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Abstract

The impacts of solid spheres with the free surface have been studied for over one
hundred years. In this thesis, the Worthington jets resulting from the impacts of hy-
drophobic and hydrophilic spheres with the free surface are studied experimentally.
Several impact velocities and three materials of differing mass ratios are used. The
resulting jets are characterized in terms of common non-dimensional physical param-
eters. A single camera is used to image activity both above and below the free surface
simultaneously. The resulting images provide measurements of the height and veloc-
ity of the Worthington jets, as well as information about the breakup of the columns
of fluid into droplets.

In the hydrophilic cases, two separate regimes of jet formation are observed. The
heights of both the first and second jet are recorded with time, and the maximum
heights of each jet are compared to the Froude number at impact. The maximum
height of the second jet is found to scale linearly with We, which is calculated using
the velocity of the jet tip rather than impact velocity. Viscosity is shown to be
negligible while a dependence on gravity is indicated. The time at which the first jet
breaks up is proportional to Froude number, while the time of breakup for the second
jet is nearly constant. Comparisons to energy transfer are presented.

In the hydrophobic cases, the Worthington jet results from the collapse of the
cavity formed below the free surface. Heights of the continuous Worthington jet
are recorded for each time step, and average maximum heights obtained are again
compared to Froude and Weber numbers. The increased variability in these data
hinder clear scaling, and experimental error is calculated from repeated trials of two
representative cases. Unaffected by experimental variation, however, the lifespan
of the Worthington jets is shown to depend linearly on Froude number. Energy
comparisons are explored.

Thesis Supervisor: Alexandra H. Techet
Title: Associate Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

The impact of solid spheres with the free surface has been studied for over one hundred

years, and throughout that time, the upward-projecting jet that erupts from the

place of impact has been of high interest to hydrodynamicists. The dynamics of

water entry and the resulting cavity have been well defined theoretically, as well as

extensively proven experimentally. Only recently, however, has the jet, known as the

"Worthington jet," come under close examination.

Worthington jets can reach significant heights, typically much higher than the

position from which an impacting solid sphere was released. The characteristics of the

jet vary greatly depending on several factors, including the surface of the sphere and

the impact velocity. Given that the Worthington jet is easily visible and recordable, a

known relationship between the jet characteristics and the impact itself would provide

invaluable information towards determining the conditions of an impact after-the-fact.

This thesis provides a link between the dynamics of solid sphere impacts and the

characteristics of the resulting Worthington jet. The goal is to determine a simple

scaling factor between the height from which the sphere is released and the ultimate

maximum height of the continuous portion of the resulting Worthington jet. Jet

breakup plays an important role in this determination, especially for the impact

of hydrophobic spheres. Combining an understanding of the factors that drive the

breakup process with information about the characteristics of the Worthington jet,

a model can be produced that will aid in the prediction of Worthington jet height.



Also, the information about the breakup of the fluid jets can be extended to other

problems in hydrodynamics, such as fluid jets in a crossflow of air.

In this study, the impacts and resulting Worthington jets of different spheres

with hydrophilic and hydrophobic surfaces are recorded with high-speed photography.

Several impact velocities, described by Froude number, and three materials of differing

mass ratios are used. The resulting data are analyzed and a simple characterization

of Worthington jet features using physical parameters at impact is proposed.

1.1 Review of Literature

1.1.1 Studies of Impacts

Photographs of sphere and drop impacts with the free surface have been taken and

studied since Worthington's first experiments in the late 19th century [33]. Since

then, there have been numerous studies on impacts and the resulting fluid dynamics.

Splashes of liquid drops into liquids, solid objects into granular substrates, and solid

objects into liquid pools of varying dimensions have been thoroughly examined, and

many models for the resulting cavities and splash components presented.

Worthington began studying impacts by taking images of splashes with single-

spark photography in the 1890s. His work revealed the difference between the impact

of a smooth and that of a rough sphere with the free surface, and his experiments

evaluated the transition between impacts that form cavities and those that don't,

finding that even "polished," or hydrophilic, spheres produce cavities when dropped

from a great enough height, while "rough," or hydrophobic, spheres always produce

cavities [34].

This transition from smooth to rough splashes was further considered by Duez et

al. in 2007. Through their own series of experiments with small spheres of different

materials and surface treatments, they found the threshold impact velocity for cavity

formation as a function of the contact angle of water with the sphere surface (a

measure of the hydrophibicity). They also found that the threshold impact velocity



for completely hydrophilic spheres to form cavities is approximately 7.5m/s [10].

The results published by Duez were found in agreement with simulations per-

formed by Do-Quang and Amberg, who varied the Reynolds and Bond numbers from

the experiments by Duez and confirmed that the determining factor for cavity forma-

tion is dynamic wetting [9].

1.1.2 Experimental Variations

Depending on the individual interests of researchers, the splashing experiment has

been altered to place emphasis on cavity formation [4, 3, 15, 22, 24, 2, 27], on the

forces on the impacting object at impact [25, 27], and on the singularity at cavity

collapse [5, 14, 19, 20, 36]. There is endless overlap in experimental methods, with

various combinations of values of dimensionless quantities such as Bond number and

Weber number, ensuring that the problem remain interesting to a large academic

audience. Despite the many variations, the common focus on cavity dynamics, initial

impact forces, and splash dynamics connects the interests of researchers across the

board.

Droplet Impacts

In addition to solid spheres impacting water, impacts of small spheres and liquid

drops have been studied by many [4, 12, 18, 23, 2]. Hsiao et al. determined a critical

Weber number that divides liquid drops into two regimes: that in which there is little

splash, accompanied by the creation of a vortex ring, and that in which there is a

splash that results in a Worthington jet [18]. The vortex ring below the surface was

found to be absent in cases where an upward jet was formed.

In the splashing regime, Fedorchenko and Wang did a study of the influence

of viscosity and depth of the pool of liquid on the splash characteristics, forming

models for the cavity, crown, and jet [12]. As one characteristic of the jet formation,

Fedorchenko found that the jet velocity increases inversely to the vertex angle of

the conical cavity formed by the drop [12]. Dependence on Froude number was also



shown, as well as a dependence on capillary length [12].

Ogawa also did a set of experiments to develop a theoretical model for the cavities

and Worthington jets resulting from liquid drops impacting a surface of the same

liquid [2]. These models focused on the maximum radius reached by the cavity and

geometrical parameters of the jet, including maximum height. Newtonian solutions

of water and glycerol were used along with non-Newtonian polymer solutions [2].

In the experiments conducted by Marston and Thoroddsen in 2008, the drop was

of a different liquid and a higher viscosity than the pool it impacted. In this case, the

drop does not coalesce into the liquid, but is enveloped by it. When the liquid reaches

the apex of the viscous drop, the jet is formed, and was found to have a velocity more

than 10 times the velocity of the impacting drop [23]. The conditions under which

this jet was formed, however, are specific. Pools of liquids such as methanol and

acetone produced this phenomenon, while water did not, due to a surface tension

higher than that of the drop. At higher impact velocities, the result was separation

between the drop and the pool (i.e. cavity formation) [23].

Some researchers have varied the dimensions of the surface to be impacted, using

shallow layers of liquids or films [35, 29]. Shin and McMahon observed that droplets

ejected vertically after impacts of a liquid drop with a thin liquid layer attain the

greatest heights when the depth of the target liquid is equal to the radius of the

hemispherical cavity formed by the drop's impact [29]. Yarin focused on the splashes

of liquid drops impacting liquid layers thinner than the drop diameter as well as solid

surface [35]. In all shallow-pool cases, the main components of the splash are the

crown and the droplets that are rebounded upward.

Viscoelastic Fluids

Much attention has been paid to the effect of using a viscoelastic, or slightly non-

newtonian, fluid [1, 7, 8, 26, 2, 32]. Cheny and Ogawa both used viscoelastic liquids

in their experiments; Cheny used solid spheres impacting the liquid while Ogawa

used liquid drops [7, 2]. Both researchers found that the height attained by the

Worthington jet was much lower in the case of the viscoelastic polymer solutions



than in that of water, and both attributed this difference to the high viscosity of the

liquid[7, 2]. Cheny proposed that the experiment be used as a measure of extensional

viscosity because of its simplicity [7]. He later expanded the study by using more

solvents as well as multigrade oils, and by using liquid drops in addition to the solid

spheres [8].

Following Cheny's claim that the Worthington jet is an extensional flow, and

thus a good measure for extensional viscosity, Nigen and Walters looked at the two-

dimensional, planar "jet" resulting from the impact of a cylindrical rod with the free

surface [26]. Interestingly, they found that the dependence on extensional viscosity is

not as great in the planar case as it is in the uniaxial case resulting from impacting

spheres; the affect of the addition of the polymer solution was almost unmeasurable

[26].

Akers and Belmonte also used viscoelastic fluids impacted by solid spheres, but

focused on the motion of the sphere after impact and the cavity formed behind it due

to the stretching of the fluid rather than on any upward-ejecting jet [1]. The solution

used in their experiments was a "wormlike micellar fluid" [1]. They found that the

depth of penetration of the sphere scaled not with Froude number, as in experiments

with water as the target liquid, but with the ratio between the initial kinetic energy

at impact and the elastic modulus of the liquid [1].

Walters et al. recently examined the effects of viscoelasticity on the Worthington

jet, seen experimentally by Cheny, Ogawa and Nigen, by using numerical simulations

[32]. His model took into account not only the extensional viscosity of the fluid,

but also the normal stress. The results of the simulations agreed with the previous

assumptions about the affects of extensional viscosity, but also showed that different

physical characteristics (e.g. the viscosity and the stress) of the fluid can oppose each

other in determining the behavior of the splash [32].

Granular Jets

Some experimentalists have replaced liquid pools with granular substrates like sand

to study impacts of solid objects with a surface [20, 28, 30]. Thoroddsen and Shen



proposed that by studying granular jets ejected after the impact of a solid sphere with

sand, it would be possible to isolate the effects of surface tension in similarly-formed

liquid Worthington jets [30]. Dimensional analysis was used to determine. that the

height of the granular jet depends on three parameters: the ratio of the densities of

the impacting sphere and the sand, the Reynolds number, and the Froude number

[30].

Lohse et al. decreased the size of the granular particles in their experiments and

used higher impact velocities to extend their results to large-scale geophysical events

[20]. In the cases examined in their study, subsurface pinch off occurs and both an

upward and downward granular jet result, just as in the case of hydrophobic-coated

spheres impacting water [20]. Because the dynamics of the substrate below the free

surface could not be recorded visually, numerical simulations were performed to focus

on the cavity evolution and pinch-off [20].

The experiments performed by Royer et al. opposed the theory that granular

jets are fully gravity-driven, as in [30, 20]. The results of their high-speed X-ray

radiography, which allowed observation of the formation of the jet inside the substrate,

led to observation of interaction between the sand and the interstitial air in the

medium which defines the formation of the jet [28].

1.1.3 Cavity Dynamics

Richardson developed a potential flow model for the subsurface cavity and measured

the resistance on the sphere during impact using the displacement of the sphere with

time as recorded using high-speed photography [27]. He also compared the coefficients

of drag measured for various types of spheres impacting different liquids and examined

the dynamics of spheres hitting the free surface at glancing angles [27].

Mogishi and Squire also focused on the forces on the sphere upon impact, directly

measuring the force using a piezoelectric transducer with a hemispherical nose [25].

The data was then used to compare drag coefficients for spheres at different velocities

with target liquids of various viscosities [25]. It was found that the dependence of the

drag coefficient on Reynolds number on initial impact resembles the dependence for



a sphere moving through homogeneous fluid for a certain range, 0.05 < Re < 5 x 103

[25].

Gilbarg and Anderson conducted experiments to determine the affect of variations

in atmospheric pressure on cavity formation [15]. They found that Froude scaling

holds for lower Froude numbers and atmospheric pressures, but that in cases where

surface closure occurs, Froude scaling is no longer valid [15]. Their work also briefly

mentions the presence of the Worthington jet, but few measurements are able to be

made accurately, so the discussion is qualitative [15].

May's experiments varied the air pressure above the surface as well as the shape

of the impacting "nose" of the objects, from which he determined that the shape of

the nose has no effect on the shape of the cavity formed for cases with equivalent

drag forces [24]. All of the cases in the study were cavity-forming due to the high

impact velocities used, and so surface closure was also present. Much discussion of

the time to surface seal and it's dependence on the density of the air above the water

is included [24].

Lee et al. provided a model for cavity dynamics in impact cases where deep pinch-

off precedes surface closure, equating the energy transfered into cavity production to

the energy dissipated by drag on the impacting body in the fluid [22]. The model

was compared to experimental data collected by Gilbarg and Anderson in [15]. The

resulting model provides information on the time to deep seal, which is constant,

and the location (i.e. depth) of deep seal, which is dependent on the velocity of the

impacting body, and thus related to Froude number [22].

Bergmann et al. examined the pinch-off of the cavity resulting from the constant-

velocity impact of a cylindrical disk with water for finite Froude numbers, for which

cases it was determined that the radius of curvature of the cavity became an important

factor [5].

An application of collapsing cavities was studied by Birkhoff in the late 1940's.

His work dealt with lining the conical cavity of an explosive with a thin metal layer,

so that when the charge is set off behind it, a jet, much like the Worthington jet,

is formed with the collapse of the cavity [6]. Using hydrodynamic theory, Birkhoff



characterized both the formation of this high-speed metal jet, and the penetration of

the target material by the jet due to the high pressures produced by the impact of

the jet with the target surface [6].

Some of the most recent experimental work in spheres impacting the free sur-

face has produced very useful relationships of the time to pinch-off of the cavity and

the depth at which pinch-off occurs to Froude number and mass ratio. Yan et al.

found through asymptotic analysis and nonlinear numerical simulations, verified ex-

perimentally, that for low Froude number cases (Fr < 0(10)) the depth of pinch-off

increases linearly with Froude number [17]. Truscott and Techet found that the depth

to pinch-off and the depth of the sphere at pinch-off also depends on the mass ra-

tio of the falling sphere, such that for the latter measurement, d oc Frm*i/ 2, where

Fr = U (where Uo is the velocity of the sphere at impact and D is the diameter of

the sphere) and m* is the ratio of the density of the sphere to the density of water

[31]. The non-dimensional time to pinch-off was also found by Truscott and Techet

to be proportional to Froude number, where time is non-dimensionalized by impact

velocity [31]. This in turn indicates that dimensional time to pinch-off of the cavity

is constant when considering single diameters.

1.1.4 Jet Models

Zeff conducted experiments in which an upward jet was produced by Faraday ex-

citation, oscillating the body of water vertically [36]. The collapse of the surface

singularity resulting from the excitation and the subsequent jet formed were found to

be describable by a single exponent [36].

Some attention has been paid to describing the break up of liquid jets. In 2008,

Eggers and Villermaux published a cohesive review of different theories of jet break

up, focusing on surface-tension driven effects and including rheological influences [11].

Some recent work on Worthington jet modeling and dynamics has been done by

Gekle and Gordillo [14, 13, 16]. Experiments and simulations of a circular disk being

drawn vertically into water at a constant velocity were performed, and the formation

of the resulting jet was explained in terms of the potential flow of the cavity [14].



A line of sinks is placed at the axis of symmetry of the cavity, and the strength at

each depth at pinch-off is then used to describe the formation and behavior of the

jet. The jet itself is split into three different regions in Gekle's and Gordillo's work:

the acceleration of the fluid from the cavity walls to the jet itself at the base of the

jet, the bulk of the jet where velocity is conserved, and the tip of the jet and breakup

region [13].

Gordillo and Gekle describe the non-dimensional time to break up and size of

droplets ejected at the jet tip by taking into account the strain rate at the base of

the jet for each fluid particle that enters the jet and the Weber number, defined as

We = where U is the velocity of the fluid as it entered the jet, R is the initial

radius of the jet, p is the density of water and o is the surface tension. Because it

is difficult to measure, and for the purposes of their simulations, R is defined as

R = O. 5Rdrmin, where Rd is the radius of the disk and rmin is the minimum radius

of the cavity before a particle is considered to be in the jet region, which has been

numerically determined to be ~ 0.01 [13].

With a defined as the initial value of the non-dimensional strain rate, they define

a new dimensionless parameter, Wes, and are able to show that

(TSo) = 2.75We2/ 7

and

ieq = 0.95We- /7.

Here, feq is the drop radius non-dimensionalized by Rd. The non-dimensional time is

measured from the time at which the particle that is at the jet tip at break up enters

the jet at the base. These expressions give a simple representation of the time to jet

break up and the size of droplets, though the information needed to calculate these

values is difficult to measure experimentally [13, 16].



1.1.5 Jet Instabilities and Breakup

An important component of the Worthington jet problem is the breakup of the fluid

column. The breakup of a fluid column was quantitatively described by Lord Rayleigh

in 1878 [21]. Today, the Rayleigh-Plateau instability is commonly used to describe

droplet formation from perturbations in the fluid column, where the dispersion rela-

tionship between the growth rate and wavelength of the perturbation is well known.

In the context of Worthington jets, Rayleigh-Plateau can provide insight into the pa-

rameters that trigger breakup, which corresponds to height and velocity information

inherent in the jet. The parameters of the Worthington jet problem are altered from

the canonical Rayleigh-Plateau situation, but the theory provided by Rayleigh serves

as a good starting point for further analysis of the breakup and overall behavior of

Worthington jets. In this thesis, the breakup of Worthington jets formed after hy-

drophobic sphere impacts will be compared to standard Rayleigh-Plateau dissolution

into droplets so that further insights into the fluid dynamics can be obtained.

The goal of this thesis is to determine experimentally some simple scaling laws

of Worthington jet characteristics with readily obtained non-dimensional parameters,

and to gain some physical insight into the overall behavior of these jets under varying

initial conditions.

1.2 Outline of Thesis

In Chapter Two, the experimental methods used to acquire the data discussed in this

study are described. Relevant experimental parameters are defined and the test ma-

trix outlined. The apparatus is described and some of the image processing detailed.

Chapter Three introduces unprocessed results of the experiments, including quali-

tative discussions of some of the cases. Select images that form a broad representation

of the entire study are shown. Time series sequences of images are used to compare re-

sults across mass ratio and Froude number. Single images of maximum height events

are also shown and compared.

Chapter Four is a discussion of the results for both hydrophobic and hydrophilic



spheres. A full set of relevant dimensionless parameters is defined, and dependence

of the Worthington jet characteristics on these parameters is given. Experimental

error is determined and inconsistencies in the results discussed. Rayleigh-Plateau

instabilities are introduced and discussed in relation to the measured characteristics

of the Worthington jets formed in hydrophobic cases.

Conclusions of this study and directions for future work are presented in Chapter

Five.
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Chapter 2

Experimental Methods

Experiments were conducted to gather information about the Worthington jets formed

when both hydrophilic and hydrophobic solid spheres of diameter 1 inch are dropped

from various heights above the free surface. Height and temporal data were collected,

and general observations about the images were recorded.

2.1 Apparatus

The experiments were conducted using a rimless glass aquarium, 18 x 18 x 24 inches

in size. The tank was filled to the brim and was sitting on the floor with a shallow pan

under it to catch overflowing water. Spheres were placed in a camera aperture fixed

to a horizontally translating arm, and were released from rest manually. The camera

aperture ensured that the spheres had minimal angular and horizontal velocities as

they hit the free surface. The frame on which the aperture and arm were mounted

was composed of 80/20, and the arm contained two sections connected by a slider for

retraction. Once a sphere was released, the arm could be quickly slid out of the field

of view of the camera and out of the path of the Worthington jet.

Images were acquired using an IDT Motion Pro X3 camera with a 24mm Nikor

lens. The frame rate was set to 500 frames per second. The field of view of each image

includes both above and below the free surface, which are captured simultaneously

from the single camera. Example images are shown in Figure 2-2. A single bank of



fluorescent lights behind the tank was used to accomplish proper lighting. A thin

strip of black backing, the width of the field of view of the images, was placed above

the waterline in front of the light bank. Below the free surface, a white diffuser was

placed in front of the light bank. This configuration was found to give the best results

for clear visualization of activity both above and below the free surface. A simple

representation of the setup is shown in Figure 2-1.

black
backing aperture on

slider

camera

tank

ligh~tbank

Figure 2-1: Experimental set up.

2.2 Test parameters

All spheres used were of a diameter of 1 in., or 0.0254 cm. Three different materials

were used to vary mass ratio compared to water: acrylic, ceramic, and steel. The

mass ratios, (i.e. the density of the material compared to that of water), m*, of the

three materials are given in Table 2.1.



(a) Image with sub- (b) Image with
surface detail above-surface detail

Figure 2-2: The two images above demonstrate the field of view captured by the
camera. The cavity and other sub-surface features are clearly visible, as are the
splash and jet above the surface.

Hydrophobicity is measured by the wetting angle of water on a surface, 6. Values of

O greater than 900 indicate hydrophobic surfaces, while surfaces with a wetting angle
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Table 2.1: Mass ratios of the materials used

Material Mass Ratio
Acrylic 1.2
Ceramic 3.9

Steel 7.8

less than 900 are considered hydrophilic. In this experiment, half of the spheres were

coated with Cytonix Corporation WX2100 weatherproofing spray, resulting in 0 >

1000. The other spheres were made hydrophilic, with 0 < 700, by being thoroughly

cleaned using a sequence of solvents. In a chemical hood, these spheres were wiped

clean first with acetone, followed by isopropyl alcohol, and finally ethanol. Time was

allowed between application of each chemical for drying. Clean spheres were handled

only with latex powder-free gloves and were kept in clean, closed containers to prevent

dust from settling on them.

A sphere of each material and surface treatment was released from 10 different

heights above the free surface resulting in 10 impacting Froude numbers, defined as

U0Fr = D

where Uo is the velocity of the sphere at impact, D is the diameter of the sphere,

and g is the gravitational constant. Heights used and their corresponding Froude

numbers are shown in Table 2.2.

Due to the restrictions of the 80/20 structure supporting the arm with the aper-

ture, there was a gap between drop heights of 7 cm and 24 cm. However, for the

purposes of this study, a wide enough range of Froude numbers was observed to

produce reasonable results.

Between cases, the water in the test tank was allowed to settle so that no residual

dynamics altered the results of the next drop. It was found that the hydrophobic

coating wore off of the spheres with each drop, especially from the impact of the

spheres with the floor of the tank. As a result, the coating came off very unevenly,

affecting the consistency of the hydrophobic results. Hydrophobic spheres were thus



Table 2.2: Heights and corresponding Froude values.

Height Froude number

[cm] [N/A]
7 2.35

24 4.35
30 4.86
36 5.32
42 5.75
48 6.15
54 6.52
60 6.87
66 7.21
72 7.53

recoated after three runs to try to ensure uniform surface properties. Cases were

repeated as needed to obtain confident results. The jets produced can very greatly

due to the slightest variation in sphere coating, any horizontal velocity on impact, or

any rotation induced by the release mechanism.

To determine an estimate of the experimental error encountered in the trials, two

hydrophobic cases were repeated ten times. Acrylic and ceramic hydrophobic spheres

were dropped from 30 cm (Fr = 4.35) and the images compared. Hydrophilic cases

were not repeated to such an extent because the results were much more uniform for

those cases.

2.3 Data Processing

2.3.1 Calibration

All data were gathered directly from the images obtained. To ensure that the heights

measured were reliable, proper calibration of the images was important. A checker-

board grid of 1 inch squares was used to determine any vertical or horizontal distortion

of the images. Upon inspection in Matlab@, the variation in scale throughout the

field of view was negligible. For each trial, a calibration constant was found by finding

the boundary of the sphere in Matlab®, which is given in pixels, and determining



the diameter from that information. This figure was then divided by the known di-

ameter of the sphere to give the constant in Rx. Due to diffraction, the calibration

constant below the free surface was found to be different than that above the free

surface. This becomes important when information about the depth and velocity of

the sphere after impact is measured.

2.3.2 Height Measurements

Matlab@ was used to create custom scripts for extracting information from the raw

images. One of these scripts was developed to find the height of the Worthington jet

for every step in time. The height measured was that of the continuous jet, so as

droplets break away from the jet tip, they are no longer accounted for in the height

measurement. Once fluid droplets separate from the tip of the Worthington jet, or

when the jet breaks down to form a stream of droplets, those fluid parcels are no

longer tracked, so their velocity and height information are lost. The measurement

of only the continuous fluid column leads to sudden, large decreases in measured jet

height, as seen in the case of an acrylic hydrophobic sphere dropped from a height

of 30 cm, shown in Figure 2-3. The decrease in height measured at 0.333 seconds in

the figure coincides with the breakdown of the jet into droplets. The jagged peaks

in the measurement when the jet is at its greatest height coincide with the release of

droplets from the jet tip as it moves upward.

The majority of the information used for further analysis of the Worthington jet

comes from this height measurement. The error in this measurement stems from the

resolution of the images, with each measurement accurate to within one pixel. The

error on each height found is then +0.06cm, based on the calibration constant. From

this data, jet tip velocity can be calculated and used to characterize the formation of

the jet.
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Figure 2-3: Height of the continuous jet as it evolves with time for a hydrophobic
acrylic sphere dropped from 30 cm (Fr = 4.86).

2.3.3 Cavity Measurements

The other piece of information that is helpful in explaining the behavior of the Wor-

thington jet in hydrophobic cases is the evolution of the cavity. The position and

velocity of the cavity walls can be used to define potential flow around pinch-off,

which can then be used to determine characteristics of the Worthington jet, but in

this study, the most important information from the cavity is the time and depth of

pinch-off.
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Chapter 3

Results

3.1 Hydrophilic Cases

In this section, images from the hydrophilic set of experiments are shown. A wide

range of the results are listed here, but images for every case are not presented in

detail. The cases represented demonstrate the most important features and charac-

teristics to be discussed, giving an overview of the complete results of the study. Data

from the full set of cases will be presented cohesively in Chapter Four.

3.1.1 Two Regimes of Jet Formation

One characteristic of Worthington jet formation in the hydrophilic cases, which will

be used for organizing further observations of these cases, is the occurrence of two

separate jets upon impact of the sphere. These regimes will simply be denoted by

the "first" and "second" jets, respectively, based on the temporal separation between

the two.

Figure 3-1 shows the impact of a hydrophilic sphere resulting in a Worthington

jet. In this case, an acrylic sphere fell from a distance of 24 cm above the free surface,

impacting with a Froude value of Fr = 4.35. Every frame in the sequence is shown

here, so images are separated by 2 ms in time. In the fourth frame, the thin film of

fluid splashing up and around the sphere is visible, and is seen to meet at the top of



the sphere 4 ms later in the sixth frame. This fluid is then forced upward into a thin,

fast-moving jet. Note that the top of the sphere is still above the level of the free

surface as this happens. This is the first regime of the Worthington jet. The first,

thin jet continues to form until the ninth frame, when the sphere is fully submerged.

Due to the diffraction in the images at the air-water interface, the sphere does not

appear to be completely submerged in the ninth frame. The diffraction is a result of

the camera not being at a height parallel to the free surface (the camera was angled

slightly downward). Though some of the detail just below the free surface is lost, the

entire jet is visible. The angling of the camera is small enough that it is assumed not

to affect the measurements of height taken from the free surface.

~~~'' 0 0000

Figure 3-1: The initial impact of a hydrophilic acrylic sphere with drop height of 24
cm (Fr = 4.35) is shown. Two stages of the jet are seen. The faster, thinner jet is
formed when the sphere has not yet been fully submerged, and the slower, broader
jet follows once the sphere is completely below the free surface.

After the formation of the first jet and the complete submersion of the sphere, the

second jet is ejected. This jet is broader than the first, and is seen first in the tenth

frame of Figure 3-1. The second jet is comprised of the fluid displaced by the sphere

after it is fully submerged. It has a speed less than that of the first. An important

result of this double jet is the occurrence of two separate breakup events. The first

jet, which is the faster of the two, breaks into droplets much earlier than the second

jet. This second jet will often only eject one droplet before falling back into the fluid.

The designations of first and second jet will be used in the following sections to

distinguish between observations of the two independent developments, as each jet

has separate measured characteristics.



3.1.2 Froude Number and Mass Ratio Comparisons

Two groups of sequences can be used to compare the effects of Froude number and

mass ratio on the development of both the first and second Worthington jets. Figure

3-2 compares three spheres falling at the same impacting Fr, with different masses.

Each sphere fell from 36 cm, so that on impact Fr = 5.32. Images in the sequence

are separated by 4 ms. The two separate jets become more apparent in these images,

with the first jet breaking quickly into droplets that continue moving upward while

the second remains continuous nearer the surface. In the acrylic case shown in Figure

3-2(a), one droplet is ejected from the tip of the second jet in the 25th frame, earlier

than in the steel case in Figure 3-2(c), where the droplet is ejected in the 30th frame.

In the ceramic case, a droplet fails to form in the second jet. The tip of this jet is

seen to tend to the right. This is a result of some imperfection in the experiment.

Either the surface of the sphere was not perfectly clean or, less likely, there was some

horizontal component to the sphere's velocity on impact.

Imperfections in the experiment such as those demonstrated in Figure 3-2(b) are

unfortunately common. This makes interpretation of the results difficult and increases

the error in measurements. However, conclusions presented in this study take these

imperfections into account.

Returning to the comparison of the cases in Figure 3-2, we see that the maximum

height reached by the second jet increases with increasing mass ratio. The maximum

height attained by the first jet, however, does not seem to follow the same trend. At

this Fr, the acrylic sphere produces the highest first jet, followed by the steel and

ceramic cases, respectively. The experimental error in the ceramic case (evident from

the tendency of the tip of the second jet to the right) can be expected to greatly affect

the evolution of the first jet. However, upon inspection of all of the images gathered

for all values of Fr, the maximum heights of this first jet do not tend to follow any

sort of trend with respect to mass ratio.

The next cases examined are those of an acrylic sphere with three different values

of Fr. Figure 3-3(a) is the same case as in Figure 3-2(a), with Fr = 5.32. Figure
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(a) Acrylic hydrophilic sphere, 36 cm

(b) *e h i s 3
(b) Cerarnic hydrophilic sphere, 36 cm

(c) Steel hydrophilic sphere, 36 cm

Figure 3-2: Figures (a) through (c) show hydrophilic spheres impacting the free sur-
face from height of 36 cm (Fr = 5.32). Every other frame is shown, giving a separation
of 4 milliseconds between each image in the sequence.

3-3(b) is an acrylic sphere with Fr = 5.75, and Figure 3-3(c) shows an acrylic sphere

with Fr = 6.87. Images in each of the three sequences are separated by 4 ms.

Between the three sequences in Figure 3-3, we can see that both the first and

second jets are formed at the same time regardless of Fr. It is also apparent that the

maximum height of the second jet increases with increasing Fr, which is expected as

increasing impact velocities would seem to result in faster jet velocities. The first jet

is not as predictable; the Fr = 5.32 case produces the highest maximum height with

the two larger Fr cases producing heights very similar to each other. The time at

which each jet breaks up is another characteristic of interest, and is shown to decrease



with increasing Froude number. The first jet starts to break up in the 13th frame of

the lowest Fr case, in the 10th frame of the middle case, and in the 7th frame of the

highest Fr case. The first jet in Figure 3-3(c) is very messy, however. This is assumed

to be a result of the higher impact velocity. The first jet, because it forms before the

sphere is fully submerged, is most likely limited by the wetting ability of the fluid.

There may also be surface imperfections on the sphere in this case, as implied by the

rightward tendencies of the spray from the first jet. In contrast, the breakup of the

second jet appears to be independent Fr, occurring near the 25th frame in all three

cases.

(a) Acrylic hydrophilic, 36 cm

0 000 
h

(b) Acrylic hydrophilic, 42 cm

(Arih0 0 0  c)

(c) Acrylic hydrophilic, 60 cm

Figure 3-3: Figure (a) shows the evolution of the Worthington jet for an acrylic
hydrophilic sphere with Fr = 5.32 on impact. Figure (b) shows the same sphere
impacting with Fr = 5.75, and the final sequence shows the Fr = 6.87 case. The
25th frame in each sequence is marked by an asterisk, and the time between images
is 4 milliseconds.



The First Jet

To better examine the processes of the first jet and how it compares across mass ratio

and Froude number, it is useful to compare images of the maximum heights of the

jet for each case. Figure 3-4 accomplishes this. We see the maximum heights of the

first, thin jet. The Fr = 2.35 case is not included in these sequences because the first

jet is not present with that low of an impact velocity. Across all three mass ratios,

it is clear that there is no apparent trend in the maximum heights of this first jet.

Those in the lower Froude number cases are much cleaner than those formed in the

higher Fr cases. This is expected due to the higher energy transfered into the thin

film that covers the sphere when the impact speed is greater. Instabilities in the high

Froude number cases are much more likely, and the subsequent affect on the jet is

apparent. Because the jet is less organized in the higher Froude numbers, it can be

seen to reach a lower maximum height with increasing Fr.

Another interesting characteristic to note in Figure 3-4 is the time at which the

breakup in each of these cases occurs. The images chosen occur one to two frames

before breakup of this first jet. In most cases, the entire jet breaks up simultane-

ously, forming a stream of droplets. In the slower, low Fr cases, the droplets are

rather uniform, becoming increasingly irregular with increasing Fr. Because of this

characteristic of the breakup of the first jet, the maximum height of the continuous

fluid jet, which is the primary measure throughout this study, occurs just before the

breakup event. The depth at which the sphere is seen in the images in Figure 3-4

appears to be approximately at the same depth for all Froude numbers (±ldiameter).

This corresponds to decreasing time to breakup as Fr increases because of the higher

sphere velocities beneath the free surface with increasing Fr. It also appears that

the time to breakup is independent of mass ratio, which would suggest that the first

jet is a direct result of the initial impact, having no dependence on the deceleration

of the sphere once it enters the fluid. The decrease with increasing Froude number

most likely corresponds to the speed with which that first fluid film travels around

the sphere, which is proportional to the speed of impact.
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(a) Acrylic maximum 1st jets for each Fr
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(b) Ceramic maximum 1st jets for each Fr
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(c) Steel maximum 1st jets for each Fr

Figure 3-4: First jets at maximum height are shown for each Fr, with Fr = 4.35 on
the far left, increasing to Fr = 7.53 on the far right. Maximum height is assumed to
occur just before breakup of the jet.



Analysis of the images to determine time to breakup was difficult, as it was chal-

lenging to find precisely where breakup of the first jet occurs in cases where its

formation is messy, such as those with high Fr. If there is a lot of spray outside of

the first jet, occurring typically at the top of the sphere as the thin fluid layer comes

together, the jet itself can be hard to distinguish from secondary droplets. The trend

of decreasing time to breakup as Fr increases may also be attributed to the increasing

instability in the first jet, also related to impact velocity.

The Second Jet

Figure 3-5 compares the maximum heights of the second jet for the hydrophilic cases

for the purpose of comparing both Froude number and mass ratio effects. Note that

the Fr = 2.35 case is now present, though the "jet" formed is very small. Here, there

is obvious dependence of jet height on Froude number. As with the first jets, the

maximum height of the continuous jet tended to occur just before breakup. The only

exceptions to this occur in the lower Fr cases, where a droplet may not be ejected

from the jet until it has almost fallen back into the fluid. It is difficult to see in the

images any dependence of maximum height on the mass ratio. Looking at Figure

3-5, errors and variations in the experiment are evident from jets that are tending to

one side or from droplets that are seen forming asymmetrically or irregularly. The

linear trend in maximum height is still evident, however, despite the added error from

imperfections in the experiment.

As a reminder, the second jet is formed while the sphere is completely submerged

and decelerating, and the deceleration of the sphere is known to depend on mass

ratio, with spheres of lower mass decelerating more rapidly. If the second jet is

comprised mainly of fluid displaced by the sphere once it is submerged, a sphere that

is moving more quickly under the free surface, displacing more fluid per unit time,

can be expected to form a higher jet. Time to breakup of the second jet appears to

have little predictability or correspondence to either Froude number or mass ratio. It

is almost constant, but with much variation.
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Figure 3-5: Second jets of maximum height are shown for each Fr, with Fr = 2.35
on the far left, increasing to Fr = 7.53 on the far right. The time between images is
4 milliseconds.



3.2 Hydrophobic Cases

This section features results from the hydrophobic set of experiments. Representative

sequences have been chosen to produce a complete picture of the results obtained.

Figure 3-6: Evolution of the Worthington jet formed by a hydrophobic acrylic sphere
dropped from a height of 30 cm (Fr = 4.86). Images shown are separated by 10
milliseconds.

Figure 3-6 is one example of a typical hydrophobic case. The acrylic sphere was

dropped from an initial height of 30 cm, giving it an impacting Froude value of 4.86.

Each frame in the sequence is separated by 10 ms. The cavity is visible in the first

six frames, with pinch-off occurring between the sixth and seventh frames. In the

eighth frame, the Worthington jet is finally visible, and already at a great height

above the free surface. The droplets that make up the spray at the very tip of the jet

soon travel outside the field of view. The continuous jet proceeds to travel vertically

until individual droplets begin breaking off at an average maximum height. Finally,

in frame 30, instabilities in the bulk of the jet are seen to start forming droplets, and

two frames later over half of the column is broken up. At this point, the jet and all
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ejected droplets are falling back to the free surface.

An interesting characteristic to note in this and subsequent image sequences is the

air bubble that remained attached to the sphere after pinch-off. It eventually breaks

off of the sphere and we see it rising back to the surface from the tenth frame onward.

As has been shown in previous work, the time to pinch off of the cavity in hy-

drophobic sphere impact experiments is equal for all Froude values, while the depth

at which it occurs is dependent on Fr. In Figure 3-7, the cavities formed by two

different values of Fr for an acrylic hydrophobic sphere are shown. In Figure 3-7(a),

the sphere has an impacting Froude number of 4.35, while the sphere in Figure 3-7(b)

has a value of Fr = 5.75. Images in both sequences are separated by 10 ms. The

cavity for the Fr = 5.75 case is elongated when compared to the Fr = 4.35 case and

pinch off happens at a deeper depth, but the time at which it occurs is between the

tenth and eleventh frame in both sequences, so just greater than 90 ms. The exact

moment of pinch off is not shown in these sequences, but is compared in Figure 3-8.

Here, it is very clear that the depth of pinch off is affected by the impacting Froude

number, as it is expected to be. In this pair of images, the difference in the splash

crown is also evident. The lower Fr value splash has much less energy, and is seen to

have already begun breaking up at pinchoff. The top of the splash in the Fr = 5.75

case is out of frame, but the curvature towards the center of the impact site is evident.

3.2.1 Surface Closure

A result of hydrophobic cases that is not encountered in the hydrophilic cases in

this study is the occurrence of surface closure. Figure 3-9 shows a case of a sphere

impacting the free surface with a Fr value high enough to cause closure of the surface

splash. This surface closure occurs before the time of pinch off of the cavity. The

sphere is steel, and the impacting Froude number is 5.32. This corresponds to a drop

height of only 36 cm, however the high mass ratio of the steel affects the occurrence

of surface closure prior to pinch off. It was found that surface closure occurs with

acrylic spheres that have Fr > 6.34, with ceramic spheres that have Fr > 5.47, and

with steel spheres that have Fr > 4.86.



(a) Acrylic hydrophobic (b) Acrylic hydrophobic
cavity, 24 cm cavity, 42 cm

Figure 3-7: Cavities formed by the impact of acrylic hydrophobic spheres are shown.
Fr = 4.35 in (a) and Fr = 5.75 in (b). The time between images is 10 milliseconds.

44



Figure 3-8: The moment of pinch off for the Fr = 4.35 and Fr = 5.75 cases are
shown for a hydrophilic acrylic sphere.

In the example of surface closure in Figure 3-9, the affect of the closure on the

formation of the Worthington jet is apparent. Spray is emitted when surface closure

occurs, and when the jet erupts from the location of pinch off, it must break through

the closed bell on the surface. The jet is seen to break through, but it is much

altered, and does not travel nearly as high, having been hindered by the closed surface.

Droplets still manage to reach impressive heights, again traveling out of the field of

view, but the continuous jet is much smaller and less organized than in cases without

surface closure.

The next group of image sequences compares three cases with different mass ratios,

all at Fr = 7.53, so that surface closure occurs in all three cases. Time between the

images in Figure 3-10 is 20 ms. The main feature we see in these sequences is that as

mass ratio increases, the closed dome collapses towards the free surface more before

the Worthington jet is formed and attempts to break through. The result is that the

acrylic case shown in Figure 3-10(a) has the most pronounced jet-type structure, and

the steel case in Figure 3-10(c) has the least defined structure of the three. It was



Figure 3-9: A steel sphere impacts the free surface with a high enough velocity
for surface closure of the cavity to precede deep seal (Fr = 5.32), resulting in the
Worthington jet striking and breaking through the closed dome.

observed during the experiments that cases with surface closure were accompanied

by a loud plopping sound, which occurred as the fluid erupted through the dome.

These cases which involved surface closure were not measurable in terms of the

features of the Worthington jets which this study aims to characterize. However, there

are still many interesting observations to be made in the very high Froude number

cases.

3.2.2 Froude Number and Mass Ratio Comparisons

The next set of figures compare different hydrophobic cases with each other to distin-

guish differences caused by varying Froude number and mass ratio, just as with the

hydrophilic cases previously. The first comparison is of the three mass ratios with Fr

held constant. Figures 3-11(a), 3-11(b), and 3-11(c) show an acrylic, ceramic, and

steel sphere, respectively, falling from a height of 24 cm. At this Froude value of 4.35

on impact, none of the cases have surface closure. Images in the sequences are 20 ms

apart.

The ceramic case has some error, evident through the leaning of the Worthington

jet as it first appears in frame five. The jet appears to straighten under its own



(a) Acrylic hydrophobic jet, 72 cm

"H,
(b) Ceramic hydrophobic jet, 72 cm

Steel hydrophobic jet, 72 cm

Figure 3-10: Jets formed from impact of hydrophobic spheres with Fr = 7.53 are
shown. Acrylic, ceramic, and steel spheres are used, and surface closure precedes
deep seal and Worthington jet formation in all three cases. The time between images
is 20 milliseconds.



(a) Acrylic hydrophobic jet, 24 cm

(b) Ceramic hydrophobic jet, 24 cm

Vi I
(c) Steel hydrophobic jet, 24 cm

Figure 3-11: Jets formed from impact of hydrophobic spheres are shown. All three
types of spheres fell from a height of 24 cm (Fr = 4.35). The time between images is
20 milliseconds.

momentum, but the measurements obtained are most likely skewed because of the

imperfection. However, the jet in the ceramic case also reaches the highest height

of the three, so any energy contributing to the horizontal velocity in the jet is most



likely not significant to jet height in comparison to imperfect surface conditions of

the sphere. The acrylic jet has the lowest maximum height of the three. In all cases,

just as in Figure 3-6, droplets begin to break off from the tip of the jet, giving the

continuous jet a near constant height for some time before the entire jet breaks up.

The final breakup of the jet into multiple droplets occurs as the jet is falling back to

the free surface.

As a result of the Worthington jet falling back into the fluid, we see in all of

the cases in Figure 3-11 a bubble that descends from the free surface in the last five

frames of each sequence. This bubble forms at the surface when air is entrained by

the fluid column falling into the free surface. It then descends as it is pushed down

by the fluid flow. It is important to note that this bubble forms at the same time for

each of these three cases, and is therefore independent of mass ratio. All three jets

also reach their maximum height (the height which is maintained for some time by

the gradual breaking off of individual droplets) at about the same time.

In the next comparison, shown in Figure 3-12, different values of the Froude

number are compared for the acrylic hydrophobic sphere. Figure 3-12(a) shows the

sphere at Fr = 2.35, Figure 3-12(b) shows Fr = 4.35, and Figure 3-12(c) shows

Fr = 5.32. Time between each image is 20ms. There is no surface closure at any of

these Froude numbers for the acrylic case. Here, it is clear that the maximum height

of the Fr = 2.35 case is much lower than the other two cases, but it is difficult to

determine by visual inspection which of the higher two Froude number cases attains

a higher height.

One clear difference between the sequences in Figure 3-12 is the time at which the

maximum heights are reached. The region where the constant break off of individual

droplets occurs is delayed in time as Froude number increases. In Figure 3-12(a),

where Fr = 2.35, the maximum height region appears to begin in the eighth frame

and ends just after the tenth. For the case where Fr = 4.35, the region of maximum

height occurs between the tenth and fifteenth frames. Finally, for the highest Fr case

in Figure 3-12(c), the region occurs between frames twelve and fifteen.

Full breakup of a large portion of the jet in the Fr = 2.35 case does not occur



(a) Acrylic hydrophobic jet, 7 cm
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(b) Acrylic hydrophobic jet, 24 cm

M a t A * ft

(c) Acrylic hydrophobic jet, 36 cm

Figure 3-12: Jets formed from impact of hydrophobic acrylic spheres are shown. In
(a), the sphere fell from a height of only 7 cm (Fr = 2.35). The drop height for (b)
was 24 cm (Fr = 4.35), and for (c) was 36 cm (Fr = 5.32). The time between images

is 20 milliseconds.



because the jet has a low velocity, and therefore falls back to the free surface before

the breakup event. Breakup of the Fr = 4.35 jet occurs in the twentieth and final

frame in the sequence shown in Figure 3-12(b). The breakup event for the highest

Froude number case is not present. In this case, as with the lowest Froude number

case, the entire continuous liquid jet falls back to the free surface.

The timing of the fall of the bulk of the jet back to the free surface, as indicated

by the bubble of entrained air that is pushed below the free surface, is visible in each

of the cases presented in Figure 3-12. This bubble first appears in the fourteenth,

sixteenth, and seventeenth frames, respectively, for the three Froude numbers. The

time duration of the jet is thus dependent on the Froude number, which higher impact

speeds producing jets that remain above the free surface for longer periods of time

before they fall back into the fluid.

As a final comparison, Figure 3-13 compares the hydrophilic and hydrophobic

cases for a ceramic sphere at a Froude number of 4.86. The time between each frame

is 10 ms in both cases. The difference between the two sequences is vast, and by

comparing them side-by-side, it is possible to get a better sense of the difference in

scale between the two.

Results of the experiments have been presented in the form of raw images, and

general observations have been made. Further discussion of the results, including

development of scaling laws and parameter characterization, will be given in Chapter

4.



(a) Ceramic hydrophilic jet, 30 cm

(b) Ceramic hydrophobic jet, 30 cm

Figure 3-13: Jets formed from impact of ceramic spheres with Fr = 4.86 are shown.
(a) shows the impact of a hydrophilic sphere, while (b) shows the impact of a hy-
drophobic sphere. The time between images is 10 milliseconds.



Chapter 4

Discussion

As in the Results chapter, this chapter is divided into hydrophilic and hydrophobic

sections. Data from all cases is presented to clarify the trends observed in Chapter

3, and explanations for these trends, based on the physical parameters and dynamics

of the situation, are given. Focus is on the characteristics of the Worthington jets

that have been discussed thus far: maximum height and time to breakup of the first

and second hydrophilic jets, and maximum average height, time to maximum height,

time to fall, and time to surface closure for hydrophobic cases.

In addition to the Froude number (describing the ratio of inertial to gravitational

forces), which was used as a controlled parameter to organize the experiments in this

study, other dimensionless quantities are important for explaining the dynamics of the

Worthington jet formation and breakup for each case. These additional parameters

are the Weber number, Ohnesorge number, and Bond number. They are defined as

follows:

We = pVDdrop

Oh =

pDdropo

pgD'
Bo dro

The Weber number describes the ratio of inertial forces to surface tension effects,

the Ohnesorge number compares viscous and surface tension forces, and the Bond



number compares gravitational and surface tension effects. The following values are

used for the fluid constants: p = 1000O, p = 1 x 10' k9-, and o- = 0.072N. The

gravitational constant is 9.816m2.

Note that the length scale in each of these quantities is no longer the diameter of

the sphere, but rather Ddrop, the diameter of droplets ejected from the tip of the jet.

Upon inspection of the data, the drop size of each type of jet (the first and second

jets in the hydrophilic cases and the jet in the hydrophobic cases) were found to be

constant. The velocity used in the calculation of the Weber number, V, does not

refer to the velocity of the sphere on impact, U0 , that was used for finding Fr. V

instead refers to the velocity of the fluid as it enters the Worthington jet.

It is impossible to determine the quantity of Vo without Particle Image Velocimetry

(PIV), which is also extremely difficult given the configuration of the jet and the

sphere. As a result, the velocity at the entrance to the jet must be found by other

means. However, a quantity that can be easily measured is the velocity of the tip

of the jet (and of the droplets ejected from the tip). If the fluid particles in the tip

of the jet can be assumed to move with the same velocity as the jet tip and the

droplets themselves, then the fluid velocity at the entrance to the jet can be found

using Bernoulli's equation for steady flow:

SpUdr,+ pghavg = V02

where Udrop is the measured velocity of the tip of the jet, and hag is the average

height of the Worthington jet in the frames used to measure that velocity. This

equation measures the height of the jet from the free surface, hence the missing

gravitational potential term from the right side. If, during the sequence from which

the measurement was taken, a droplet breaks from the end of the jet, the droplet is

tracked rather than the jet tip in subsequent frames. This assumes that the velocity of

the droplet is equal to the velocity of the jet tip, neglecting any energy that the fluid

in the droplet may have lost due to the break off. Once the value of Vo is obtained

from these measurements and the use of the Bernoulli equation, the values of We for



each case can be determined.

4.1 Hydrophilic Cases

Figure 4-1: The stages of hydrophilic sphere impact and Worthington jet evolution
are shown.

The evolution of the Worthington jet formed from the impact of hydrophilic

spheres (0 < 700) with the free surface can be broken into several stages. These

stages are illustrated in Figure 4-1. The first frame represents the setup of the ex-

periment, with the sphere stationary at some distance, H, above the free surface.

This height is used to determine the Froude number for each case. In the second

frame, the sphere has impacted the surface, but is not yet fully submerged, and the

first Worthington jet is seen already traveling vertically. The third frame shows some

time later when the sphere is fully submerged. Here, the first jet is still seen intact,

and the second, slower Worthington jet is also visible. The fourth frame in the series
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represents the breakup of the first jet into uniform droplets, and the final frame shows

the breakup of the second jet, with the ejection of just one droplet from the tip of the

jet. The diameter of all droplets will be referred to as Ddop; however, it is important

to note that the value of Ddop is different for the two Worthington jets formed in the

hydrophilic case.
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Figure 4-2: The maximum heights of the first Worthington jet in the hydrophilic

cases are shown. Heights are non-dimensional in terms of diameter of the spheres,
which are all 2.54cm. The linear trend shows a slope of -0.2334.

4.1.1 Worthington Jet Heights

The first characteristic of the Worthington jet formed from the impact of hydrophilic

spheres under review is the maximum height of the first and second jets. The first jet

reaches its maximum height just before breakup occurs. After breakup, the remnants

of the jet continue to move upward with some velocity, but eventually the entire
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jet breaks into droplets. The measured heights of the first jet are shown in non-

dimensional form in Figure 4-2. The heights are non-dimensionalized by the diameter

of the spheres, which is constant for all cases. A slight downward trend with respect

to Froude number is apparent. The spread of the data, however, lends to uncertainty.

All heights are within 1 diameter of the mean, and there is not evidence of dependence

of maximum height on the mass ratio of the sphere.
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Figure 4-3: The Weber number corresponding to the first Worthington
hydrophilic cases is plotted against the experimental Froude number.
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The Weber number for the first Worthington jet formed in the hydrophilic cases is

plotted against the Froude number in Figure 4-3. There is a vague linear dependence

of Weber number on Froude number, with no apparent dependence on mass ratio.

The correlation is not very strong, but the general trend indicates that as the impact

velocity of the sphere increases, the initial velocity of the first jet also increases. Con-

sidering the dependence of Weber number on Froude number, and the independence

I I I I , - -

* Acrylic
- Ceramic

* Steel

**

**

- * , , *.
*

- -

*

I I iI



of the maximum heights of the first jets formed by hydrophilic spheres on Froude

number, it is not surprising that the maximum height of the first jet is also indepen-

dent of Weber number. This was confirmed graphically, but the plot is not included

here. The evolution of this first jet is most likely more affected by instabilities in the

fluid upon initial impact of the sphere than on the pure energy transferred to the

fluid by the sphere.
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Figure 4-4: The Weber number describing the second Worthington jet in the hy-
drophilic cases is plotted against the square of the experimental Froude number.

The second Worthington jet, being much more stable than the first, is expected to

have stronger dependence on the Weber number. The Weber number for the second

jet formed in hydrophilic cases is plotted against the square of the Froude number in

Figure 4-4. Here, there is a clear dependence of the velocity of the second jet on the

impacting Froude number of the sphere. In contrast to the first jet, however, the linear

relationship is to the square of the Froude number, with a proportionality constant



of 1.932 for the acrylic cases, 2.547 for ceramic, and 2.737 for steel. Therefore, the

mass ratio of the sphere is also important in determining the Weber number of the

second jet, with proportionality increasing with increasing mass ratio.
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Fr2

Figure 4-5: The maximum heights of the second Worthington jet in the hydrophilic
cases are shown. Heights are given non-dimensionally with respect to the sphere
diameter, which is a constant 2.54cm for all cases. Maximum heights increase linearly
with Fr 2 for each mass ratio.

Next, the heights reached by the second Worthington jet are examined for corre-

lation to the Froude and Weber numbers for the jet. The maximum non-dimensional

heights reached by the second hydrophilic jets are plotted against Froude number

in Figure 4-5. The maximum height of the jet, h 2ma , tended to occur just before

breakup. These data are much more organized when compared to that for the height

of the first jet, and bear a striking resemblance to the data plotted in Figure 4-4. The

linear dependence of the height obtained on the square of the Froude number is clear,

with the solid lines indicating the best fit line for each mass ratio, and mass ratio is



still recognized as a relevant parameter, with increasing m* leading to an increase in

maximum height of the second jet.

The correlation between the dependence of the second jet's Weber number and of

the maximum height on the square of the Froude number becomes clear when h2max is

plotted against Weber number. In Figure 4-6, mass ratio is not a factor in the linear

relationship between jet height and We. It is this proportionality that results in the

similarity of Figures 4-4 and 4-5.
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Figure 4-6: The maximum heights of the second Worthington jet in the hydrophilic
cases are shown. Heights are given non-dimensionally with respect to the sphere
diameter, which is a constant 2.54cm for all cases. Maximum heights increase linearly
with Fr for each mass ratio.

The scale of the y-axis in both Figures 4-2 and 4-5 is the same, showing heights

of the first and seconds jets from 0 to 5 diameters. The height of the first jet is

3 diameters for all Froude numbers, while the height of the second jet ranges from

~ 0.5 diameter at the lowest Froude number to almost 5 diameters at Fr = 7.53.
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This indicates that the height of the second jet exceeds the maximum height of the

continuous first jet in higher Froude number cases.

4.1.2 Bond and Ohnesorge Numbers

The size of the droplets formed by the breakup of the first and seconds jets, which

are important for the calculations of the Bond and Ohnesorge numbers, are easily

measured. The droplet size depends only on which of the two Worthington jets

produced it, resulting in a constant Bo and Oh for the first and second jets. The

data indicate that Ddrop ~ 3.2mm for the first jet, and Ddrop 9.3mm for the second

jet. The resulting Bond and Ohnesorge numbers are summarized in Table 4.1.

Table 4.1: Bond and Ohnesorge Numbers from Hydrophilic cases

Jet Number Bond Number Ohnesorge Number
First 1.325 2.1 x 10-3

Second 11.932 1.2 x 10-3

The Ohnesorge number is < 1 for both jets, indicating that viscosity is not an

important parameter. The Bond number, however, is - 0(1) for the first jet and

0 O(10) for the second jet. This shows that gravity cannot be neglected in either jet,

but that it is more influential in the second jet than in the first.

4.1.3 Time to Breakup

The next characteristic notable for discussion is the time to breakup of both the

first and second jets. Figure 4-7 shows these times non-dimensionally, such that

t ,* - treauvo . Uo is, again, the velocity of the sphere on impact with the free

surface in m/s, and D is the diameter of the sphere in m. The non-dimensional

breakup times are plotted against Fr, so the impact velocity is included in both axes.

The non-dimensional time to breakup of the second jet is linear with Fr, and t*,ak

of the first jet is constant. Neither value has any dependence on mass ratio.

The non-dimensional breakup times of the first jet have a mean value of 4.42

with a standard deviation of only 0.63, or 14%. The constant value of treakup with
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Figure 4-7: Non-dimensional time to jet breakup is shown for both Worthington jets
emitted from hydrophilic impacts. With the dimensionless scale, the time to the first
breakup is now constant, and the time to the second breakup increases linearly with
increasing Fr

Fr indicates that as the velocity on impact, Uo increases, the dimensional time to

breakup must decrease proportionally. This decrease in breakup time can be linked to

an increase in the instability of the first Worthington jet, proportional to the amount

of energy transfered to the fluid upon first impact of the sphere with the free surface.

Again, because the Weber number and Froude number are linearly related to each

other, the non-dimensional time to breakup for the first jet is also independent of

Weber number, as shown in Figure 4-8. Figure 4-8 also shows the time to breakup of

the second Worthington jet plotted against the value of the Weber number, and here

a linear dependence of the dimensionless time on We is apparent.

As expected, the non-dimensional breakup times for the second jet follow a linear

trend whether plotted against We or Fr, so as impact velocity (and, subsequently,
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Figure 4-8: The dimensionless time to breakup of both the first and second Wor-
thington jets formed in the hydrophilic case are plotted against Weber number.

V) increases, dimensional time to breakup remains constant. This suggests a transfer

of energy or momentum to the fluid that is independent of the sphere's velocity.

4.1.4 Energy Transfer

The energy transferred to the fluid by the sphere was estimated using the velocity of

the sphere at times following impact compared to Uo. The initial energy of the sphere

(just before impact) is known to be

KEsphere = -m %U2 ,2 ~

where m, is the mass of the sphere. Here, all energy in the system is described by this

kinetic term for the sphere, with no contribution of gravitational potential energy at



the free surface. Using Matlab® to track the sphere under the surface, the velocity of

the sphere for each subsequent depth could be found, and the sphere's energy at each

time following impact approximated. Energy transferred to the fluid is then given as

1
Etrans = -m 8 (U 2 - v 2 ) + msgd

2

where v and d are the velocity, in m/s, and the depth, in m, of the sphere after

impact, respectively.
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Figure 4-9: Velocities of hydrophilic spheres approximately 10ms after impact are
shown as a function of Froude number. The green line indicates the impact velocity
of the spheres as predicted by theory. The steel spheres retain the most of their
original velocity, while the acrylic spheres are significantly slowed by the fluid.

Figure 4-9 shows the velocities of each sphere at each Froude number approxi-

mately 20ms after impact, after the sphere is fully submerged. These are the ve-

locities used to find the energy transferred by the sphere to the fluid. The solid line

64



indicates the initial velocities of the sphere at impact due to the force of gravity alone.

The decrease in velocity is greater for lower mass ratios, which has been shown in

previous works. The velocity lost is also greater for higher Froude numbers, though

only slightly.
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Figure 4-10: Energy transferred to the fluid
function of the square of the Froude number,

upon
U2

wD
impact is shown to be a linear

The energy transferred from the sphere to the fluid after impact is shown in Figure

4-10. The energy, shown in the Figure in Joules is plotted not against Fr, but Fr2 .

The energy transferred is thus proportional to the square of the velocity of the sphere

on impact, which is expected due to the linear relationship between velocity at 20ms

after impact and Uo (Fr). Dependence on mass ratio is also evident in this figure, with

more overall energy transferred by spheres of higher mass. This might be counter-

intuitive, because the spheres with lower mass ratios decelerate more quickly in the

fluid, and would thus be expected to lose more energy. However, when the energy
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transferred in J is compared to the initial energy of each sphere, the steel sphere

loses the lowest percentage of its total initial energy of all three mass ratios, while

the acrylic loses the highest percentage of its initial energy to the surrounding fluid.

The dependence of transferred energy on the square of the Froude number is also

promising for comparison to the dependence of the second jet on the square of the

Froude number. The transfer of energy to the fluid in the first 20ms after impact,

with the sphere fully submerged, has a direct impact on the height reached by the

second Worthington jet. The first jet's dependence on Froude number demonstrates

that the first jet does not have the same dependence on the energy transferred after

full submergence of the sphere.

From this information, we can begin to understand how the energy transferred

to the fluid during and after impact affects the development of the first and second

Worthington jets in the hydrophilic case. Not all of the energy lost by the sphere

can be assumed to enter the Worthington jet. Some is lost to viscous forces on the

boundary layer of the sphere, in the bulk of the fluid, or even in sound generation.

4.2 Hydrophobic Cases

The formation of the Worthington jet resulting from the impact of hydrophobic

spheres (0 > 900) can be divided into six stages, outlined in Figure 4-11. The first

stage is identical to the first stage of the hydrophilic sphere case, with the sphere at

rest a height, H, above the free surface. From H, the impact velocity of the sphere

is calculated and the Froude number defined.

In the second stage, the difference between the hydrophobic and hydrophilic cases

becomes clear, with the formation of the cavity below the free surface. The fluid

moves radially outward from the cavity, with no vertical component to the velocity

at any point along the cavity wall. In the third stage, the flow has turned to be

completely radially inward, and pinch-off occurs at some depth, d,, below the free

surface. The time at which pinch-off occurs is denoted as t,. The Worthington jet

originates from dp; when the walls of the cavity meet, fluid is forced both upward



and downward. The downward jet is confined by the remaining cavity attached to

the sphere, but the upward jet is unimpeded. In the fourth frame, the upward jet is

depicted as moving with some initial velocity, V. In this study, V will be used to

denote the fluid velocity at the entrance to the Worthington jet.

The fifth stage depicts the Worthington jet when it is at its maximum height,

shown as hav,. During this stage, droplets are ejected from the tip of the jet such that

the continuous portion of the jet maintains an average maximum height. The droplets

that are ejected have a measurable diameter and ejection speed, Ddrop and Udrop,

respectively. The sixth stage shows the breakup of the majority of the Worthington

jet into droplets. In the hydrophobic cases, it was found that all values of Ddrop are

similar to within 2mm.
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Figure 4-11: The stages of hydrophobic sphere impact and Worthington jet evolution
are shown.

Though the formation of an axisymmetric cavity by hydrophobic spheres has been

thoroughly studied, certain aspects of cavity dynamics are revisited here to draw

D = 0.0254 m

H

at moment of impact: u= v= Oj

Vo

\A/-

U drop

h_4ydro

t = t max



connections between cavity shape and Worthington jet characteristics. The most

relevant parameter of the cavity that is examined for this purpose is the depth at which

pinch-off occurs, d,. This parameter is related to the volume of the cavity at pinch-

off, which can be compared to a potential energy dependent upon the hydrostatic

buoyancy force on the cavity. It is known from previous work on cavity dynamics

that mass ratio and Froude number both play a role in the transfer of energy from

the sphere to the cavity. In Figure 4-12 the depth at which pinch-off occurs in

cases without surface closure are plotted non-dimensionally against Fr x m*1/ 4 , which

results in a linear relationship.

2.6

2.4 -

2.2 -

1.8

1.6 -

1.4 -

1.2 -

* *

* *

*
* -

*

*

*

4 *

3 4 5 6 7 8

Fr xm'

Figure 4-12: Figure (a) scales the non-dimensional depth
with m*1/ 2Fr, and Figure (b) scales dcinch with m*1/ 4 Fr.D

at which pinch-off occurs

The majority of other relevant information gathered from the data is found during

the fifth stage of jet evolution as defined in Figure 4-11. During this time period, the

height of the jet, velocity of the tip/droplets, and the diameter of the droplets ejected



are all measured to enable calculation of the Bonde, Ohnesorge, and Weber numbers.

4.2.1 Worthington Jet Heights

The first piece of this puzzle that will be discussed is the height of the Worthington

jets, which was recorded with time to give a full description of the lifespan of the

continuous jet. These data are shown non-dimensionally in Figures 4-13, 4-14, and

4-15. Heights in meters were normalized by the height above the free surface from

which the sphere fell, not the diameter of the sphere. This is important to keep in

mind. Figure 4-13 shows each of the acrylic hydrophobic cases. Some Froude numbers

are represented twice, by two separate runs. These are the result of instances where

the first trial of a Froude number appeared to have been messy or otherwise non-ideal.
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Figure 4-13: The non-dimensional heights of each hydrophobic Worthington jet for
the acrylic cases are shown vs. time. Heights are non-dimensionalized by the height
from which the sphere fell above the free surface. The data were taken from every
fifth frame, or every 10ms.



All of the jets seem to have roughly the same lifespan with the exception of the

Fr = 2.35 cases. The Worthington jets for this case reach maximum heights that

are three times the height from which the spheres were released. The maximum

heights for the other cases are all roughly on the order of the height from which the

spheres fell. The jet that reaches the lowest percentage of the sphere's drop height

is the Fr = 6.15 case, which corresponds to a drop height of 48cm. For the cases

above this Froude number, surface closure prevented measurement of an unobstructed

Worthington jet.

Of the acrylic cases that were repeated, there was very good agreement between

the two runs. The data in Figure 4-13 seem to suggest that as Froude number

increases, the non-dimensional height reached by the resulting Worthington jet de-

creases. The exceptions to this trend in the acrylic case are the Fr = 4.86 and the

Fr = 5.75 runs. Neither of these cases were repeated because upon visual inspection

of the images obtained in those runs, the Worthington jets were very "clean," lack-

ing any features that would suggest that there was slight experimental error. Both

of these cases have maximum heights higher than one would expect from the trend

suggested, so it is possible that these jets were unusually well-formed, and therefore

reached higher maximums than could be repeatedly obtained.

The trend suggested by the data in the acrylic case is further supported by the

data in Figure 4-14. Here, the ceramic cases are shown. Only four separate Froude

numbers produced Worthington jets which are not impeded by surface closure. Once

again, the lifetime of the jets are all on the same order excepting the Fr = 2.35

case. Also, the Fr = 2.35 case produces the highest maximum with respect to its

drop height. Repeated cases are in good agreement. Another interesting note, which

was also apparent in Figure 4-13, is the time at which the jets are first measured.

At t = Os, the spheres first impact the free surface. The first time at which the

Worthington jet is measured in almost every case is 10ms after impact. This follows

logically from the fact that the time at which pinch-off occurs, t,, is proportional to

the square root of the sphere diameter, and is therefore constant in the cases studied

here.
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Figure 4-14: The non-dimensional heights of each hydrophobic Worthington jet for
the ceramic cases are shown vs. time. Heights are non-dimensionalized by the height
from which the sphere fell above the free surface. The data were taken from every
fifth frame, or every 10ms.

The non-dimensional jet heights for the steel sphere cases are shown in Figure 4-

15. Here, there are only three Froude numbers studied that result in Worthington jets

unimpeded by surface closure. As seen in the acrylic and ceramic cases, the decreasing

trend in non-dimensional height with increasing Froude number is apparent, as well

as the uniform time of jet formation.

From these data, the average maximum height of the Worthington jets was found.

The beginning and end of the time frame in which the jet was at the maximum average

height was somewhat arbitrarily deduced. Each case results in a different pattern of

breakup at the maximum, so it is difficult to determine precisely when the jet has

entered that state. Also measured was the diameter of the droplets ejected from the

tip of the jet, Ddr,, and the velocity of the jet tip (or of the droplets ejected) Udrop. As
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Figure 4-15: The non-dimensional heights of each hydrophobic Worthington jet for
the steel cases are shown vs. time. Heights are non-dimensionalized by the height
from which the sphere fell above the free surface. The data were taken from every
fifth frame, or every 10ms.

described, this information was used to find the initial velocity of the fluid entering

the Worthington jet, V, which serves as the velocity scale for the Weber number.

The values of Dd,op were also used to calculate Oh and Bo. The drop diameters for

the hydrophobic cases were very uniform, having an average value of 4.5mm. The

resulting Ohnesorge number, therefore, is Oh = 1.8 x 10-, and the value of the Bond

number is Bo = 2.761. From this it is clear that, because Oh < 1, viscosity is not an

important factor. The Bond number being 0 O(1), however, indicates that gravity

cannot be neglected.

The values of the Weber number calculated are plotted in Figure 4-16 as a function

of Froude number. There is evidence of a dependence of We on Froude number, but

the experimental error makes it difficult to define it well. It appears that mass ratios
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Figure 4-16: The Weber number for the Worthington jets formed by the impact of
hydrophobic spheres are plotted against the Froude number of the sphere on impact.
The Weber number is based on the initial velocity of the fluid particles entering the
jet, which is calculated using information about the velocity and height of the tip of
the jet and Bernoulli's equation.

plays no role in determining the Weber number of the jet, but perhaps a linear

correlation to Froude number or to the square of the Froude number is present. The

precise relationship is difficult to determine.

To attempt to clarify the relationship between the characteristics of the Wor-

thington jet in the hydrophobic cases and the Weber number, the average maximum

height, normalized by sphere diameter, is plotted against We in Figure 4-17. Here

again, there is a suggestion of a linear dependence, but the spread of the data is not

ideal. A linear fit to the data is shown, and most of the heights are within two diam-

eters of this fit. In order to comment on the confidence of the conclusions reached,

it is necessary to better understand and quantify the error in the hydrophobic mea-



surements.
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Figure 4-17: Non-dimensional jet heights reached by the hydrophobic cases are shown
as a function of Weber number, We = aVgDd,

4.2.2 Experimental Error Quantification

As described in Chapter 2, this was accomplished through repeated trials of two

cases: acrylic spheres with Fr = 4.86 and ceramic spheres, also with Fr = 4.86.

The heights of the jets were measured with time, and the heights at each time step

were averaged for each case. The resulting means are plotted in Figure 4-18. The

error bars indicate one standard deviation above and below the mean. The heights

are non-dimensionalized by diameter. The solid lines are quadratic fits to the mean

heights, starting with the first measured height above the free surface.

The ceramic case produces consistently higher jets than than the acrylic case.

The mean values are mostly outside the standard deviation of the other case, though



the standard deviation is ~ 2 diameters. The sample size is still small to reach

statistically significant conclusions, but the results are still valuable for estimating

the error in the experiment.

0

0.1 0.2 0.3 0.4
Time (s)

Figure 4-18: Averages of the maximum heights obtained in repeated experiments for
the acrylic and ceramic hydrophobic jets at Fr = 4.86 are given as a function of time.
Error bars indicate one standard deviation above and below the mean. Height of the
jet is in normalized by sphere diameter and measures the continuous jet, discounting
droplets as they are ejected at the tip.

Qualitatively, Figure 4-18 shows us that the trajectory of the jet tip, on average,

is very smooth. However, the parabolic fits to these trajectories do not seem to be

the best models for the entire life of the continuous jet. The latter data points appear

to follow the ballistic trajectory well, but the initial heights reached by the jet, up

until - 20ms, do not fall along the same ballistic path, but rather move with a higher

initial velocity than is represented later. This is readily explained by the fact that

the fluid particles tracked at the early instances of the Worthington jet's life break



off from the jet tip very quickly. Therefore the jet tip is likely moving with a much

higher velocity than particles that enter the jet later and ultimately form the jet tip

as it is measured at the end of the jet's life.

Based on the estimates of experimental error that can be expected in the hy-

drophobic cases, it is difficult to reach solid conclusions as to the exact model that

the Worthington jet's height follows. The general trends that have been pointed out

are reasonable estimates of the general behavior, but further, more detailed, studies

are necessary to perfect the experiment and obtain more confident results.

4.2.3 Rayleigh-Plateau Instability

An important factor in the breakup of the Worthington jets in the hydrophobic cases

is the growth of the Rayleigh-Plateau instability that leads to breakup. From the first

moment that the Worthington jet is formed at the pinch-off of the cavity, droplets

are breaking off the tip of the jet. Droplets continue to form from the tip throughout

the life of the jet, limiting the maximum height that the continuous fluid column

reaches. Understanding this process as it applies to the Worthington jet provides

valuable insight into the trends in maximum jet heights.

The growth rate of the canonical Rayleigh-Plateau instability, W, is related to the

wavenumber of the disturbance, k, through the dispersion relationship

U2 W2 a l i(k Ro)U 2 = - - (kRo) 2 )k2  pkR2o (kRo)

where U is the local velocity of the jet, RO is the radius of the fluid column, usually

measured at the stream outlet, I1 and Io are Bessel functions of the first kind, and

a and p are the fluid properties. From this well-known relationship, we can extract

information about the fastest-growing disturbance mode as it relates to the velocity of

the jet tip and the radius of the jet near the tip, which are both measured quantities.

Figure 4-19 shows the relationship between these two parameters for all hydrophobic

cases. From the dispersion relationship above, it is expected that the velocity of jet

tip will be inversely proportional to the radius of the column.
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Figure 4-19: The measured velocity of the jet tip is plotted against the non-
dimensional radius of the Worthington jet near the tip. The radius is roughly equiv-
alent to the radius parameter used in Rayleigh-Plateau theory, as a constant initial
dimension.

The data shows good agreement with the expected relationship. The radius of the

jet near the tip is assumed to be a good approximation to the parameter intended

by Rayleigh, and is non-dimensionalized by the sphere diameter. The velocity of the

jet tip is shown in dimensional form. The agreement with theory provides confidence

that the velocity of the jet tip is a good indicator of the behavior of the instability

leading to droplet formation at the tip.

Based on the dispersion relationship, it can be shown that the fastest growing

mode of the disturbance occurs for kRo = 0.697. From this, the most relevant dis-

turbance wavenumber can be determined based solely on the measured radius of

the Worthington jet. The jet tip velocity is plotted as a function of this minimum

wavenumber in Figure 4-20.
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Figure 4-20: The measured velocity of the jet tip is plotted against the wavenumber
corresponding to the fastest growing mode obtained from Rayleigh-Plateau theory.
The wavenumber is calculated from the radius of the jet near the tip.

Because wavenumber is proportional to the inverse of the jet's radius, it is not

surprising that the data in the figure show a linear trend. However, viewing it in this

form allows us to better understand the relationship between the local velocity and

the breakup-driving instability. As k increases, so does the speed of the perturbation

growth, meaning that the disturbance will become more severe more quickly. Figure

4-20 shows that the faster perturbations correspond to faster jets, meaning that faster-

travelling Worthington jets will most likely breakup sooner, as would be expected

intuitively.

The other key parameter in the dispersion relationship for Rayleigh-Plateau in-

stabilities is the growth rate, w. This gives direct information about the time to



breakup, which can be estimated by the inverse of the maximum growth rate:

treakup 2.91

This estimate can then be related to the measured maximum average jet height, as

shown non-dimensionally in Figure 4-21.
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Figure 4-21: The maximum heights of Worthington jets for all hydrophobic cases are
plotted against the characteristic breakup time determined by the fastest mode of
perturbation growth predicted by Rayleigh-Plateau theory.

The average maximum height is non-dimensionalized by sphere diameter, and the

breakup time predicted by Rayleigh-Plateau is non-dimensionalized by the diameter

and the velocity of the sphere on impact. When the velocity of the sphere on impact

is used, the data collapse into two distinct regimes, as shown in Figure 4-21. For low

non-dimensional breakup times, maximum jet height decreases linearly, but above a

value of ~ 4, the maximum height is constant. This indicates that although the time
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to breakup increases, meaning that it takes longer for droplets to break off from the

jet tip, the maximum height of the jet actually decreases, reaching some threshold

of minimum height. The three data points that do not fall on the trend are those

corresponding to the cases at Fr = 2.35, and are obvious outliers.

The main insight gathered from Rayleigh-Plateau is the relationship between the

jet radius and velocity and the time to breakup. Jets with larger diameters, which

are shown by the dispersion relationship to be slower moving, have faster growing

disturbances. These slower jets have longer times to breakup, but because they

move slower, reach lower maximum heights. The behavior of the Worthington jet is

therefore a balance of jet speed and the breakup process driven by Rayleigh-Plateau.

Faster jets can reach greater heights more quickly, but will also break up faster.

Slower jets will not form droplets as soon, but will also not travel as far in the same

amount of time.

4.2.4 Jet Lifespan

The height of the Worthington jet is not the only parameter of interest. Also measured

was the time at which the jet falls back to the free surface. This characteristic is

described as fall time, tf, and is an estimate for the lifetime of the jet. Measured

from the time of impact, tf is the time at which the fluid column is seen to have been

overtaken by gravity, and falls back toward the free surface. The indication that this

has occurred is quite visible; as the jet reenters the fluid, it entrains air, forming a

bubble that is pushed downward from the free surface. Air entrainment occurs in

every hydrophobic case.

Normalized fall time is plotted in Figure 4-22 against Fr. The variations in the

experiments are not noticeable here, with a very clear linear dependence of t* on

Froude number. As with other non-dimensional times, because the impact velocity is

included in the terms on both the x and y axes, the dimensional fall time is constant

with Froude number. Dependence on mass ratio is almost negligible.

The consistency of the lifespan of the Worthington jets across all of the hydropho-

bic cases is in great contrast with the variation in maximum heights. Therefore, there
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Figure 4-22: The time to the return of the hydrophobic Worthington jet to the free
surface, indicated by the bubble of entrained air that descends from the free surface
as the jet falls into the fluid, is shown non-dimensionally as a function of Fr. Only
hydrophobic cases are shown, and cases in which the jet was not well formed due to
the interference of surface closure are not included.

must be a disconnect between the physics that affect the overall formation of the jet

and the factors that determine when and where breakup of the tip occurs.

4.2.5 Energy Tr-ansfer

As with the hydrophilic cases, it is of interest to find a correlation between the

Worthington jet dynamics and the transfer of energy from the sphere to the fluid.

In the hydrophobic cases, the most promising source of fluidic energy to feed the

Worthington jet is that stored in the cavity. Focusing on the potential energy in the

cavity reduces the discrepancy between the energy accounted for and the energy that

actually goes into the formation of the Worthington jet.



The potential energy in the cavity stems from the hydrostatic force on the walls

from the surrounding fluid. Therefore, the energy can be related to the equivalent

buoyant force, F of the cavity,

Fb = PV

where V is the volume of the cavity at pinch-off, measured from raw images.

0

Figure 4-23: Normalized cavity volume is shown as a function of Froude number.
There is linear dependence on Fr, and mass ratio is important. The relative contri-
butions of Froude number and mass ratio are not the same as in the case of depth of
pinch-off.

The values of the cavity volumes at t, are plotted against Froude number in

Figure 4-23. The volume of the cavity at pinch-off increases proportionally with

Froude number, and is also dependent on mass ratio. Due to the transformation

of the cavity shape, this dependence on mass ratio differs from the dependence of

the depth of pinch-off on m*. These volumes are used to calculate F, and from the
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buoyant force, the potential energy of the cavity is then approximated as

Ecav ~ FVo

where V is the velocity of the fluid as it enters the Worthington jet, calculated using

the Bernoulli equation as described above.

20,
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Figure 4-24: Normalized average maximum heights for each case are plotted against
the potential energy stored in the cavity. There is a general upward trend in the data,
with no evidence of dependence on mass ratio.

To relate the properties of the cavity to the characteristics of the Worthington

jet, the jet height is then compared to the values of Ecao calculated from the buoyant

forces and fluid velocities. This comparison is shown in Figure 4-24. As with other

data in the hydrophobic cases, there is a trend, but no concrete organization. As the

potential energy of the cavity increases, so does the average maximum height of the

Worthington jet, which is expected. However, it is difficult to determine whether the
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relationship is linear or follows some other model.

Dependence on mass ratio is once again absent. This has been a constant dis-

connect between cavity characteristics and the characteristics of the Worthington

jet. While mass ratio plays a large role in the formation of the cavity and the loca-

tion of pinch-off, the dynamics of the fluid following pinch-off rely on other factors.

The general correlation between energy in the cavity and the resulting jet height is

promising. The error in the hydrophobic experiments is a continuing challenge, but

the results seen here still show progress towards scaling laws that fully characterize

the Worthington jet.



Chapter 5

Conclusions

Hydrophilic and hydrophobic spheres were dropped from ten heights above the free

surface and the resulting Worthington jets were recorded visually at a rate of 500

frames per second. Characteristics of the jets were then analyzed in terms of the

Froude and Weber numbers, and trends determined. The values of the Bond and

Ohnesorge numbers were also calculated for each case.

5.1 Hydrophilic

In the hydrophilic cases, two separate Worthington jets are formed. The first is

formed before the sphere is fully submerged below the free surface, and has a high

velocity. The maximum height of this first jet is independent of both Froude number

and the mass ratio of the sphere. The time after impact at which the jet breaks

up is also independent of mass ratio, but decreases linearly with Fr. The second

Worthington jet formed in the hydrophilic cases is much slower, forming after the

sphere is submerged. The maximum height of this jet increases linearly with the

square of the Froude number, and also increases with increasing mass ratio. The time

to breakup of the second jet is independent of both mass ratio and Froude number.

The Weber number was calculated from experimental data, and depends on the initial

velocity of the fluid as it enters the Worthington jet at the base. The Weber number

was found to follow the same trend with respect to Froude number as the maximum



heights of the second jet. This is confirmed by the linear relationship between the

maximum height of the second jet and the Weber number. The Bond and Ohnesorge

numbers were found to take one value for each jet, as the droplets that are ejected

from each jet's tip are uniform in size. Both jets have a value of Oh < 1, meaning that

viscous forces are negligible compared to surface tension forces. The Bond number for

the first jet is 0 O(1), and the Bond number for the second jet is 0 O(10). Gravity is

therefore important in both jets, but more so in the second. The energy transferred

to the fluid by the sphere was calculated from the change in kinetic energy of the

sphere from impact to 20ms after impact, and was found to increase proportionally

to the square of the Froude number with dependence on mass ratio. Spheres of higher

mass transfer more energy to the fluid. The height that the second jet reaches, as a

result, is linearly proportional to the amount of energy transferred to the fluid by the

sphere.

5.2 Hydrophobic

In the hydrophobic cases, much more experimental error was present, clouding the

conclusions able to be drawn from the results. Iterations of select cases suggest

accuracy of the jet heights to only within two sphere diameters. The Weber number

describing the jet has a very weak dependence on the Froude number, and the average

maximum height has a vaguely linear dependence on Weber number. Mass ratio of

the sphere is not a factor in determining the height characteristics of the jet. The

lifespan of the jet, measured as the time from impact to the time at which the jet

entrains air on its collapse back to the free surface, is constant for all Froude numbers

and mass ratios. The droplets ejected from the Worthington jet are uniform, therefore

there is a single value of the Bond and Ohnesorge numbers for the hydrophobic cases.

As in the hydrophilic cases, Oh < 1, so viscous forces are not important. The

Bond number is 0 O(1), so gravity is as important as surface tension. The energy

ultimately encapsulated in the Worthington jet is thought to scale with the potential

energy stored in the cavity walls, equal to the buoyant force of the cavity. The volume



of the cavity at pinch-off increases linearly with Froude number, and has mass ratio

dependence. The depth of pinch-off is proportional to Fr x m*1/ 4 , which is not the

scaling that the volume of the cavity follows. There is a weak dependence of the

height of the Worthington jet on the energy stored in the cavity.

5.3 Future Work

Further work is necessary to clarify the relationships between Worthignton jet char-

acteristics and the dimensionless parameters relevant to the problem. Improvements

to the experimental setup might solve some of the measurement inconsistencies, but

more focused studies that isolate Weber number as a controllable parameter would

also be beneficial. The relationship of the maximum height to the breakup process as

described by Rayleigh-Plateau theory also deserves more attention, though the pre-

liminary discussion here is promising. Expanding the results by varying the sphere

diameter, adding different materials, and including more Froude numbers would be

good improvements to the current data set.
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