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Abstract

This thesis investigates the application of robust optimization in the performance analysis of
queueing and inventory systems.

In the first part of the thesis, we propose a new approach for performance analysis of queueing
systems based on robust optimization. We first derive explicit upper bounds on performance for
tandem single class, multiclass single server, and single class multiserver queueing systems by
solving appropriate robust optimization problems. We then show that these bounds derived by
solving deterministic optimization problems translate to upper bounds on the expected steady-
state performance for a variety of widely used performance measures such as waiting times and
queue lengths. Additionally, these explicit bounds agree qualitatively with known results.

In the second part of the thesis, we propose methods to compute (s,S) policies in supply
chain networks using robust and stochastic optimization and compare their performance. Our
algorithms handle general uncertainty sets, arbitrary network topologies, and flexible cost func-
tions including the presence of fixed costs. The algorithms exhibit empirically practical running
times. We contrast the performance of robust and stochastic (s,S) policies in a numerical study,
and we find that the robust policy is comparable to the average performance of the stochastic
policy, but has a considerably lower standard deviation across a variety of networks and realized
demand distributions. Additionally, we identify regimes when the robust policy exhibits partic-
ular strengths even in average performance and tail behavior as compared with the stochastic
policy.
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Chapter 1

Introduction

The purpose of this thesis is to propose a new method of analysis for queueing systems that

leads to explicit upper bounds on performance and to investigate the effectiveness of this method

of analysis to the performance of inventory systems. The key approach is to utilize robust

optimization, a tractable method to optimize systems under uncertainty that has been widely

developed in the last decade. For this reason, we discuss in Section 1.1 optimization under

uncertainty and robust optimization, in particular. In Section 1.2, we provide an overview of

the thesis and of our contributions.

1.1 Optimization Under Uncertainty

Capturing uncertainty in optimization problems provides a powerful modeling framework. Port-

folio optimization, stochastic shortest paths, queueing systems, and revenue management are

among the numerous potential problems that can be modeled as optimization problems un-

der uncertainty. The downside is that barring very specific examples and models, optimization

problems under uncertainty are hard and there are no general and simple tools for solving them.

However, throughout the optimization literature there have been several major lines of research

to tackle this area, and we outline some below.

One approach known as Stochastic Programming refers to methods that represent uncertain

data through scenarios. These scenarios are generated as a result of assuming an underlying



probability distribution for the uncertain parameters. For instance, stochastic linear program-

ming finds an optimal solution that produces the best average objective function value over all

scenarios. One may then extend this approach to model multi-stage problems using techniques

such as Benders decomposition or incorporate a notion of risk into the objective function. The

book by Shapiro et al. (Shapiro, Dentcheva, and Ruszczynski 2009) is a standard reference on

stochastic programming.

Dynamic Programming introduced by Richard Bellman is another method designed to deal

with uncertain systems. For the most part, dynamic programming also models uncertainty with

a probability distribution but is geared towards problems with multiple stages. The spirit of

the approach is to solve the problem recursively - starting with the last stage. Often times, the

major power of the Dynamic Programming approach is two-fold: it allows the user to prove that

a particular policy or solution is optimal, or it allows the user to prove that the optimal policy

has a special structure which may greatly reduce the search space for the optimal policy or give

rise to good heuristics. We refer the reader to the seminal book by Bellman (Bellman 1957) and

the books by Bertsekas (Bertsekas 1995).

Perhaps the greatest drawback of the Stochastic and Dynamic Programming approaches is

that they suffer from the curse of dimensionality. In other words, barring specialized mod-

els, the solution time of these problems increases exponentially with the size of the problem

(e.g. number of stages). Another method for incorporating uncertainty into optimization prob-

lems is known as Robust Optimization. For a review of robust optimization see the survey

by Bertsimas et al. (Bertsimas, Brown, and Caramanis 2011) and the book by Ben-Tal et al.

(Ben-Tal, Ghaoui, and Nemirovski 2009). Robust optimization provides a tractable framework

for incorporating uncertainty into the optimization problem. Robust Optimization does not

model uncertainty with a specific probability distribution, but instead models uncertainty with

uncertainty sets (polyhedra or ellipsoids). The main impact of robust optimization is two

fold: First, it allows the decision maker to include uncertainty information into the optimiza-

tion problem, whereas other methods may fail completely due to tractability issues. Secondly,

robust optimization provides a particular advantage for modeling in low data environments

(forecast is poor) by avoiding strong assumptions about the underlying probability distribution

for uncertain parameters.

Currently, robust optimization is a rapidly growing area of academic research both on the



theory and application fronts. Researchers are still trying to figure out the extent to which

this framework can be applied to model real world problems. Additionally, robust optimiza-

tion has a deep underlying connection to risk theory (Natarajan, Pachamanova, and Sim 2009;

Bertsimas and Brown 2009) and as a result provides a tractable framework for which to model

problems that have hitherto been attacked with traditional stochastic approaches. Thus, it is a

very exciting and potentially rewarding pursuit to push the envelope of the robust optimization

modeling framework to see how well one can model and capture complex random behavior (i.e.

in queueing systems or finance) in a tractable manner (i.e. in a linear or quadratic program)

that agrees qualitatively with probabilistic methods.

1.2 Thesis Overview and Contributions

This thesis is composed of three self-contained essays illustrating the applications of robust

optimization approaches. Chapters 2 and 3 both deal with queueing systems and Chapter 4

with inventory theory. The motivation for the research is two fold:

" To use the robust optimization modeling framework for performance analysis in queueing

systems. In particular, the goal is to compute bounds on performance measures for several

types of queueing systems using robust optimization in a way that translates to meaningful

bounds and insights for the underlying stochastic system.

" Understand the benefits and drawbacks of the policies and solutions to optimization prob-

lems with uncertainty based on the robust optimization approach as compared with tra-

dititional stochastic optimization, particularly in the context of inventory systems.

We next give a brief overview of each chapter and its specific contributions below:

Chapter 2 considers the question of performance analysis of queueing systems. In this chapter,
we propose a new performance analysis method, which is based on robust optimization. The

basic premise of our approach is as follows: rather than assuming that the stochastic primitives

of a queueing model satisfy certain probability laws, such as, for example, i.i.d. interarrival and

service times distributions, we assume that the underlying primitives are deterministic and sat-

isfy the implications of such probability laws. These implications take the form of simple linear



constraints, namely, those motivated by the Law of the Iterated Logarithm (LIL). Using this

approach we are able to obtain performance bounds on some key performance measures. Fur-

thermore, these performance bounds imply similar bounds in the underlying stochastic queueing

models.

We demonstrate our approach on two types of queueing systems: Tandem Single Class (TSC)

queueing network and the Multiclass Single Server queueing network. In both cases, using the

proposed robust optimization approach, we are able to obtain explicit upper bounds on some

steady-state performance measures. For example, for the case of TSC system we obtain a bound

of the form

C(1 - p)- In ln((1 - p)-')

on the expected steady-state sojourn time, where C is an explicit constant and p is the bot-

tleneck traffic intensity. This qualitatively agrees with the correct heavy traffic scaling of this

performance measure up to the ln ln((1 - p)- 1 ) correction factor.

Chapter 3 considers the performance analysis of the single class m-parallel server network

(GI/GI/m) with general, but independent interarrival and service times. In particular, we

apply the approach developed in Chapter 2 to address the question of computing waiting times

and queueing lengths for the GI/GI/m queueing system. Using this approach we are able to

obtain explicit bounds on waiting times and queueing lengths of the form

C(1 - p)-' In ln((1 - p)-')

that qualitatively agree with Kingman's bounds up to the the ln ln((1 - p)-4) correction factor.

Additionally, we analyze the waiting time of the GI/GI/m robust model in the Halfin-Whitt

regime and compare to how it performs to traditional stochastic analysis. In particular, we

explicitly construct and prove an upper and lower bound on the waiting time of the steady

state customer in the robust GI/GI/m system. These results indicate that as more servers are

added to the system, the steady state customer in the robust GI/GI/m system experiences a

decline (upper bound result) in the expected waiting time that is similar to the steady state

customer in the stochastic GI/GI/m system. However, as more and more servers are added to

the system, the stochastic steady state waiting time is driven to zero, while the robust steady



state waiting time remains strictly above zero.

Chapter 4 addresses the question of computing (s,S) policies in supply chain networks. In

particular, we propose methods to compute (s,S) policies in supply chain networks using robust

and stochastic optimization and compare their performance. Our algorithms handle general un-

certainty sets, arbitrary network topologies, and flexible cost functions including the presence of

fixed costs. The algorithms exhibit empirically practical running times. In a numerical study,
we contrast the performance of robust and stochastic (s,S) policies, and we find that the robust

policy is comparable to the average performance of the stochastic policy, but has a consider-

ably lower standard deviation across a variety of networks and realized demand distributions.

Additionally, we identify regimes when the robust policy exhibits particular strengths even in

average performance and tail behavior as compared with the stochastic policy.
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Chapter 2

Performance Analysis of Queueing

Networks via Robust Optimization

2.1 Introduction

Performance analysis of queueing networks is one of the most challenging areas of queueing

theory. The difficulty stems from the presence of network feedback, which introduces a

complicated multidimensional structure into the stochastic processes underlying the key

performance measures. Short of specialized cases, such as product form networks, which

typically rely on Poisson arrival/exponential service time distributional assumptions, the

problem is largely unresolved. Specifically, given the topological description of a queueing

network and given the description of the underlying stochastic primitives such as interar-

rival and service times distributions, we do not have good tools for computing exactly or

obtaining upper and lower bounds on key performance measures, such as, for example average

queue lengths and waiting times. Some of results which provide non-asymptotic bounds

on performance measures can be found in (Bertsimas, Paschalidis, and Tsitsiklis 1994),
(Kumar and Kumar 1994), (Kumar and Morrison 2004), (Jin, Ou, and Kumar 1997),
(Bertsimas, Gamarnik, and Tsitsiklis 1996), (Bertsimas and Nino-Mora 1999), all of which

require Markovian (Poisson arrival/exponential service time) distributional assumptions.

Moreover, some of these bounds become quite weak as traffic intensity (of some of the network



components) approach unity. For example, a bound of the form O((1 - p*) 2 ) is obtained in

(Bertsimas, Gamarnik, and Tsitsiklis 2001), where p* is the bottleneck (real or virtual, see the

reference) traffic intensity. The other references can lead to infinite upper bounds even in the

cases where stationary distribution exists. The approaches in these papers also do not extend to

the case of non-Markovian systems. As a consequence, most of the known performance analysis

results are of an asymptotic nature, which apply to queueing networks in various limiting

regimes, such as the heavy traffic regime (Harrison 1990),(Whitt 2002),(Chen and Yao 2001),

large deviations methods (Ganesh, O'Connell, and Wischik 2004),(Shwartz and Weiss 1995),
approximations by phase-type distributions (Kleinrock 1975),(Latouche and Ramaswami 1987).

In this thesis, we partially fill this gap by developing a new performance analysis approach

based on robust optimization methods. The theory of robust optimizaiton emerged recently

as a very successful and constructive approach for the analysis of certain stochastic model-

ing problems (Soyster 1973),(Ben-Tal and Nemirovski 1998), (Ben-Tal and Nemirovski 1999),
(Bertsimas and Sim 2004). The main premise of our approach in the queueing context is that,
rather than assuming probabilistic laws for the underlying stochastic primitives, such as, for

example, i.i.d. interarrival and service times, we consider a deterministic queueing model and

we will assume only the implications of these laws. Specifically we consider implications of the

Law of the Iterated Logarithm (LIL). The objective is to find laws which on the one hand hold

in the underlying stochastic queueing model and, on the other hand, lead to linear constraints

in the formulation of the robust optimization problem, and LIL accomplishes this. We illustrate

our approach using two queueing models, namely the Tandem Single Class (TSC) queueing

system operating under the First-In-First-Out (FIFO) scheduling policy, and the Multiclass

Single Server (MCSS) queueing system operating under an arbitrary work-conserving policy.

Motivated by the LIL, we consider constraints of the form E1<i<k Ui < A-'k + IVk InIn k,
for all k > 1. Here (Uk, k > 1) is any of the stochastic primitives of the underlying queueing

system, such as, for example, the sequence of interarrival times and A stands for the rate of

this stochastic primitive. Using these bounds, we derive explicit bounds on some performance

measures such as sojourn time in the TSC system, namely, the time it takes for a job to be

processed by all the servers, and the virtual workload (virtual waiting time) in the MCSS sys-

tem, namely, the time required to clear the current backlog in the absence of future arrivals.

In both models we derive upper bounds on the aforementioned performance measures for the



corresponding deterministic counterpart models and prove that similar bounds also hold for the

same performance measures in the underlying stochastic models. In both cases the bounds are

of the order 0(1'- In ln 1 'p), where p is the (bottleneck for the case of TSC model) traffic inten-

sity. This matches the correct 0(9.-) order short of ln In((1 - p)- 1) error. While the technical

derivation of these bounds is involved, the conceptual approach is very simple. An interesting

distinction of our approach from other robust optimization type results is that our results are

explicit, as opposed to numeric results one typically obtains from the formulating and solving a

robust optimization model. These explicit bounds however, come at a price of not caring much

for the constants corresponding to the leading coefficient. In order to keep things simple we

sometimes use very crude estimates for such constants.

Our approach bears similarity with some earlier works in the queueing literature. Specifi-

cally, the pioneering work of Cruz (Cruz 1991a), (Cruz 1991b) used a similar non-probabilistic

approach to performance analysis by deriving bounds based on placing deterministic constraints

on the flow of traffic called "burstiness constraints". The method could be applied to fairly gen-

eral network topologies and led to more research in the area. In (Gallager and Parekh 1993),
(Gallager and Parekh 1994), tighter performance bounds were obtained assuming a "Leaky

Bucket" rate admission control from (Turner 1986) and particular service disciplines. In addi-

tion, there is some similarity between the philosophy of our approach and the adversarial queue-

ing network approach (Andrews, Awerbuch, Fernandez, Kleinberg, Leighton, and Liu 1996),
(Borodin, Kleinberg, Raghavan, Sudan, and Williamson 2001), (Goel 1999), (Gamarnik 2003),
(Gamarnik 2000), which emerged in the last decade in the computer science literature and also

replaces the stochastic assumptions with adversarial deterministic ones. The deterministic con-

straints used in the aforementioned works are of the form of A(t) At + B where A(t) is the

number of external arrivals into the queueing system up to time t and A represents the ar-

rival rate. As it turns out, these types of assumptions are too restrictive from the probabilistic

point of view and do not lead to bounds on the underlying stochastic network: observe that

every renewal process A(t) arising from an i.i.d. sequence with positive variance violates this

assumption almost surely for every B for large enough t. As we demonstrate in this chapter,
the constraints motivated by the LIL, namely A(t) At + BVt InIn t, can indeed be served to

obtain performance bounds, which can be translated into the underlying stochastic network. In

fact, the key contribution of our approach is that the deterministic constraints we place on the



service and arrival processes are rich enough to lead to stochastic results. The results based

on "Leaky Buckets", bounded burstiness and adversarial queueing theory address very general

queueing networks. It would be an interesting research project to extend our results based on

robust optimization to these general network structures.

The rest of the chapter is structured as follows. In the following section we describe two

queueing models under the consideration, namely the tandem single class queueing network and

the single server multiclass queueing network, as well as their robust optimization counterpart

models. Our main results, namely the performance bounds in robust optimization type queueing

systems and their implications for stochastic queueing systems are stated in Section 3.3. The

proofs of our main results are in Sections 2.4 and 2.5. Some concluding thoughts and directions

for further research are outlined in Section 2.6. Several technical results necessary for proofs of

main theorems are delayed untill the Appendix section.

We close this section with some notational conventions. In stands for the logarithm with

natural base. The notation (x) I for a non-negative vector x E Rd means applying the square

root operator coordinate-wise: (x)i = (x,1 < i < d). AT denotes a transposition operator

applied to the matrix A.

2.2 Model description

We now describe the two queueing models analyzed in this chapter, both very well studied

models in the literature. We begin by describing these models in the stochastic setting, and

then we describe their deterministic robust optimization counterparts.

2.2.1 A tandem single class (TSC) queueing network. Stochastic

model

The model is a tandem of single servers S1,..., Sj processing a single stream of jobs arriving

from outside and requiring services at S1, ... , S in this order. The jobs arrive from outside

according to an i.i.d. renewal process. Let U1, U2 , U3 ,... denote i.i.d. interarrival times with a

common distribution function Fa(t) = P(U1 5 t), where U1 is the time at which the first job



arrives. The external arrival rate is defined to be A A 1/E[U1] and the variance of U1 is denoted

by o-2.

The jobs arriving externally join the buffer corresponding to server S1 where they are served

using First-In-First-Out (FIFO) scheduling policy. We assume that all buffers are of infinite

capacity. After service completion, jobs are routed to the buffer of server S2, where they are

also served using FIFO scheduling policy, then they are routed to servers S3, S4 , etc. After

service completion in server Sj the jobs depart from the network. Let V denote the service

time requirement for job k in server j. We assume that the sequence (V, k > 1) is i.i.d. for

each j, and is independent from all other random variables in the network. The distribution of

the service time in server j is F,,(t) = P(V' t), t > 0. The service rate in server S is defined

to be pg A 1/E[Vf], and we denote by pmin = miniy<jp pj the rate of the slowest server. 02
denotes the variance of V/7 for each j = 1,... , J. The traffic intensity in server Sj is defined to

be p3 = A/pyg, and the bottleneck traffic intensity is defined to be p* = maxj pj = A/pmin.

Denote by Wjk the waiting time experienced by job k in server j not including the service

time Vkj. Let Wk = EZ(Wk+V) be the sojourn time of the job k. Namely, this is time between

the arrival of job k into buffer 1 and service completion of the same job in buffer J. Denote by

Qj(t) the queue length in server j (the number of jobs in buffer j) at time t. We assume that

initially all queues are empty: Qj(0) = 0, 1 < j 5 J, although most of our results can either be

easily adopted to the case of non-zero queues at time zero, or apply to the steady-state measures

where the initializations of the queues is irrelevant. Let Ik denote the idle time of server j in

between servicing jobs k - 1 and k for k = 2,..., N. We define I = 0 Vj =1,...,J.

The model just described will be denoted by TSC(St) (Tandem Single Class Stochastic) for

short. It is known (Sigman 1990),(Dai 1995),(Dai and Meyn 1995),(Chen and Yao 2001) that

as long as p* < 1, and some additional mild conditions hold, such as finiteness of moments,
TSC(St) is stable and the stochastic processes underlying the performance measures such as

queue lengths, workloads, sojourn times are mixing. Namely, these processes are positive Harris

recurrent (Dai 1995),(Meyn and Tweedie 1993), and the transient performance measures con-

verge to the (unique) steady-state performance measures both in distributions and in moments.

Computing these performance measures is a different matter, however. We denote by Wj, Woo

the steady state versions of the random variables W,3, Wk. Thus provided that p* < 1 and some



additional technical assumptions hold, we have

lim E[Wn] = E[Woo]. (2.1)
n-+oo

We will assume that p* < 1 holds without explicitly stating it. Rather than describing the

assumptions required to make (3.1) true, we will simply assume when stating our results that

(3.1) holds as well.

2.2.2 A multiclass single server (MCSS) queueing system. Stochas-

tic model

We now describe our second queueing model. Consider a single server queueing system which

processes J classes of jobs. The jobs of class j = 1, 2,..., J arrive from outside according to

a renewal process with i.i.d. interarrival times U', k > 1 and distribution function Fa,j (t)

P(Uf < t). The arrival rate for class j jobs is Aj A 1/E[Ufl]. It is possible that some classes j
do not have an external arrival process, in which caseUk = o almost surely and Aj = 0. Let

o., be the variance of Uj. The sequences (Uk, k > 1) are also assumed to be independent for

different j. Let A = (A3) denote the J-vector of arrival rates. We let Amax = maxi<,<j Aj and

Amin = mini<<j Aj. We let A(t) = (Aj(t)) denote the vector of cumulative number of external

arrivals up to time t where Aj (t) = max{k: E1<i<k Uj < t}

The jobs corresponding to class j are stored in buffer By until served. As in the single class

case, we assume all buffers are of infinite capacity. The service time for the k-th job arriving

to buffer Bj is denoted by Vj and the sequence (Vkj, k > 1) is assumed to be i.i.d. with a

common distribution function F,,j(t) = P(Vj <; t). Additionally, these sequences are assumed

to be independent for all j and independent from the interarrival times sequences (Uk, k > 1).

The average service time for class j is my j E[V'] and the service rate is j A 1/E[Vlf]. o

denotes the variance of V1'. Let fm- = (my) denote the J-vector of average service times and let

p = (py) be the J-vector of service rates. Let M denote the diagonal matrix with j-th entry

equal to paj and let pma = maxi<ji ij.

We assume that the jobs in buffer By are served using FIFO rule, but prioritizing jobs

between different buffers By is done using some scheduling policy 9. The only assumption we



make about 0 is that it is a work-conserving policy. Namely, the server is working full time as

long as there is at least one job in one of the buffers Bj, 1 < j < J. The only performance

measure we will consider is the workload (defined below) for which it is well known that the

details of the scheduling policy are unimportant for us, as long as the policy is work-conserving.

The routing of jobs after service completions is determined using a routing matrix P, which

is an J by J 0, 1 matrix P = (P, ,1 < i, j < J). It is assumed that Ej Pi < 1 for each i.

(Namely, the sum is either 1 or 0). Upon service completion in buffer Bi, the job of class i is

routed to buffer j if Pj = 1. Otherwise, if Ej Pj = 0, the jobs of class i leave the network.

It is assumed that P" = 0 for some positive integer n. It is easy to see that this condition is

equivalent to saying that all jobs eventually leave the network.

It is known (Chen and Yao 2001) that the traffic equation Ai = Ai + EZ1  AiPji has a

unique solution A (A3) given simply as A = [I - PT]-1 A, where I is the J by J identity

matrix. Let Ama = maxj(As) (observe that A3 < A, for every j and hence Amax > Amax). Let

A(t) = (Aj(t)) denote the vector of number of arrivals by time t that will eventually route to

server j: Aj (t) = e (I + (pT)1 + (pT)2 +.. .)A(t) = ef[I - PT]-A(t) and ej denotes the j - th

unit vector.

The traffic intensity vector is defined to be p = M-1  = M-1[I - PT]- 1 A. The traffic

intensity of the entire server is p = eTp, where e is the J vector of ones. Let Qj(t) denote the

queue length in buffer j at time t, let Q(t) = (Qj(t)). We assume that Q(0) = 1. As for the case

of TSC model, our results can be extended to the case Q(0) > 0, but for the results regarding

steady-state behavior, the initialization of queues is irrelevant. Denote by Wk the waiting time

of the k-th job arriving into buffer j. We let Wt denote the workload at time t. Namely, Wt

is the time required to process all the jobs present in the system at time t, in the absence of

the future arrivals. Note that Wt is also the virtual waiting time at time t when the scheduling

policy is FIFO. Observe that if to marks the beginning of a busy period and ti belongs to the

same busy period (namely, the server was working continuously during the time interval [to, ti]),
then almost surely

A1 (ti) Aj(ti)

Wi = Vl+ ... + ( V| - (t1 -to). (2.2)
i=A1(to) i=Z J(to )



The model described above is denoted by MCSS(St) (Multiclass Single Server Stochastic) for

short. It is known (Dai 1995) that if p < 1, and some additional technical assumption on

interarrival and service time distributions hold then MCSS(St) is stable and enters the steady

state in the same sense as described for the tandem queueing network. While in this case

the steady-state distribution of many performance measures usually depends on the details of

work-conserving policy used, the steady-state distribution of the workload does not depend on

the policy, as we have discussed above. Let W, denote the workload in steady state, and

let B, and I. denote the steady-state duration of the busy and idle periods, respectively.

Additionally, denote by Io, B 1, I1, B2, I2,... the alternating sequence of the lengths of the busy

and idle periods of the MCSS(St) system, assuming that time zero initiates a busy period.

Under the same technical assumptions as above the following ergodic properties hold almost

surely:

lim = E[Wo], (2.3)
t-+0o t

lim Bi = E[Bo], (2.4)
n-+oo n

lim <i<n = E[I] (25)
n-+o n

lim l<iyn = E[B2]. (2.6)
n-+o n

We denote by n(t) the number of busy periods that have been initiated up to time t. Math-

ematically, we define n(t) to satisfy Zl<i n(t)-1(Bi + Ii) < t < Zl<i~n(t)(B + Ii). When

t E [Z_1i~n(t)l(Bi + Ii), ZEl g y_(t)1l(Bi+I) +Bn(t)], t falls on a busy period and using the def-

inition of n(t), we have W(t) < Bn(t). When t C _Z1 <i n(t)- 1(Bi+Ii)+Bn(t), Zl<i n(t)(Bi+I)],

t falls on idle period In(t) and hence W(t) = 0. We let r denote the beginning of the i-th busy

period. This implies

f0 W(s)ds _zE2 frinr+Bijt) W(s)ds Ziin(t) Bi
t t - _1 i f(t)(Bi + Ii)



If (2.3),(2.4),(2.5) and (2.6) hold, then we also obtain

E[B] E[B ]E[WOO] < W] < . (2.7)
-E[Bo] + E[Iw] - E[B W]

This bound will turn useful when we apply our results for robust optimization models to the

underlying stochastic model. As for the TSC case, we assume from now on p < 1. Rather than

listing the assumptions leading to ergodic properties (2.3),(2.4),(2.5) and (2.6) we assume when

stating our results, that the stochastic process Wt enters the steady-state as t -+ oo and that

the properties (2.3),(2.4),(2.5) and (2.6) holds almost surely.

2.2.3 Robust optimization type queueing systems

We now describe deterministic robust optimization type counterparts of the two stochastic

queueing models described in the previous subsections.

We begin with TSC model and describe the corresponding model which we denote by

TSC(RO) (Tandem Single Class Robust Optimization). The description of the network topol-

ogy is the same as for TSC(St). However, it is not assumed that U, Vj and, as a result

Q (t), Wki, Wk are random variables. Rather we assume that these quantities are arbitrary sub-

ject to certain linear constraints detailed below. Additionally, we assume that the system starts

empty Q(O) = 0 and only n jobs go through the system.

Specifically, consider a sequence of non-negative deterministic interarrival and service times

(Uk,1 < k <n),(Vkj,1 <k<n),1<j<J. Let

0(z) = - (2.8)
1, x < ee.

We assume that there exist A, I, and paj, F,,j > 0, 1 < j < J such that

SUk- A-1 (n - k) Fa(n - k), k = 0, 1,... ,n - 1, (2.9)
k+1 i<n

V - -i (n - k)| F,#(n - k), k = 0, 1,...,n - 1, j = 1, 2, ... , J. (2.10)
k+1<i<n



It is because we need to consider tail summation _k+1<i<n we assume that only n jobs going

through the system, though we will be able to apply our results in the stochastic setting where

infinite number of jobs pass through the system. Let F = max(Fa, r,,). Borrowing from the

robust optimization literature terminology (Bertsimas and Sim 2004), the parameters F, F,,, r

are called budgets of uncertainty. Note, that the values Uk, V, k > 1 uniquely define the

corresponding performance measures Qj(t), Wi, Wk, k = 1,... , n. There is no notion of steady

state quantities Qj(oo), Woo for the model TSC(RO). The motivation for constraints (2.9) and

(2.10) comes from the Law of the Iterated Logarithm, and we discuss the connection in a separate

subsection.

We denote the robust optimization counterpart of the MCSS(St) model by MCSS(RO). In

this case it turns out to be convenient to consider infinite sequence of jobs. Thus consider

infinite sequences of deterministic non-negative values (Uj, k > 1), (Vj, k > 1), 1 < j 5 J. It is

assumed that values A., jj, Fa,j, ,,j 0, 1 j J exist such that

IE Uk - Afi k| < r,J#(k, k = 1, 2, ...,7 j = 1, 2,. .. J, (2.11)
1<i<k

V - tip1 k| Fs,,o(k), k = 1, 2, ... , j = 1,2,..., J. (2.12)
l<i<k

For convenience we assume that at time zero the system begins with exactly one job in every

class j = 1, ... , J: Qj(0) = 1. Then the first after time zero external arrival into buffer j occurs

at time Uji. As before, we let F = max(Fa,j, L.,i).

For technical reasons, we also assume that F in TSC(RO), MCSS(RO) constraints satisfies

AF > e2e and min Ar > e2e, respectively. (2.13)
3

2.2.4 The Law of the Iterated Logarithm

One of the cornerstones of the probability theory is the Law of the Iterated Logarithm (LIL)

(Chung 2001), which states that given a i.i.d. sequence of random variables X1 , ... , X, ... with



zero mean and finite variance o-, the following holds almost surely,

lim sup - 1, lim inf X -1.

n->oo oV2nlnlnn n-+oo o-v2nln ln n

The LIL extends immediately to non-zero mean i.i.d. sequences by subtracting nE[Xi] from

E <k<n Xk. Furthermore, LIL implies (in the case of zero-mean variables) that

]LIL A sup | X < 00, (2.14)
n>1 o-24(n)

where 4 is defined in (3.2). Note that 1 1UL is a random variable. Thus when we consider stochas-

tic queueing models such as TSC(St) or MCSS(St), the constraints (2.9),(2.10),(2.11),(2.12)

hold with probability one, with F = V2FLILo-, where FLIL is defined in (2.14) for the cor-

responding random sequence. Specifically, let Va = Fa,LIL = LIL and u = o-a, when

Xk = Un-k - A-1, 0 < k < n - 1 and Uk is the sequence of interarrival times in the TSC(St)

model. Similarly define ,J = Fs,J,LIL when Xk = Vk - gi,0 < k < n - 1,1 < j 5 J.

Observe, that for F, Fs,j thus defined, the constraints (2.9),(2.10) hold for an infinite sequences

of jobs (that is jobs which would have indices -1, -2,...), even though we need it only for the

first n jobs. For the MCSS(St) model define Fj = ?a,j,LIL, Fs,j = Fs,j,LIL corresponding to the

sequences U - A' , Vj - A3l, k > 1, respectively. We obtain

Proposition 2.1 Constraints (2.9),(2.10),(2.11),(2.12) hold with probability one for Fa -

v(Fa,LILa, FS,j = VFs,j,LILUs,j, Fa,j = VFa,j,LILUa,j, and F,j = v2Fsj,LILTsj, respectively,

where F.,.,LIL is defined in (2.14) for the corresponding sequence.

As a conclusion, for every property derivable on the basis of these constraints in our de-

terministic robust optimization queueing network models, such as, for example, bounds on the

sojourn time of the n-th job in TSC, the same property applies with probability one for the

underlying stochastic network. This observation underlies the main idea of the work.



2.3 Main results

In this section we state our main results on the performance bounds for robust optimization

type queueing networks TSC(RO) and MCSS(RO), and the implications of our results for their

stochastic counterparts TSC(St) and MCSS(St). We begin with TSC(RO) with the goal of

obtaining a bound on the sojourn time.

Theorem 2.2 The sojourn time of the n-th job in the TSC(RO) queueing system with con-

straints (2.9),(2.10) satisfies

Wn < In In + JA- 1 . (2.15)
1- ip* _p*

Observe that the bound on the sojourn time is explicit. It is expressed directly in terms of the

primitives of the queueing system such as arrival and service rates. Observe also that the upper

bound is independent from n. One can think of this bound as a "steady-state" bound on the

sojourn time in the robust optimization model of the TSC system. Additionally, the constant F2

is related to the "variances" of interarrival and service times viz a vi the LIL (2.14). It is known

that in the stochastic GI/GI/1 queueing system the expected waiting time in steady state is

approximately (oU +o2)/(2A(1 -p)), when the system is in heavy traffic, namely p -+ 1. Namely,

the expected waiting time depends linearly on the variances of interarrival and service time. Our

bound (2.15) is thus consistent with this type of dependence. On the other hand, unfortunately,

our bound depends quadratically on the number of servers J, whereas the correct dependence

is known to be linear, at least in some special cases (Reiman 1984),(Gamarnik and Zeevi 2006).

The bound above does not have a correct O((1 - p*)-) scaling, which is known to be correct

from the heavy-traffic theory perspective (Reiman 1984),(Gamarnik and Zeevi 2006). However,

the correction factor is a very slowly growing function In ln. The upshot is that we can use this

bound to obtain a bound on W,-, and Wo. in the underlying stochastic system. This is what we

do next.

Corollary 2.3 For every n > 1 the sojourn time of the n-th job in the TSC(St) queueing



network satisfies

E[Wn] 5 E 7 jFA in In I j + JA . (2.16)
11 - p* 1 - p*1

where F = max,(vuo-aFa,LIL, V2o-s,jFsj,LL, e 2eA-1). If in addition the assumption (3.1) holds

then

E[Woo] < E7j2A In In + JA- 1. (2.17)
11 - p* 1 - p*1

Proof. We first assume Theorem 2.2 is established. Note, in the context of the stochas-

tic system, both Wn and F in Theorem 2.2 are random variables. We take F =

max(v/o-ara,LIL, ov-s,jrs,j,LIL, e 2e /-) to satisfy (3.6), where F.,.,LIL is defined in (2.14) for

the corresponding sequence. Applying Proposition 2.1 we have that (2.15) holds with proba-

bility one for the underlying stochastic network. The bound (2.16) now follows from taking

expectations of both sides of (2.15). The bound (2.17) follows from applying (3.1) to (2.16). 0

We now turn our attention to the MCSS queueing model. Our approach for deriving a bound

on the workload is based on first obtaining an upper bound on the duration of the busy period.

Thus, we first give a bound on the duration of the busy period and then turn to the workload.

Recall our assumption Q(O) = 1, though our results can readily be extended to the general case

of Q(O) > 0. Thus, time t = 0 marks the beginning of a busy period.

Theorem 2.4 Given a MCSS(RO) queueing system with constraints (2.11),(2.12), let B be the

duration of the busy period initiated at time 0. Then

5(4J + 3)2 A3 p 4  2(4J + 3)X2nax 2

max mmx
B < (1-p) ln In , (2.18)B- (1i-p)2  i-_p

2(4J + 3)23 mxr4 (4J+ 3) 2a p2
and sup W(t) < nnax lnin max + F 31ax p3. (2.19)

O<t<B 1 - P 1 - p

While the bound (2.19) corresponds to the maximum workload during a given busy period,
the actual value of the bound does not depend on the busy period length explicitly. As it will



become apparent from the proof, we use the same technique for obtaining a bound simultane-

ously on the duration of the busy period and maximum workload during the busy period. Let

us now discuss the implications of these bounds for the underlying stochastic model MCSS(St).

Corollary 2.5 Given a MCSS(St) model, suppose the relations (2.3),(2.4),(2.5) and (2.6) hold.

Then

5(4J+ 3)2 3 r4 2(4J + 3)A2 r2
E{Bo] _E (I 2 a In ln max' (2.20)

(1- p)2 1 - p

25(4J+ 3)
4A'naxmLmaxF 8  2(4J+3)X222]

E[Wo] <E P), (lnn 2 a (2.21)
(1-p)i-p

where F = maxj (2o-/,ca,, ],j,L1L, e 2,A- 1

Unfortunately, in this case the scaling of our bounds as p -+ 1 deviates significantly from

the correct behavior. From the heavy traffic theory (Dai and Kurtz 1995), the correct behavior

for the steady-state workload should be O((1 - p)- 1). As for the steady-state busy period,
the theory of M/G/1 queueing system (Kleinrock 1975) suggests the behavior O((1 - p)-1)

as opposed to O((1 - p)-21n In(1 - p)-) which we obtain. On the positive side, however, we

managed to obtain explicit bounds on the performance measures which are expressed directly in

terms of the stochastic primitives of the model, which we do not believe was possible using prior

methods. We leave it as an interesting open problem to derive the performance bounds based

on the robust optimization technique, which lead to the correct scaling behavior as p - 1.

While the proofs of our main results are technically involved, conceptually they are not

complicated. Before we turn to formal proofs, in order to help the reader, we outline below

informally some of the key proof steps for our results.

For the TSC queueing network we first replace the constraints (2.9),(2.10) with more general

constraints, see (2.22) and (2.23) below. Our results for the TSC network rely mostly on the

Lindley's type recursion which in a single server queueing system recursively represents in the

waiting time of the n-th job in terms of the interarrival and service times of the first n jobs. It

is classical result of the queueing theory that this waiting time can be thought of as maximum

of a random walk, with steps equalling in distribution to the difference between the interarrival



and service times. We derive a similar relation in the form of a bound on the sojourn time of the

n-th job in the TSC network. This bound is given in Theorem 2.6. Then we view this bound as

an optimization problem and obtain a bound on the objective value by proving the concavity

of the objective function and substituting explicit bounds from constraints (2.9),(2.10).

Our proofs for the MCSS queueing system rely on the relation (2.2). Namely, we take

advantage of the fact that the workload is depleted with the unit rate during the busy period.

Then we take advantage of the constraints (2.11),(2.12) to show that in the MCSS(RO) system

the workload at time t during the busy period can be upper bounded by an expression of the form

-at + bVt ln lnt + c with strictly positive a, b. It is then not hard to obtain an explicit estimated

to such that this expression is negative for t > to. Since this expression is an upper bound on a

non-negative quantity (workload), then the duration of the busy period cannot be larger than

to. This leads to an upper bound on the duration of the busy period in the MCSS(RO) system.

In order to obtain a bound on the workload, we again take advantage of (2.2) and further

obtain explicit upper bounds on the terms involving the sums of service times. We show that

the workload at time t is at most -at + bv/T In-In t + c. We then obtain an upper bound on the

workload during the busy period by obtaining explicit bounds on maxt>o -at + bvt ln ln t + c.

Our derivation of the bounds for the stochastic model MCSS(St) relies on the ergodic rep-

resentation (2.3). We consider a modified system in which each busy period is initiated with

simultaneous arrival of one job into every buffer j. This leads to a alternating renewal process

with alternating i.i.d. busy and idle periods. We then obtain a bound on the steady-state

workload in terms of the second moment of the busy period in the modified queueing system,
using the renewal theory type arguments. It is this necessity to look at the second moment of

the busy period which leads to a conservative scaling o((1 -p)- 4 (ln ln(1 _p)-1)2) in our bound

(2.21) on the steady-state workload.

2.4 Tandem single class queueing system: proof of The-

orem 2.2

In order to prove Theorem 2.2 we first generalize constraints (2.9),(2.10) and obtain a method

for bounding W, under more general uncertainty assumptions.



2.4.1 General upper bound on the sojourn times

Given a sequence of non-negative real values Vin(k), max (k) 1 < j < J, 1 <k< n,

Fmin(k), J'max(k) 1 < k < n, we consider the set of all sequences of service times and inter-

arrival times (V), (U) j = 1,..., J, i = 1, ... ,n satisfying for all k = 1, ... n

n

mina(k) < E Vj < imaxk(k)
i=k

Fmin(k) < 1 Ui <; Fmax(k),
i=k

(2.22)

(2.23)

V3, U ;> 0.i' -

In the next theorem we obtain a bound on the sojourn time of the n-th job in TSC(RO)

system in terms of values Fin(k), iax(k), Fmin(k), Fmax(k).

Theorem 2.6 Suppose the relations (2.22) and (2.23) hold. Then

J-1

W < max >I :l(F- 7ax(k) - Fin(k 3 +1 + 1)) + Finax(kj)
n>k>...>ki>a1

- Fmin(ki + 1)

We now show how Theorem 2.6 implies our main result Theorem 2.2.

Proof of Theorem 2.2. The proof consists of two steps: the first step uses Theorem 2.6 to bound

Wn with uncertainty sets (2.9),(2.10). The second step involves solving some associated maxi-

mization problem.

We set Fmin(k) = A- 1(n + 1 - k) - Fa4(n + 1 - k), Imax(k) = A- 1 (n + 1 - k) +

Fa4(n + 1 - k),7jn(k) = p.j(n + 1 - k) -F 8 ,54(n+1-k), a(k) = p'i-(n + 1 - k) +

(2.24)



17,j4(n + 1 - k), where # is defined by (3.2). From Theorem 2.6 we obtain:

J-1

W,, < max Y (p-1(n + 1 - k) + ,j#(n + 1 - k))
n>kj>...>ki>1

j=1

J-1

- (pit;(n + 1 - kj+1 - 1) - T',s#(n + 1 - kj+1 - 1))
j=1

+ (pil(n +1 - k) + sJ#(n +1 - k)) - (A\- 1(n + 1 - ki - 1) - Fab(n + 1 - ki - 1))

Since n > kj+1 kj Vj, we can replace p.( by p.z-1 = max(-,' ... , p5) < A- and

preserve inequality. Similarly, we can replace F's,1, Fs,2 , -.. , s,J, IFa by F. We obtain:

max
nkj>...>k1>1

+ (pt-1(n + 1 - kg) + F#(n + 1 - ks)) - (A(n - k) - F#(n - ki))

k max (n - kl) + 2J4(n + 1 - ki)
n~ki>1

+ Jy-; - A'(n - ki) where we used k, < k2 < ... < kj to combine F terms

= max (n + 1 - k1)(pL- - A-') + 2Jo(n + 1 - ki) + (J - 1)I + A
n>ki>1

< max (n + 1 - k1)(p- - A') + 2JF#(n + 1 - ki) + JA'
n>ki>1

since A-1 > Lmi

We let x = n + 1 - k1 . Since 1 < k, < n we have that 1 < z < n and obtain:

Wn < max x(p- - A-') + 2JF#(x) + JA-1

< max x(p-1 - A-') + 2JF#(x) + JA-1 (2.25)
X>1 a=n

Putting a = A-' - p-1n 7b = JJ',c = J.)J1 , and using the assumption (3.6), we have b/a=

AJF/(1 - p*) > e2 e, namely, the condition (A.1) is satisfied.

Appendix we obtain

7A J2F2

W, < ln In
-

1 p*

Applying Proposition A.3 from

AJF
1- + JA~ 1.
1- p*

Wn <
J-1

y [/C1(kj+1+1I - kj) + F(#(n + 1 - ky) + 4(n - kj+1))



This completes the proof of the theorem.

2.4.2 Proof of Theorem 2.6

Job 1 enters the system first, followed by jobs 2,3, ... , n. Let Uj be the time between the arrival

of job i and job i - I into server j for i = 2, ... , n and j = 1, ... , J. Specifically, Ui' = U, and

we define Uf = V/7-1 for j = 2,... , J. The following relations are well known in the queueing

theory (Kleinrock 1975).

Wil = max(Wif_1+ V/_1 - UY ,0)

U4 = V + I-
i-1

W7 = max max ( / j+1),o}
1<k<i- l

~ 1 =k

Wi_1 = WK - II - (V/_1 - UD) V i = 2, ... , n, j = 1,..., J.

(2.26)

(2.27)

(2.28)

(2.29)

We now prove some more detailed results regarding the dynamics of our queueing system.

Corollary 1. The following relations hold for k = 2,..., n - 1:

n n

S U2= V ) =-W
i=k+1 i=k+1

Proof. The first equality follows from (2.27).

obtain

E (V 1+ I'i)
i=k+1

n

-Wk 1 + U +V -V.
i=k+1

To prove the second equality we use (2.29) to

n

E (W -
i=k+1

and the result follows.

Lemma 2.7

max
n>kj.k:>1 2-a

~~ ~ - ~ i=k1

k 3

1 + V2

i=k 2

nvJ 1 ± JW
i=kj

n

i=k1+1

(2.30)
kj

i=k j-_1



Proof. We prove Lemma 2.7 by induction. We let W/'s = Wij + V denote the sojourn time of

customer i in server j.

Case J = 1: We first define _+ = 0 for all j. Using (2.28) and V3 > 0 we have for any

n-1

= max ( max E (V - ul+),0) +Vn
\n-1>k1 >1~~T~ i=k

= max (max S V
\n>k

1>1
- (

i=k1+1

n

= max -

n>ki>1 \~k i=ki+1 Uil) and this completes case J = 1.

Case J > 1: Note that Wn = Wn, + (Wn2,s + ... + W{'S) and denotes the sojourn time of job

n in J-server system. We suppose that the result holds for a J - 1 tandem system and proceed

by induction:

k2

n>kj>...>1>1 ik

k32

i=k2 i=k j-1 i=kj

k2

= max ( ( Vi-~n>k j >... >k1>1 \ I

k2

max max V -
n>kj>...>k 2>1 1 :k2 >k 1 >1 \

_ _ - iki

U|) -
i=k 2 +1

k2

L U|) -

i=ki+1

k3v
UI + V2 +

i=k 2n
i=k 2 +1

...±J- S E i±VI
i=kj-1

= max W 'S
n>kj>...>k2>1 2

i=kj

n h3

- S U5+V2+...+
i=k 2 +1 i=k 2

n

BJ-*+ VW
i=k ji=kj-1

the base case J = 1 is used

= max W ,s
n>k j >...> k2>1 \ k

n

- E Ui)
i=k 2 +1

k 3

+ Vk2  + ... +

i=k2

ki
i=kj_1

n

V- +
i=kj

kj 1

+ L
i=k j-_1

%J-i +WV
i=k j

k3

UI +(1:V2+

i=k2

ICJ n

> J-1J_



= fkmax (Wl's -

n>k2> ... >k j>1 (
U2)

i=k 2 +1

k3  kj

+Evil+...+
i=k 2 i=kj -1 i=kj

we used Corollary 1 and WlS =Wl + V 1
kc2 k2 k

k3

= W + max V +
n>k j>...>k-2>1 i=k2

= l1, +(W,2, +--. .. +Wn)

n

K +-i +
i=k j

n

i=k 2 +1

by inductive assumption on J - 1 server system

and the proof follows from definition of sojourn time W,.

Proof of Theorem 2.6. The result follows immediately from Lemma 2.7.

2.5 Multiclass single server

main results

2.5.1 Proof of Theorem 2.4

Lemma 2.8 For every t satisfying

queueing system: proofs of

max( +3A7'AmaF 2 ), (2.31)

the following holds: Aj(t) tAj + 3Aj2F24(tA).

Proof. Assume first Aj(t) < ee. Then applying (2.11) corresponding to the case Aj(t) < ee, we

obtain Aj(t)A - -, < t, namely Aj(t) < Ajt + Ajra,j < Ajt + Aj]. Since Aj,#(tAj) > 1

from (3.6) and (3.2), the desired result is obtained. For the rest of the proof assume Aj(t) > ee.

Applying (2.11), we obtain Aj(t)A-' - Fa,j /A,(t) In In A,(t) < t. Which gives

Aj (t) - tA,

V/A, (t) In ln A,(t)

Define by by: bj = tAh + 3A,1r 2 ltA In In tA,. Observe that:

< Ajaj < Air. (2.32)



by - tA3  3AF 2 tAj In in tA3

by ln in by (tA + 3AjI72 tAy In in tAd) In ln(tAj + 3A F 2 tAy in lnjtA))
3 3

3IFf~ n In tA;j

(tA ± 3A 2  2 ) In ln(tAy + 3AF 2  t

since tAj > In In tAj for tAj > e' from (2.31)

3A F2  tA In intAj

((tAi)(1 + 3A?7 2 )lnin(tAj)(1 +3Ap2))2

3AJF 2 tly in intA,5
> ( A 3 2)1n"nt )2 since tA, > 1+ 3A217 2 from (2.31)

((t,\)(1 + 3A ?F2) In ln(tAj)2)

> in intAj since 2In ln tAj > In ln(tAj) 2 for tAj > e' and Ar > 1
(4AjF 2)(2 In In tAj)

> AF by simplifying above expression.

Since is an increasing function for x > ee and from (3.24), we have that bj > Aj(t) and

the result is obtained.

We now obtain an upper bound on the cumulative arrival processes A, (t), 1 < j 5 J.

Lemma 2.9 For every t satisfying (2.31), the following holds

(Aj (t)) _< ((2 + 6axF7i(

Proof. Consider first the case Aj(t) < ee. From (3.2), we have that #(Aj(t)) = 1 and applying

(2.31), the lemma follows. Now we consider the case Aj(t) > e'. Recall that Aj(t) = eT[I -

PT]lA(t). Applying Lemma 2.8

[ rL2q5(tA1)

Aj(t) < e[I - pT]-1 At + ef[I - pT]-1 '

3A2p2#(tAj)



< ef[I -PT]-IAt + 3A2 2 eT[Inax _ pr-(ifo

= At(1 + 3A~nax2 2 ), applying the definition of ly.

Applying this bound we also obtain

In In Aj (t) < In In(lyjt(1 + 3AMnax27)

< in ln(l At)2

= In In Ajt + In 2

< 2ln In Ajt,

using assumption (2.31)

using Ajt > Ajt > e' from (2.31).

Combining the previous bounds with definition of #(x), the lemma follows.

Lemma 2.10 For every t satisfying (2.31), we have: i-nTA(t) - t < (p - 1)t + 3Amaxp2#(Amaxt).

Proof. Applying definition of A,(t), we have

i A(t) - t = m[I - PT]-A(t) - t

< mT[I - pT]-1 (At + 3AmaxF24(Amaxt)A) - t

= E myAjt + 3AmaxF 2#O(Amaxt) E myly - t

from Lemma 2.8

applying the definition of 15

= (p - 1)t + 3AmaxF 24(Amaxt)p

and the lemma follows from applying the condition p < 1 to the second term.

We now obtain an upper bound in the duration of the busy period. Recall the identity (2.2).

Since the busy period begins at time zero its duration is upper bounded by the first time t such

that

A1(t)

i=1

Aj(t)

.+ V - t < 0. (2.33)

applying (2.31) and x > #(x) for x > e6



Consider any t satisfying the lower bound (2.31). We have

Ai(t) Aj (t)

J J

( p§ Aj(t) +I r,#(Aj(t)) - t applying (2.11),(2.12)
j=1 j=1

J
<~~ ~ f6-TAt t rA 2  2 ))210(A-t

- t + ((2 + 6max3 t) applying Lemma 2.9
j=1

J

< t(p - 1) + 3AmaxF 2q(Amaxt) + Z F(2 + 6A2a 2 )4(Ajt) applying Lemma 2.10
j=1

5 t(p - 1) + (4J + 3)ImaxF 2 4(Imaxt),

where we have used a crude estimate 2 + 6A axr 2 < 16A naxJ2, justified by (3.6). We now apply
Lemma A.2 with x = Imaxt, a = ax(1 - p), b = (4J + 3)Zmax' 2 /2 and c = 0. The condition

(A.1) is implied by assumption (3.6), and the second condition of Lemma A.2 is satisfied since

c = 0. We obtain that (2.33) holds for all t satisfying (2.31) and

18(4J + 3) 2A2naxF 4  3(4J + 3)XmaxF 2

t > - -' -In In4AmaxA 2 (1 - p)2 2ln1n(1 - P)- max ax( -p

5(4J + 3) 2 Ilnax7p4  2(4J + 3)X2ax2
> 2(4 +InInm .

- (I - p) 2  _ P

Observe using (3.6) that the right-hand side of the last expression is larger than the right-hand

side of (2.31). Combining two cases we obtain (2.18).

We now turn to (2.19). First suppose t does not satisfy (2.31). Denote the right-hand side

of (2.31) by C. That is t < C. Observe that W(t) 5 (C - t) + W(C) 5 C + W(C) as the

workload at time C corresponds in addition to arrivals during [t, C]. So now we focus on the

case when t satisfies (2.31). We use Proposition A.3 from Appendix and obtain

7(4J + 3)2ax r4 (4] + 3)AmaxF 2

sup W(t) < - a In In (
C<t<B 4ax - p) 2ax1



2(4J + 3) 2A3a n4 (4J + 3)A I 2

_ max
i -p i-p

From (3.6), we have F > A-'. We conclude that

2(4J + 3) 2 3ax p 4  (4J + 3)2 ax 2

sup W(t) < ' In In "' E+32n r3.
o<t<B - p -ap

This completes the proof of the theorem.

2.5.2 Proof of Corollary 2.5

First we establish bound (2.20). Let t = 0 mark the beginning of a busy period with (random)

length B, in steady state. This means that there is an arrival into one of the classes jo at time

0. Consider a modified system where the first arrivals into classes j # jo, A, > 0 after time 0

are artificially pushed down to exactly time 0. Namely, now at time zero there is an arrival into

every class j with A3 > 0. The subsequent arrivals into these classes are also pushed earlier by

the same amount, thus creating an i.i.d. renewal process initiated at time 0. Let B be the busy

period initiated in the modified system at time 0. It is easy to see that almost surely B > Bo.

However, now that we have arrivals in every class at time zero, applying Proposition 2.1 and

our result for the robust optimization counterpart queueing system, namely applying part (2.18)

of Theorem 2.4, we obtain the required bound by taking the expected values of both sides of

(2.18). This establishes part (2.20).

In order to prove (2.21), we use a bound (2.7). Using our earlier argument for the proof of

(2.20) but applying it to the second moment of B we obtain

[25(4J+ 3) 4A6 F8  2(4J + 3)A2 2

E[B] < E[E2] (5 E ( 4"' In "'" .

On the other hand, we trivially have have E[Bo] ;> miniyj im3 = 1/max, since every busy

period involves at least one service completion. The result then follows.



2.6 Conclusion

Using ideas from the robust optimization theory we have developed a new method for conducting

performance analysis of queueing networks. The essence of our approach is replacing stochastic

primitives of the underlying queueing system with deterministic quantities which satisfy the

implications of some probability laws. These implications take the form of linear constraints

and for the case of two queueing systems, namely Tandem Single Class queueing networks and

Multiclass Single Server queueing system, we have managed to derive explicit upper bounds

on some performance measures such as sojourn times and workloads. Then we showed that

the bounds implied by the Law of the Iterated Logarithm are applicable for the underlying

stochastic queueing system leading to explicit and non-asymptotic performance bounds on the

same performance measures.

We have just scratched the surface of possibilities in this work and we certainly expect that

our approach can be strengthened and extended in multiple directions, some of which we outline

below. First we expect that our approach extends to even more general models, such as, for

example multiclass queueing networks or more general processing networks (Harrison 2000). The

performance bounds can be obtained perhaps again by introducing linear constraints implied

by probability laws and using some sort of a Lyapunov function for obtaining bounds in the

resulting robust optimization type queueing model. Another important direction is identifying

new probability laws which lead to tighter constraints than the ones implied by the LIL. Ideally,
one would like to be able to obtain bounds which faithfully represent the scaling behavior of the

performance measures of interest in the heavy traffic regime as the (bottleneck) traffic intensity p

converges to the unity. Further, it would be interesting to obtain performance bounds on the tail

probability of the performance measure of interest, perhaps by constructing constraints implied

by bounds on the tail probabilities of the underlying stochastic processes. For example, perhaps

one can obtain large deviations type bounds by considering the linear constraints implied by

the large deviations bounds on the underlying stochastic processes. Deeper connection between

the results of this chapter and the results in the adversarial queueing theory and the related

queueing literature is worth investigating as well.

Finally, we expect that the philosophy of replacing the probability model with implications

of the probability model will prove useful in non-queueing contexts as well, whenever one has to



deal with the issues of stochastic analysis of complicated functionals of stochastic primitives.



Chapter 3

Robust Optimization Analysis of the

GI/GI/m Queue

3.1 Introduction

Parallel server queueing systems model a variety of important phenomena in the real world.

Examples of applications include hospitals and call centers. As such, they have received signifi-

cant academic interest starting with the foundational work of Erlang on the M/M/m queueing

model. The central questions of interest in this area are those precisely of performance analysis

- computing probability distributions and bounds on key performance measures such as waiting

times, queue lengths, and busy period lengths.

An interesting feature of parallel server systems is its ability to operate in a variety of regimes

that balance between efficiency and quality of offered service. In their seminal paper, Halfin and

Whitt (Halfin and Whitt 1981) formally introduced a new unconventional heavy traffic regime

(Halfin-Whitt regime) for queueing models for M/M/m and G/M/m models. In particular, in

the Halfin-Whitt regime, service rate remains constant, but the number of servers m and arrival

rate A increase to infinity simulataneously to make the traffic intensity p approach 1, see Section

3.4 for details. The special aspect of this regime is that the steady state probability of delay has

a nontrivial limit if and only if it is in the Halfin-Whitt Regime. Additionally, it is known that

in the Halfin-Whitt Regime the steady-state queue length and waiting time scale respectively



as O(v\/m) and O( ). This is another attractive feature of the regime since it balances the

system utilization and quality of service, and for this reason, the systems are also referred to

as Quality- and Efficiency-Driven (QED). Erlang (Erlang 1948) was the first to consider the

QED regime, but the work by Halfin and Whitt brought a great deal of renewed interest in the

area. Additionally, queueing models in the QED regime have found applications including mod-

eling large-scale call and customer contact centers in (Aksin, Armony, and Mehrotra 2007) and

(Gans, Koole, and Mandelbaum 2003). Most of the aforementioned results assume exponential

service times, which significantly simplifies the analysis as one does not need to keep track of

residual service times.

In this chapter, we utilize a performance analysis approach proposed in Chapter 2 to con-

duct a performance analysis of GI/GI/m queueing systems. This approach uses ideas from

robust optimization in an attempt to build a tractable optimization framework for analyzing

queueing systems with general service and interarrival time distributions. The main premise of

our approach in the queueing context is that, rather than assuming probabilistic laws for the

underlying stochastic primitives, such as, for example, i.i.d. interarrival and service times, we

consider a deterministic queueing model and we will assume only the implications of these laws.

In summary, the contributions of this chapter are as follows:

o We illustrate our performance analysis approach based on robust optimization to address

the question of computing waiting times and queueing lengths for the GI/GI/m queueing

system. Using this approach we are able to obtain explicit bounds on waiting times and

queueing lengths of the form

C(1 - p)- 1 In ln((1 - p)-')

that qualitatively agree with stochastic approaches such as the bounds in (Kingman 1970)

up to the the ln ln((1 - p)- 1) correction factor. One can also use this optimization frame-

work to more precisely numerically compute the waiting time and queueing length bounds

for an arbitrary number of jobs that are scheduled to arrive to the system by solving an

associated linear program. The advantage of our approach is that the bounds obtained

for the robust (deterministic) problem directly translate to bounds on the steady state

performance measures in the underlying stochastic system.



* We analyze the waiting time of the GI/GI/m robust analogue in the Halfin-Whitt regime

and compare our analysis with bounds computed from traditional stochastic analysis. In

particular, we explicitly construct an upper and lower bound on the maximum waiting

time of customers in the robust GI/GI/m system. These results indicate that as more

servers are added to the system, customers in the robust GI/GI/m system experience a

decline (upper bound result) in the waiting time that is similar to the steady state waiting

time in the stochastic GI/GI/m system. However, as more and more servers are added

to the system, we show that the waiting time in the robust system can remain strictly

above zero (lower bound result), while the stochastic steady state waiting time is known

to be driven to zero.

The rest of this chapter is organized as follows: Section 3.2 describes the stochastic GI/GI/m

model and its robust counterpart. In Section 3.3, we state our main results, namely the perfor-

mance bounds in robust optimization type queueing systems and their implications for stochas-

tic queueing systems. Section 3.4 presents the analysis of the waiting time in the Halfin-Whitt

regime. Section 3.5 contains the proofs of the main results. Several technical results necessary

for proofs of main theorems are delayed until the Appendix section.

3.2 GI/G/rn model description

3.2.1 Stochastic model

The model is a system of m parallel identical single servers a,, ... ,o processing a single stream

of jobs arriving from the outside. We assume a total of N +1 jobs arrive from outside according

to an i.i.d. renewal process. Let UN, UN-, .. , U2, U1 denote i.i.d. interarrival times with a

common distribution function Fa(t) = P(U < t), where Uk denotes the time between arrival of

job k - 1 and k. For clarity of exposition, we label the jobs in reverse order so that jobs arrive

in the order N, N - 1, N - 2,... , 2,1,0, and job N is the first job to arrive. The arrival rate is

defined to be A A 1/E[U1 ] and the variance of Uk is denoted by o.

The jobs arriving externally join the main buffer and are served using the First-In-First-Out

(FIFO) scheduling policy by the first available server. Upon completion of service in any server



1,... , m, jobs exit the system. Let VN, VN-1,... , V2, V1, V denote i.i.d. service times of jobs

N,N - 1,... ,1,0 with a common distribution function F,(t) = P(V < t). Additionally, we

assume that the sequence (Vk, 0 < k < N) is independent from all other random variables in the

network. The servers have a common rate of service defined to be p A 1/E[V] and the variance

of V is denoted by o2 for k = N,..., 0. We denote by p = - the traffic intensity.

We denote by Wk the waiting time experienced by job k not including its service time V.

Denote by Q(t) the queue length in the system (number of jobs waiting to be served in the

main buffer) at time t. Additionally, we denote by Qk the queue length in the system upon the

arrival of job k (not including k). We assume that the first job N arrives to the system at time

t = 0, and that initially the system is empty: QN = Q(0) = 0-

The model just described will be denoted by GGm(St), see (Pollaczek 1961), (de Smit 1983b;
de Smit 1983a), and (Bertsimas 1990). It is known (Kiefer and Wolfowitz 1955; Loynes 1962;

Whitt 1972) that as long as p < 1, and some additional mild conditions hold, such as P(Un -V >

0) > 0, GGm(St) is stable and the transient performance measures converge to the (unique)

steady-state performance measures in distribution. However, computing these performance

measures is a different matter. We denote by Wo,, Q. the steady state versions of the random

variables Wk, Qk. Thus provided that p < 1 and some additional technical assumptions hold,
we have

lim E[Wo] = E[Wo] lim E[Qo] = E[Qoo]. (3.1)
N-+oo N-+oo

We will assume that p < 1 holds without explicitly stating it. Rather than describing the

assumptions required to make (3.1) true, we will simply assume when stating our results that

(3.1) holds as well.

3.2.2 Robust model

We now describe the deterministic robust optimization type counterpart of the stochastic queue-

ing model GGm(St), which we denote by GGm(RO).

The description of the network topology is the same as for GGm(St). However, it is not



assumed that Uk, Vk and, as a result Q(t), Wk are random variables. Rather we assume that

these quantities are arbitrary subject to certain linear constraints detailed below. Additionally,
we assume that the system starts empty Q(O) = 0, job N arrives at time t = 0, and only N + 1
jobs go through the system. For clarity of exposition, we label the jobs in reverse order so that

jobs arrive in the order N, N -1, N -2,..., 2,1, 0 so that job N+1 - j is the j-th job to arrive

to the system.

Specifically, consider a sequence of non-negative deterministic interarrival and service times

(Uk, 1 < k < n), (V, 1 < k < N). In particular, Uk represents the interarrival time between job

k - 1 and k for k = 1,... N, and V represents the service time of job k for k = 1,...,N.- Let

{ v/x lnln x, x > e (3.2)

1, x < e e

It is assumed that values A, y, Fa, IF, 0 exist such that

I E U - A- 1 kJ < Fa#(k), k = 1, 2, ... , (3.3)
1<i<k

S Vi - pk| 5 Fs#(k), k = 1, 2,.. ., (3.4)
1<i<k

Vi<B, i =1,72, ... ., N. (3.5)

These assumptions and constraints are similar to the ones used to describe TSC and MCSS

systems (2.9)-(2.12) in Chapter 2. (3.5) means that we assume that the service times are

bounded with probability 1. We let F = max(Fa, r,).

For technical reasons, we also assume that Fa and A in GGm(RO) constraints satisfy

Ara > 2e 2e, rap 1, and A > 1. (3.6)

While we assume N + 1 jobs going through the system, we will be able to apply our results

in the stochastic setting where infinite number of jobs pass through the system. Borrowing from

the robust optimization literature terminology (Bertsimas and Sim 2004), the parameters La, F,

are called budgets of uncertainty. Note, that the values Uk and Vk, for 1 < k < N, uniquely



define the corresponding performance measures Q(t), Wk, k = 0,... , N. There is no notion of

steady state quantities Q,, W. for the model TSC(RO). The motivation for constraints (3.3)

and (3.4) comes from the Law of the Iterated Logarithm. We refer the reader to section 2.2.4

for a discussion on the Law of the Iterated Logarithm.

3.3 Main results

In this section we state our main results on the bounds for waiting time and queue lengths for

the robust optimization system GGm(RO), and the implications of our results for its stochastic

counterpart GGm(St).

Theorem 3.1 Given a GGm(RO) queueing system with constraints (3.3)-(3.6), let Wo be the

waiting time of job 0. Then

2A(r + Ia)2 A(r + Fa)
Wo < m Inln M + B. (3.7)

I - p 2(1 - p)

Observe that the bound on the waiting time is explicit. It is expressed directly in terms of

the primitives of the queueing system such as arrival and service rates. Observe also that the

upper bound is independent from N - the number of jobs that passed through the system. One

can think of this bound as a "steady-state" bound (for large enough N) on the waiting time in

the GGm(RO) system. Additionally, the constants 17, ra are related to the standard deviations

of service and interarrival times viz a vi the LIL (2.14). It is known from Kingman's bound

(Kingman 1970) that in the stochastic GI/GI/m queueing system, the expected waiting time

in steady state is at most A ( + o.2 + (m - m-)/ 2 )/2(1 - p) in heavy traffic. Namely,
the expected waiting time depends linearly on the variances of interarrival and service times.

Our bound (3.7) is thus consistent with this type of dependence. On the other hand, the

bound above does not have the familiar O((1 - p)-') scaling, which is known to be correct

from (Kingman 1970). However, the correction factor is a very slowly growing function ln ln.

Additionally, while the bound above also has a constant B, this constant is much less significant

for p close to 1. The upshot is that we can use this bound to obtain a bound on Wo and W, in



the underlying stochastic system. This is what we do next.

Recall Fa,LIL and rs,LIL from Proposition 2.1, where L-,LIL is defined for the corresponding se-

quence in (2.14). Define Ia = max(v 2o-ara,LIL, 2e2e-1 p- 1) and r, = max(vu-,,s,Lm, 2e2eA-l)

and observe that (3.6) is satisfied.

Corollary 3.2 For every N > 1 the sojourn time of the N-th job (Wo) in the GGm(St) queueing

network satisfies

[2A( + r.)2 A( ± F+a)

E[Wo] < E M in In M + B. (3.8)
1 - p 2(1 - p) J

If in addition Assumption (3.1) holds, then

2A(r + )2 A(r + 1a)

E[Woo] _< E M In In m ]+ B. (3.9)
1 1 - p 2(1 - p) J

Proof. We first assume Theorem 3.1 is established. Note, in the context of the stochastic system,
WO, Fa, and F, in Theorem 3.1 are random variables. Applying Proposition 2.1 in section 2.2.4

we have that (3.7) holds with probability one for the underlying stochastic network. The bound

(3.8) now follows from taking expectations of both sides of (3.7). The bound (3.9) follows from

applying (3.1) to (3.8). 0

Theorem 3.3 Given a GGm(RO) queueing system with constraints (3.3)-(3.6), let Qo be the

number of people in the queue when job 0 arrives into the system. Then

2p'P2  
_____

Qo < lInn + p(m - 1)B (3.10)1 - p 2(1 - p)

where I = 3A2F] + 2F3p((2 + 6A2 r))2.

Corollary 3.4 For every N > 1, the queueing length (Qo) at the time of arrival of job 0 into



the GGm(St) queueing network satisiles

E [QO] 5 E JIn [n + (m - 1)B (3.11)
11-P p 2(1 - p)

where I = 3A2F2 + 2J'sp((2 + 6A2F2)) 2 . If in addition Assumption (3.1) holds, then

E [Qoo] :5 E 2PX nIn n + pL(m - 1)B (3.12)
11 - p 2(1 - p)]

Proof. We first assume Theorem 3.3 is established. Note, in the context of the stochastic system,

Qo, Ia, and r, in Theorem 3.3 are random variables. Applying Proposition 2.1 we have that

(3.10) holds with probability one for the underlying stochastic network. The bound (3.11) now

follows from taking expectations of both sides of (3.10). The bound (3.12) follows from applying

(3.1) to (3.11). 0

3.4 Performance bounds in the Halfin-Whitt Regime

In this section, we will formally introduce the Halfin-Whitt Regime and present results which

compare the performance of our robust system GGm(Rob) in the Halfin-Whitt Regime to clas-

sical analysis.

Formally, the Halfin-Whitt Regime is defined by setting A = my - #pvw\/7i. As a result,

p = 1 - '.

We define the uncertainty sets of the robust queueing model in the Halfin-Whitt Regime

GGm(RO-HW) by:

Ukk- A- k < (k), k = 1, 2, ... , (3.13)
1<i<k

E - p- 1 k| 5 T,4(k), k = 1, 2, .. ., (3.14)
1<i<k

S5B i=1,2,...,N. (3.15)



Note the only difference between uncertainty sets for GGm(RO-HW) and GGm(RO) is in the

constraints on the arrival process where T in (3.3) is replaced by I in (3.13). In fact, because

the arrival rate A ~ O(m), the standard deviation of the interarrival times (absorbed by the Ia

parameter) must accordingly scale by (-). For technical purposes, we will additionally assume

that

B > 2p- 1 and , > p- 1 . (3.16)

We now state and prove the following theorem which characterizes the behavior of the waiting

time of the N + 1st job, WO, in the GGm(RO-HW) system characterized by (3.13)-(3.16).

Theorem 3.5 Given a GGm(RO-HW) queueing system defined by (3.13)-(3.16), let Wo denote

the maximum feasible waiting time of job 0. Then

0.45p--1 < WO <CI n(//M + B (3.17)

where C = 2pt(r, +a) 2 | and C' = p'(,+ Fa|)/2.

Before delving into the proof of Theorem 3.5, we would first like to discuss its implications.

First, observe that the upper bound in (3.17) implies a similar result for the expected waiting

time of the N + 1st job (E(Wo)) for the underlying stochastic system. The proof follows similarly

to the proof of Corollary 3.2. Additionally, similar to the behavior of the steady state waiting

time in Halfin-Whitt Regime, increasing the number of servers causes the main term in the

upper bound (3.7) to decay almost as O(').

The key difference between the behavior of the waiting time in GGm(RO-HW) as compared

to the classical approaches is that in our system, while WO decays as the number of servers

increases (in particular the term corresponding to 1 in (3.7)), a non-zero waiting time still

remains and can be achieved for arbitrary large m. The intuitive reason behind this difference is

that our approach is inherently transient analysis based, as opposed to the standard steady state

analysis used in classical queueing work. In fact, we show that for arbitrary high m, it is possible

to achieve a positive waiting time for the N + 1st job, WO. In particular, using a sequence of



interarrival and service times similar to the one used in our proof (3.18), a similar phenomenon

would result in a stochastic system for transient jobs. However, as this phenomenon is transient,
it disappears in steady state and E{Wo] -+ 0 in classical analysis.

We now prove Theorem 3.5.

Proof. The proof consists of two parts: Wo : C ln ln (C'V/7ni)// + B and Wo > 0.4 5p-'.

Case WO 5 Cln ln (C'vFi)/j/G+ B.

From Theorem 3.1 and (3.13-3.15), we obtain:

2A(- + f )2 (L ± T)
Wo < M _ lnn m m + B

1 - p 2 (1 - p)
p (2m - 2#/ ni)(Q ± )2 pa(m --m n #/)(' + +BMI Inn+/B

2/

< 2pL(rs + fa)2 InIn(To + r a) V/Ri)+

-~ #\/n 2#
C In ln (C'v/fi) B

where C = 2pi(I + Fa) 2 /# and C' = p(F + Ja)/2#.

Case Wo > 0.45p-'. We will do this by explicitly constructing a sequence of service

and interarrival times that satisfies (3.13), (3.14), and (3.15) and achieves Wo > 0.45--'.

We consider a system with N +1 jobs where N = 2m + 0.49m. The jobs arrive to the system

in the order N, N - 1,..., N - i + 1, ... ,1,0 where (N - i +1) is the i-th job to arrive to the

system. For technical purposes, we assume that m is large enough to satisfy m - #\/m > 0.99m,
m > 10000, and m/100 is an integer. Since we are interested in limiting behavior as m -+ 00,

these are appropriate assumptions.

Consider the following sequence of interarrival and service times:



1 _ 1 p-1 p-'
U - - - < < A < .01p-1

A p(m - /i) 0.99m - 0.99 - 10000 -

(3.18)

pA-, i < 0.49m;

Vi = 2p-1, 0.49m < i < N and i even;

0, 0.49m < i < N and i odd;

Let tN-2m+1 denote the arrival of job N-2m+1. Observe, that for jobs i, for 0.49m < i < N,

the service times alternate between 2p- 1 and 0 units. Since the system is initially empty, without

loss of generality suppose that jobs enter service in the first available server, and in the smallest

indexed server if more than one server is available. It follows from (3.18) that the workloads

remaining in o-i at time tN-2m+1 is Wui(tN-2m+1) = max{0' O 2  (i-m)+2p~ -1} for i = 1, ... , m,

and

Wcr(tN-2m+1) > W 4 9 (tN-2m+1) = (0.49m - m) + 2p > 0.9
0.99mp>

for servers i = 0.49m, 0.49m + 1, ... , m.

Now consider the arrival of 0.49m more jobs and let tN-(2m+0.49m)+1 denote the time of

the arrival of job (N - (2m + 0.49m) + 1). By (3.18), these additional 0.49m jobs have

initial service time of length p-1 . First observe that tN-(2m+0.49m)+1 - tN-2m+1 < .5--1

since it takes 0.49m - 0.49m < 0.49m < 0.5p-1 units for 0.49m jobs to arrive. Hence,A R-6- - O.99mi

the work remaining in servers o-j for i = 0.49m, 0.49m + 1, ... ,m at time tN-(2m+0.49m)+1 is

Wai(tN-( 2 m+0. 4 9m)+1) > 0.96/pr1 - 0-5p- 1 = 0.46p-1. Additionally, there is currently 0.49m

other jobs that arrived in interval (tN-2m+1, tN-(2m+0.49m)+1] with remaining service at least

pL - 0.5[- 1 = 0.5[- 1 units (since they all arrived at most (0.5pL1) units ago). Thus, it will be

at least min(0.5- 1, 0.46p-1) = 0.46p.-1 more units of time until any server becomes available.

Hence, the waiting time of the next job, job (N - (2m + 0.49m + 1) + 1) is at least

1
WO= WN-(2m+0.49m+1)+1 0-46W p - 0-45pY' by (3.18).



It is worthwhile to highlight the underlying dynamics of the sequence of service times in

(3.18) that results in the lower bound on the waiting time for the last job. Intuitively, the

sequence of service times used in the proof represents sequences of jobs with service times from

two types of distributions - having the same average service time p-1, but different variance.

First, a large number of jobs with high variance of service time (alternating sequence of O's and

2p- 1's) arrive. This results in some jobs being processed quickly, while others take longer than

expected and have tails (in our case . jobs are length 0 and } are length 2p- 1). Immediately2 2

following these jobs, for a short period of time all of the jobs that arrive have low variance

of service time (i.e. all jobs have p-' service time). As a result, this sequence of jobs with

low variance combined with the extra long jobs left over from the initial set of arrivals end up

clogging up the system for a short period of time. As a result, some jobs that arrive immediately

after have to wait. However, this phenomenon washes away in steady state as the extra long

jobs are on average well balanced with the extra short jobs in a way that the average waiting

time in steady state approaches zero.

3.5 Proofs of Main Results

3.5.1 Waiting Time: Proof of Theorem 3.1

We are interested in computing the maximum possible waiting time of job 0. We remind

the reader that our notation is reverse with respect to sequence of jobs where job 0 is the

last job out of a total of N + 1 jobs to arrive into the system. The general approach of

the proof will be to compute a bound on the average workload remaining in the system

that is (tota" 'orkoa) at the time of job 0 arrival. This serves as a natural upper bound on

Wo = mini (workload remaining in sy) since jobs are served according to FIFO and enter service

as soon as a server becomes available.

For the rest of the proof, we will assume that when job 0 arrives, all servers are busy,
since otherwise job 0 immediately enters service and Wo = 0.



Notation:

" Let job n denote the earliest job (highest index) to arrive that initiated a period of all

servers being continuously busy up to and including the arrival of job 0.

" Let to and tn denote the time of arrival of jobs 0 and n, respectively, into the system.

" Let t = (Un + Un-1 + ... + U1 ) = to - t denote the time between arrival of job 0 and job

n.

" Let {k2 , k3, ... , km} be the set of jobs in service at time tn. Naturally, n < ki N for

i E 2,... , m.

" Let V R for i = 2, ... , m denote the remaining service of job ki at time tn.

We state the following obvious Claim without proof:

Claim 3.6 There are exactly (m - 1) jobs in service and no jobs in the queue at the time of

arrival of job n.

We will now present a lemma that upper bounds the Wo in terms of jobs that arrive before

it:

Lemma 3.7

E" V+ +(VRi +... + VR
Wo < 2k - (U1 +..+ Un)m

Proof. Let W denote the sum of the total workload remaining in the system at time tn and all

future work that arrives to the system after job n (not including job 0).

By Claim 3.6, the workload in the system at time tn is only due to job n and remaining

service times of jobs in all the other servers which is V, + (V ± V +... + Vi). All future

work that arrives to the system after job n (not including job 0) is (V1 + V2 + ... + Vn 1). From

this we see that

(V) ... +V (3.19)



The additional time it takes until at least one server becomes free is less than the average

additional time it takes for all of the servers to process the above work. Since all m servers are

continuously busy beginning with the arrival of job n, the latter quantity is E.

Since job 0 arrives t units after job n, we obtain

Wo < -t,

and the statement of the Lemma follows from (3.19) and the definition of t. O

From Lemma 3.7, we obtain:

=1 + (VRi + ... + VR)wo < - (U1 +... + U')

<nfL + 1,n) ± (m - 1)B (nA- 1 - Faq4(n)) from uncertainty sets (3.3), (3.4), (3.5)
m

< -A- 1(1 - p)n + 4(n)( " + Fa) + B by definition of p = .
m ~my

Observe that the last expression is of the form U(x) = -ax+2b#(x)+c where a =A-(1-p),

b= ( +a), c=B. Also, > ;> 2eby (3.6).
2ma - 2A- 1 - 2 y(.)

We invoke Proposition A.3 to obtain the final result:

7A(-r- + Ta)2 A(ra + ra)
Wo < maxU() < M lnIn M + B.

->0 -X) 4(1 - p) 2(1 - p)

3.5.2 Queue Length: Proof of Theorem 3.3

The question we are interested in is computing the maximum number of jobs (Qo) waiting

in the queue (not including job 0) when the last job - 0 arrives to the system subject to our

uncertainty sets (3.3), (3.4), (3.5).

Without loss of generality, we assume that upon arrival of job 0 all of the servers are

busy. Otherwise, if one of the servers is idle, this implies that the queue must be empty and

hence Qo = 0. We use the same notation as in the previous section (3.5.1) and also introduce



two additional notations:

* Let S = {i1,i2,..., 41, 1 < ij n for j = 1,... k denote the set of jobs (not including

0) in the queue at time to.

* Let k = arg max S denote the highest index (earliest) of the jobs in the queue at time to.

Observe that Qo = k.

The following lemma bounds Qo in terms of n and t.

Lemma 3.8

Qo < n + 2,#(n) + p(m - 1)B - tmt

Proof. Observe that when job 0 arrives into the system, two things must be true:

* {k,k-1,k-2, ... 3, 2,1} are still in the queue

" servers have processed tm units of work in the last t units (since they have all been

operating continuously for the last t units).

Also observe that:

(3.20)tm V+Vk ---- Vk.)-(V+V-1+--Vk+2+Vk+1)

From (3.20), we obtain

tm < (Vk2 -Vk 3 --- Vk.)+(V+Vn-l±+.±+Vk+2+Vk+l)

< (m - 1)B + p-1(n - k) + F.(#(n) + #(k))

< (m - 1)B + pF1 (n - k) + 21F,#q(n)

k < n + 2r,#(n)p + p(m - 1)B - tmp

Since Qo = k, the proof is complete.



To complete the proof of the theorem, we consider two cases: At < 1 + 3A2P2 and At >

3A2F2

1+m a

Lemma 3.9 For every t satisfying At < 1 ± W 2 , the following holds:

QK2p'I2  pg4Q0 _< In In XF + p.(m - 1)B
1 - p 2(1 - p)

(3.21)

where T = 3A2 F + 2Fp((2 + 6A2 Ir ))2

Proof. In this proof, we will show that the condition At < 1 + 3A2F2 implies that the bound in

Theorem 3.3 is an upper bound on n, and hence also an upper bound on Qo.

Assume first n < ee. Then applying (3.3) corresponding to the case n < ee, we obtain

nA- - ra < t, namely

nh < At±+Ar~a

(1 + 3A2F) + AFa

(A2 r2)(0.002 + 3 +1) since AF > 2ee by (3.6)

(Ar') 3 since AT > 2ee by (3.6)

which is less than the bound (3.21).

For the rest of the proof assume n > ee. Applying (3.3), we obtain nA-' - FaniIn Inn 5 t.

This in addition to condition (tA < 1 + 3A2 Fr) give:

n - tA

vn ln ln 
n - (1+ 3A2F') < Ara.

v/n In In n

Let A = (1 + 3A2Fr) and b = A + 3A2r /TA InIn A.

(3.22)



Observe that:

3A2F2VA In-In A

((A + 3A2F /A in in A) In in(A + 3A2 F /A in in A)) 2

3A2 F2-/A In-In A

((A + 3A2 F2A) In ln(A + 3A2r2A))

3A2]p2VfA In In A

((A)(1 + 3A2 F2) nIn (A)(1 + 3A2r) 2

3A2]LA In-in A

(A) (1 + 3A2 F2) In ln(A)2 2

3A2 F VIn In A
(4A2F2) (2 In in A)

> /\r,.

since A > In in A for A> ee

since A = 1 + 3A2p

since 2In In A > In ln(A) 2 for A > ee and AFa > 1

Since is an increasing function for x > ee and from (3.22), we have that b > n.

The final step follows from comparing bound on n in terms of A with the upper bound in

the Lemma (3.21):

n < b

=A 3 + 3A \/-A In In A

< A(1+ vA IlnIn A) by definition of A

= (1 + 3A2F2)(1 + v/(i + 3A2 21) in in(1 + 3A2Tra))

since Ara > 2e2 e by (3.6)

< 7.2(Ara) 3 Vin in Arfa

where T =

since Aa > 2e 2 e by (3.6)

< 2p2In In PT + p(m - 1)B
I - p 2(1 - p)

(3A2F2 + 2 17y ((2 + 6A2r7))2

b - A

VbIn In b

<(3.1p 3.1A2r,2 In ln(3.1A22)



For the rest of the proof, we assume

At> 1 + 3A2F (3.23)

Lemma 3.10 Assuming condition (3.23) holds, then

n < tA + 3D2Fq(t).

Proof. First suppose n < ee: In this case, n < At + Ara by (3.3). The statement of the Lemma

follows trivially since AFa ; e' by (3.6) and #(x) > 1.

For the rest of the proof, suppose n > ee: Applying (3.3), we obtain nA-' - Fn ininn n < t.

Which gives

n - tA

Vn inIn n
< AFa < AI. (3.24)

Define b by: b = tA + 3A2 F VtA in in tA.

Observe that:

b - tA

Vblnlnb
3A2 F]p.'tA In In tA

((tA + 3A 2F tA In In tA) In 1n(tA + 3A2Fi VtA InIn tA)

3A2F VtA In-In tA

((tA + 3A2Fr2Viti) In ln(tA + 3A2p2V/i-iA)) 2

since tA > In in tA because tA > 1 + 3A2F > (2e2e)2 by (3.6)

3A2J r2tA ln t A

((tA)(1 + 3A2 F) InIn (tA)(1 + 3A2F2))2

3A2Fr2 tA In in tA
since tA > 1 + 3A2 Fp

((tA)(1 + 3A2172) lnln(tA)2)

3A2]p2 Vln -In tA
> a since 2

-(4A 2]12) (2 In In tA)

> Al7a by simplifying above e

In In tA > Inln(tA) 2 for tA > ee and Ara > 1

xpression.



Since "A is an increasing function for x > ee and from (3.24), we have that b > n and the
Vx lnln x

result is obtained. L

Lemma 3.11 Assuming condition (3.23) holds, then

O(n) < ((2 + 6A2 72 )) ig(tA).

Proof.

#(n) < 4(tA + 3A2'Fg(tA)) by Lemma 3.10

= (tA + 3A2F]/tA In in tA) condition (3.23) and definition of #(x)

(tA + 3A2Ip-/tA In In tA) - In ln(tA + 3A2 F2 /tA In In tA)

(tA)(1 + 3A2 F2) In In ((tA)(1 + 3A2 ]r))

(tA)(1 + 3A2F2) In In ((fA)2)

V(tA)(1 + 3A2 F )2in ln (tA)

(tA)(2 + 6A2 2) In In (tA)

(2 + 6A2)A 1 0(tA).

since tA > 1 + 3A2 a

since tA > 1 + 3\ 2 > ee by (3.6)

We now use Lemmas 3.10 and 3.11 to complete the statement of our proof.

Applying Lemma 3.8, we obtain

Qo n + 2FLq(n)p + p(m - 1)B - tmp

< (tA + 3A2Frg(tA)) + 2Fsp ((2 + 6A2 F2)) 10(tA) + p(m -1)B - tmpu

where we apply Lemmas 3.10 and 3.11 to bound n and O(n)

= -mp(1 - p)t + o(tA) (3A2F ± 2F8y((2 + 6a 2L) ) + pu(m - 1)A

= -1- ~(tA) + #(tA)(3A2r2 + 2F,1y ((2 + 6A2I)).) + p(m - 1)B
p

where we apply definition p = -
my,



We denote the RHS of the last expression by U(x) = -ax + 2b#(x) + c where a =-P > 0,

b=.. (3\2]p2 + 2Fp((2 + 6A2Fi)) 2, and c = p(m - 1)B. Observe that

b p3' 2r2

a 2(1 - p)

where the last inequality follows by (3.6).

We invoke Proposition A.3 to obtain the desired result:

7 p9 2  
___

Qo ; max U(X) < Inn + p(m - 1)B.x>O 4(1 - p) 2(1 - p)

3.6 Conclusion

We have built upon the approach developed in Chapter 2 and applied it to the performance

analysis of GI/GI/m system. The essence of the approach lies in replacing stochastic primitives

of the underlying queueing system with deterministic quantities that satisfy the implications of

some probability laws. Using this approach, we have managed to derive explicit upper bounds

on waiting times and queueing lengths. We also showed that the bounds implied by the Law of

the Iterated Logarithm are applicable for the underlying stochastic queueing system leading to

explicit and non-asymptotic performance bounds on the same performance measures. Overall,
this suggests that this type of modeling approach for performance analysis is both tractable and

is capturing underlying stochastic behavior (derived bounds qualitatively agree with Kingman

bounds up to ln ln(1 -p)- 1 factor). Additionally, we have shown that this type of analysis yields

bounds for waiting times in the Halfin-Whitt regime, which agrees with asymptotics obtained

in the stochastic setting up to a constant additive factor. It would be an interesting research

endeavor to see if one can reproduce exactly the stochastic steady state results in Halfin-Whitt

regime through tractable robust formulations that hold with high probability.



Chapter 4

(s,S) Policies in Supply Chain

Networks: Robust vs. Stochastic

Optimization

4.1 Introduction

Supply chain management is a significant problem which has received considerable attention

both in industry and academia. In 1960, Scarf (Scarf 1960) first proved the optimality of (s,S)

policies in a single installation model. In the same year, the pioneering work of Clark and

Scarf (Clark and Scarf 1960) showed that basestock type policies are optimal for serial supply

chains in the absence of capacity constraints, and that the optimal ordering policy for the entire

multiechelon system can be decomposed into decisions based solely on echelon inventories. In

addition to being optimal in a variety of theoretical settings, basestock type policies are also

preferred by companies due to their innate simplicity in implementation. Further work in gener-

alizing, extending, and refining optimality results of basestock policies has been done by Feder-

gruen and Zipkin (Federgruen and Zipkin 1984), Rosling (Rosling 1989), Langenhoff and Zijm

(Langenhoff and Zijm 1990), Muharremoglu and Tsitsiklis (Muharremoglu and Tsitsiklis 2008),
Huh and Janakiraman (Huh and Janakiraman 2008), among many others. Sethi and Cheng

(Sethi and Cheng 1997) proved the optimality of (s,S) policies in a more general setting - with



Markovian demand. For a thorough review of inventory theory, see Zipkin (Zipkin 2000).

The question of computing optimal basestocks in general supply chain networks is a difficult

problem for two reasons. First, it is a complex stochastic optimization problem in parameter

space for which there is not a general exact algorithm available. Second, in reality, only data

of demand histories are available, and hence it is not clear which probability distribution is the

true source of uncertainty.

Some work on computing basestocks in supply chain networks includes Glasserman and

Tayur (Glasserman and Tayur 1994; Glasserman and Tayur 1995) and Fu (Fu 1994) who de-

signed simulation based methods to compute basestock policies based on infinitesimal pertur-

bation analysis (IPA). Other methods that aim to compute basestocks include Roundy and

Muckstadt (Roundy and Muckstadt 2000) and Rong et al. (Rong, Bulut, and Snyder ).

Robust optimization addresses the issue of data uncertainty without assuming specific prob-

ability distributions for the unknown parameters. Instead, the spirit of the approach is to use

historical data to model randomness with uncertainty sets. The construction of such sets is

informed by the laws of probability. Bertsimas and Thiele (Bertsimas and Thiele 2006) first

applied robust optimization to inventory theory and proved that basestock type policies are

optimal in the robust model. Ben-Tal et al. (Ben-Tal, Golany, Nemirovski, and Vial 2005)

advanced this approach by efficiently computing affinely adjustable order policies for a

two-echelon model. For a review of robust optimization see the survey by Bertsi-

mas et al. (Bertsimas, Brown, and Caramanis 2011) and the book by Ben-Tal et al.

(Ben-Tal, Ghaoui, and Nemirovski 2009). Some other work on distribution-free approaches to

inventory theory, but not based on robust optimization, include Scarf (Scarf 1958), Kasugai

and Kasegai (Kasugai and Kasegai 1961), and Gallego and Moon (Gallego and Moon 1993;

Gallego and Moon 1994). Graves and Willems (Graves and Willems 2000) also develop a frame-

work for optimizing safety stock placement in supply chains in a distribution-free manner.

Our goal in this chapter is twofold: a) to propose methods for computing (s,S) policies

in supply chain networks using robust and stochastic optimization; b) to gain insights into

the relative performance of robust (ROB) and stochastic (STO) policies. Our method builds

on the technique of Bienstock and Ozbay (Bienstock and Ozbay 2008), who designed an algo-

rithm to compute basestock parameters in a robust setting for a single echelon problem. While



(Bienstock and Ozbay 2008) deals with the single echelon problem without fixed costs, our fo-

cus is to handle more realistic inventory problems including multiechelon systems with general

topologies and cost functions (including fixed costs). As basestock type policies have enjoyed

success in theoretical results and popularity among companies for ease and intuitive implemen-

tation, we focus on the problem of computing basestocks in a multiechelon model. In summary,

the contributions of this chapter are as follows:

" By extending the applicability of (Bienstock and Ozbay 2008) to general networks and

cost structures, we propose algorithms based on simulated annealing that compute robust

and stochastic (s,S) policies for supply chain networks. The algorithms tackle general

network topologies and not just the standard serial or tree system networks. In addition,

we assume general cost functions and the presence of fixed costs, which is usually ignored in

most theoretical and computational results. The algorithms are implemented for networks

(up to 8 installations) and show practical running times.

" In an extensive numerical study, we compare the performance of robust (ROB) vs. stochas-

tic (STO) (s,S) policies and offer insight into their relative performance. In general, we

find that ROB sacrifices little in average performance against STO, while having a con-

siderably lower standard deviation and 5%-tail. Additionally, we identify regimes where

ROB outperforms STO even in average performance.

The chapter is organized as follows. Section 4.2 presents notation and introduces the setup

of the problem. Section 4.3 explains the algorithms and the implemention details. Section

4.4 discusses the performance of algorithms and presents a detailed numerical study comparing

performance of the robust and stochastic (s,S) policies. Section 4.5 presents concluding remarks

and directions for future research.



4.2 The Model

4.2.1 Notation and Dynamics of the General Assembly System

As discussed in the introduction, we consider a multi-echelon system in which every installation

follows an (s,S) policy for echelon inventory. We begin by briefly introducing notation and

dynamics of a multi-echelon system, explaining the cost structure and the mechanics of this

basestock type policy, and finally consider two performance measures of interest.

The main storage hubs receive their supplies from outside manufacturing plants and send

items throughout the network, each time bringing them closer to their final destination, until

they reach the stores (the sinks of the network). Put another way, sinks are where the outside

demand occurs, and it is the demand at the sinks that drives the orders within network. Note,
our model easily allows for the possibility for external demand (sinks) to occur in intermediate

stages of the network, as well. We let J be the number of installations, and S be the set of sink

nodes. In the case where all installations face outside demand, S = {1,..., J}. We consider a

T period time horizon.

We define echelon Ech(k) for k = 1, ... , J to be the set of all the installations, including

k itself, that can receive stock from installation k, and the links between them. This is the

definition used by (Clark and Scarf 1960) when they consider tree networks. In the special case

of series systems, we number the installations such that for k = 1,..., J, the items transit from

installation k + 1 to k, with installation J receiving its supply from the plant and installation 1

being the only sink node, as in (Clark and Scarf 1960) and Ech(k) = {k, k - 1,.. . , 1}. In that

case, the demand at installation k + 1 at time t is the amount of stock ordered by installation

k at time t.

Throughout the rest of the chapter, we will use boldface symbols, e.g. x E R, to denote

a vector of scalar quantities (X1 , X2 , ... , XT). Let N(k) be the set of installations supplied by

installation k, O(k) be the set of installations that supplies installation k, and S(k) the set of

sink nodes in echelon k. We also define for k = 1,..., J,

" Ik(t): stock available at the beginning of period t at installation k,

* Xk(t): stock available at the beginning of period t at echelon k,



" dik(t): stock ordered at the beginning of period t at installation k from its supplier

ik E 1,...,, ,

" w,(t): demand at sink node s E S during period t,

" w: a SI x T vector of sink demands with w(s, t) = w.(t)

" s, S E 3?: vector of lower and upper echelon basestock levels. We assume that the levels

are time-invariant (sk = sk(tl) = sk(t2), Vk, t1i, t2).

Though our algorithm easily extends to nonzero lead times, we assume zero leadtimes through-

out the network. In addition, we allow intermediate shortage of excess demand at all of the

installations and backloging at the sinks. In Section 4.2.4, we discuss how to extend the standard

model we consider to include no intermediate backlogging, non-zero leadtimes, and capacitated

orders. By changing units if necessary, we may assume that all of the installations order parts

in equal quantities from each of its suppliers, i.e., di.,k(t) = di42 k(t) for iki, k 2 E O(k). Given a

set of all echelon basestock levels (Sk, Sk) and sink demands w,(t) for s C S, t C 1,... , T, the

dynamics of the installation and echelon inventories are for t = 1, ... , T:

Ik(t + 1) = Ik(t) + dikk(t) - E dijj(t) - Wk(t)1LkES], (4.1)

jEN(k)

Xk(t - 1) = IjW(t). (4.2)
jEEch(k)

dij are determined by the echelon inventory and basestock levels according to the following

equation:

dikk(t) { Sk - Xk(t), Xk(t) 5k (4.3)
0, otherwise

for t = 1, ... , T.

The dynamics (4.3) indicate that individual installations meet 100% of the demand to them

and thus can have negative inventory or intermediate shortage. This is the model we will use

in the numerical experiments. However, our setup is flexible to be adapted to the standard



multiechelon model described in (Clark and Scarf 1960) without intermediate shortage, as well

as capacitated orders.

Finally, we specify the cost function. At each installation, we assume four types of costs

present at period t:

" Ck(t): variable cost per unit item ordered by installation k,

* Kk(t): fixed cost of order by installation k,

" hk(t): holding cost per unit inventory at installation k,

" pA(t): backorder penalty cost per unit of negative inventory at installation k.

We denote by U(s, S, w) to be the total cost of operation with basestock parameters s, S and

realized demand w. Thus, if installation k orders dk(t) from its suppliers at period t, the total

cost incurred in period t by installation k is:

COStk(t) = ck(t) - dk(t) + Kk(t)1[dk(t)>o + max (hk(t)Ik (t + 1), -pk(t )Ik(t + 1)),

and the total cost of operation is:

N T

Ul(s, S, w) = E ck (t) -dk(t) + Kk(t)1dk(t)>] + max (hk(t)Ik(t + 1), -Pk(t)Ik(t + 10).4)
k=1 t=1

Note that the term Ik(t + 1) appears because this is the amount of inventory that remains at

the end of period t and is either stored or backlogged.

4.2.2 Robust vs. Stochastic Optimization

In the robust problem, we assume that the vector of outside (sink) demands w E RIST is

uncertain and lies in uncertainty set P,,, that is specified by the user (see Section 4.2.3 and



Equations (4.7),(4.8)). We now present the complete robust optimization problem (4.5):

min max J1(s,S,w) (4.5)
s,SERT wCPy'e

s.t.

Equations (4.1),(4.2),(4.3),(4.4).

In other words, Problem (4.5) describes the problem of minimizing the total operational cost

I subject to the worst case corresponding realization of demand vector w. The constraints are

simply the definition of 1 and inventory dynamics from (4.1)-(4.3).

In contrast with the robust approach, the traditional way of inventory optimization has been

to model the vector of sink demands w as a |SI xT dimensional random variable with distribution

Y/. Thus the stochastic version of Problem (4.5) is as follows, which we will henceforth refer to

as Problem (4.6):

min Ey [fl(s, S, w)] (4.6)
s,SERT

s.t.

Equations (4.1),(4.2),(4.3),(4.4).

4.2.3 Designing Uncertainty Sets

For the robust formulation problem (4.5), we design uncertainty sets for the demand vector w,

at each sink s C S, using a combination of interval uncertainty and the central limit theorem

type uncertainty. In particular, assuming historical demand has mean p and std. o, we create

the following polyhedral uncertainty set for w,(t), t = 1, ... , T:

W,(t E [p - 0-, p + 0-], (4.7)

< 3, Vt = 1,...,T. (4.8)

Going forward, we denote by P,,, the polyhedron of feasible demand vectors w, with respect

to constraints (4.7)-(4.8). The first constraint (4.7) implies that most demands will land within



one standard deviation from the average. However, this constraint alone still allows for the

possibility that all of the realized demand will occur either one o- above or one o below Ipt. This is

probabilistically unlikely since we expect some demands to fall above the mean and others below

the mean. To account for this, we introduce the second linear constraint (4.8) - which belongs to

a class of uncertainty constraints known as "budgets of uncertainty" (Bertsimas and Sim 2004).

Intuitively, (4.8) has the form of the central limit theorem which says that a sum of n zero-mean

random variables normalized by / is 99% of time within 3o-. Since the robust problem considers

only the worst case objective, the second constraint eliminates probabilistically unlikely corner

point realizations that will result in a conservative policy. In practice, only using interval style

constraints on demand may result in overly conservative solutions. Note, that we do not impose

constraints that couple demands from different sinks.

4.2.4 Extensions

In this section, we outline how to extend our model (4.1) - (4.3) to include features such as no

intermediate backlogging, capacititated orders, and non-zero leadtimes.

Extension to system without intermediate backlogging. We first explain how our

model extends to the multiechelon assembly system without backlogging at intermediate ech-

elons - such as the one described by (Clark and Scarf 1960), which we will call the standard

model. We assume that there are no capacity constraints. Consider the N-installation network

below in Figure 4-1.

2
d12(t)

d,t 3

2X d(t)

d1 -t)

Figure 4-1: An N installation network.



In our model, we assume that Installation 1 meets all of the orders that are posed to it,
regardless of the amount of inventory in Installation 1, which we denote by x. If x > d12 +... +
d1N, then there is no backlogging in Installation 1 and the dynamics of the inventory of our

model agree with the standard one. Now suppose x < d 1 2 +... + d1N. Our model still assumes

that Installation 1 meets all its demand, and in the event it will have negative inventory at the

end of the period, it will be penalized with its corresponding backlogging cost pi. However, the

standard model will only send the number of items it has in inventory to Installations 2, 3,... , N.

Since the standard model cannot satisfy all of the orders fully, it uses some demand allocation

policy to decide how much to send to each installation. Examples of such demand allocation

policies include: a) an apriori priority hierarchy that will meet demands in a greedy manner

in the order d12 , d 13 ,..., d1N; b) a policy that can attempt to balance shortfalls, allocating

inventory to minimize the resulting difference between inventories and basestock levels.

Extension to production capacities. Suppose we have are capacities c1 2 ,... , C1N en-

forcing that each order d1 < c1 . This is handled similarly to the case of no intermediate

backlogging. However, in this case we will also provide as input capacity constraints so that the

demand allocation policy cannot send more than ci items across arc (1, j) regardless of order

amount.

Extension to non-zero leadtimes. We now explain how to extend our model (4.1) - (4.3)

to include non-zero leadtimes. The two basic models that are the building blocks of any system

and the ones that are addressed extensively in past literature are the cases of series systems and

tree-like systems. In the case of a serial system with intermediate leadtimes, it is evident that

there is no substantial change between our model with zero leadtimes and that with non-zero

leadtimes, with the exception of having to keep better accounting of units that are yet to arrive

and units that have already arrived downstream and are ready for assembly into larger pieces.

In other words, in modeling a series system with non-zero leadtimes one has to make sure not

to assemble products that have been ordered but have not yet arrived due to leadtimes.

We now address the case of non-zero leadtimes in a tree-like system. For illustration purposes,
consider the three installation system in Figure 4-2, and suppose that there is a leadtime 113 = 1
on orders between Installations 1 and 3, and 123 = 0. If all installations follow (s, S) policies,
then Installation 3 will result in equal order quantities of material 1 and 2. However, because

113 = 1, material from Installation 1 will always arrive at Installation 3 one period after the



material 2 order, and we will always end up with a surplus of material 2 (and hence a holding

cost) at Installation 3. We model these types of systems as follows.

3 wft)

dt) 2

Figure 4-2: 3-Installation Setup

The first method involves having two different basestock parameters at Installation 3,

(s31 , S31) for orders from Installation 1 and (s32 , S32 ) for orders from Installation 2. This will

allow the flexibility of different order quantities from Installations 1 and 2 to compensate for

the different leadtimes 113 and l23. The downside of this approach is the increased complexity

of the model since now we are optimizing over an additional basestock parameter. A second

approach that one can use is to transform the assembly system into an equivalent series system

via the approach of Rosling (Rosling 1989) according to leadtime quantity. In our example, to

take into account that orders d13(t) will always arrive one period after d2 3 (t), we can model the

parallel system as a series system as shown in Figure 4-3. As mentioned earlier, a series system

can be modeled easily with our standard approach.

4.3 The Algorithms for Robust and Stochastic (s,S) Poli-

cies

4.3.1 Robust Algorithm

In this section, we propose an algorithm to solve Problem (4.5). We follow the approach

of (Bienstock and Ozbay 2008) of using a Bender's Decomposition type routine. We divide
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Figure 4-3: Parallel to series transformation.

Problem (4.5) into two parts: a decision maker's problem (DM) and the adversary's problem
(ADV). The (DM) problem is to choose the best possible (s, S) that minimizes the highest cost
Hl(s, S, w), when w E W and W = {w1 , w 2 ,..., W"} is a set of n possible demand realizations.
The (ADV) problem involves finding the demand realization w E P,,, (the original uncertainty
set) that maximizes U(s,S,w) given the current basestock parameters are (s, S). The generic
algorithm looks as follows (same as Generic Algorithm in (Bienstock and Ozbay 2008)):

Algorithm 4.1 Generic Algorithm. Initialize: W = { (p, y,..., t) E RISIXT}, L = 0,U = +oo

tolerance E > 0.

1. Decision Maker's Problem (DM). Let (s*, S*) and L be an optimal solution and the
objective value, respectively, of the problem:

L = minmaxfl(s,S,w), (s*,S*) = argminmaxfU(s,S,w).
s,S wEW s,S wEW

2. Adversarial Problem (ADV). Let W and U be the optimal solution and objective
value, respectively, of the problem:

U = max Ul(s*, S*, w), W = argmax fl(s*, S*, w).
WEPM WEP,,

3. Termination Test: If U - L < E, then EXIT.



4. Formulation Update: Otherwise, add W to W and return to Step 1.

We begin the algorithm by initializing W to contain only the demand vector corresponding

to mean historical demand pL. Then, we proceed to solve (DM), followed by (ADV), and either

terminate the algorithm or increase the number of elements in W. Note that in principle, Step 1

of the Algorithm looks like Problem (4.5) itself. However, it is in fact much easier. In (4.5), the

maximum is taken over a polyhedron of possible sink demand vectors, while in Algorithm 4.1,
the maximum is taken over a finite collection of possible realizations of sink demand vectors W.

Thus, if the set W is not too large, we can hope to be able to solve (DM) quickly. Observe that

|W| = number of iterations of the algorithm. From the mechanics of Bender's Decomposition,
it is reasonable to hope for convergence after a small number of iterations. In fact, convergence

after few iterations (~ 6) was observed in (Bienstock and Ozbay 2008), and we also observe

similar behavior.

Before proceeding, we would like to comment on the difficulty of each subproblem:

1. The presence of fixed order costs make both (DM) and (ADV) require integer variables.

The ordering constraint enforcing the (s,S) ordering rule (4.3) is not convex and further

contributes to the difficulty of (DM) and (ADV) problems. In one type of uncertainty set,
even without fixed-order costs and for a single echelon, (ADV) is shown to be NP-hard

(Ozbay 2006).

2. The optimal solution of (ADV) is not guaranteed to occur at the vertex of the original

uncertianty set P, (see Proposition 4.2). Otherwise, knowing that the optimal solution

occurs at the corner point of the uncertainty polyhedron could potentially lead to faster

heuristics.

3. One could attempt to solve (DM) as a mixed-integer optimization problem (MIP). How-

ever, we observed from numerical experiments that computational time for (DM) with a

single installation quickly increased with each iteration of the algorithm and thus with

the size of W. Additionally, we observed that with higher number of periods, T, the MIP

computation time of (DM) increased drastically. In fact, (Bienstock and Ozbay 2008)

reported similar large increases in computation time for MIP implementation of the Ad-



versarial Algorithm for their problem. This experience motivated the idea to look for

another approach.

Proposition 4.2 For a given (s, S) policy, the optimal solution to (ADV) is not guaranteed to

lie on a corner of the uncertainty polyhedron P,,.

Proof. Consider a simple single factory newsvendor problem with T = 2 periods, and costs

h = 1, p = 3, K = 2, c = .5. Suppose the policy is s = 1, S = 2. Let the demand uncertainty

polyhedron P,, consist simply of the space w E [0, 2]2. Given that we are forced to follow the

(s,S) policy, Table 4.1 summarizes the cost of the policy for each corner realization of demand.

Observe that in fact the highest cost occurs at (1.00001,0) - not a corner point of P,,. O

w(1) w(2) cost
0 0 7
2 0 8
0 2 5
2 2 6
1.0001 0 8.49995

Table 4.1: Costs for various demand realizations.

As a result of Proposition 4.2, we should not expect corner points to occur under more

complicated uncertainty descriptions and networks.

4.3.2 Simulated Annealing and the Robust Algorithm Implementa-

tion

Simulated annealing (SA) is a probabilistic metaheuristic and has had a long history of suc-

cessful implementations (Ingber 1993). In particular, it is known to be good, particularly

better than gradient based methods, in avoiding local optima. The optimality guarantee is

that for any given problem, the probability that the simulated annealing algorithm terminates



with the global optimal solution approaches 1 as the annealing schedule is increased to infinity

(Bertsimas and Tsitsiklis 1993). It is known that in practice simulated annealing can give good

solutions with reasonable running time.

Recall that in (DM) we are computing a min max where the max is taken over W =

{w 1 ,... ,w'}. The long computation time associated with a MIP formulation led us to be-

lieve that this may not be the best approach. Observe that once we fix (s, S) and W, the cost

costy,(s, S) = max (II(s, S, w'),. . ., U(s, S, w')) can be computed quickly and in parallel.

Since the shape of the cost function min max 1l(s, S, w) has many local minima, we decided
s,S wEW

to use simulated annealing and not a gradient-descent based approach as the subroutine in

Algorithm 4.1. In fact, we found that simulated annealing found better solutions in comparable

time as the gradient-descent approach, which quickly got stuck at local minima. As mentioned

earlier, simulated annealing is a probabilistic algorithm and is not guaranteed to converge in

polynomial time to an optimal solution. Thus, in order to increase the probability of obtaining

a good solution in reasonable time, we used the following rules which experimentally drastically

improved both the convergence properties and the cost estimates:

1. For all of our experiments (up to network of 8 installations), we used up to 300 seconds

per SA run and we found that this was more than enough to guarantee a good solution.

2. If we could solve both (DM) and (ADV) to optimality, then clearly, at each iteration

we should have cost(DM) cost(ADV) or L < U from the context of Algorithm 4.1.

However, because the SA algorithm may not solve to optimality, the inequality might be

reversed and we re-run the SA subroutine from a random starting point until we would

have a solution such that cost(DM) cost(ADV).

3. Choosing good starting points was instrumental to making SA more effective. For our

starting points - we used the optimal solution from the previous iteration. For example,
in the case of (DM), we use as the starting point in iteration i + 1 the optimal solutions

from iteration i: (so, So) = (s*, S*). In the case of (ADV), we used as the starting point

the arg max produced from the preceding iteration of (DM) (wM = max e(s*, S*, w)).
wEW

4. In order to solve (ADV), we maximize over the demand uncertainty polyhedron P,,. To

do this, we include in the objective function a penalty term that contains the polyhedral



uncertainty constraints and a penalty multiplier. For example, if our demand uncertainty

set P,, is of the form Aw < b. Then, we incorporate into the objective function a term

M - (b - Aw) where M is a large number.

4.3.3 Stochastic Algorithm

In order to compute the stochastic (s,S) policy, we formulate and solve the corresponding

stochastic problem as follows. First, instead of specifying a polyhedral uncertainty set as we

did in the robust case, we assume a normal distribution and generate M random demand vec-

tors (w 1 , w 2 , .... , wM) ~ N(p, o-) where p-t, o- are the mean and standard deviation, respectively,
of the corresponding sink demand. In our experiments we took M = 1000 because we ob-

served that generating more than this amount did not substantially change the solution. We

approximate problem (4.6) by solving the problem of minimizing the sample average objective

min 1 E 1 1oc U(s, S, w') using simulated annealing. Also, we use the same starting point as

in Algorithm 1 - optimal (s, S) assuming constant demand with w(t) = p, which was generated

by (DM) in the first step of the Algorithm 4.1.

4.4 Numerical results

In this section, we present numerical results. The section is outlined as follows: Section 4.4.1

discusses the effectiveness of simulated annealing. The networks used in the study are presented

in Section 4.4.2. Running times are presented in 4.4.3, and the computational study of ROB

vs. STO performance is presented in Section 4.4.4.

Going forward, we denote by ROB the robust policy computed by solving Problem (4.5) using

Algorithm 4.1 subject to demands in P,, with (pt = 100, a = 20). Analogously, we denote by

STO the stochastic policy computed by solving, using the aforementioned stochastic approach,
Problem (4.6) assuming demand is i.i.d. and normally distributed with (p = 100, o = 20).



4.4.1 Effectiveness of Simulated Annealing

In this section, we illustrate the effectiveness of simulated annealing in ROB and STO by

comparing to an enumeration approach.

Comparison of SA to enumeration approach for the robust model. In order to

compare the effectiveness of Algorithm 4.1, we consider a small multiechelon network with

J = 2, T = 10, and polyhedral uncertainty P,, = {(w(1), ... , w(10)) E [80,120] x ... x

[80, 120]} and solve it both with Algorithm 4.1 and with an enumeration approach. For the

enumeration approach, we enumerate all of the possible corner points of [80,120]1o and use this

as a set of possible demand realizations, D = { corner point of [80, 120]1o}. Note, this is still an

approximation to the polyhedron P,, especially since we know that the optimum does not have

to occur at a corner point from Proposition 4.2, but it is a reasonable approximation. Next we

create a grid of possible values of basestock parameters 50 < si, Si, s 2, S2  150 with increment

of 2.5. For each (s, S) combination from the grid (~ 0.75 million combinations) we evaluate the

corresponding maximum cost max Il(s, S, w).
WED

Figure 4-4 shows the histogram of costs corresponding to each (s, S) combination from

the discretization. This particular enumeration scheme took about 5 hours to run, and we

compare in Figure 4-4 the histogram of costs produced from the enumeration scheme with the

cost of the policy obtained by Algorithm 4.1, which in contrast took about 3 minutes to run.

The solution produced by our algorithm is actually 0.02% better than the best one found by

the enumeration scheme, probably due to discretization error. Clearly the number of corner

points grows exponentially with T and the number of (s, S) values grows exponentially with

the number of installations. Thus, it would be computationally intractable to enumerate even

a slightly larger problem, i.e., with N = 3 installations or T = 15 periods.

Comparison of SA to enumeration approach for the stochastic model. The purpose

of this experiment is to measure the effectiveness of SA as a subroutine for computing the

simulation based stochastic heuristic. To achieve this, we generated a set of random normally

distributed demands (N(100, 20)). Then, we solved for the optimal (s,S) policy for the same

small multiechelon network with J = 2, T = 10 both by minimizing the sample average via

SA and by a similar enumeration of basestocks (s, S). Figure 4-5 shows the histogram of costs

produced by all of the (s, S) from the enumeration, as well as cost of the policy obtained by SA.
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Figure 4-4: Comparison of enumeration scheme and SA for the robust model.
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Figure 4-5: Comparison of enumeration scheme and SA for the stochastic model.

SA in a matter of minutes produced a policy that is 0.01% better than the best one found by
the enumeration approach.

4.4.2 The Networks

A three-echelon station. Figure 4-6 depicts a three installation system, with a single sink

at node 3 which orders material from nodes 1, 2.

2000[-

1500-

Note, since orders placed by node 3 are



determined purely by its outside demand w3 , current inventory, and basestock parameters

(s3,S 3 ), the amount it orders from 1,2 are equal, d13 (t) = d23 (t). We assume that demands

(w31 , w3 2 , - , WrT) are i.i.d. with mean 100 and standard deviation 20. The number of periods

we consider is T = 15. The order and inventory/backlog costs are summarized in Table 4.2.

A five-echelon station. Figure 4-7 depicts a five installation system containing two sink

nodes: 4 and 5. For the sake of simplicity, we again assume that the period demands at sinks

4 and 5 are i.i.d. each with mean 100 and standard deviation 20. The number of periods we

consider is T = 10. The order and inventory/backlog costs are summarized in Table 4.2. Note,
that inventory costs - both holding and penalty increase downstream.

An eight-echelon station. Figure 4-8 depicts an eight installation system. This time we

have three sink nodes 4,7,8 with node 4 serving as both an intermediate node to 7 and a sink

node with external demands. We again assume that the period demands at sinks 4, 7, and 8
are i.i.d. each with mean 100 and standard deviation 20. The number of periods we consider is

T=10. The order and inventory/backlog costs are summarized in Table 4.2.
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Figure 4-6: 3-Installation Setup

4.4.3 Running Time of the Algorithms

We found the run time of the robust algorithm to be practically reasonable. It takes approxi-

mately 1.5 hours for networks of size J = 8 and approximately ten minutes for smaller networks

(see Table 4.3). Similarly, for the case of the stochastic algorithm, the 3 and 5-server networks

were on the order of twenty minutes, and almost 2 hours to solve for the 8-server case.
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Figure 4-8: 8-Installation Setup

4.4.4 Performance of Robust and Stochastic (s,S) Policies

In this section we study the relative performance of ROB vs. STO. The questions we seek to

address are:

" mean,variance, and tail analysis (mean of highest 5%) of robust and stochastic solutions,

" worst case performance of robust and stochastic solutions,

* regimes when robust is more favorable than stochastic approach, and vice-versa,
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Network size Installation h p c K
1 6 10 1 10

3-installation 2 8 15 3 10
3 10 28 4 25

1 6 10 1 10
2 8 15 2 10

5-installation 3 8 15 2 10
4 14 30 10 10
5 15 35 10 25

1 6 10 1 10
2 8 15 2 10
3 8 15 2 10

8-installation 5 16 28 6 25
6 16 28 2 25
7 25 45 8 40
8 30 55 8 40

Table 4.2: Cost parameters for the network experiments.

network size - sinks T ROB runtime (hours) STO runtime (hours)
3 1 15 0.16 0.35
5 2 10 0.44 0.41
8 3 10 1.61 1.89

Table 4.3: Run time results (in hours).

o the robustness of both methods with respect to changes in probability distributions.

We next present the computational studies to compare the performance of ROB and STO

in various scenarios.

Min-max comparison with polyhedral uncertainty. The purpose of this set of exper-

iments is to measure the effectiveness of ROB vs. STO with respect to the worst case demand

realization. This is especially relevant for highly risk-averse planners. To accomplish this, we

took the corresponding policies ROB and STO of each of the network problems and computed

the worst-case cost subject to demand in polyhedra of varying size P, with & = {o, 2o-, 3o-}.

As mentioned earlier, we use SA to compute the worst-case cost. These results are summarized



in Table 4.4.

From this table, it is clear that ROB offers consistently better worst case protection than
STO. When compared on P,,,, the uncertainty polyhedron initially used to produce the robust
policy, ROB has at least 12% lower cost for all three networks considered. In addition, as
we vary the size of the polyhedral uncertainty, ROB continues to have lower cost than STO,
throughout.

P,,_ P,2o, P,3

STO 20,929 27,414 34,536
3-installation ROB 18,165 26,293 33, 159

STO-ROB 13.2% 4.1% 4.0%STO O

STO 41,929 52,763 69,522
5-installation ROB 34,773 47,372 58,272

STO -ROB 17.1% 10.2% 16.2%1STOO
STO 90,064 113,827 148,033

8-installation ROB 78,508 107,181 129,937
STO-R OB 12.8% 5.8% 12.2%

Table 4.4: Max cost comparison for polyhedral uncertainty of varying size.

Discrete distribution of demand. The purpose of this set of experiments is to measure
performance of ROB vs. STO when actual demand is drawn from a discrete random variable
with the same t = 100 and a = 20. In situations when actual demand is either high or low,
discrete([p, a) random variable may be more appropriate for modeling demand than N(p, a). In
doing so, we record: mean cost, standard deviation of cost, and the average of 5% highest costs.
The results are summarized in Table 4.5 and in Figure 4-9.

Table 4.5 shows that ROB offers better risk protection in all areas across the three networks.
In particular, ROB has lower average cost by approximately 4%. In addition, ROB performance
has about 70% lower standard deviation than that of STO. STO also has heavier 5%-tails by
the order of 10%. Figure 4-9 shows a histogram of the ROB and STO policies costs for the 5-
installation network when realized demand is drawn from discrete(t, a) distribution. This figure
clearly demonstrates that ROB has a smaller mean and is distributed more tightly around its
mean.



Table 4.5: Comparison of ROB and STO under discrete(I, a) random
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Figure 4-9: 5-installation: ROB vs. STO - discrete realization

Correlated demands. The goal of this set of experiments is to determine the effect that

correlation in the realized demand has on comparative performance of ROB and STO. In this

set of experiments, we tested the ROB and STO policies on demand drawn from N(p, a) with

temporal serial correlation of p = 50%. In other words, we model demands w(1) N(t, o-)

and w(t) = p + p - (w(t - 1) - p) + 1- p2 - N(0,u) for t = 2,...,T. Then w(t) has mean L

and standard deviation a and corr(w(t), w(t - 1)) = p for all t. Note, that for networks with

mean std. 5% tail
STO 18,794 782 20,371

3-installation ROB 17,988 156 18,244
STO-ROB 4.3% 79.9% 10.4%
STO 36,719 1,637 40,045

5-installation ROB 34,255 384 34,814
STO-ROB 6.7% 76.5% 13.1%
STO 78,824 3,240 85,683

8-installation ROB 77,119 1,054 79,280
STO-ROB 2.1% 67.4% 7.5%

_1 T2I II

.. d I |l lll| illa........ ,N 1 1



multiple sinks, we assume that the sinks are not correlated. We did this for both positive and
negative correlation, and results are presented in Table 4.6 and Figures 4-10 and 4-11.

Positive (+50%) Correl Negative (-50%) Correl
mean std. 5% tail mean std. 5% tail

STO 17,583 1,870 22,596 17,594 1,339 20,742
3-installation ROB 17,687 1,193 21,024 17, 707 1,084 20,411

STO-ROB -0.6% 36.2% 7.0% -0.6% 19.1% 1.6%STOO

STO 35,076 3,189 43, 140 35,217 2,075 40,198
5-installation ROB 35,569 1,443 39, 718 35,564 1,141 38,445

STO-ROB -1.4% 54.7% 7.9% -1.0% 45.0% 4.4%
STO 75,255 6,237 90,990 75, 186 3,827 84,146

8-installation ROB 75, 512 3,471 84, 757 75,496 2, 788 82,370
STO-ROB -0.3% 44.3% 6.9% -0.4% 27.2% 2.1%STOO _

Table 4.6: Comparison of robust and stochastic policies under correlated realized demands.

From the experiments, we see that with respect to the mean, ROB underperforms STO by
~ 0.6% across the board, though the exact figure depends on the particular network. However,

for all three networks at hand, ROB exhibits much better tail behavior. In particular, for the
case of positive correlation, the standard deviation of ROB is ~ 40% lower than STO and 7.0%
lower tails. This is is also well illustrated in Figure 4-10 where we see that ROB drops off
sharply, while STO has a fatter tail. An organization that is concerned with tail protection
might thus prefer ROB to STO. In the case of negatively correlated demand, ROB exhibits
similar, albeit slightly lower, performance characteristics - - 30% lower standard deviation and

2.2% lower tails.

Intuitively, the reason ROB-STO outperformance is more pronounced in the positive corre-
lation case is that the total inventory over time has a wider distribution and is more likely to
take extreme values. On the other hand, in the presence of negative correlation, a high demand
in one period is likely to be coupled with a low demand in the following period and hence total
demand is more centered around its average value.

Continuous distribution of demands: Unimodal cases. The purpose of this set of
experiments is to investigate the performance of ROB vs. STO when realized demand comes
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from a continuous unimodal distribution that is similar to the original demand distribution

assumed by STO (N(p, o-)). We draw demands from three such distributions - Normal(J, a),
Lognormal(p, a), and Gamma(p, o-) and measure the performance of ROB and STO. The results

are presented in Table 4.7 and Figure 4-12.

norm (pL, a) lognorm(pt, a) gamma(,, a-)
mean std. 5% tail mean std. 5% tail mean std. 5% tail

STO 17,597 1,324 20,750 17,615 1,502 21,239 17,619 1,429 21,030
3-installation ROB 17,707 941 20,016 17,901 1,124 20,777 17,842 1051 20,440

STO-ROB -0.6% 29.0% 3.5% -1.6% 25.4% 2.4% -1.3% 26.7% 2.8%
STO 35,192 2,134 40,081 35,085 2,377 40,672 35,130 2,298 40,497

5-installation ROB 35,561 1,090 38,301 35,984 1,415 39,594 35,857 1,298 39,166
STO-ROB -1.0% 48.8% 4.4% -2.56% 40.4% 2.6% -2.06% 43.4% 3.2%
STO 75,184 4,109 84,687 75,020 4,613 85,975 75,113 4,441 85,446

8-installation ROB 75478 2547 81,542 76,064 3,075 83,712 75,921 2,887 82,984
STO-ROB -0.4% 38.0% 3.7% -1.4% 33.3% 2.6% -1.1% 35.0% 2.9%

Table 4.7: Comparison of robust and stochastic policies under random continuous demands.

The results indicate several interesting behaviors. First, we observe that for all three net-

works, ROB has higher mean costs than STO. However, this is expected since STO was trained

to minimize the sample mean on a set of demands drawn from N(pL, a). However, ROB exhibits
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better standard deviation behavior than STO with roughly 35% lower values across the board,
and thus, also lower tail costs varying 2.4 - 4.4%. Thus, while ROB has slightly worse mean
behavior, it exhibits better second moment and tail behavior.

An interesting observation is that STO performs slightly worse when simulated with Normal,
than with Lognormal or Gamma. This is somewhat counterintuitive since we trained the STO
on Normal demands, and would expect STO-ROB outperformance to be highest on Normal
demands. However, note that from Table 4.7 we see that this is happening not because STO
is performing better, but because ROB costs are higher for Lognormal and Gamma demands,
and this is driving the outperformance. The main reason that is causing ROB to perform
worse on Lognormal or Gamma demands than compared to Normal demands is that robust
policies inherently assume and are built upon the assumption of symmetric uncertainty. In
fact, in our uncertainty sets, we did not model constraints to capture notions such as "there
is more uncertainty to the right of the mean than to the left." While the Normal distribution
is symmetric, Lognormal and Gamma distributions have positive skewness and hence increase
the cost of ROB higher relative to STO. Thus, the modeler must keep in mind that robust
policies are best suited for symmetric distributions, and may have worse performance if the
true distribution is asymmetric. However, if this is known, we can update the uncertainty set
accordingly as in Chen et al. (Chen, Sim, and Sun 2007).

Continuous distribution of demands: Multi-modal cases. The purpose of this set of

experiments is to measure the relative performance of ROB vs. STO when the actual demand is
realized by a continuous distribution that has qualitatively different properties from the original
distribution assumed by STO (N(pa, a)). In particular, STO assumed a Normal distribution of
demand, which is unimodal. The goal of these experiments is to determine whether this turns
out to be a key assumption for good STO performance. For our purposes, we used uniform
and mixture of two normal distributions to simulate realized demands maintaining that the
mean and standard deviation of the realized demands are same as in the original assumption -
(p = 100, o = 20). We then observed the performance of both ROB and STO policies on these

demands, and the results are presented in Table 4.8.

We observe very good outperformance of ROB. In the case of mixture of normals, we find
that the robust policy beats the stochastic one in mean, standard deviation, and in tail behavior.

While the same is true for the uniform distribution, the outperformance in terms of mean is not
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Figure 4-12: 8-installation: ROB vs. STO - Gamma(p, u) realization.

Table 4.8: Comparison of robust and stochastic policies under multimodal demands.

as strong. Most importantly, this behavior is consistent across three types of networks. This
is in contrast to the experiment in Table 4.7 where we found that robust performed worse in
mean but had better standard deviation and tail behavior. Intuitively, this makes sense because
in a way, Lognormal and Gamma distributions are very close to the Normal. Moreover, they
are not symmetric which handicaps the robust approach. However, the mixture of two normal
distributions and uniform distributions are substantially different from the normal distribution,
and that is causing problems for the stochastic policy.

Mixture of Two Normals Uniform
mean std. 5% tail mean std. 5% tail

STO 18,216 1,092 20,653 18,001 1,154 20,525
3-installation ROB 17,839 685 19,397 17,883 712 19,444

STO-ROB 2.1% 37.3% 6.1% 0.7% 38.3% 5.3%
STO 35 940 1,900 40,040 35,581 1,945 39,828

5-installation ROB 35,314 775 37,137 35,509 779 37,284
STO-ROB 1.7% 59.2% 7.3% 0.2% 59.9% 6.4%
STO 77,145 3,722 85,460 76,451 3,755 84,740

8-installation ROB 76,318 2,009 80,873 76,204 2,048 80,765
STO-ROB 1.1% 46.0% 5.4% 0.3% 45.5% 4.7%



Uncertainty in o-. The purpose of this set of experiments is to measure the effect uncer-

tainty in standard deviation of demands has on ROB and STO performance. STO assumed that
demand is i.i.d. drawn from N(p = 100, o- = 20), while ROB assumed that demand lies in P,,
as defined by (4.7)-(4.8). We denote the realized standard deviation of demand by &. In these

experiments, we draw demand from Gamma distribution with mean and realized standard de-

viation (p, &) where & varies & E {.50-,.75-,..., 2o-}. Then, we record the performance of ROB

and STO on demands drawn from Gamma distribution with mean p and standard deviation &.

Table 4.9 shows the performance of ROB and STO for the experiments described above

with & = {0.5a, a, 2u}. Figure 4-13 is a plot of the relative performance metrics: % difference in

mean, % difference in standard deviation, and % difference in 5%-tail between ROB and STO.
For instance, from the figure we see that when realized std & = 1.25a, ROB has 35% lower

standard deviation, 4% smaller 5%-tail, and the same mean as STO.

gamma(p., 0.5c-) gamma(pu, o-) gamma(I, 2o-)
mean std. 5% tail mean std. 5% tail mean std. 5% tail

STO 31417 1003 33723 35130 2298 40497 43469 5194 55751
5-installation ROB 34026 278. 34764 35857 1298 39166 42179 4094 52327

STO-ROB -8.3% 72.2% -3.1% -2.1% 43.4% 3.2% 3.00% 21.1% 6.1%STO OB _

Table 4.9: Performance of robust and stochastic policies as a function of realized demand a.

The graph suggests three regimes. First, when the realized standard deviation turns out to be

greater than 1.25o-, ROB outperforms STO both in mean cost and in having a significantly lower

standard deviation (~ 25%) of costs, and lower tails (= 5%). In the regime .75- < & < 1.250-,
while ROB has lower standard deviation (~ 40%) and tail costs (~ 3%), it has higher average

costs than STO (a 3%). The final case when & < .75o-, ROB has significantly lower standard

deviation of cost (~ 60%). However, ROB has worse average cost performance (~ 5%) and has

slightly worse tail performance (~ 1.5%) than STO. Thus, in the first two scenarios, it may

be advantageous to implement the robust policy, while in the scenario when & turns out to be

lower than o, the robust policy is too conservative.

Also, observe from Table 4.9 that when demand uncertainty is lower than expected, and ROB

performs comparatively worse than STO, the mean cost for each is about $32,000. However,
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Figure 4-13: Relative % performance of ROB vs. STO as a function of realized 5.

when demand uncertainty is higher than expected, and ROB is more beneficial than STO,

the mean cost is about $42,000 or 30% higher than in the previous scenario. Hence, we infer

that ROB performs better than STO particularly in regimes that are higher cost for the user.

These results are not surprising since we expect ROB to be relatively less sensitive to larger

than expected demand variance since it inherently works by protecting us from corner points,

whereas STO works by protecting us from average outcomes. Similarly, when demand variance

shrinks, demand realizes closer to the mean, and this is relatively good for STO.

4.5 Conclusion

In this chapter, we have presented an algorithm for computing (s,S) policies in multiechelon

supply chains based on robust and stochastic optimization. Our algorithm is designed to han-

dle a broad class of network topologies, uncertainty sets, and cost structures. The algorithm

computes (s,S) policies effectively, and thus makes it a reasonable tool for use in practice.

Additionally, we compared the performance of (s,S) policy ROB to STO when STO assumes

the normal distribution but the actual distribution can be different. We summarize the key

ROB-STO performance insights in Table 4.10. We note that these insights are consistent across
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all of the networks presented. The name inside the box indicates which policy performs better

across all networks in the given category for the particular set of realized demands.

actual demand distribution mean std. 5% tail]
Discrete ROB ROB ROB
Positively correlated STO ROB ROB
Negatively correlated STO ROB ROB
Unimodal continuous STO ROB ROB
Multi-modal continous ROB ROB ROB
o- higher than expected ROB ROB ROB
o- lower than expected STO ROB same

IMin-max objective IIROB iNA NA

Table 4.10: Key ROB-STO relative performance insights.

Table 4.10 suggests encouraging results for outperformance of the robust policy compared

to the stochastic one across a variety of networks. Particularly in the area of standard devia-

tion and tail behavior, the robust policy performs significantly better than the stochastic one.

Additionally, we find that the stochastic policy performs worse than the robust policy when the

realized distribution is substantially different from the assumed one.
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Chapter 5

Concluding Remarks

In this thesis, we developed new approaches for incorporating uncertainty into optimization, as
well as compared existing approaches to gain insights into their relative performance.

In Chapters 2 and 3, we worked in the context of queuing systems. Using ideas from
robust optimization we developed a new method for conducting performance analysis of queueing
networks. The essence of our approach lies in replacing stochastic primitives of the underlying
queueing system with deterministic quantities that satisfy the implications of some probability
laws. These implications take the form of linear constraints. As a result, out approach allows us
to formulate questions in performance analysis of stochastic queueing systems as deterministic,
tractable optimization problems.

We demonstrated our approach on three types of queueing systems: Tandem Single Class
queueing networks, Multiclass Single Server queueing systems, and m parallel server system
(GI/GI/m). Using our approach, we have managed to derive explicit upper bounds on some
performance measures such as sojourn times and queue lengths. We also showed that the bounds
implied by the Law of the Iterated Logarithm are applicable for the underlying stochastic queue-
ing system leading to explicit and non-asymptotic performance bounds on the same performance
measures. We are not aware of any other method of performance analysis which can provide
similar performance bounds in queueing models of similar generality.

In Chapter 4, we addressed the question of computing (sS) policies in multiechelon supply

chains based on robust (ROB) and stochastic (STO) optimization. Our algorithms are designed



to handle a broad class of network topologies, uncertainty sets, and cost structures. The al-

gorithms exhibit empirically practical running time. Extensive numerical experiments suggest

that both the ROB and STO approaches have their benefits. In particular, we observed that

the ROB policy always has better standard deviation and tail behavior of costs. Additionally,

the average performance of STO is moderately better than that of ROB. In fact, in some cases

when the realized distribution is substantially different from the normal assumption in the STO

approach, ROB has lower average cost than STO. Overall, this research suggests that a little

(if any) sacrifice in average performance can actually provide robustness and better downside

protection.

Our thesis naturally leads to two research paths. The first path lies in strengthening our

performance analysis approach and extending it to other areas. In particular, it would be

interesting to extend our approach to more accurately capture performance measures such as

waiting times and busy periods such that all of the bounds obtained from the robust model

agree with existing stochastic results. Additionally, it may be worthwhile to investigate new

probability laws or uncertainty set construction that result in a more tight analysis.

With the recent connection established between certain risk measures and robust optimiza-

tion, it is perhaps not surprising that our robust approach yielded results and bounds that are

consistent with traditional stochastic analysis. In essence, the spirit of our approach involves

analyzing complex stochastic systems by translating them to tractable deterministic (robust)

optimization problems in a way such that insights and bounds obtained for the deterministic

problems transfer directly to the underlying stochastic systems. As a result, it would be in-

teresting to extend the "spirit of our approach" to problems in other areas including finance,

inventory theory, and other stochastic optimization problems.



Appendix A

Technical Results

In this section we establish some preliminary technical results. Using 4 as defined by (3.2), we

let U(x) = -ax + 2b#(x) + c for some positive constants a, b, c satisfying

b 2- > e2e (A.1)
a

Lemma A.1 U(x) is strictly concave for x > ee

Proof.

9U(X) -a + b ln ln x b 1
Ox x Inx VzInIn7

&92U(X) I~'~l- 1 1 
~X nn2- + (ln nx)-x)2 =nnb(z-I (In In x)- + ( n (- X

+b( - (ln z) (nlnz)~ + (Inx)~(- )(xlnln)-( +Inlnx)I
x 2 n n x

= b-( )(ln In x) - (ln ln x))

X 2 In X
< 0 since all three terms on RHS above are negative for x > ee



Lemma A.2 Assuming (A.1) and ee > (c/b)2 ,

U(x) < 0 V x > (18b2 /a 2 ) In ln(3b/a).

Proof. Since (18b2 /a 2 ) In ln(3b/a) > ee, throughout the proof we restrict ourselves to the domain

x > ee. Since in addition x > (c/b)2, we have b4(x) > bvfz > c. In this range -ax+2b4(x)+c <

-ax + 3b4(x) = -ax + 3bv/x In In x. This quantity is less than zero provided

1 3b z
(In n a

It is easy to check that x/ In In x is a strictly increasing function with limx,, (x/ In in x) = 00.

Let xO be the unique solution of x/ In In x = a 2 on x > ee. We claim that xO < 2a 2 In In a. The

assertion of the lemma follows from this bound. Let A = 2a 2 In In a. Then

A 2a2 In In a
in in A =n(2In a + In(3) a + In 2)

l2a in a~n2
> 2a 2 Inna since In a > In(3) a and Ina > In2
- ln(4 In a)

> 2a 2 nna since Ina > ln(b/a) > 2e > 4.
- 2In(ln a)

C2.
= a2

This implies xO < A and the proof is complete.

Proposition A.3 Under the assumption (A.1)

sup U(x) 5 7(b2 /a) In ln(b/a) + c.
X>O

Proof. Since a > 0, then the supremum in supx>o U(x) is achieved. Let x* be any value achieving

maxx;-o U(x). First suppose 0 < x* < e'. It follows from the definition of 4 in (3.2) that 4(x*) =

1 and thus U(x*) = -ax*+2b+c. Using 0 < x* < ee and assumption (A.1), it is straightforward

to check that U(x*) is indeed upper bounded from above by 7(b2/a) In ln(b/a) + c. Next, we

consider the case x* = ee, and using the fact that a > 0, we obtain U(x*) < 2b - Vee In ln(ee) + c.
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It is again straightforward to check that the aforementioned bound is upper bounded from above

by 7(b 2 /a) In ln(b/a) + c.

We now consider the case x* > e'. By Lemma A.1, x* is the unique point satisfying

X*) = 0, if it exists. The remainder of the proof is devoted to the final case where we obtain

e9U(x*) b(Q' + In ln x*)
0 -a+ I

(9* -zx* In In x*

Continuing further, (A.2) implies

x* Inln x* b ,
lnlnx* + 1 aIn x*

Note

ln In x* - ^

2ln < a 2 since In ln x* >
2 In In z* In x*

for x > ee

It is easy to check that x/ In In x is a strictly increasing function for x > ee and limme (x/ In In x) =

oo. (A.1) implies that there exist unique Xmin and xmax satisfying

Xmin 2

In lnXmin
Xmax _ 2

2 In in xmax

The monotonicity of x/ In In x implies xmin 5 X* < Xmax. In order to complete the proof of the

proposition, we will first state and prove Lemmas A.4 and A.5.

Lemma A.4 Xmin ;> a2 In ln a and Xmax 4a2 In In a.

Proof. Let B1 = a 2 In In a. Then

B1

in In B1

a 2 InIna
In ln(a 2 In In a)
a 2 in in a

< InIna since In Ina > 1 for a > e2e
In In a

101

(A.2)

(A.3)



= a2

Thus since is increasing for x > ee, we have xmis > B 1 and the first assertion is established.

Let B2 = 4a 2 In In a. Then

B 2

2 in ln B2

4a 2 In In a
2 In ln(4a 2 in In a)

4a 2 Inina

2 ln(2 In a + In(3) a + In 4)
4a2 In ln a

- 2 n(4 In a)
since In a > In (3 a and In a > In 4

4a 2 in in a
> 4an Ina since In a > 2e > 4.

- 4ln(Ina)
2=a.

Thus, again since x/ In in x is increasing for x > ee, then the second assertion follows.

Lemma A.4 and xmn 5 x* Xmax imply

a2 lnna < x* < 4a2 In ln a.

Lemma A.5 /zmax Inin x max < 4a In In a.

Proof.

Xmax ln In Xmax < ~(4a2 Inln a) Inml (4a2n ln a) by Lemma A.4

=a/4nn ln(2naln(s) a+n4)

< a /4 inina in (4lna) since lna > n(3) a and Ina > In(e 2 e) > In4

< aV4 In In a\/2 ln ln a since In a > 4

and the lemma follows from the last step.
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(A.4)



We now complete the proof of Proposition A.3. We have

U(x*) -ax*+2bx*lnin x*+c

< -axmin + 2bV/zax In InX max + C since Xmin z* < Xmax

< -axmin + 8ba In In a + c by Lemma A.5

< -aa 2 ln ln a +8ba ln ln a + c by Lemma A.4

= 7(b2 /a) In ln(b/a) + c.
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