ofS to x corresponds to an integral of the spectrumŜ .
Furthermore, the DC gives us the value in the primal, but we are
interested in the spectrum of the resulting image.

4 Discussion

Fourier analysis considers an infinite support, whereas Monte-Carlo
integration is usually studied on a [01] interval. In particular, we
observe that many quadrature schemes spend much resources (i.e.
samples) around the extremities. This is for example the case with
Gaussian quadrature, where the density of samples is higheraround
0 and 1, and their weight is correspondingly smaller, roughly cor-
responding to importance sampling with higher importance at the
boundaries.

In Fourier analysis, if we window the domain or periodize the
function, we might also suffer from extraneous frequencies due to
the lack of continuity at the boundary.
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Figure 3: Fourier-domain interpretation of supersampled image
synthesis with motion blur.




