
High-performance Computing with

PetaBricks and Julia

by

Yee Lok Wong

B.S., Duke University (2006)

MASSACHUSETTS INSTITUTE
OF TECHN0LOGY

SEP 0 2 2011

L I BRA R I ES
Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES

June 2011

@ Yee Lok Wong, 2011. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

A uth or
Department of Mathematics

A April 28, 2011

C ertified by

Alan Edelman
Professor of Applied Mathematics

Thesis Supervisor

Accepted by
Michel Goemans

Chairman, Applied Mathematics Committee

2

High-performance Computing with

PetaBricks and Julia

by

Yee Lok Wong

Submitted to the Department of Mathematics
on April 28, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We present two recent parallel programming languages, PetaBricks and Julia, and
demonstrate how we can use these two languages to re-examine classic numerical
algorithms in new approaches for high-performance computing.

PetaBricks is an implicitly parallel language that allows programmers to naturally
express algorithmic choice explicitly at the language level. The PetaBricks compiler
and autotuner is not only able to compose a complex program using fine-grained al-
gorithmic choices but also find the right choice for many other parameters including
data distribution, parallelization and blocking. We re-examine classic numerical algo-
rithms with PetaBricks, and show that the PetaBricks autotuner produces nontrivial
optimal algorithms that are difficult to reproduce otherwise. We also introduce the
notion of variable accuracy algorithms, in which accuracy measures and requirements
are supplied by the programmer and incorporated by the PetaBricks compiler and
autotuner in the search of optimal algorithms. We demonstrate the accuracy/perfor-
mance trade-offs by benchmark problems, and show how nontrivial algorithmic choice
can change with different user accuracy requirements.

Julia is a new high-level programming language that aims at achieving perfor-
mance comparable to traditional compiled languages, while remaining easy to pro-
gram and offering flexible parallelism without extensive effort. We describe a problem
in large-scale terrain data analysis which motivates the use of Julia. We perform clas-
sical filtering techniques to study the terrain profiles and propose a measure based on
Singular Value Decomposition (SVD) to quantify terrain surface roughness. We then
give a brief tutorial of Julia and present results of our serial blocked SVD algorithm
implementation in Julia. We also describe the parallel implementation of our SVD
algorithm and discuss how flexible parallelism can be further explored using Julia.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics

4

Acknowledgements

Throughout my graduate studies, I have been very fortunate to have met many won-

derful people. Without their kind support and help, this thesis would not have been

possible.

First and foremost, I would like to thank my advisor Alan Edelman for intro-

ducing me to the world of high-performance computing. His enthusiasm, energy and

creativity in approaching problems was a constant source of motivation. I am very

grateful also for his academic and moral support throughout my time in MIT, and

particularly during some of my most difficult time here.

I would also like to express my gratitude to Saman Amarasinghe, who has provided

me with great advice for the PetaBricks project. Thanks goes to the other thesis

committee member Gilbert Strang, who offered helpful suggestions for this thesis

work.

Special thanks goes to the PetaBricks team, especially Jason Ansel and Cy Chan

for the collaboration and inspiring conversations about the PetaBricks project. The

Julia team has also been extremely helpful for my work. I owe a special thanks to

Jeff Bezanson for implementing a lot of our ideas in Julia in addition to his already

long list of tasks. I would also like to thank Martin Bazant, Chris Rycroft and Ken

Kamrin for their help and guidance for my early work in MIT.

On the non-academic side, I am extremely grateful to my friends in and outside

of MIT. Siu-Chung Yau has provided strong support by his humiliating remarks over

our countless phone conversations and by his constant reminder of what my "greatest

achievement" is. He also provided motivation by showing by example how bad things

could have gone if I had pushed my work and thesis writing to the very last minute.

Chloe Kung has been a great friend, with whom I could always have a good laugh

and not worry about the stress of work back at school. She also made sure I got

real food by going around eating with me every time I went home for Christmas.

Annalisa Pawlosky is the most supportive person in MIT, and she believed in my

ability probably more than I do myself. She was always there when I needed a friend

to talk to, and I will never forget the many stories that she has shared with me.

Throughout my five years in MIT, the Warehouse graduate dorm has been my

home. I would like to extend my heartfelt gratitude to my previous and current

housemasters, Lori and Steve Lerman, Anne Carney and John Ochsendorf, for making

the Warehouse such a comfortable and warm home for my graduate school life. I must

also thank the members of the Warehouse dorm government, especially Allen Hsu,

for being great friends throughout these years. I would also like to thank my friends

in my second home a.k.a. the Math Department, Linan Chen, Lu Wang, Carol Xia

Hua, Ramis Movassagh and Jiawei Chiu, for the inspiring conversations and great

times we had in our office.

I must also thank friends of mine outside of MIT who have continued to be a part

of my life: Wai Yip Kong, Leo Lam, Samuel Ng, Siyin Tan, Tina Chang, Edward

Chan, Gina Gu, Henry Lam, Jacky Chang, LeVan Nguyen, Nozomi Yamaki and

Hiroaki Fukada.

Finally and most importantly, I thank my brother and parents for their continuous

support and encouragement since I came to the States for my undergraduate studies

nine years ago. The phone conversations with my parents have been a refreshing

source of comfort, because talking to my parents was one of the very limited times

when I felt smart since I came to MIT. Since the end of my second year here in

MIT, my mom has been asking me what I actually do in school without classes and

exams, and my answers never seemed to really convince her that I was indeed doing

something. Fortunately, I can now give her a better answer: I wrote this thing called

a PhD thesis.

Contents

1 Introduction 17

1.1 Background and Motivation . 17

1.2 Scope and Outline . 21

1.3 Contributions . 22

2 Algorithmic Choice by PetaBricks 25

2.1 Introduction . 25

2.1.1 Background and Motivation 25

2.1.2 PetaBricks for Auotuning Algorithmic Choice 27

2.2 The PetaBricks Language and Compiler 27

2.2.1 Language Design . 28

2.2.2 Com piler . 29

2.2.3 Parallelism in Output Code 32

2.2.4 Autotuning System and Choice Framework 32

2.2.5 Runtime Library . 34

2.3 Symmetric Eigenproblem . 34

2.3.1 Background . 34

2.3.2 Basic Building Blocks . 35

2.3.3 Experimental Setup . 39

2.3.4 Results and Discussion . 40

2.4 Dense LU Factorization . 41

2.4.1 Traditional Algorithm and Pivoting 41

2.4.2 Recursive and Block Algorithms 43

2.4.3 PetaBricks Algorithm and Setup 44

2.4.4 Results and Discussion . 45

2.4.5 Related Work . 46

2.5 Chapter Summary . 47

3 Handling Variable-Accuracy with PetaBricks 57

3.1 Introduction . 57

3.2 PetaBricks for Variable Accuracy . 60

3.2.1 Variable Accuracy Extensions 60

3.2.2 Example Psueudocode . 61

3.2.3 Accuracy Guarantees . 62

3.2.4 Compiler Support for Autotuning Variable Accuracy 63

3.3 Clustering . 64

3.3.1 Background and Challenges 64

3.3.2 Algorithms for k-means clustering 65

3.3.3 Experimental Setup - Acuracy Metric and Training Data . . . 66

3.3.4 Results and Analysis . 67

3.4 Preconditioning . 69

3.4.1 Background and Challenges 69

3.4.2 Overview of Preconditioners 70

3.4.3 Experimental Setup - Acuracy Metric and Training Data . . . 71

3.4.4 Results and Analysis . 72

3.4.5 Related Work . 73

3.5 Chapter Summary . 74

4 Analysis of Terrain Data 81

4.1 Introduction . 81

4.2 Pre-processing of Data . 82

4.2.1 Downsampling and reformatting 82

4.2.2 Overview of the tracks . 83

4.3 Road Bumps Detection . 84

4.3.1 Laplacian of Gaussian filter 85

4.3.2 Half-window width k . 86

4.4 Noise Analysis . 88

4.5 Singular Value Decomposition (SVD) 89

4.5.1 Noise Filtering by Low-rank Matrix Approximation 90

4.5.2 Surface Roughness Classification using SVD 91

4.6 Chapter Summary . 92

5 Large-scale Data Processing with Julia 101

5.1 Introduction . 101

5.2 Julia . 102

5.2.1 Brief Tutorial . 103

5.2.2 Example Code . 106

5.3 Terrain Analysis with Julia . 108

5.4 Parallel Implementation . 109

5.4.1 SVD Algorithm and Blocked Bidiagonalization 109

5.4.2 Further Parallelism . 111

5.4.3 Other SVD Algorithms . 114

5.5 Chapter Summary . 114

6 Conclusion 117

A PetaBricks Code 119

A.1 Symmetric Eigenproblem . 119

A.1.1 BisectionTD.pbec . 119

A.1.2 QRTD.pbec . 121

A.1.3 EigTD.pbec . 123

A.2 LU Factorization . 127

A.2.1 PLU.pbec . 127

A.2.2 PLUblockdecomp.pbec . 134

A.2.3 PLUrecur.pbec . 140

9

A.3 k-means clustering . 141

A.3.1 newclusterlocation.pbec . 141

A.3.2 assignclusters.pbec . 143

A.3.3 kmeans.pbec . 144

A.4 Preconditioning . 150

A.4.1 poissionprecond.pbec . 150

B Matlab Code 155

B.1 rmbump.m 155

B.2 filternoise.m 157

B.3 gaussfilter.m 158

B.4 roughness.m . 159

C Julia Code 161

C.1 randmatrixtest.j . 161

C.2 roughness.j. 161

List of Figures

2-1 PetaBricks source code for MatrixMultiply 49

2-2 Interactions between the compiler and output binaries. First, the com-

piler reads the source code and generates an autotuning binary (Steps 1

and 2). Next (Step 3), autotuning is run to generate a choice config-

uration file. Finally, either the autotuning binary is used with the

configuration file (Step 4a), or the configuration file is fed back into a

new run of the compiler to generate a statically chosen binary (Step 4b). 50

2-3 PetaBricks source code for CumulativeSum. A simple example used to

demonstrate the compilation process. The output element Bk is the

sum of the input elements Ao, ... , Ak. 51

2-4 Choice dependency gmph for CumulativeSum (in Figure 2-3). Arrows

point the opposite direction of dependency (the direction data flows).

Edges are annotated with rules and directions, offsets of 0 are not shown. 51

2-5 Pseudo code for symmetric eigenproblem. Input T is tridigonal 51

2-6 Performance for Eigenproblem on 8 cores. "Cutoff 25" corresponds to

the hard-coded hybrid algorithm found in LAPACK. 52

2-7 Parallel scalability for eigenproblem: Speedup as more worker threads

are added. Run on an 8-way (2 processor 4 core) x86 64 Intel Xeon

System . 53

2-8 Simple Matlab implementation of right-looking LU 53

2-9 Pseudo code for LU Factorization. Input A is n x n 54

2-10 Performance for Non-blocked LU Factorization on 8 cores. 54

2-11 Performance for LU Factorization on 8 cores. "Unblocked" uses the

autotuned unblocked transform from Figure 2-10. 55

2-12 Parallel scalability for LU Factorization: Speedup as more worker

threads are added. Run on an 8-way (2 processor 4 core) x86 64 Intel

Xeon System . 56

3-1 Pseudocode for variable accuracy kmeans illustrating the new variable

accuracy language extension. 76

3-2 Possible algorithmic choices with optimal set designated by squares

(both hollow and solid). The choices designated by solid squares are

the ones remembered by the PetaBricks compiler, being the fastest

algorithms better than each accuracy cutoff line. 77

3-3 Pseudo code for k-means clustering 77

3-4 k-means clustering: Speedups for each accuracy level and input size,

compared to the highest accuracy level for each benchmark. Run on

an 8-way (2 x 4-core Xeon X5460) system. 78

3-5 Pseudo code for Preconditioner . 78

3-6 Preconditioning: Speedups for each accuracy level and input size, com-

pared to the highest accuracy level for the Poisson operator A. Run

on an 8-way (2 x 4-core Xeon X5460) system. 79

4-1 Terrain visualization with downsampled data 84

4-2 Track 1 (left) and Track 2 (right) plooted on the xy-plane 85

4-3 Terrain Profile with downsampled data (6200 data points are plotted

in this figure) . 86

4-4 Vertical lines in red indicate the positions of bumps using the LoG

filter with k = 288 . 87

4-5 Top: Terrain Profile with bumps removed. Bottom: Bumps isolated . 94

4-6 Top: Noisy terrain profile. Bottom: Smoothed data 95

4-7 Top: Q-Q plot of noise, compared with Standard Normal. Bottom:

Histogram of noise, and plot of Normal Distribution with the same

mean and variance . 96

4-8 Top: Raw terrain profile (Track 2). Bottom: Filtered data 97

4-9 Top: Q-Q plot of noise, compared with Standard Normal. Bottom:

Histogram of noise, and plot of Normal Distribution with the same

mean and variance . 98

4-10 Top: Noisy terrain profile. Bottom: Smoothed data by SVD 99

4-11 Top: dfi of a noisy segment of terrain. Bottom: df 2 of a smooth segment 100

5-1 Julia example code . 106

5-2 Parallel scalability for Julia example program: Speedup as more pro-

cesses are added. 107

5-3 k-th step of Blocked Bidiagonalization. Input A is n x n 111

THIS PAGE INTENTIONALLY LEFT BLANK

List of Tables

2.1 Algorithm selection for autotuned unblocked LU 45

2.2 Algorithm selection for autotuned LU 46

3.1 Algorithm selection and initial k value results for autotuned k-means

benchmark for various accuracy levels with n = 2048 and ksource = 45 68

3.2 Values of NumIterations for autotuned preconditioning benchmark

for accuracy level 2 and various size of the n x n input A 72

3.3 Algorithm selection for autotuned preconditoining benchmark, accu-

racy level = 2 and input A is the Poisson operator 73

4.1 Statistics of noise for both tracks . 89

4.2 First 5 singular values of dfi (noisy) and df2 (smooth) 92

4.3 p of the same segment with different level of noise. p gets closer to 1

as the data gets smoother. 92

5.1 pL of several segments of the two tracks, computed using Julia. 108

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

1.1 Background and Motivation

High-performance computing has become ubiquitous in scientific research and become

more and more common even in everyday lives. Many laptops now have multicore

processors and smartphones with dual-core processors have entered the market. Per-

formance growth for single processors has approached its limit, but Moore's law still

predicts that the number of transistors on a chip will double about every two years,

and the physical limits would not be reached until the earliest in the year 2020 accord-

ing to Intel [1, 71]. With the doubling of chip density every 2 years and clock speed

not catching up with this growth rate, exposing and managing parallelism between

multiple processors by software is the key to getting further performance gain.

One major aspect of parallel computing is to identify enough paralleism. The well-

known Amdahl's law [3] states that if f is the fraction of work done sequentially, and

(1 - f) is the fraction parallelizable with n processors with no scheduling overhead,

the speedup is given by

1
Speedup(f,n) - f + 1

1 (1.1)
f

Even if the parallel part speeds up perfectly, parallel performance is still limited by

the sequential component. In practice, parallelism involves overhead such as com-

municating data, synchronization and managing different threads. A good parallel

implementation also needs to take care of locality and dependencies of data, load

balancing, granularity, race conditions and synchronization issues.

Historically, the first standardized library for high-performance computing sys-

tems was the Message Passing Interface (MPI), which allows the programmer to have

control over every detail. Each message passing call has to be individually written,

addressed, sent and received. Some of the other early parallel programming standards

include High Performance Fortran (HPF) and OpenMP. Following the evolution of

hardware, there has been an emergence of different programming languages and li-

braries.

However, designing and implementing parallel programs with good performance

is still nontrivial despite decades of research and advances in both software and hard-

ware. One major challenge is that the choice of algorithms depends not only on

the problem size, but becomes more complicated with factors such as different data

distribution, underlying architecture, and number of processors available. In terms

of design, it is often not obvious how to choose the optimal algorithms for a specific

problem. Complexity analysis gives an idea of how well algorithms perform asymptot-

ically, but it gets more complicated when parallelism is involved. Take the symmetric

eigenproblem as an example, the common serial algorithms all have 0(n3) complexity

to find all eigenvalues and eigenvectors, so it is difficult to find the right composition

and cutoffs for an optimal hybrid algorithm in parallel. Asymptotically optimal al-

gorithms, called cache-oblivious algorithms [42], are designed to achieve optimality

without depending on hardware parameters such as cache size and cache-line length.

Cache-oblivious algorithms use the ideal-cache model, but in practice memory system

behavior is much more complicated. In addition, even when an optimal algorithm is

implemented for a specific configuration, completely different algorithms may provide

the best performance for various architectures, available computing resources and in-

put data. With the advent of multiple processors, architectures are changing at a fast

rate. Implementing algorithms that can perform well for generations of architecture

has become increasingly important.

Another challenge is the flexibility of parallelism available with the current pro-

gramming languages. Parallel programming introduces complications not present

in serial programming, such as keeping track of which processor data is stored on,

sending and receiving data while minimizing communication and distributing com-

putation among processors. Currently existing languages and API with low-level

parallel constructs such as MPI, OpenMP and OpenCL give users full control over

the parallelziation process. However, it can be difficult to program since communica-

tion is performed by explicitly managing the send and receive operations in the code.

Messages and operations on each thread must also be explicitly crafted. On the other

end of the spectrum, there are high-level programming languages such as Matlab's

parallel computing toolbox, pMatlab [58] and Star-P [21], which allow higher level

parallel data structures and functions. Serial programs can be transformed to have

parallel functionality with minor modifications, so parallelism is almost "automatic".

The trade-off for drastically reducing the difficulty of programming parallel machines

is the lack of control of parallelsim. A parallel computing environment, which offers

the right level of abstraction and maintains a good balance between parallelization

details and productivity of program development and debugging, is still lacking.

In this thesis, we present two recent parallel programming languages, PetaBricks

[6] and Julia [12], and demonstrate how these two languages address some of the dif-

ficulties of high-performance computing. Using PetaBricks and Julia, we re-examine

some classic numerical algorithms in new approaches for high-performance comput-

ing.

PetaBricks is a new implicitly parallel language and compiler where having mul-

tiple implementations of multiple algorithms to solve a problem is the natural way of

programming. Algorithmic choice is made to be a first class construct of the language,

such that it can be expressed explicitly at the language level. The PetaBricks com-

piler autotunes programs by making both fine-grained as well as algorithmic choices.

Choices also include different automatic parallelization techniques, data distributions,

algorithmic parameters, transformations, blocking and accuracy requirement. A num-

ber of empirical autotuning frameworks have been developed for building efficient,

portable libraries in specific domains. PHiPAC [13] is an autotuning system for dense

matrix multiply, generating portable C code and search scripts to tune for specific

systems. ATLAS [88, 89] utilizes empirical autotuning to produce a cache-contained

matrix multiply, which is then used in larger matrix computations in BLAS and LA-

PACK. FFTW [40, 41] uses empirical autotuning to combine solvers for FFTs. Other

autotuning systems include SPIRAL [76] for digital signal processing, SPARSITY [55]

for sparse matrix computations, UHFFT [2] for FFT on multicore systems, OSKI [87]

for sparse matrix kernels, and autotuning frameworks for optimizing sequential [62, 63]

and parallel [73] sorting algorithms. To the best of our knowledge, PetaBricks is the

first language that enables programmers to express algorithmic choice at the language

level and provides autotuned optimized programs that are scalable and portable in

general purpose applications.

Julia is a new high-level programming language that aims at filling the gap be-

tween traditional compiled langauges and dynamic languages by providing a program-

ming tool that is easy to use while not sacrificing performance. The Julia project is

an ongoing project based at MIT. One of the main goals of the project is to provide

flexible parallelism without extensive effort. For example, can the number of pro-

cessors used not be fixed by the user, but scale up or down depending on the work

waiting? This will become increasingly important when a cloud API is ready for Julia

and an external cloud provider is used. How can we minimize unnecessary idle time

of threads? What is the right level of abstraction, such that the user will not lose too

much control of the parallelism while still being able to program without the need to

specify every piece of detail? The Julia project is working to create a cloud friendly

environment such that the Julia language is fast and general, easy to use, open source

and readily available.

1.2 Scope and Outline

The rest of this thesis proceeds as follows:

In chapter 2, we introduce the PetaBricks language and describe the implemen-

tation of the compiler and autotuning system. The PetaBricks compiler and auto-

tuner is not only able to compose a complex program using fine-grained algorithmic

choices but also find the right choice for many other parameters including data dis-

tribution, parallelization and blocking. We re-examine classic numerical algorithms

with PetaBricks, and present experimental results to show that the PetaBricks auto-

tuner produces nontrivial optimal algorithms. Specifically, we give a review of classic

algorithms used to solve the symmetric eigenvalue problem and LU Factorization.

We then show that the optimal PetaBricks algorithm composition for the symmetric

eigenvalue problem is different from the one used in LAPACK. We also demonstrate

the speedup of LU Factorization implemented using our autotuned nontrivial varaible

blocking algorithm over conventional fixed recursive blocking strategies.

We continue with PetaBricks in Chapter 3 by introducing the notion of variable ac-

curacy. We present the programming model with PetaBricks where trade-offs between

time and accuracy are exposed at the language level to the compiler. We describe

the language extensions in PetaBricks to support variable accuracy, and outline how

the PetaBricks compiler automatically searches the space of algorithms and param-

eters (optimal frontier) to construct an optimized algorithm for each accuracy level

required. We demonstrate the accuracy/performance trade-offs by two examples,

k-means clustering and preconditioned conjugate gradient. With our experimental

results, we show how nontrivial algorithmic choice can change with different accuracy

measure and requirements. In particular, we show how k-means clustering can be

solved without specifying the number of clusters k, and show that the optimal k can

be determined accurately with PetaBricks using relevant training data. We also show

that the optimal choice of preconditioners can change with problem sizes, in addition

to the system matrix.

In Chapter 4, we discuss a problem of analyzing a large set of raw terrain data,

which motivates the use of the Julia language. We focus on the downsampled dataset

in chapter 4 and perform serial computations because the dataset is too large to fit on

the memory of a regular machine. We perform various analysis to study the terrain

profiles and show how classical filtering techniques and Singular Value Decomposition

(SVD) can be applied to study road bumps and noise in various scales. We propose a

systematic way to classify surface roughness and also suggest a useful measure p based

on the SVD to quantify terrain surface roughness. The methodology described does

not require extensive knowledge and modeling of the terrian and vehicle movement.

The algorithms suggested in Chapter 4 is generic and not domain-specfic, so they can

be applied to give reproducible results on different sets of terrain data.

We introduce Julia in Chapter 5. We first give a brief tutorial of Julia and present

some elementary results of Julia. An example Julia code, with syntax similar to

Matlab, is presented. We also describe language features supported by Julia that are

convenient and may not be available in common high-level programming packages.

We then discuss the implementation of a serial blocked SVD algorithm. We run the

SVD-based algorithm for terrain analysis presented in Chapter 4 but implemented

with Julia, and show that the values of the roughness measure y obtained agree with

our prediction. We also describe the parallel implementation of our SVD algorithm

and discuss how potentially further and more flexible paralleism can be explored in

Julia.

We end with concluding remarks and future work in Chapter 6.

1.3 Contributions

The specific contributions of this dissertation are as follows:

e Automatic optimal hybrid algorithm composition and cutoff points

in symmetric eigenproblem: We show that algorithmic choices can be ex-

pressed at the language level using PetaBricks and combined into an optimal

hybrid algorithm by the PetaBricks compiler for significant speedup. In particu-

lar, we show that the optimal algorithm for the symmetric eigenvalue problem is

different from the one used in standard scientific package LAPACK. Compared

with hard-coded composition of algorithms in standard numerical linear alge-

bra packages, our approach produces autotuned hybrid algorithmic composition

and automatic selection of cutoff points for algorithms even when the program

is re-run on a different machine. Our implementation gives more portable per-

formance than standard algorithms with static cutoff parameters. (Chapter

2)

9 Nontrivial variable blocking strategies for LU Factorization: Our pro-

gram written with PetaBricks explores performance of LU Factorization using

non-fixed block sizes which are set by autotuning, as opposed to common fixed

blocking with equal sizes. Recursive calls on different sizes of subproblems are

made in our PetaBricks implementation to produce a variable blocking scheme.

Our optimal algorithm uses uneven block sizes in the factorization of the same

matrix, while a composition of varying block sizes is difficult to test with stan-

dard algorithms. (Chapter 2)

e K-clustering with dynamic clusters: We demonstrate how k-means clus-

tering can be solved without specifying the number of clusters k, and show that

the optimal k can be determined accurately with PetaBricks. To the best of

our knowledge, our approach is the first to solve any general-purpose k-means

clustering problem without domain-specific modeling and any solution of opti-

mization problems by the user to specify the number of clusters k. Our approach

with PetaBricks also makes cluster identification and assignments flexible for

any applications, since it is easy for the user to modify the accuracy metric and

input training data used. (Chapter 3)

* Optimal Preconditioning without prior information of system matrix:

We incorporate accuracy requirement into autotuning the problem of precondi-

tioning, and show that the optimal choice of preconditioners can change with

problem sizes and input data. Autotuning with PetaBricks gives a systematic

way to pick between different kinds of preconditioners, even when the user is

not certain about which preconditioner gives the best convergence. Our im-

plementation allows automatic choices of optimal preconditioners without prior

knowledge of the specific system matrix, as compared with standard practice

of analyzing the properties and behavior of the system of equations to devise a

specific preconditioner. (Chapter 3)

9 Singular Value Decomposition as a non-domain specific tool in terrain

analysis: We show how classic numerical kernels, namely Gaussian filtering and

SVD, can be applied as non-domain specific tools in terrain analysis to capture

noise and bumps in data. Our results are reproducible since we do not make

any assumptions on the underlying terrain properties. (Chapter 4)

9 Creation of an SVD-based roughness measure on terrain data: We

propose a systematic method and measure using the SVD to quantify roughness

level in large-scaled data without domain-specific modeling. Using terrain data

as an example, we show how our measure successfully distinguishes between

two road tracks with different levels of surface roughness. (Chapter 4)

9 Exploring new parallelism with asynchronous work scheduling in blocked

SVD with Julia: We introduce a new high-level programming language Julia

and discuss how implementation of parallel SVD algorithms in Julia can give

flexible parallelism in large-scale data processing. Our proposed implementa-

tion of parallel SVD suggests the following improvement in parallelism: starting

the bidiagonalization of an diagonal block concurrently with the matrix multi-

plication updates of the trailing blocks, and minimizing idle times by starting

trailing submatrix updates earlier when a portion of the intermediate matrices

are ready. We outline how flexible parallelism can be explored by asynchronous

work scheduling in the blocked SVD algorithm. The idea can be extended to

many classical blocked numerical linear algebra algorithms, which have not been

explored in standard scientific packages. (Chapter 5)

Chapter 2

Algorithmic Choice by PetaBricks

2.1 Introduction

2.1.1 Background and Motivation

Obtaining the optimal algorithm for a specific problem has become more challenging

than ever with the advances in high-performance computing. Traditional complexity

analysis provides some rough idea for how fast each individual algorithm runs, but it

gets more complicated when choices for data distributions, parallelism, transforma-

tions and blocking comes into consideration. If a composition of multiple algorithms

is needed for the optimal hybrid algorithm, the best composition is often difficult to

be found by human analysis. For example, it is often important to make algorithmic

changes to the problems for high performance when moving between different types

of architectures, but the best solution to these choices is often tightly coupled to

the underlying architectures, problem sizes, data, and available system resources. In

some cases, completely different algorithms may provide the best performance.

One solution to this problem is to leave some of these choices to the compiler.

Current compiler and programming language techniques are able to change some of

these parameters, but today there is no simple way for the programmer to express

or the compiler to choose different algorithms to handle different parts of the data.

Existing solutions normally can handle only coarse-grained, library level selections or

hand coded cutoffs between base cases and recursive cases.

While traditional compiler optimizations can be successful at optimizing a single

algorithm, when an algorithmic change is required to boost performance, the burden is

put on the programmer to incorporate the new algorithm. If a composition of multiple

algorithms is needed for the best performance, the programmer must write both

algorithms, the glue code to connect them together, and figure out the best switch

over points. Today's compilers are unable to change the nature of this composition

because it is constructed with traditional control logic such as loops and switches.

The needs of modern computing require a language construct like an either statement,

which would allow the programmer to give a menu of algorithmic choices to the

compiler.

Hand-coded algorithmic compositions are commonplace. A typical example of

such a composition can be found in the C++ Standard Template Library (STL) 1

routine std: :sort, which uses merge sort until the list is smaller than 15 elements

and then switches to insertion sort. Tests in [6] have shown that higher cutoffs (around

60-150) perform much better on current architectures. However, because the optimal

cutoff is dependent on architecture, cost of the comparison routine, element size, and

parallelism, no single hard-coded value will suffice.

This problem has been addressed for certain specific algorithms by autotuning

software, such as ATLAS [88] and FFTW [40, 41], which have training phases where

optimal algorithms and cutoffs are automatically selected. Unfortunately, systems

like this only work on the few algorithms provided by the library designer. In these

systems, algorithmic choice is made by the application without the help of the com-

piler.

In this chapter, we describe a recent language PetaBricks with new language

constructs that allow the programmer to specify a menu of algorithmic choices and

new compiler techniques to exploit these choices to generate high performance yet

portable code.

'From the version of the libstdc++ included with GCC 4.3.

2.1.2 PetaBricks for Auotuning Algorithmic Choice

PetaBricks [6], a new implicitly parallel language and compiler, was designed such that

multiple implementations of multiple algorithms to solve a problem can be provided

by the programmer at the language level. Algorithmic choice is made to be a first

class construct of the language. Choices are provided in a way such that information

is used by the PetaBricks compiler and runtime to create and autotune an optimized

hybrid algorithm. The PetaBricks compiler autotunes programs by making both

fine-grained as well as algorithmic choices. Other non-algorithmic choices include

different automatic parallelization techniques, data distributions, transformations,

and blocking.

We present the PetaBricks language and compiler in this chapter, with a focus on

its application in picking optimal algorithms for some classical numerical computation

kernels. Some of the materials in this chapter appear in [6]. This chapter discusses

the algorithms and autotuned results in more detail, and adds an additioanl set of

benchmark results for dense LU factorization. We show that algorithmic choices can

be incorporated into an optimal hybrid algorithm by the PetaBricks compiler for

significant speedup. In particular, we show that the optimal algorithm for the sym-

metric eigenvalue problem is different from the one used in standard scientic package

LAPACK [5]. Compared with hard-coded composition of algorithms in standard nu-

merical linear packages, our autotuning approach allows automatic selection of cutoff

points for algorithms when the underlying architecture changes. We also demonstrate

the effects of different blocking strategies in LU Factorization. Our approach with

PetaBricks explores performance of LU using non-fixed block sizes which are set by

autotuning, as opposed to common fixed blocking with equal sizes.

2.2 The PetaBricks Language and Compiler

For more information about the PetaBricks language and compiler see [6]; the follow-

ing summary is included for background.

2.2.1 Language Design

The main goal of the PetaBricks language was to expose algorithmic choice to the

compiler in order to allow choices to specify different granularities and corner cases.

PetaBricks is an implicitly parallel language, where the compiler automatically par-

allelizes PetaBricks programs.

The language is built around two major constructs, transforms and rules. The

transform, analogous to a function, defines an algorithm that can be called from other

transforms, code written in other languages, or invoked from the command line. The

header for a transform defines to, from, and through arguments, which represent

inputs, outputs, and intermediate data used within the transform. The size in each

dimension of these arguments is expressed symbolically in terms of free variables, the

values of which must be determined by the PetaBricks runtime.

The user encodes choice by defining multiple rules in each transform. Each rule

defines how to compute a region of data in order to make progress towards a final

goal state. Rules have explicit dependencies parametrized by free variables set by the

compiler. Rules can have different granularities and intermediate states. The compiler

is required to find a sequence of rule applications that will compute all outputs of

the program. The explicit rule dependencies allow automatic parallelization and

automatic detection and handling of corner cases by the compiler. The rule header

references to and from regions which are the inputs and outputs for the rule. The

compiler may apply rules repeatedly, with different bindings to free variables, in order

to compute larger data regions. Additionally, the header of a rule can specify a where

cla]use to limit where a rule can be applied. The body of a rule consists of C++-like

code to perform the actual work.

Figure 2-1 shows an example PetaBricks transform for matrix multiplication. The

transform header is on lines 1 to 3. The inputs (line 2) are m x p matrix A and

p x n matrix B. The output (line 3) is C, which is a m x n matrix. Note that in

PetaBricks notation, the first index refers to column and the second index is the row

index. The first rule (Rule 0 on line 6 to 9) is the straightforward way of computing

a single matrix element Ci = E'=_1 AikBkj. With the first rule alone the transform

would be correct, the remaining rules add choices. Rules 1, 2, and 3 (line 13 to

40) represent three ways of recursively decomposing matrix multiply into smaller

matrix multiplies. Rule 1 (line 13 to 19) decomposes both A and B into half pieces:

C = (AIA 2) - = A1 B1 + A2B2. Rule 2 (line 23 to 30) decomposes B in

two column blocks: C (C1|C2) = A - (B1jB 2) - (AB1IAB 2). Rule 3 (line 33 to

40) decomposes A into two row blocks: C= () - B = (AlB) The(C) - A2) - A2B

compiler must pick when to apply these recursive decompositions and incorporate all

the choices to form an optimal composition of algorithm.

In addition to choices between different algorithms, many algorithms have con-

figurable parameters that change their behavior. A common example of this is the

branching factor in recursively algorithms such as merge sort or radix sort. To sup-

port this PetaBricks has a tunable keyword that allows the user to export custom

parameters to the autotuner. PetaBricks analyzes where these tunable values are

used, and autotunes them at an appropriate time in the learning process.

PetaBricks contains additional language features such as rule priorities, where

clauses for specifying corner cases in data dependencies, and generator keyword for

specifing input training data. These features will not be discussed here in detail.

2.2.2 Compiler

The PetaBricks implementation consists of three components: a source-to-source com-

piler from the PetaBricks language to C++, an autotuning system and choice frame-

work to find optimal choices and set parameters, and a runtime library used by the

generated code.

The relationship between these components is depicted in Figure 2-2. First, the

source-to-source compiler executes and performs static analysis. The compiler en-

codes choices and tunable parameters in the output code so that autotuning can be

performed. When autotuning is performed (either at compile time or at installation

time), it outputs an application configuration file that controls when different choices

are made. This configuration file can be edited by hand to force specific choices. Op-

tionally, this configuration file can be fed back into the compiler and applied statically

to eliminate unused choices and allow additional optimizations.

To help illustrate the compilation process we will use the example transform

CumulativeSum, shown in Figure 2-3. CumulativeSum computes the cumulative

(sometimes called rolling) sum of the input vector A, such that the output vector

B satisfies B(i) = A(O) + A(1) + ... + A(i). There are two rules in this transform,

each specifying a different algorithmic choice. Rule 0 (line 6-8) simply sums up all

elements of A up to index i and stores the result to B[i]. Rule 1 (line 11-14) uses

previously computed values of B to get B(i) = A(i) + B(i - 1). An algorithm using

only Rule 0 carries out more computations (0(n 2) operations), but can be executed

in a data parallel way. An algorithm using only Rule 1 requires less arithmetic (0(n)

operations), but has no parallelism and must be run sequentially.

The PetaBricks compiler works using the following main phases. In the first phase,

the input language is parsed into an abstract syntax tree. Rule dependencies are

normalized by converting all dependencies into region syntax, assigning each rule a

symbolic center, and rewriting all dependencies to be relative to this center. (This

is done using the Maxima symbolic algebra library [78].) In our CumulativeSum

example, the center of both rules is equal to i, and the dependency normalization

does not do anything other than replace variable names.

Next, applicable regions (regions where each rule can legally be applied, called

an applicable) are calculated for each possible choice using an inference system. In

rule 0 of our CumulativeSum example, both b and in (and thus the entire rule) have

an applicable region of [0, n). In rule 1, a and b have applicable regions of [0, n) and

leftSum has an applicable region of [1, n) because it would read off the array for

i = 0. These applicable regions are intersected to get an applicable region for rule 1

of [1,n).

The applicable regions are then aggregated together into choice grids. The choice

grid divides each matrix into rectilinear regions where uniform sets of rules can be

applied. In our CumulativeSum example, the choice grid for B is:

[0, 1) ={rule 0}

[1,n) ={rule 0, rule 1}

and A is not assigned a choice grid because it is an input. For analysis and schedul-

ing these two regions are treated independently. Rule priorities are also applied in

this pharse if users have specified priorities using keywords such as primary and

secondary. Non-rectilinear regions can also be created using where clauses on rules.

Finally, a choice dependency graph is constructed using the simplified regions

from the choice grid. The choice dependency graph consists of edges between symbolic

regions in the choice grids. Each edge is annotated with the set of choices that

require that edge, a direction of the data dependency, and an offset between rule

centers for that dependency. Figure 2-4 shows the choice dependency graph for our

example CumulativeSum. The three nodes correspond to the input matrix and the

two regions in the choice grid. Each edge is annotated with the rules that require it

along with the associated directions and offsets. These annotations allow matrices to

be computed in parallel if parallelism is possible with the rules selected. The choice

dependency graph is encoded in the output program for use by the autotuner and

parallel runtime. It contains all information needed to explore choices and execute

the program in parallel. These processes are explained in further detail in [6].

PetaBricks code generation has two modes. In the default mode choices and

information for autotuning are embedded in the output code. This binary can be

dynamically tuned, which generates a configuration file, and later run using this

configuration file. In the second mode for code generation, a previously tuned config-

uration file is applied statically during code generation. The second mode is included

since the C++ compiler can make the final code incrementally more efficient when

the choices are eliminated.

2.2.3 Parallelism in Output Code

The PetaBricks runtime includes a parallel work stealing dynamic scheduler, which

works on tasks with a known interface. The generated output code will recursively

create these tasks and feed them to the dynamic scheduler to be executed. Depen-

dency edges between tasks are detected at compile time and encoded in the tasks

as they are created. A task may not be executed until all the tasks that it depends

on have completed. These dependency edges expose all available parallelism to the

dynamic scheduler and allow it to change its behavior based on autotuned parameters.

The generated code is constructed such that functions suspended due to a call to

a spawned task can be migrated and executed on a different processor. This exposes

parallelism and helps the dynamic scheduler schedule tasks in a depth-first search

manner. To support the fucnction's stack frame and register migration, continuation

points, at which a partially executed function may be converted back into a task so

that it can be rescheduled to a different processor, are generated. The continuation

points are inserted after any code that spawns a task. This is implemented by storing

all needed state to the heap.

The code generated for dynamic scheduling incurs some overhead, despite being

heavily optimized. In order to amortize this overhead, the output code that makes use

of dynamic scheduling is not used at the leaves of the execution tree where most work

is done. The PetaBricks compiler generates two versions of every output function.

The first version is the dynamically scheduled task-based code described above, while

the second version is entirely sequential and does not use the dynamic scheduler. Each

output transform includes a tunable parameter (set during autotuning) to decide when

to switch from the dynamically scheduled to the sequential version of the code.

2.2.4 Autotuning System and Choice Framework

Autotuning is performed on the target system so that optimal choices and cutoffs can

be found for that architecture. The autotuning library is embedded in the output

program whenever choices are not statically compiled in. Autotuning outputs an

application configuration file containing choices. This file can either be used to run

the application, or it can be used by the compiler to build a binary with hard-coded

choices.

The autotuner uses the choice dependency graph encoded in the compiled appli-

cation. This choice dependency graph contains the choices for computing each region

and also encodes the implications of different choices on dependencies. This choice

dependency graph is also used by the parallel scheduler.

The intuition of the autotuning algorithm is that we take a bottom-up approach

to tuning. To simplify autotuning, we assume that the optimal solution to smaller

sub-problems is independent of the larger problem. In this way we build algorithms

incrementally, starting on small inputs and working up to larger inputs.

The autotuner builds a multi-level algorithm. Each level consists of a range of in-

put sizes and a corresponding algorithm and set of parameters. Rules that recursively

invoke themselves result in algorithmic compositions. In the spirit of a genetic tuner,

a population of candidate algorithms is maintained. This population is seeded with all

single-algorithm implementations. The autotuner starts with a small training input

and on each iteration doubles the size of the input. At each step, each algorithm in

the population is tested. New algorithm candidates are generated by adding levels to

the fastest members of the population. Finally, slower candidates in the population

are dropped until the population is below a maximum size threshold. Since the best

algorithms from the previous input size are used to generate candidates for the next

input size, optimal algorithms are iteratively built from the bottom up.

In addition to tuning algorithm selection, PetaBricks uses an n-ary search tuning

algorithm to optimize additional parameters such as parallel-sequential cutoff points

for individual algorithms, iteration orders, block sizes (for data parallel rules), data

layout, as well as user-specified tunable parameters.

All choices are represented in a flat configuration space. Dependencies between

these configurable parameters are exported to the autotuner so that the autotuner

can choose a sensible order to tune different parameters. The autotuner starts by

tuning the leaves of the graph and works its way up. In the case of cycles, it tunes

all parameters in the cycle in parallel, with progressively larger input sizes. Finally,

it repeats the entire training process, using the previous iteration as a starting point,

a small number of times to better optimize the result.

2.2.5 Runtime Library

The runtime library is primarily responsible for managing parallelism, data, and con-

figuration. It includes a runtime scheduler as well as code responsible for reading,

writing, and managing inputs, outputs, and configurations. The runtime scheduler

dynamically schedules tasks (that have their input dependencies satisfied) across pro-

cessors to distribute work. The scheduler attempts to maximize locality using a greedy

algorithm that schedules tasks in a depth-first search order. Work is distributed with

thread-private double-ended queues (deques) and a task stealing protocol following

the approach taken by Cilk [43]. A thread operates on the top of its deque as if it

were a stack, pushing tasks as their inputs become ready and popping them when

a thread needs more work. When a thread runs out of work, it randomly selects a

victim and steals a task from the bottom of the victim's deque. This strategy allows a

thread to steal another thread's most nested continuation, which preserves locality in

the recursive algorithms we observed. Cilk's THE protocol is used to allow the victim

to pop items of work from its deque without needing to acquire a lock in the common

case.

2.3 Symmetric Eigenproblem

2.3.1 Background

The symmetric eigenproblem is the problem of computing the eigenvalues and/or

eigenvectors of a symmetric n x n matrix. It often appears in mathematical and

scientific applications such as mechanics, quantum physics, structural engineering

and perturbation theory. For example, the Hessian matrix is a square matrix of the

second-order partial derivatives of a function, which is always symmetric if the mixed

partials are continuous. Thus solving the symmetric eigenproblem is important in

applications that involve multivariate calculus and differential equations.

Deciding on which algorithms to use depends on the number of eigenvalues re-

quired and whether eigenvectors are needed. To narrow the scope, here we study the

problem in which all of the n eigenvalues and eigenvectors are computed. Specifically,

our autotuning approach allows automatic selection of cutoff points for composition

of algorithms when the underlying architecture changes, while in standard numerical

linear packages, the composition of algorithms is hard-coded.

2.3.2 Basic Building Blocks

To find all the eigenvalues A and eigenvectors x of a real n x n matrix, we make use

of three primary algorithms, (i) QR iteration, (ii) Bisection and inverse iteration, and

(iii) Divide-and-conquer.

The computation proceeds as follows:

(1) The input matrix A is first reduced to a tridiagonal form: A = QTQT, where Q

is orthogonal and T is symmetric tridiagonal.

(2) All the eigenvalues and eigenvectors of the tridiagonal matrix T are then com-

puted by one of the three primary algorithms, or any hybrid algorithm composed by

the three primary ones.

(3) The eigenvalues of the original input A and those of the tridiagonal matrix T are

equal. The eigenvectors of A are obtained by multiplying Q by the eigenvectors of T.

The total work needed is O(n 3) for reduction of the input matrix and transforming

the eigenvectors, plus the cost associated with each algorithm in step (2) which is also

O(n 3) [29]. Since steps (1) and (3) do not depend on the algorithm chosen to compute

the eigenvalues and eigenvectors of T, we analyze only step (2) in this section.

We now give a review of the three primary algorithms as follows:

o QR iteration applies the QR decomposition iteratively until T converges to a

diagonal matrix. The idea behind this algorithm is as follows: With a quantity

s called the shift, the QR factorization of the shifted matrix A - sI = QR

gives the orthogonal matrix Q and upper traingular R. Then multiplication in

reverse order RQ gives

A, = RQ + sI = QT(A - sI)Q + sI = QTAQ. (2.1)

As each of this iteration is applied, the matrix A becomes more upper trian-

gular. Since the input A = T is tridiagonal, T will eventually converge to a

diagonal matrix, and the entries are the eigenvalues. QR Iteration computes all

eigenvalues in O(n 2) flops but requires O(n 3) operations to find all eigenvectors.

9 Bisection, followed by inverse iteration, finds k eigenvalues and the corre-

sponding eigenvectors in O(nk2) operations, resulting in a complexity of O(n 3)

for finding all eigenvalues and eigenvectors. Given a real symmetric n x n ma-

trix A, the eigenvalues can be computed by finding the roots of the polynomial

p(x) = det (A - x1). Let AM, ... , A(n) denote the upper-left square subma-

trices. The eigenvalues of these matrices interlace, and the number of negative

eigenvalues of A equals the number of sign changes in the Strum sequence [85]

1 , det (A(')),7 ... , det (A"n)) (2.2)

Denote the k-th diagonal and superdiagonal elements of A by dk and ek. Ex-

panding det (A(k)) by minors with respect to the k-th row (with entries dk and

ek_1) gives

det (A(k)) = d_ det (A (k- 1)) -- e21 det (A(k- 2)) (2.3)

With shift x1 and expressing p(k) (x) = det (A(k) - xI), we get the recurrence

(k) (X) -d _ X)p(k-1) (X) _ e2_ p(k-2) (X) (2.4)

Applying this recurrence for a succession of values of x and counting sign

changes, the bisection algorithm identifies eigenvalues in arbitrary intervals

[a, b). Each eigenvalue and eigenvector thus can be computed independently,

making the algorithm "embarrassingly parallel".

9 The eigenproblem of tridiagonal T can also be solved by a divide-and-conquer

approach. Observing that T is almost block diagonal, we can express T as the

sum of a block diagonal matrix plus a rank-i correction:

T= T1 T12T2 T
[T21 T2 J

- am-1 bm-1

bm_1 am

bm am+1 bm+1

bm+1

bm

bm

L T1 01
0 T2

where uT=[0,...,0,1,1,0,...,0].

Sam- bm-1

b.i am - bm

am+1 - bm

bm+1

bm+1

bm

bm

+ bmUUTI, (2.5)

The only difference between T1 and T is that the lower right entry in T has

been replaced with am - bm and similarly, in T 2 the top left entry has been

replaced with am+1 - bin. The eigenvalues and eigenvectors of T and T 2 can

be computed recursively to get T1 = Q1A1Qf and T 2 = Q2A2Q 2. Finally, the

eigenvalues of T can be obtained from those of T1 and T 2 as follows:

T [1 0± + bUUT
L0 T2

Q1Aj1 0 + bmun T
0 Q2A2QJ U

Q 0 A1 0 FQT 0
+ bmv , Q (2.6)

0 Q2 J [0 A2)[Q] (2

where

QT [last column of Q]v =- - U -1 (2.7)
0 QT first column of QT

Thus the eigenvalues of T is the same as the eigenvalues of the matrix D+bmvvT ,

where D = is a diagonal matrix, and bm and v are obtained as
0 A2

indicated above. The eigenvalues of D + bmvVT can be computed by solving an

equation called the secular equation. For details on solving the secular equation,

refer to [61]. Divide-and-conquer algorithm requires 0(n') flops in the worst

case.

2.3.3 Experimental Setup

The PetaBricks transforms for these three primary algorithms are implemented

using LAPACK routines dlaedl, dstebz, dstein and dsteqr. Note that MATLAB's

polyalgorithm eig also calls LAPACK routines. Our optimized hybrid PetaBricks

algorithm computes the eigenvalues A and eigenvectors X by automating choices

of these three basic algorithms. The pseudo code for this is shown in Figure 2-5.

There are three algorithmic choices, two non-recursive and one recursive. The two

non-recursive choices are QR iterations, or bisection followed by inverse iteration.

Alternatively, recursive calls can be made. At the recursive call, the PetaBricks

compiler will decide the next choices, i.e. whether to continue making recursive calls or

switch to one of the non-recursive algorithms. Thus the PetaBricks compiler chooses

the optimal cutoff for the base case if the recursive choice is made.

The results were gathered on a 8-way (dual socket, quad core) Intel Xeon E7340

system running at 2.4 GHz. The system was running 64 bit CSAIL Debian 4.0 with

Linux kernel 2.6.18 and GCC 4.1.2.

2.3.4 Results and Discussion

After autotuning, the best algorithm choice was found to be divide-and-conquer for

n x n matrices with n larger than 48, and switching to QR iterations when the size

of matrix n < 48.

We implemented and compared the performance of five algorithms in PetaBricks:

QR iterations, bisection and inverse iteration, divide-and-conquer with base case n =

1, divide-and-conquer algorithm with hard-coded cutoff at n = 25, and our autotuned

hybrid algorithm. In figure 2-6, these are labelled QR, Bisection, DC, Cutoff 25 and

Autotuned respectively. The input matrices tested were symmetric tridiagonal with

randomly generated values. Our autotuned algorithm runs faster than any of the

three primary algorithms alone (QR, Bisection and DC). It is also faster than the

divide-and-conquer strategy which switches to QR iteration for n < 25, which is the

underlying algorithm of the LAPACK routine dstevd [5].

We see that the optimal algorithmic choice can be nontrivial even in a problem

as common as the eigenproblem. For instance, bisection may seem very attractive to

apply in parallel [32], but it is not included in our Petabricks autotuned results, which

takes care of parallelism automatically. Although our optimal Petabricks hybrid algo-

rithm differs from the widely used LAPACK eigenvalue routine only by the recursion

cutoff size, the LAPACK routine has a hardcoded algorithmic choice and cutoff value

of 25. In contrary, Petabricks allows autotuning to be rerun easily whenever the

underlying architecture and the available computing resources change.

Our autotuned algorithm is automatically parallel. Figure 2-7 shows the parallel

scalability for eigenproblem. Speedup is calculated by S, =T, where p is the number

of threads and T, is the execution time of the algorithm with p threads. The plot was

generated for three input sizes n = 256, 512, 1024 using up to 8 worker threads. The

parallel speedup is sublinear, but we obtained greater speedup as the problem size n

increases.

2.4 Dense LU Factorization

LU Factorization is a matrix decomposition which writes a matrix A as a product of

a lower traingular matrix L and an upper traingular matrix U. It is the simplest way

to obtain the direct solutions of linear systems of equations. The most common for-

mulation of LU factorization is known as Gaussian elimination, and is perhaps one of

the most widely known numerical algorithms. LU Facotrization and its variants, QR

and Cholesky decomposition, have been well studied in the literature. For simplicity,

we focus on square n x n matrix A in this section, though analysis for rectangular

matrices follow naturally.

2.4.1 T aditional Algorithm and Pivoting

Let A E Rnxn. LU Factorization transforms A into an n x n upper triangular matrix

U by zeroing elements below the diagonal, starting from the first column to the last.

The elements below the diagonal are eliminated by subtracting multiples of each row

from subsequent rows, which is equilavent to multiplying A by a sequence of lower

triangular matrices Lk:

Ln_1 - -L2L1 A = U (2.8)

Let L- 1 = Ln_ 1 ... L 2 L1 , or L = L- 1L- 1 ... L- 1 , we get A = LU, where L is lower

triangular with all of its diagonal elements equal to 1, and U is an upper traingular

matrix.

One simple implementation of LU Factorization without pivoting (O(n 3) flops) is

shown in Figure 2-8.

Unfortunately, this implementation is not backward stable2 . Consider the following

matrix as an example

10-18 1A=

Computing the LU Factorization without pivoting (row exchanges) in double-precision

arithmetic gives the follwing:

~1 0 1 0
L=

L fl(1/10-18) 1 1018 1
- 10-18 1 10-18 1

L 0 fl(1 - fl(10 18. 1)) J [0 -1018 J
Note that

~ ~ 10-18 1

1 0

To improve numerical stability, pivoting is applied to Gaussian elimination such

that PA = LU, where P is a permutation matrix. The most common practice is

partial pivoting, which swaps rows to ensure that the entry in the pivot position (the

upper left entry Ajj to be divided by each element Akj, k > j below it) has the greatest

absolute value in that column on or below that row. Partial pivoting is believed to be

stable in practice. Another strategy is called complete pivoting, which always swaps

rows and columns to ensure that the entry in the pivot position has the greatest

absolute value among all entries in the remaining submatrix. Complete pivoting

is rarely used, because the improvement in numerical stability in practice is not

signficiant compared to the extra cost searching for the largest element in the whole

submatrix. Error bounds and conjectures on growth factors of complete pivoting have

been studied in the liteature [23, 38, 46, 90]. A study of various common pivoting

2 backward stability is one property of numerical stability. For more details, see [29] or [85].

strategies can be found in [19]. A recently proposed algorithm for LU Factorization

uses a different pivoting strategy, which the authors call incremental pivoting [77].

2.4.2 Recursive and Block Algorithms

To achieve better performance, recursive algorithms of LU Factorization (and its vari-

ant QR factorization) have been formulated [4, 39, 51, 84]. The recursive algorithm

with partial pivoting treats A E R"'" as a block matrix

A= An A12

A21 A22 J

where each block Ajk is of order n/2-by-n/2. The algorithm works as follows:

1. Recursively factor the left part of A, such that

An1 L11P =Un1
[A 2 1]i LL2

2. Permute the right part of A

A12 Al

[A22 i ~ A22

3. Solve the triangular system to get U12 = L-Z.

4. Update lower-right block A22 := A22 - L21 U12.

5. Recursively factor the remaining submatrix to get P2 A2 2 L22 U22 , and permute

lower-left block L21 := P2L21.

6. Return P = P2P1 , L = 0 andU= [. 11 U1
L21 L22 0 U22

Similar blocked version of LU Factorizatoin, such as the one used by the LAPACK

routine dgetrf and the ScaLAPACK routine pdgetrf, works similarly. By dividing

the matrix into blocks of size b x b, at each step i of the iteration, the left block

A(i : n,i + b - 1) is factorized by calling some nonblocked LU routines. The row

blocks on the right, A(i : i + b - 1, i + b : n) are updated by triangular solve, and the

trailing submatrix is updated as a matrix multiply A(i + b : n,i + b : n) = A(i + b :

n,i+b:n)-A(i+b:n,i :i+b-l)*A(i:i+b-l,i+b:n). Most of the recursive

and block algorithms depend on delaying the updates of submatrix in blocks, and

performing optimized matrix multiplication and triangular solve, which is commonly

achieved by some optimized version of BLAS [16, 35, 36, 60]. For more information

on blocked algorithms, see for example [5, 15].

2.4.3 PetaBricks Algorithm and Setup

The underlying algorithm for our PetaBricks LU implementation offers three

choices: unblocked version of LU, recursive algorithm (as described in section 2.4.2)

by dividing the problem into half n/2 , and recursive algorithm by using size n/4 as

the upper left block. The pseudo code for it is shown in Figure 2-9. At each recursive

call, the PetaBricks compiler will decide the next choices, i.e. whether to continue

making recursive calls on n/2 or n/4, or switch to the unblocked algorithm. As a

consequence of the composition of possible choices, the PetaBricks compile explores

the possibility of varying sizes of blocking and gives the optimal choices.

In our implementation, the output L and U is stored in the same output matrix

B, such that the upper triangular part of B = U and the lower triangular part of

B = the lower traingular part of L (since the diagonal elements of L are all 1, we

do not need to store them). Our unblocked LU code is also autotuned with a choice

of left-looking or right-looking unblocked LU. Right-looking or eager codes perform

updates of the current column at each step and the updates of all columns to the right

of the current column immediately. Left-looking or lazy codes perform updates of the

current column from the previous columns and then the computations for the current

column at each step, i.e. all updates to a column from previous columns are performed

as late as possible. The simple Matlab implementation of traditional unblocked LU

in Figure 2-8 is an example of right-looking codes. For more details on left-looking

and right-looking formulations, see [69].

The results were gathered on a 8-way (dual socket, quad core) Intel Xeon E7340

system running at 2.4 GHz. The system was running 64 bit CSAIL Debian 4.0 with

Linux kernel 2.6.18 and GCC 4.1.2.

2.4.4 Results and Discussion

After autotuning the unbocked algorithm, the best composition of algorithms was

found to be right-looking for 3 < n < 48 and n > 192, and left-looking for n < 3 and

48 < n < 192. Table 2.1 summarizes the algorithmic choices, and Figure 2-10 plots

the timing results.

Size of input n x n matrix Algorithm
1 < n < 3 Left-looking
3 < n < 48 Right-looking
48 < n < 192 Left-looking
n > 192 Right-looking

Table 2.1: Algorithm selection for autotuned unblocked LU

Using the autotuned unblocked algorithm as the base case for our composite re-

cursive algorithm (Figure 2-9), we implemented and compared the performance of

four algorithms in PetaBricks: Unblocked, Recursive n/2 down to n = 1, Recurisve

n/4 down to n = 1, and our autotuned composite algorithm. In figure 2-11, these

are labelled Unblocked, Divide-by-2, Divide-by-4 and Autotuned respectively. The

input matrices tested were real square matrices with randomly generated entries. Our

autotuned algorithm runs faster than any of the three primary algorithms alone as

shown.

Our autotuned PetaBricks algorithm makes a recursive call on subblock size n/4

when n > 384. When 96 < n < 384, recursive call on subblocks of size n/2 is

made. The algorithm switches back to recursive n/4 when 24 < n < 96 and once

again changes to recusrive n/2 when n decreases further to the range 12 < n < 24.

When 3 < n < 12, the unblocked code is called. On very small input sizes 1 <

n < 3, recursive algorithm on subblock sizes n/2 is used. Table 2.2 summarizes the

algorithmic choices for our composite LU PetaBricks transform.

Size of input n x n matrix Algorithm
1 < n K 3 Divide-by-2
3 < n < 12 Unblocked
12 < n < 24 Divide-by-2
24 < n K 96 Divide-by-4
96 < n K 384 Divide-by-2
n > 384 Divide-by-4

Table 2.2: Algorithm selection for autotuned LU

We see that the optimal algorithmic choice is nontrivial. As shown in Table 2.2,

the subproblem sizes on which recursive calls are made change with n. This gives a

varying blocking LU algorithm, as opposed to fixed blocking size usually implemented

in common scientific pacakge such as LAPACK. Our autotuned PetaBricks trans-

form serves as a first experiment of variable blocking strategies. Adding PetaBricks

language and compiler support for variable block sizes can be helpful for further

algorithmic study and performance improvement.

Similar to the eigenproblem, our autotuned LU algorithm is automatically parallel.

Figure 2-12 shows the parallel scalability for autotuned LU factorization. Speedup

is calculated by S, = 1, where p is the number of threads and T, is the execution

time of the algorithm with p threads. The plot was generated for three input sizes

n = 256,512,1024 using up to 8 worker threads. The parallel speedup is sublinear,

but we again obtained greater speedup as the problem size n increases.

2.4.5 Related Work

There has been a large number of studies on parallel LU factorization for both the

dense and sparse cases. A large portion of both early and recent studies have mainly

focused on load distribution, pivoting cost, communications, data layout, pipelining

and multithreading [17, 22, 25, 44, 54].

Parallel sparse LU fatorization is based on the elimination tree [24, 66] and subtree-

to-cube mapping [45, 75]. Using the idea of elimination trees and data dependency,

different scheduling and ordering algorithms have been proposed and studied [48, 49,

53] .

SuperLU [64] is a general purpose library for the direct solution of large, sparse,

nonsymmetric systems of linear equations on high performance machines. There are

three variations of the SuperLU package, for sequential machines [30], shared memory

parallel machines [31], and distributed memory parallel machines [65].

A recent study [86] showed that dense LU can be optimized in parallel using

NVIDIA GPUs. The paper achieved their LU performance by techniques such as

look-ahead, overlapping CPU and GPU computation, autotuning, optimizing blocked

matrix multiply, and picking the right memory layout.

Algorithms that minimize communication in parallel in the expense of more arith-

metics have also been proposed and studied [10, 27]. CALU, a communication avoid-

ing LU factorization algorithm based on a new pivoting strategy referred to as ca-

pivoting by the authors, is presented in a recent paper [28].

2.5 Chapter Summary

In this chapter we introduced PetaBricks, a recent implicitly parallel language that

allows programmers to naturally express algorithmic choice explicitly at the language

level. The PetaBricks compiler and autotuner is not only able to compose a com-

plex program using fine-grained algorithmic choices but also find the right choice

for many other parameters including data distribution, parallelization and blocking.

We re-examined classic numerical algorithms with PetaBricks, and showed that the

PetaBricks autotuner produces nontrivial optimal algorithms. Our results showed

that the autotuned hybrid algorithms always perform better than any of the indi-

vidual algorithms. In particular, we showed that that the optimal algorithm for the

symmetric eigenvalue problem is different from the one used in LAPACK. Compared

with hard-coded composition of algorithms in standard numerical linear packages,

our autotuning approach allows automatic selection of cutoff points for algorithms

when the underlying architecture changes. We also demonstrated the speedup of LU

Factorization implemented using our autotuned nontrivial varaible blocking algorithm

over conventional fixed recursive blocking strategies with fixed blocking sizes. Our im-

plementations using PetaBricks give portable performance that can adapt to changes

in architecture and produce the optimal algorithmic choices and cutoff accordingly.

transform MatrixMultiply
from A[p,m], B[n,p]
to C[n,m]
{

// Rule 0: Base case, compute a single element
to(C.cell(j,i) out)
from(A.row(i) a, B.column(j) b) {

out = DotProduct(a,b);

}

// Rule 1: Recursively decompose A

// col-blocks and B in half

to(C c)

from(A.region(0, 0, p/2, m) al,
A.region(p/2, 0, p, m) a2,
B.region(0, 0, n, p/ 2) bi,

B.region(0, p/2, n, p) b2)

c = MatrixAdd(MatrixMultiply(al,
MatrixMultiply (a2,

}

// Rule 2: Recursively decompose B

to(C.region(0, 0, n/2, m) ci,

C.region(n/2, 0, n, m) c2)

from(A a,

B.region(0, 0, n/2, p) bi

B.region(n/2, 0, n, p) b2

c1 = MatrixMultiply(a, bi);

c2 = MatrixMultiply(a, b2);

}

// Rule 3: Recursively decompose

to(C.region(0, 0, n, m/2) ci,
C.region(0, m/2, n, m) c2)

from(A.region(0, 0, p, m/2)

A.region(0, m/2, p, m)
B b) {

ci = MatrixMultiply(a1, b);
c2 = MatrixMultiply(a2, b);

A

al,

a2,

in half
row-blocks

{
bi)

b2));

in half col-blocks

in half row-blocks

Figure 2-1: PetaBricks source code for MatrixMultiply

PetaBricks Source Code

11

f4a

r4b
Static Binary

Dependency Graph

IParallel Runtime

Compiled User code
w/ static choices

Figure 2-2: Interactions between the compiler and output binaries. First, the compiler
reads the source code and generates an autotuning binary (Steps 1 and 2). Next
(Step 3), autotuning is run to generate a choice configuration file. Finally, either the
autotuning binary is used with the configuration file (Step 4a), or the configuration
file is fed back into a new run of the compiler to generate a statically chosen binary
(Step 4b).

2

Autotuning Binary

1 3

transform CumulativeSum

from A[n]

to B[n]

{
//Rule 0: sum all elements to the left

to(B.cell(i) b) from(A.region(O, i) in) {
b=sum(in);

}

//Rule 1: use the previously computed sum

to(B.cell(i) b) from(A.cell(i) a,
B.cell(i-1) leftSum) {

b=a+leftSum;

Figure 2-3: PetaBricks source code for CumulativeSum. A simple example used to
demonstrate the compilation process. The output element Bk is the sum of the input
elements A0 , ... , Ak.

Figure 2-4: Choice dependency graph for CumulativeSum (in Figure 2-3). Arrows
point the opposite direction of dependency (the direction data flows). Edges are
annotated with rules and directions, offsets of 0 are not shown.

EIG(T)
1: either
2: Use QR to find A and X
3: Use BISECTION to find A and X
4: Recursively call EIG on submatrices Ti and T2 to get A,, X 1 , A2 and X2. Use

results to compute A and X.
5: end either

Figure 2-5: Pseudo code for symmetric eigenproblem. Input T is tridigonal

0.12

0.1

0.08

0.06

0.04 +

0.02

0 200 400 60
Input Size

Figure 2-6: Performance for Eigenproblem on 8 cores.
the hard-coded hybrid algorithm found in LAPACK.

0 800 1000

"Cutoff 25" corresponds to

3

2.5
0.

CD,

2

1.5

1 I

2 3 4 5 6 7 8
Number of Threads

Figure 2-7: Parallel scalability for eigenproblem: Speedup as more worker threads
are added. Run on an 8-way (2 processor 4 core) x86 64 Intel Xeon System.

1 function [L U]=lunopivot(A);
2 n=size(A,1);
3 U = A; L = eyes(n); % Initialize U = A, and L = I
4 for k = 1 to n-1
5 for j = k+1 to m
6 L(j,k) = U(j,k) / U(k,k);
7 U(j,k:m) = U(j,k:m) - L(j,k)*U(k,k:m);
8 end
9 end

Figure 2-8: Simple Matlab implementation of right-looking LU

LU(A)
1: either
2: Use LUunblocked to find L and U
3: Recursively call LU on subproblems of equal size n/2.
4: Recursively call LU on subproblems of sizes n/4 and 3n/4.

5: end either

Figure 2-9: Pseudo code for LU Factorization. Input A is n x n

0 100 200 300 400 500 600 700 800
Input Size

Figure 2-10: Performance for Non-blocked LU Factorization on 8 cores.

0 100 200 300 400 500 600 700 800
Input Size

Figure 2-11: Performance for LU Factorization on 8 cores.
autotuned unblocked transform from Figure 2-10.

"Unblocked" uses the

3.5 I
LU, n = 256 -E-
LU, n = 512

LU, n 1024 A--

3

2.5

CL

2

...... ..

1.5

1 .

2 3 4 5 6 7 8
Number of Threads

Figure 2-12: Parallel scalability for LU Factorization: Speedup as more worker
threads are added. Run on an 8-way (2 processor 4 core) x86 64 Intel Xeon Sys-
tem.

Chapter 3

Handling Variable-Accuracy with

PetaBricks

3.1 Introduction

In chapter 2, we demonstrated how PetaBricks can be used to revisit some classical

numerical kernels with multiple algorithmic choice being autotuned. The examples

shown were only limited to problems with direct solutions. However, for certain

classes of applications, such as NP-hard problems or problems with tight computation

or timing constraints, we are often willing to sacrifice some level of accuracy for

faster performance. In this chapter, we broadly define these types of problems as

variable accuracy algorithms, and discuss how PetaBricks handle the notion of variable

accuracy.

One class of variable accuracy algorithms are approximation algorithms in the

area of soft computing [94]. Approximation algorithms are used to find approximate

solutions to computationally difficult tasks with results that have provable quality.

For many computationally hard problems, it is possible to find such approximate

solutions asymptotically faster than it is to find an optimal solution. A good example

of this is BinPacking. Solving the BinPacking problem is NP-hard, yet arbitrarily

accurate solutions may be found in polynomial time [26]. Like many soft computing

problems, BinPacking has many different approximation algorithms, and the best

choice often depends on the level of accuracy desired.

Another class of variable accuracy algorithms are iterative algorithms used ex-

tensively in the field of applied mathematics. These algorithms iteratively compute

approximate values that converge toward an optimal solution. Often, the rate of

convergence slows dramatically as one approaches the solution, and in some cases a

perfect solution cannot be obtained without an infinite number of iterations [93]. In

many cases, convergence criteria are created to decide when to terminate the itera-

tion. However, deciding on a convergence criteria has become increasingly difficult

with more complex memory system, architecture and advances in multicore comput-

ing.

A third class of variable accuracy algorithms are algorithms in the signal and im-

age processing domain. In this domain, the accuracy of an algorithm can be directly

determined from the problem specification. For example, when designing digital

signal processing (DSP) filters, the type and order of the filter can be determined

directly from the desired sizes of the stop, transition and pass-bands as well as the

required filtering tolerance bounds in the stop and pass-bands. When these specifi-

cations change, the optimal filter type may also change. Since many options exist,

determining the best approach is often difficult, especially if the exact requirements

of the system are not known ahead of time.

A key challenge when writing and using codes for variable accuracy algorithms

arises from the optimal composition of algorithms with accuracy requirements. For

example, a user may know all of the potential algorithms to solve a variable accuracy

problem but may not know how to link together the algorithms and determine what

parameter values should be associated with each. In some cases, a user may know very

little about the underlying algorithms, but he/she may just need to solve a problem

to some target accuracy level.

An example is the fmincon() function in Matlab, which attempts to find the

minimum of a user-specified nonlinear multivariate function subject to a set of speci-

fied constraints. fmincon() takes accuracy and optimization options specified by an

options structure. This structure contains 42 fields that the user can set to specify

various options such as which of three algorithms to use, how many iterations to

run, and what tolerances to use. Additionally, there are a number of options specific

to each of the three algorithms, some of which further affect additional algorithmic

choices. For example, the value specified in the PrecondBandWidth option used by

the trust-region-reflective algorithm will indirectly affect both the number of

preconditioning iterations performed, as well as the type of factorization algorithm

used during the preconditioning phase. Relying on the user to specific all the options

is simply not the most effective way to obtain the optimal algorithm.

In this chapter, we demonstrate how a novel set of language extensions to PetaBricks

and an accuracy-aware compiler can address the challenges in writing variable accu-

racy codes. With our extensions, accuracy time trade-offs are made visible to the

compiler, enabling it to perform empirical autotuning over both the algorithmic search

space and the parameter space to find the best composition of nested calls to variable

accuracy code. The resulting code will perform well across architectures as none of

the accuracy-based decisions need to be hard-coded.

Some of the materials in this chapter appear in our recent paper [7]. This chap-

ter discusses in more detail the results of our autotuned benchmark algorithms. In

particular, we demonstrate how k-means clustering can be solved without specifying

the number of clusters k, and show that the optimal k can be determined accurately

with PetaBricks. To the best of our knowledge, our approach is the first to solve any

general-purpose k-means clustering problem without domain-specific modeling and

any solution of optimization problems by the users to specific the number of clusters

k. We also show how accuracy requirement is incorporated into the problem of pre-

conditioning, and show that the optimal choice of preconditioners can change with

problem sizes. Compared with common preconditioning techniques, our implementa-

tion allows automatic choices of optimal preconditioners without prior knowledge of

the specific system matrix.

3.2 PetaBricks for Variable Accuracy

At a high level, the language extensions to PetaBricks extend the idea of algorithmic

choice to include choices between different accuracies. The extensions also allow the

user to specify how accuracy should be measured. Our new accuracy-aware autotuner

then searches to optimize for both time and accuracy. The result is code that proba-

bilistically meets users' accuracy needs. Optionally, users can request hard guarantees

that utilize runtime checking of accuracy.

For more information about the PetaBricks language and compiler support for

variable accuracy, see [7]; the following summary is included for background.

3.2.1 Variable Accuracy Extensions

In order to support variable accuracy, the following extensions were made to PetaBricks:

" The accuracy-metric keyword in the transform header allows the program-

mer to specify the name of another user-defined transform to compute accuracy

from an input/output pair. This allows the compiler to test the accuracy of

different candidate algorithms during training. It also allows the user to specify

a domain specific accuracy metric of interest to them.

" The accuracy...variable keyword in the transform header allows the user to

define one or more algorithm-specific parameters that influence the accuracy

of the program. These variables are set automatically during training and are

assigned different values for different input sizes. The compiler explores different

values of these variables to create candidate algorithms that meet accuracy

requirements while minimizing execution time.

" The accuracy..bins keyword in the transform header allows the user to define

the range of accuracies that should be trained for and special accuracy values

of interest that should receive additional training. This field is optional and the

compiler can add such values of interest automatically based on how a transform

is used. If not specified, the default range of accuracies is 0 to 1.0.

" The f or-enough statement defines a loop with a compiler-set number of iter-

ations. This is useful for defining iterative algorithms. This is syntactic sugar

for adding an accuracy-variable to specify the number of iterations of a tra-

ditional loop.

" The keyword verif y-accuracy in the rule body directs the compiler to insert a

runtime check for the level of accuracy attained. If this check fails the algorithm

can be retried with the next higher level of accuracy or the user can provide

custom code to handle this case. This keyword can be used when strict accuracy

guarantees, rather than probabilistic guarantees, are desired for all program

inputs.

3.2.2 Example Psueudocode

Figure 3-1 presents our kmeans example with our new variable accuracy extensions.

This kmeans program groups the input Points into a number of clusters and writes

each points cluster to the output Assignments. Internally the program uses the

intermediate data Centroids to keep track of the current center of each cluster.

The transform header declares each of these data structures as its inputs (Points),

outputs (Assignments), and intermediate or "through" data structures (Centroids)

(line 4-7).

First, the keyword accuracy-metric, on line 2, defines an additional transform,

kmeansaccuracy, which computes the accuracy of a given input/output pair to

kmeans. PetaBricks uses this transform during autotuning and sometimes at run-

time to test the accuracy of a given configuration of the kmeans transform. The

accuracy metric transform computes the value 7 , where Di is the Euclidean

distance between the i-th data point and its cluster center.

The accuracy-variable k, on line 3 controls the number of clusters the algorithm

generates by changing the size of the array Centroids. The variable k can take

different values for different input sizes and different accuracy levels. The compiler

will automatically find an assignment of this variable during training that meets each

required accuracy level.

The rules contained in the body of the transform define the various pathways to

construct the Assignments data from the initial Points data. The first two rules

(line 9-21) specify two different ways to initialize the Centroids data needed by the

iterative kmeans solver in Rule 3. The third rule (line 23-32) specifies how to produce

the output Assignments using both the input Points and intermediate Centroids.

Note that since the third rule depends on the output of either the first or second rule,

the third rule will not be executed until the intermediate data structure Centroids

has been computed by one of the first two rules. The f or-enough loop on line 26 is a

loop where the compiler can pick the number of iterations needed for each accuracy

level and input size. During training, the compiler will explore different assignments

of k, algorithmic choices of how to initialize the Centroids, and iteration counts for

the f or-enough loop to try to find optimal algorithms for each required accuracy.

To summarize, when our transform is executed, the cluster centroids are initialized

either by the Rule 1, which performs random initialization on a per-column basis with

synthesized outer control flow, or by Rule 2, which calls the CenterPlus algorithm.

Once Centroids is generated, the iterative step in Rule 3 is called. Our actual

implemented version of k-means clustering code varies slightly and incoporates more

algorithmic choice. A more detailed discussion on our clustering benchmark can be

found in Section 3.3.

3.2.3 Accuracy Guarantees

PetaBricks supports the following three types of accuracy guarantees:

" Statistical guarantees are the most common technique used, and the default

behavior of our system. They work by performing off-line testing of accuracy

using a set of program inputs to determine statistical bounds on an accuracy

metric to within a desired level of confidence.

* Runtime checking can provide a hard guarantee of accuracy by testing accuracy

at runtime and performing additional work if accuracy requirements are not

met. Runtime checking can be inserted using the verify..accuracy keyword.

This technique is most useful when the accuracy of an algorithm can be tested

with low cost and may be more desirable in case where statistical guarantees

are not sufficient.

9 Domain specific guarantees are available for many types of algorithms. In these

cases, a programmer may have additional knowledge, such as a lower bound

accuracy proof or a proof that the accuracy of an algorithm is independent

of data, that can reduce or eliminate the cost of runtime checking without

sacrificing strong guarantees on accuracy.

As with variable accuracy code written without language support, deciding

which of these techniques to use with what accuracy metrics is a decision left

to the programmer.

3.2.4 Compiler Support for Autotuning Variable Accuracy

The main difficulty of representing variable accuracy algorithms is that variable ac-

curacy adds a new dimension to how one can evaluate candidate algorithms. With

fixed accuracy algorithms, the metric of performance can be used to order algorithms.

With variable accuracy, we plot candidates on an accuracy/time grid. This naturally

leads to an optimal frontier of algorithms for which no other algorithm can provide a

greater accuracy in less time. It is not possible to evaluate the entire optimal frontier,

however, since it can potentially be of infinite size. Instead, to make this problem

tractable, we discretize the space of accuracies by placing each allowable accuracy

into a bin. The discretization can be specified by the user or can be automatically

inferred by the compiler based on how a variable accuracy algorithm is used. For

example, if an algorithm is called with a specific accuracy, that specific accuracy can

be added as extra bin boundary by the compiler. An example of the optimal frontier

and bins is shown in Figure 3-2.

In the compiler, we represent these bins by extending and using the representation

for templates. A variable accuracy algorithm is called with the syntax "Foo<accuracy>"

and, similar to templates, each requested accuracy is considered by the compiler as a

separate type. When variable accuracy code calls other variable accuracy code, the

sub-accuracy is automatically determined by the compiler. This is done by repre-

senting the sub-accuracy as an algorithmic choice to call one of any of the accuracy

bins. If a user wishes to call a transform with an unknown accuracy level, we support

dynamically looking up the correct bin that will obtain a requested accuracy.

The PetaBricks autotuner then searchs the algorithm spaces using this optimal

frontier. Using a dynamic programming approach, it produces the optimal algorithmic

choice that meets the accuracy requirement. For details of the actual tuning algorithm

and phases, see [7].

3.3 Clustering

3.3.1 Background and Challenges

Clustering is the problem of grouping similar objects. Given a set of input, clustering

divides the data into clusters based on a similarity measure, which is often specific

to the domain of application. Clustering is a common technique for statistical data

analysis in areas including machine learning, pattern recognition, image segmentation,

medicine, computational biology. Many clustering algorithms, data structures and

cluster modeling have been studied [52, 59].

For two objects i, j, a common way to measure similarity is to define a distance

measure D(i,j). Objects are considered to be more similar with a smaller distance

D(i, j) between each other. Common distance functions include the Euclidean dis-

tance (2-norm), the Manhattan distance (1-norm), the supremum norm and the Ham-

ming distance. Since the choice of distance measure will affect the shape of clusters,

it depends on the application and requires some prior knowledge of the dataset.

In this section, we study a popular algorithm of partitional clustering, the k-means

clustering using PetaBricks. K-means clustering gives a partition of n objects into k

clusters, measured by a mean error. The large number of possible partitions makes it

difficult and impratical to search for an absolute minimum configuration. Thus local

optimization algorithms are usually applied.

Many clustering algorithms, including k-means, require the specification of the

number of clusters to be used, prior to exceution of the algorithms. The problem

of k-clustering is NP-hard for general k in a plane [67] (for k < n). If k is fixed,

k-clustering can be solved in polynomial time [56]. However, determining the optimal

number k is a difficult problem by itself. The best choice of k is often not obvious

since it depends on the underlying distribution of data and desired accuracy. There

have been many studies on choosing k, such as setting k simply to k = /n/2 [68], the

Elbow Method [47], and by an information theoretic approach [82]. We present our

Petabricks solutions to the k-means clustering problem, which includes algorithmic

selection and automatic computation of the number of clusters k by the Petabricks

autotuner based on a preset accuracy metric. We demonstrate how k-means clustering

can be solved without specifying the number of clusters k, and show that the optimal

k can be determined accurately with PetaBricks. To the best of our knowledge, our

approach is the first to solve any general-purpose k-means clustering problem without

domain-specific modeling and any solution of optimization problems by the users to

specific the number of clusters k.

3.3.2 Algorithms for k-means clustering

The first step of solving the k-means problem is to find the number of clusters k in

the data set. In our PetaBricks transform, the number of clusters, k, is the accuracy

variable to be determined on training by the autotuner.

Taking k as given (which will be determined by the autotuner), we implemented a

variant of Lloyd's algorithm [72] for k-means clustering. Lloyd's algorithm starts with

k initial centers chosen randomly or by some heuristics. Each data point is assigned

to its closest center, measured by some distance metric. We pick D(i, j) to be the

Euclidean distance in our implementation. The cluster centers are then updated to

be the mean of all the points assigned to the corresponding clusters. The steps of

partitioning points and recalculating cluster centers are repeated until convergence

to a local optimal configuration. Several algorithmic choices are implemented in our

version of k-means clustering: The initial set of k cluster centers are either chosen

randomly with a uniform distribution among the n data points, or according to the

k-means++ algorithm [8], which selects subsequent centers from the remaining data

points with probability proportional to the distance squared to the closest center.

Once the initial cluster centers are computed, the final cluster assignments and center

positions are determined by iterating, either until a fixed point is reached or in some

cases when the compiler decides to stop early.

3.3.3 Experimental Setup - Acuracy Metric and Training

Data

The pseudo code for k-means clustering is shown in Figure 3-3. There are two

places for algorithmic choices. First, the initial set of k cluster centers are either

chosen randomly, or by the k-means++ algorithm. During the iterative steps, the

compiler can choose to continue the iterative phase until fixed cluster centers and

assignments are reached, or stop the iteration when no more than 50% of the cluster

assignments change, or no more than 25% of the points are assigned a different cluster,

or stop after only one round of iteration. The Petabricks compiler incorporates the

accuracy metric and accuracy level requirements in making these algorithmic choices.

The training data is a randomly generated clustered set of n points in two di-

mensions. First, V/ii "center" points are uniformly generated from the region [-250,

250] x [-250, 250]. The remaining n - V/7- data points are distributed evenly to each of

the V/ni centers by adding a random number generated from a standard normal distri-

bution to the corresponding center point. Note that the optimal number of clusters

koptima= ksorce = is not known to the autotuner.

Rather than assigning a fixed k through a heuristic (such as the commonly used

k = ,n/2), we define k as an accuracy variable and allow the autotuner to set it.

This allows the number of clusters to change based on how compact clusters the user

of the algorithm requests through the accuracy requirement. The accuracy metric

used is

A t - 2nAccuracy-metric = ED2 (3.1)

where Di is the Euclidean distance between the i-th data point and its cluster center.

The reciprocal of the distance is chosen as the accuracy metric such that a smaller

sum of distance squared gives a higher accuracy.

The accuracy levels used are 0.05, 0.10, 0.20, 0.50, 0.75, and 0.95. The accu-

racy metric is chosen such that with the input training data, the resulting accuracy

produced will lie between [0,1] (which is an arbitrary choice).

We performed all tests on a 3.16 GHz 8-core (dual-Xeon X5460) system. All codes

are automatically parallelized by the PetaBricks compiler and were run and trained

using 8 threads.

3.3.4 Results and Analysis

Figure 3-4 shows the speedups that are attainable when a user is in a position to

use an accuracy lower than the maximum accuracies of our benchmarks. On the

largest tested input size, our Clustering benchmark speedups range from 1.1 to 9.6x.

Such dramatic speedups are a result of algorithmic changes made by our autotuner

that can change the asymptotic performance of the algorithm (For example, 0(n) vs

0(n 2)) when allowed by a change in desired accuracy level. Because of this, speedup

can become a function of input size and will grow arbitrarily high for larger and

larger inputs. These speedups demonstrate some of the performance improvement

potentials available to programmers using our system.

Table 3.1 illustrates the algorithmic results of autotuning our k-means benchmark

on our sample input of size n = 2048. The results show interesting algorithmic choices

and number of clusters k chosen by the autotuner. For example, at accuracies greater

than 0.2, the autotuned algorithm correctly uses the accuracy metric (based on Eu-

clidean distances between data points and cluster centers) to construct an algorithm

that picks a k value that is close to 45, which is the number of clusters generated by

Accuracy k Initial Center Iteration Algorithm
0.10 4 random once
0.20 38 k-means++ 25% stabilize
0.50 43 k-means++ once
0.75 45 k-means++ once
0.95 46 k-means++ 100% stabilize

Table 3.1: Algorithm selection and initial k value results for autotuned k-means
benchmark for various accuracy levels with n = 2048 and ks.=c 45

our training data (which is not known to the autotuner).

At accuracy 0.1, the autotuner determines 4 to be the best choice of k and chooses

to start with a random cluster assignment with only one level of iteration. While this

is a very rough estimate of k and a very rough cluster assignment policy, it is sufficient

to achieve the desired low level of accuracy. To achieve accuracy 0.2, the autotuner

uses 38 clusters, which is slightly less than the predetermined value. Our autotuned

algorithm determines the initial cluster centers by k-means++, and iterates until no

more than 25% of the cluster assignments change. For accuracy 0.5 and 0.75, the

values of k picked by the autotuner algorithm are 43 and 45 respectively, which are

only slightly smaller or equal to the predetermined k. The initial centers are decided

by k-means++ and only one iteration is used. By successfully finding a number of

clusters that is close to the predetermined k and picking good initial centers, only

one iteration is needed on average during training to achieve a high level of accuracy.

Finally, to achieve the highest accuracy of 0.95, the algorithm uses k value of 46.

Initial centers are determined by k-means++ and iterations are performed until a

fixed point is reached. It is interesting to note that on average, the autotuner finds

that a value of k that is one higher than the k used to generate the data, is best to

minimize the user specified accuracy metric.

Our autotuner is able to produce the optimal number of clusters accurately with

most of the accuracy levels and only overpredicts the number by 1 with a very strict

accuracy requirement specificed by user. As a comparison to highlight the fact that

input training data is important, we also ran our k-means clustering benchmark on

an input training data randomly generated from uniform distribution without any

clustering built in. In that case, we found that the number of clusters k produced by

our autotuner simply increased with increasing accuracy requirements.

3.4 Preconditioning

3.4.1 Background and Challenges

Solving a linear system of equations Ax = b is a common problem in both scientific

research and real-world applications such as cost optimization and asset pricing. Non-

iterative (or "direct") algorithms for general n x n matrices require O(n3) flops,

which usually makes solving the equation Ax = b the bottleneck of any application,

especially when n gets large. Thus, iterative methods are often used to provide

approximate solutions. Preconditioning is a technique that speeds up the convergence

of an iterative solver.

The convergence of a matrix iteration depends on the properties of the matrix

A, one of which is the condition number. A preconditioner M of a matrix A is

a matrix that if well chosen, the condition number of M-1 A is smaller than that

of A. Although the preconditioned system M-1 Ax = M- 1 b has the same solution

as the original system Ax = b, the rate of convergence depends on the condition

number of M- 1A. The preconditioner M = A has the optimal condition number,

but evaluating M-'b = A-'b is equivalent to solving the original system. If M = I,

then the preconditioned system is the same as the original system, so it accomplished

nothing even though the operation M-b in this case is trivial. Achieving a faster

convergence rate of the iterative solver (finding a preconditioner M that is close to

A) while keeping the operation of M-1 simple to compute is the key to finding a good

preconditioner.

For M to be considered close to A, we want the eigenvalues of M-'A to be close

to 1 and the 2-norm I M- 1A - I1l2 to be small. In that case, the iterative solvers can

be expected to converge quickly. A general rule of thumb suggested by [85] is that a

preconditioner M is good if M-1 A is not too far from normal and its eigenvalues are

clustered (A matrix A is normal if A*A = AA*).

In this section, we present our PetaBricks implementation of Preconditioned Con-

jugate Gradient (PCG). In our approach, we incorporate accuracy requirement into

the problem of preconditioning, and show that the optimal choice of precondition-

ers can change with problem sizes. Our implementation allows automatic choices of

optimal preconditioners without prior knowledge of the specific system matrix.

3.4.2 Overview of Preconditioners

We first give a survey of common preconditioners based on [85, 11]. Some examples

of preconditioners are defined independent of the properties of the underlying system

Ax = b, while other preconditioners are designed to take advantage of the specific

structures of the original matrix A.

" Jacobi preconditioner This is perhaps the simplest preconditioner, defined by

M = diag(A). This transformation can speed up the iteration considerably for

certain problems.

" Polynomial preconditioner This type of preconditioner aims at approximate

directly the inverse of A. A polynomial preconditioner is a matrix polynomial

M-1 = p(A) such that p(A)A has better convergence properties than A it-

self. One way to obtain the polynomial p(A) is from the first few terms of the

Neumann series A- =I + (I - A) + (I - A) 2 +....

" A few steps of classical iterative method Another common preconditioning tech-

nique is to apply one or more steps of "classical iterative methods" such as

Jacobi, Gauss-Seidel, SOR or SSOR. Popular choices are Jacobi and SSOR. For

details of these iterative methods, see [11].

" Multigrid This is a common technique particularly in solving partial differential

equation or integral equations. The idea is to restrict the discretized equation

on a coarser grid, solve it on the coarse grid, and interpolate back to the finer

grid.

3.4.3 Experimental Setup - Acuracy Metric and Training

Data

Our preconditioner PetaBricks transform implements three choices of precondi-

tioners and solves the system by Conjugate Gradient Method (CG)'. The pseudo

code is shown in Figure 3-5. The first choice is the Jacobi preconditioner M

diag(A) coupled with Preconditoned Conjugate Gradient (PCG). Another choice is

to apply the polynomial preconditioner M-= p(A), where p(A) is an approxima-

tion of the inverse of A by using the first three terms of the series expansion of A',

and solve the preconditioned system with PCG. We also implemented the Conjugate

Gradient method (CG) which solves the system without any preconditioning.

The number of iterations NumIterations is defined as an accuracy variable and

we allow the autotuner to set it based on the algorithm chosen and required accuracy

level. The accuracy metric used is defined as the ratio between the RMS error of the

initial guess Axi, to the RMS error of the output Ax,, compared to the right hand

side vector b, converted to log-scale, which is equal to

(Z((Axin)i - bi)2Accuracy-metric = log) (3.2)
('E((Azout)i - bi)2)

For training data, we used randomly generated entries for the RHS vector b. For

the coefficient matrix A, we tried two different sets of training data, (1) set A to

be the discretized operator of the 2D Poisson Equation, and (2) randomly generated

symmetric positive-definite matrix A for comparison in terms of algorithmic choices

with the Poisson operator.

The accuracy levels used are 0, 0.5, 1, 1.5, 2 and 3. With the accuracy met-

ric defined as above, the accuracy levels require increasing orders of magnitude of

improvements of the error norm compared to the initial guess.

We performed all tests on a 3.16 GHz 8-core (dual-Xeon X5460) system. All codes

are automatically parallelized by the PetaBricks compiler and were run and trained

'Conjugate Gradient is a Krylov subspace iterative algorithm to solve the equation Ax = b for
symmetric positive-definite matrices A. For details, see [29, 70]

using 8 threads.

3.4.4 Results and Analysis

Figure 3-6 shows the speedups that are attainable when a user is in a position to

use an accuracy lower than the maximum accuracies of our benchmarks. On the

largest tested input size, our Preconditioner benchmark speedups range from 1.1 to

2.2x. The speedups are not as significant as the Clustering benchmark (Figure 3-4).

One reason is that algorithmic choices made by our autotuner are limited to the kind

of preconditioners used and number of iterations performed. Many of the classical

preconditioners studied here have a large sequential component, so there are less

room for parallel speedups than other benchmarks examined in this chapter and in

the paper [7].

n (Poisson A) NumIterations n (Random A) NumIterations
21 2 21 2
22 3 22 4
23 7 23 6
24 12 24 14
25 21 25 34
26 38 26 95
27 91 27 240
28 174 28 > 500

Table 3.2: Values of NumIterations for autotuned preconditioning benchmark for
accuracy level 2 and various size of the n x n input A

To study the effects of algorithmic choice, we focus on the accuracy level 2, and

examine the autotuned results. Table 3.2 lists the value of the accuracy variable

NumIterations after autotuning our preconditioning benchmark on A, where A is

either the Poission operator or a randomly generated coefficient matrix. As expected,

the values of NumIterations increases as n increases. The number of iterations

needed to attain the same level of accuracy is larger for a random system matrix A

than the Poisson operator.

The values of NumIterations are coupled with the algorithmic choices made by

the PetaBricks autotuner, as shown in Table 3.3. For the Poisson operator A, at

Table 3.3: Algorithm selection for autotuned preconditoining benchmark, accuracy
level = 2 and input A is the Poisson operator

accuracy level 2, the autotuned optimal algorithmic choices is PCG with Jacobi pre-

conditioner when n > 48. The iteration algorithm is switched to CG without pre-

conditioning when 24 < n < 48. It switches back to PCG with Jacobi when n falls

below 24 and the optimal algorithm for very small input n < 3 is ordinary CG. It

is expected that Jacobi preconditioning is effectve for the Poisson opeartor, but the

switch between PCG with Jacobi and CG without preconditioner is rather interest-

ing. One reason could be that our test measures execution times of the entire kernel,

instead of using the number of iterations as the only measure as in some classical stud-

ies in the math literature. Since modern machines are highly optimized to perform

matrix-matrix and matrix-vector multiplications (which are the main components of

Conjugate Gradients), the number of iterations itself do not give a good indication

of actual convergence rate. Furthermore, with the increasing complexity of computer

architecture and parallelism involved, it is difficult to find the optimal algorithmic

configurations manually.

In comparison, when A is a randomly generated matrix, the Petabricks compiler

always chooses CG as the optimal choice. This makes sense since without any spe-

cific structure, it is unlikely our available choices of preconditioner will speed up the

convergence.

3.4.5 Related Work

A detailed study of another common preconditioning technique, Multigrid method,

using PetaBricks is presented in [18]. In the paper, the dynamic programming method

of searching the exponential space of tuned algorithms (iterative algorithms and num-

Size of input n x n matrix Iteration Algorithm
1<n<3 CG
3 < n < 24 PCG with Jacobi Preconditioner
24<n<48 CG
n > 48 PCG with Jacobi Preconditioner

ber of iterations at each recursion level) is discussed in detail. Nontrivial multigrid

cycle shapes, as opposed to common V-shaped and W-shaped cycles, are found to

be the optimal algrithmic paths for convergence. These cycle shapes determine the

orders in which grid coarsening and grid refinement are performed with both direct

methods and iterative methods, including Jacobi and SOR. The autotuned multigrid

cycle shapes are targeted to the user's specific combination of underlying problem,

hardware, and accuracy requirements.

3.5 Chapter Summary

In this chapter, we presented a new programming model where trade-offs between

time and accuracy are exposed at the language level to the PetaBricks compiler.

To the best of our knowledge, PetaBricks is the first programming language that

incorporates a comprehensive solution for choices relating to algorithmic accuracy.

We have outlined how the PetaBricks compiler automatically search the space of

algorithms and parameters (optimal frontier) to construct an optimized algorithm

for each accuracy level required. Using PetaBricks, writing programs for variable

accuracy problems can be more effective, since the users can change their required

accuracy metrics and accuracy levels, and PetaBricks can adapt to these changes

easily. We demonstrated the accuracy/performance trade-offs by two examples, k-

means clustering and preconditioning, and show how nontrivial algorithmic choice

can change with different user requirements. In particular, we showed how k-means

clustering can be solved without specifying the number of clusters k, and showed that

the optimal k can be determined accurately with PetaBricks using relevant training

data. To the best of our knowledge, our approach is the first to solve any general-

purpose k-means clustering problem without domain-specific modeling and requiring

the user to solve some optimization problems to obtain the number of clusters k. In

the problem of preconditioning, we showed that the optimal choice of preconditioners

can change with problem sizes, in addition to the system matrix. Autotuning with

PetaBricks provides a systematic way to incorporate different kinds of preconditioners

even without prior information about the system matrix. This approach is especially

useful when the user is not certain about which one improves convergence the most.

1
2
3
4
5
6
7

8

9
10
11
12
13

14
15
16
17
18
19

20
21
22
23

24

25
26

27
28
29

30
31
32
33
34
35
36
37

38
39
40
41
42

Figure 3-1: Pseudocode for variable accuracy kmeans illustrating the new variable
accuracy language extension.

transform kmeans
accuracy-metric kmeansaccuracy
accuracy-variable k
from Points[n,2] /1 Array of n points (each column

// stores x and y coordinates)
through Centroids[k,21
to Assignments[n]

{
// Rule 1:
// One possible initial condition: Random
// set of points

to(Centroids.column(i) c) from(Points p) {
c=p.column(rand(O,n))

}

// Rule 2:
// Another initial condition: Centerplus initial
// centers (kmeans++)
to(Centroids c) from(Points p) {

CenterPlus(c, p);

}

// Rule 3:
// The kmeans iterative algorithm
to(Assignments a) from(Points p, Centroids c) {

for-enough {
int change;
AssignClusters(a, change, p, c, a);
if (change==O) return; // Reached fixed point
NewClusterLocations(c, p, a);

}
}

}

transform kmeansaccuracy
from Assignments[n], Points[n,2]
to Accuracy

{
Accuracy from(Assignments a, Points p){

return sqrt(2*n/SumClusterDistanceSquared(a,p));

0 0 0

0 0 0 0

0

0 U

0

Accuracy
Figure 3-2: Possible algorithmic choices with optimal set designated by squares (both
hollow and solid). The choices designated by solid squares are the ones remembered
by the PetaBricks compiler, being the fastest algorithms better than each accuracy
cutoff line.

KMEANS(X, Centers)

1: either
2: Assign random initial cluster centers
3: Use kmeans++ to set initial configuration
4: end either
5: Apply kmeans iterative algorithm, and stop when:
6: either
7: local optimum is reached, i.e. no further changes in cluster assignments
8: number of cluster changes <O0.5n
9: number of cluster changes <O0.25n

10: one iterative step is performed
11: end either

Figure 3-3: Pseudo code for k-means clustering

8 -c eAccuracy Level 0.75

Accuracy Level 0.20 --- -
Accuracy Level 0.10

4 -4Accuracy Level 0.05--+ --

0. ..

=.9

u) 2

10 100 1000
Input Size

Figure 3-4: k-means clustering: Speedups for each accuracy level and input size,
compared to the highest accuracy level for each benchmark. Run on an 8-way (2 x 4-
core Xeon X5460) system.

PRECONDITIONER(A, x, b)

1: Iterate with NumIterations using one of the algorithms:
2: either
3: Preconditioned Conjugate Gradient (PCG) with Jacobi Preconditioner
4: PCG with Polynomial Preconditioner
5: Conjugate Gradient (CG) i.e. no preconditioning
6: end either

Figure 3-5: Pseudo code for Preconditioner

8Acuracy Levl 3.68 Accuracy Level 2.0
Accuracy Level 1.5 ...

Accuracy Level 1.0 -.-- .-
Accuracy Level 0.5

-f. Accuracy Level 0.0-----
_0
(D
a)

1.
. . . Won

10 100 1000 10000
Input Size

Figure 3-6: Preconditioning: Speedups for each accuracy level and input size, com-
pared to the highest accuracy level for the Poisson operator A. Run on an 8-way
(2 x 4-core Xeon X5460) system.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 4

Analysis of Terrain Data

4.1 Introduction

In this chapter, we study a problem in large-scale terrain data analysis which moti-

vates the use of a new high-level programming language Julia. Terrain analysis plays

a key role in environmental modeling, land-use management and military operations.

The process of analyzing and interpreting features within the area of terrain provides

an understanding of the impact and limitations of the area of operations, which can

be used as a base for planning and operational decisions.

The focus of terrain analysis by researchers are mainly on capturing local variation

of terrain properties by climate changes and distribution of human activities. Eval-

uating and quantifying terrian properties which could change constantly is another

major challenge in this field. Typical terrain analysis methods include spatial mod-

eling, Monte-Carlo simulations and Digital Elevation Models [92]. Other advanced

techniques include probabilistic modeling, learning algorithms for parameter tuning

[83], roughness analysis using Geographic Information System(GIS) [80], multi-scale

modeling and segmentation-based terrain classification [95, 81]. These techniques of-

ten require a thorough understanding and modeling of the underlying terrain and a

comprehensive dataset for analysis.

Our purpose and approach are different: We are given a large set of Cartesian

coordinates, taken from a vehicle moving across a couple of terrains. We would

like to capture and study interesting features without detailed information of the

underlying terrains. In this chapter, we apply general filtering methods and Singular

Value Decomposition (SVD) on downsampled datasets since the original datasets

would not fit on the memory of a typical machine. We perform analysis in serial on

terrain data and devise a systematic method to classify the terrain. Our methodology

does not depend on what kind of terrain or area the data comes from, and does

not require extensive modeling. In chapter 5, we apply the same techniques from

this chapter using Julia, a newly developed programming language, and discuss the

parallel implementation.

The remainder of this chapter proceeds as follows: First, we introduce our dataset

and the pre-processing procedures in Section 4.2. In section 4.3, we demonstrate the

use of Laplacian of Gaussian (LoG) filter to detect large-scale road bumps. In section

4.4, we analyze the surface roughness of tracks by studying the high-frequency noise

captured by a Gaussian filter and Fast Fourier Transform (FFT). We demonstrate

in section 4.5 how Singular Value Decomposition (SVD) can be applied in terrain

analysis and how SVD can be used to distinguish different terrain profiles. We end

this chapter by summarizing in section 4.6.

4.2 Pre-processing of Data

We are given a large set of raw terrain data taken from a moving vehicle across some

terrains. The data set contains datapoints from two courses, each of which is divided

into several segments. We describe here how we reformat and downsample the data

such that it loads into a nice grid in Matlab. We provide a way to organize the large

sets of raw data and visualize the tracks.

4.2.1 Downsampling and reformatting

The data provided to us came in a series of chunk files which contains a header and a

list of points corresponding to the Cartesian coordinates. After some experimenting,

we established that the points represent intertwining sets of scanlines as the vehicles

go along the tracks. The raw data is too large to fit into the memory of any regular

machine, so we downsampled and reformatted the data as described below.

The header information from all the data files are removed such that the remaining

data in the files load as a large matrix in Matlab using a cluster with sufficient memory.

The distance between successive datapoints in the xy-plane is then computed as

As = V(Ax) 2 + (Ay) 2. By setting the right threshold value, we can find the points

which satisfy As > threshold. These points correspond to the start of a new scanline.

Using this algorithm and with some experimentation, we observed that in the raw

datafiles, 940 points correspond to one full scan. We further downsampled this in a

"94-wide" format (sampled every 10 points from the original datafiles).

4.2.2 Overview of the tracks

The resulting downsampled files contain Cartesian coordinates from two different

tracks. After loading into a Matlab grid, each of the xyz coordinates is reshaped into

a rectangular matrix of dimension 94 x n, where n varies with each datafile. Each

column of the matrix contains the 94 downsampled data points measured by the same

scanline. Each row of the matrix contains n data points, with each point taken from

a different scanline as the vehicle moves along the track. Figure 4-1 shows a portion

of the track plotted with the downsampled data. Each scanline in the figure is plotted

with a different color, and corresponds to each column of the rectangular matrix.

Using the downsampled data, the two tracks were plotted on the xy-plane as in

Figure 4-2. Track 1 consists of mostly straight roads with two big turns. The data for

track 1 is divided into 5 segments. Track 2 consists of 11 segments with more turns

and curves. One segment of the original raw datafiles for track 2 was corrupted:

Many newline characters are missing and only partial coordinates (missing x) are

present for some datapoints. As a result, only 10 segments are plotted in Figure 4-2.

However, it is obvious that the missing segment connects the consecutive parts of the

track and makes Track 2 a closed loop. Throughout the rest of this chapter, we will

refer to these two tracks as Track 1 and 2.

-30.2,

-30.22,

-30.24 ,

N -30.26
.

-30.28s

-30.3,

-30.32,
550

549.5 -
-7

549 -8
648.5 -10 -

Y 548 -11

Figure 4-1: Terrain visualization with downsampled data

4.3 Road Bumps Detection

A sample terrain profile from a segment in Track 2 is plotted in Figure 4-3. The plot is

generated using one row of the downsampled matrix as described in the previous sec-

tion. In Figure 4-3, the horizonal axis is s, the horizontal distance traveled, calculated

by As = /(Ax) 2 + (Ay)2 , where the Ax and Ay are the difference of adjacent x, y

coordinates recorded as the vehicle travels. The height of the terrain (z-coordinate

data) is plotted on the vertical axis to provide a visualization of the terrain profile.

The data of this track appears to be fairly smooth and does not contain small-scale

noises. However, a number of bumps are observed (for example, at approximately

s = 75,175,200). We describe how to use filtering techniques with an appropriate

window width to detect and remove the bumps.

900 300

700-20- 100

700 0

-6000

-200

S00 - -300
I,, 400

400 -

_500

00 100 200 300 400 50 60 700 0 100 2M 3M 400 5 00 0 700 000 900
X X

Figure 4-2: Track 1 (left) and Track 2 (right) plooted on the xy-plane

4.3.1 Laplacian of Gaussian filter

The Laplacian of Gaussian (LoG) filter is a common technique used for edge detection

in image processing [79]. We apply the LoG filter to detect the road bumps observed in

the data of Track 2. These road bumps will not be picked up by a regular filter which

detects small-scale high-frequency noises. To identify these bumps, a 1D normalized

LoG filter with the right half-window width k is passed to the data:

LoG(x) = , 2/2,2 (4.1)
/27ro.2 04'

where o- = k/4.

The LoG filter approximates the second derivative (Laplacian) of the data and

smooths out Gaussian high-frequency noises. The road bumps can be located at

the local minimum of the filtered data. For the terrain profile in Figure 4-3, a half-

window width of k = 288 is used (We discuss in the next subsection 4.3.2 how this

value is chosen). The bumps are identified as shown in Figure 4-4. After detecting

the locations of bumps, they are removed from the data and the resulting terrain

data can be interpolated using Matlab's command spline to produce a non-bumpy

profile (Figure 4-5). The isolated bumps are calculated by subtracting the processed

z-coordinates from the original data.

course 1I course 2

profile
G0

45-

40-

r4 35-

30-

25-/

20-
0 50 100 150 200 250 300 350 400 450 500

S

Figure 4-3: Terrain Profile with downsampled data (6200 data points are plotted in
this figure)

4.3.2 Half-window width k

A main problem when applying the LoG filter is that the output depends on both the

size of the road bumps and the size of the Gaussian kernel used for pre-smoothing.

To capture all the bumps with sizes which are not known in advance, a LoG filter

with the right half-window width k is required. If k is too small, the filter will pick

up more "bumps" than the actual ones. If k is too large, some of the bumps will not

be detected and the scale of the bumps removed may be larger than necessary. To

capture the right scale, we apply the following algorithm:

1. Repeat the bump detection algorithm for values of k, starting from some pre-

set kmin to kmax. Assuming that the scale of bumps will not be excessively large, we

set kmax to be 10% of the number of data points N.

I r i

0 60 10 150 200 260 00 350 400 460

/

Figure 4-4: Vertical
with k = 288

lines in red indicate the positions of bumps using the LoG filter

2. For each run of k, record the number of bumps detected.

3. Record the variance of the peaks of the bumps, Var, for

4. Examine the number of bumps detected as k increases.

number of bumps that is close to a converged value. Among

to be the k with the minimum Var,.

each run.

Take the set of k with

this set, take the koptimai

The idea behind this algorithm is that for k < koptimai, the false detection of bumps

will make the number of bumps captured to be much larger. As k approaches koptimai,

the number of bumps will start to converge to the real value. This is incorporated in

step (2) of the algorithim to avoid over-detection. When k > koptimai, some bumps will

not be detected. And as the bumps detected are removed, data with a larger window

width will be removed since the window width k used is too large. After interpolation

of the data with bump removal, the isolated bumps will have a larger variation in value

than the optimal set obtained with koptimai. Recording and examining the variance

Var, in Step (3) of our algorithm captures this property.

When this algorithm was applied to the segment in Figure 4-3, koptimai = 288 was

/

/

I -

I I I

chosen. We observe that the bumps are detected accurately in Figure 4-4 and 4-5.

Two extra "bumps" were accidentally detected, but it does not appear to affect much

the data after bump removal. This algorithm was also applied to other segments of

the same track. Different values of koptimal were obtained and all of the output show

accurate detection of road bumps. The plots look similar to the ones shown in Figure

4-3 to 4-5, so we omit them here.

4.4 Noise Analysis

Another task we identified is to study the surface roughness by analyzing the noise.

Noisy terrain data is passed to a Gaussian filter with a predetermined filter width.

The noise is then calculated by the difference of the original and the smoothed data.

The same filter is passed to two sets of data. The first data set (track 1) appears to

have small-scale high frequency noise, and the second set (track 2) is the same as the

dataset from the previous section which contains fairly smooth data but large-scale

bumps are present.

Track 1 with noisy data and the smoothed profile is plotted as in Figure 4-6. The

Q-Q plot of the noise versus Standard Normal distribution, and the historgram of the

noise is plotted in Figure 4-7. The same analysis was performed on Track 2. Raw data

and the filtered profile is plotted in Figure 4-8. There is little high-frequency noise

in dataset 2 compared with dataset 1. The large-scaled bumps discussed in Section 3

are smoothed a little bit but still apparent in the filtered data. The Q-Q plot of the

noise versus Standard Normal distribution, and the historgram of the noise for Track

2 is plotted in Figure 4-9.

The noise was obtained by subtracting the filtered data from the original data. A

number of statistics of the noise is computed as in Table 4.1.

The noise of this segment of track 1 appears to be symmetric, close to but slightly

different from Gaussian. Noise of track 2 has an unsymmetric, skewed distribution.

The distribution observed is significantly different from a normal distribution.

Mean Variance Skewness Kurtosis

Track 1 0.0019 2.5226 x 10- 4 -0.0284 2.6495
Track 2 0.0021 7.0484 x 10-4 -1.7673 8.3357

Table 4.1: Statistics of noise for both tracks

Instead of using a Guassian filter, another approach is to take the Fast Fourier

Transform (FFT) of the data, and remove the high-frequency components. One

disadvantage of using the FFT is that the cutoff of high-frequency contributions is

sharp. The resulting output in time domain (after an inverse FFT) may be complex-

valued, and we can only look at the magnitude of the filtered output. We applied

FFT to both sets of data and obtained similar results as using Gaussian filters.

Since Gaussian filtering is a linear filtering operation, which filters out higher

order noise from the frequency spectrum and does not fundamentally change the

distribution, the difference of noise for both tracks is due to the data source. We

experimented with different widths of the filter and observed similar results on the

two sets of data. As another check, we examined the Fourier Transform of the data

before and after filtering. We observed that the frequency spectrums only differ

significantly on the higher frequency components, so the filtering operations function

as we intended. Therefore we conjecture that the difference is due to the different

surface roughness of the tracks.

4.5 Singular Value Decomposition (SVD)

In this section, we show how to apply Singular Value Decomposition (SVD) on noise

analysis of our terrain data, and propose a measure of surface roughness with the use

of SVD. We first give a brief overview of SVD.

For any m x n matrix A, the Singular Value Decomposition (SVD) of A is

A UEV*,

where U is an m x m unitary matrix, V* is the Hermitian conjugate of V, which

is an n x n unitary matrix, and E is an m x n diagonal matrix with non-negative

decreasing real entries o-.

The columns ui of U are called the left singular vectors. The columns vi of V are

called the right singular vectors. The diagonal values oi of E are called the singular

values. One way to interpret SVD is as follows. Given an m x n real matrix A,

think of it as a linear operator from R" into Rm . Consider the SVD of A, as U and

V are orthogonal, the columns ui and vi form an orthonormal basis of R" and R"

respectively. We have Avi = o-iui, i.e. the image in R" of a right singular vector vi

(in R") is equal to o- times the left singular vector ui. It follows that any vector

x = "a ivi is mapped to y Ax = j" oinj, where c are arbitrary constants.

Each singular vector is a component of the transformation by A, and the associated

singular value tells us how dominant that particular component is.

4.5.1 Noise Filtering by Low-rank Matrix Approximation

The singular values oi are in decreasing order such that o-1 is the largest. Consider

the SVD of a matrix A, in practice it is common to observe several dominant sin-

gular values oi, ... , Uk for some k. These singular values correspond to k principal

components and this idea can be used to approximate the original matrix A.

The best rank-k approximation of A is given by

k

Ak = (-iV 2

i=1

One common application of low-rank matrix approximation is in image compression.

Using SVD, only a small number k of singular values and singular vectors need to

be stored. Using this idea, we can apply SVD to filter high-frequency noises in our

terrain data and produce results similar to the ones obtained from usual filtering

techqniues in Section 4.4.

The SVD of the downsampled 94 x N matrices of z-coordinates of each segment

of both tracks was computed. We observed that the largest singular value a1 is

significantly dominant. The ratio " was calculated and found to be > 0.99 for

all of our data. When high-frequency noise is present in the data, they make up

a low-rank noise matrix and contribute to the smaller singular values. Thus, one

simple way to filter out a signficant portion of the random noise is to use a rank-1

approximation of A by SVD: A1 = o-1 u1v*.

One segment of noisy terrain data and the filtered data are plotted in Figure 4-10.

We see that the SVD apprixmation can filter out some high-frequency noise and the

output data is cleaner. The noise filtered out is also close to Gaussian and gives

similar statistics as in Section 4.4. Filtering by SVD appears to filter less noise than

the usual Gaussian filter. However, the advantage of this approach is that it is easy

to determine the number of singular values k to use by looking at the ratio =

On the other hand, effort is necessary in finding the right window width and cut-off

for a Gaussian filter.

4.5.2 Surface Roughness Classification using SVD

We have seen in previous sections that high-frequency noise present in terrain data

can account for how rough the surface is. To calculate a useful measure of roughness,

we take an approximation of L, and apply SVD on it.

We define df = , where As = v/(Ax)2 + (Ay) 2 . The quantities Az and As are

calculated by the difference between two consecutive data points along the direction

at which the vehicle travels. The quantity df of a noisy segment (Track 1) and a

smooth segment (Track 2) are plotted in Figure 4-11. dfi appears to be random noise

for the noisy data, while df2 of a smooth track is a more continuous curve with some

noise in it.

Since df is an approximation of how z changes with distance traveled, a rougher

surface should give a more rapidly changing df. If we take SVD on this df matrix,

we expect the distribution of singular values to be more even and there will be no

significantly dominant singular values. The first 5 singular values of df1 and df2 are

listed in Table 4.2. It is clear that there is one principal component associated for

df2 (which corresponds to the smooth track), but not as much for df1 (noisy track).

1 1 1 2 1 03 1 4 1 5

dfi 46.3414 35.2553 32.8501 23.7086 20.3377
df2 67.2090 6.6638 5.5797 5.0638 4.6563

Table 4.2: First 5 singular values of df1 (noisy) and df2 (smooth)

Data 1 (smoothed) Data 2 (some noise added) Data 3 (noisy data)

p 0.8995 0.4276 0.2334

Table 4.3: p of the same segment with different level of noise. P gets closer to 1 as
the data gets smoother.

Based on this observation, we propose the following measure of roughness, t:

(T 2

where o-i are the singular values of the matrix df.

t is a measure of how dominant the largest singular value is, and can take any value

in the range 0 < p < 1. If the track is rough, the high-frequency noise contributes to

a df matrix without significantly dominant principal components, so ai contributes

to a smaller portion of the sum of the singular values. Thus, a smaller value of p

implies a higher surface roughness of the track. To show this, we took the df of three

sets of data: (1) a smoothed segment of Track 1 after noise filtering, (2) the same

segment after filtering and adding only 1/5 of the noise, and (3) the original noisy

segment. The values of p obtained are in Table 4.3 and we see that fp decreases with

more noise in the data.

4.6 Chapter Summary

Analyzing a large set of raw terrain data poses different challenges in both the method-

ology and quantification of terrain properties. In this chapter, we performed various

analysis to study the terrain profiles and proposed a useful measure yL based on the

Singular Value Decomposition (SVD) to quantify terrain surface roughness. We have

shown how classical filtering techniques and SVD can be applied to study road bumps

and noise in various scales. We also proposed a systematic way to classify surface

roughness. Our methdology does not require extensive knowledge and modeling of

the terrian and vehicle movement. The algorithms suggested in this chapter are

generic and not domain-specfic, so they can be applied to give reproducible results

on different sets of terrain data. Future directions can include studying the elevation

or roll angles, the forces on the vehicle as it travels and the rate of change of these

quantities. Another potential direction for further terrain data analysis is to combine

the idea behind our SVD-based algorithm with more information of the terrain and

vehicle, such as the speed of the vehicle moving along the track and how fast the

angles measured change.

profile

40

N 35

30

25

1u.
0 50 100 150 200 250 300 350 400 450 500

s

0.35

0.3

0.25

0.2

S0.15

0.1

0.05

0

bumps

-0.05L 1 1 ' ' 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500

Figure 4-5: Top: Terrain Profile with bumps removed. Bottom: Bumps isolated

original profile
bump removed

-

I' -

/

' 'I

I

raw data

N -JI.b-

-31.8

-32 ft
-32.2

-32.4

-32.61
0 50 100 150 200 250

filtered data
-30.6

-30.8 -

-31 -

-31.2 -

-31.4 -

N -31.6 -

-31.8 -

-32 -

-32.2 - -

-32.4 --32.2

u 50 100 10 2M 2o

Figure 4-6: Top: Noisy terrain profile. Bottom: Smoothed data

00 Plot of Sample Data versus Standard Normal

-4 -3 -2 -1 0 1 2 3 4 5
Standard Normal Quantiles

x 104

0.5|-

.8 -0.06 -0.04 -U.02 0 0.02 0.04 0.06 0.08 0.1 0.12

Figure 4-7: Top: Q-Q plot of noise, compared with Standard Normal. Bottom:
Histogram of noise, and plot of Normal Distribution with the same mean and variance

a>
0- 0.04 -
C3,

t 0.02 -

S02C,

-0.02-

-0.04

-0.06

-0.08-5

I I I I I I I I

raw data

30 -

25 -

20-

15
0 100 200 300 400 500 600

s

filtered data
50

45 -

40 -

35 -

30 -

25 -

20 -

151I
0 100 200 300 400 500 600

s

Figure 4-8: Top: Raw terrain profile (Track 2). Bottom: Filtered data

00 Plot of Sample Data versus Standard Normal

-4 -3 -2 -1 0 1
Standard Normal Quantiles

x10

2 3 4 5

-.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 4-9: Top: Q-Q plot of noise, compared with Standard Normal. Bottom:
Histogram of noise, and plot of Normal Distribution with the same mean and variance

98

0.15 -

0.1 -

0.05 -

-0.15

-0.2

-0.05

-0. 1 -

raw data
-30.5

-32.5 -

-33-

-33.51II
0 50 100 158 20 250

S

filtered data
-30.5

-31

-31.5

N -32 -

-32.5 -

-33 -

-33.5 1
0 50 100 150 200 250

S

Figure 4-10: Top: Noisy terrain profile. Bottom: Smoothed data by SVD

-0.4

0.0
01 50 100 150 200 25;0

s

0.3

0.2

0.1-

0-

-0.1 -

-0.2

-0.3

0.4 - -
-0.4

-0.5

-0.5 --

-0.6
0 100 200 300 400 500 60

S

Figure 4-11: Top: dfi of a noisy segment of terrain. Bottom: df2 of a smooth segment

100

Chapter 5

Large-scale Data Processing with

Julia

5.1 Introduction

In the previous chapter, we showed how we could apply general filtering methods

and Singular Value Decomposition (SVD) on downsampled datasets of Cartesian

coordinates to capture and study features of the terrains. Since the original datasets

would not fit on the memory of a typical machine, parallel data distribution and

a parallel programming language are necessary to process the original large-scale

datasets and perform mathematical analysis. In this chapter, we introduce Julia,

a newly developed programming language, and discuss how we can perform high-

performance computing with our terrain data set with Julia.

The Julia project is based in MIT, involving computer scientists, applied mathe-

maticians and researchers from a number of different places. As scientific computing

advances in different domains, a large group of experts such as the numerical linear

algebra community have moved to dynamic programming languages for their appli-

cations. However, dynamic programming languages can be slower and users of them

have to pay for the performance trade-off for other reasons such as ease of use and

efficiency of adding new codes for their applications. One common example is Mat-

lab, which is very common in the numerical analysis community but does not give

101

the highest performance as compared with other low-level languages such as C. One

of the goal of the Julia project is to fill the gap: Juia is designed to be a dynamic lan-

guage which is easy to use for scientific computing, achieves performance comparable

to traditional compiled languages, and offers flexible parallelism without extensive

effort. Another goal of Julia is to enable cloud computing from a provider of choice,

and users can upload data from anywhere and perform big computations easily.

The syntax of Julia is similar to Matlab, so users of Matlab should feel immediately

comfortable with Julia. In addition, Julia keeps Matlab's ease and expressiveness

for high-level scientific computing, but offers more programming possibilities outside

of the scope of numerical computation. To achieve this, Julia borrows much from

the C programming language, and is strongly influenced by the lineage of dynamic

languages: Lisp, Perl, Python, Lua and Ruby [12].

The remainder of this chapter proceeds as follows: First, we introduce the syn-

tax of some basic commands in Julia and show an example code in Section 5.2. In

section 5.3, we pick one algorithm from Chapter 4 to implement in Julia, and show

that the serial implementation gives results that agree with Matlab . In section

5.4, we describe in detail the implementation of the function for Singular Value De-

composition (SVD) in the Julia library, and discuss potential algorithms to expose

parallelism. Our proposed implementation of parallel SVD suggests asynchronous

work in bidiagonalization and trailing matrix update, which has not been explored

in standard numerical linear algebra packages. We end this chapter by summarizing

and discussing future work in section 5.5.

5.2 Julia

The syntax of Julia is similar to Matlab. We give a brief tutorial in this section and

present an example code. More information can be found in [12].

102

5.2.1 Brief Tutorial

The basic commands for arithmetic and functions of numbers, vectors and matrices

in Julia are very similar to Matlab. Below is a demo of basic commands. Note that

the comments after the % signs are added as explanations in this writeup and were

not entered to the command line to generate the outputs.

I L) L) I pre-release version

I I I1 / - I

(C)2009-2011 contributors

julia> 3*4
12

julia> x=ans;

julia> x
12

julia> (1+2im)*(1-4im) % in Julia, im is the complex number i
9 - 2im

julia> x=[2;3;4]
[2,3,4]

julia> x[2]
3

julia> x[2:end]

[3,4]

% Define a vector

% 2nd element of x

% 2nd to last elements of x

julia> A=rand(2,2) % Uniform distributed 2x2 matrix
0.3378690370870434 0.1727834085356039
0.9429980507798121 0.4499985391348107

julia> A[2,2]
0.4499985391348107

103

% Change the (2,2) entry of A to 0.5
0.3378690370870434 0.1727834085356039
0.9429980507798121 0.5

julia> A[1,:] % First row of A
0.3378690370870434 0.1727834085356039

julia> b=randn(2,1)
-0.2371815329099335

1.0608188891212531

julia> A\b

-50.312930659199246
97.0116288595319816

julia> exp(A)

% Gaussian distributed 2x1 matrix

% Solution x to the system Ax=b

% Exponential of each element of A
1.4019568870243506 1.1886086347173097
2.5676678890742402 1.6487212707001282

julia> inv(A) % Inverse of A
83.3319293659423437 -28.7967495913914107
-157.1636939196092442 56.3105574669529076

julia> ans*A

1.0000000000000071 0.0
X Verify the answer is indeed the inverse

-7.1054273576010019e-15 1.0

Despite the similarity in syntax with Matlab, there are additional language sup-

ports in Julia that make expressions much cleaner and more convenient:

" Julia allows variables to be immediately preceded by a numeric literal, implying

multiplication.

julia> x=4
4

julia> 4(x-1)^2 - 3(x-1) + 1
28

" There are two Julia constructs for a single compound expression to evaluate

several subexpressions.

104

julia> A [2,2]=0.5

julia> z = begin

x =3

y= 5

x*y
end

15

julia> z = (x = 2; y = 4; x/y)

0.5

" A map function can be used to apply a function to each element of an array or

matrix. Here is an example for computing sin (x) for each entry of an matrix

A:

julia> A = [0 piO/2; pi() 3pio/2; 2piO piO/6]

0.0 1.5707963267948966

3.1415926535897931 4.7123889803846897

6.2831853071795862 0.5235987755982988

julia> map(sin,A)
0.0 1.0

1.2246467991473532e-16 -1.0

-2.4492935982947064e-16 0.4999999999999999

" Julia introduces a new programming construct called a multidimensional array

comprehension. Each dummy variable used in the array comprehension cor-

responds to a dimension of the output array; if the comprehension expression

value itself has non-zero dimension then the total dimension of the output is the

number of dummy variables plus the dimension of the value. Many common

vector, matrix and tensor operations can be expressed concisely and clearly

using array comprehensions.

julia> A = [1 2 3; 4 5 6; 7 8 9]
1 2 3
4 5 6
7 8 9

julia> rowsums = [sum(A[i,:]) I i=1:size(A,1)]
{6, 15, 24}

105

julia> columnsums = [sum(A[:,j]) I j=1:size(A,2)]
{12,15,18}

julia> diagonal = [A[i,i] I i=1:min(size(A))]
{1 ,5, 9}

5.2.2 Example Code

1 function randmatrixtest()
2 t=200000

3 n=20
4
5 y

6 Opfor (+) i=1:t begin
7 a = 2*float64(rand(n,n)<.5) - 1
8 (q,r) = qr(randn(n,n))
9 a = q*a

10 (a[1,1]*a[2,2])^2 - 1
11 end
12 v/t
13 end

Figure 5-1: Julia example code

Figure 5-1 shows a working example Julia code. The code computes t independent

trials of random matrix experiments, where t is a large number (set to 200000 here). In

each trial, a n x n random matrix A with entries ±1 with equal probability is generated

(line 7). This random matrix A is then rotated by a random orthogonal matrix Q
(line 8-9). Finally, the value [A(1, 1)- A(2, 2)}2-1 is stored for this trial, and the mean

of this number is calculated for a total number of t trials. There are several things

to note in the syntax in this example. First, the value of each trial returned is added

to the variable v using the Julia compound expression (lines 5 to 11). The parallel

for-loop from lines 6 to 11 is evaluated as a series of subexpressions and the value

return by the for-loop is stored to v (line 5). On line 6, the macro Qpf or is defined to

run the for-loop in parallel, and the (+) following Qpf or indicates the addition of the

value returned to v. On line 10, even though there is no return keyword used, since

106

it is the last expression within the for-loop, the value (a[1,1]*a[2,2])^2 - 1 is

returned and added to v. Similarly, since the expression v/t is the last expression in

the function randmatrixtest, by default this value is returned by our Julia function.

2 3 4 5 6
Number of Processes

7 8 9 10

Figure 5-2: Parallel scalability for Julia example program: Speedup as more processes
are added.

Figure 5-2 shows the timing results when the code is run using 1 to 10 processes.

Speedup is calculated by S, = 11, where p is the number of processes and T is the

execution time of the algorithm with p processes. The code is run on a cluster with

20 compute nodes with dual hex-core Xeons. Each node has 24 GB of memory shared

between the 12 cores. We obtained linear speedup as expected because the example

code is embarassingly parallel.

107

Example Julia program M
Linear

5.3 Terrain Analysis with Julia

Before applying the terrain analysis tools we developed in Chapter 4 on our full

datasets, we experimented with the downsampled datasets using Julia. We imple-

ment in serial with Julia the algorithm in Section 4.5.2, which computes the measure

p to quantify surface roughness using SVD. Recall the algorithm as follows:

(1) Calculate Az and As = /(Ax) 2 + (Ay) 2 , where the quantities Ax, Ay and

Az are calculated as the difference between two consecutive data points in each row.

(2) Form the matrix df, where (df)ij =

(3) Compute the singular values o- of the matrix df.

(4) Calculate the measure of roughness p.

o2

The Julia code for this algorithm in serial is included in Appendix C. Running

the codes in Julia for several segments in Track 1 and Track 2 of our data gives the

results shown in Table 5.1.

Track 1 Track 2
0.1282 0.9009
0.2076 0.9572

p 0.2334 0.9170
0.1857 0.9406
0.1177 0.8521

Table 5.1: p of several segments of the two tracks, computed using Julia.

We see that p computed from Track 1 has an average value of 0.1745, while the

mean of p obtained from Track 2 is 0.9136. This agrees with our implementation with

Matlab, and also agrees with our proposition that data from a rougher road track

(Track 1) gives a value of p closer to 0, and p is closer to 1 when the data is smoother

(Track 2).

108

5.4 Parallel Implementation

In section 5.2.2, we showed an example of how independent iterations can be imple-

mented in parallel using parallel for-loops easily in Julia. To implement the algorithm

in section 5.3 for measuring terrain surface roughness on our full dataset, the bottle-

neck is the step when SVD is applied to the m x n rectangular matrix A, where m

and n can be large. To run SVD on a large input matrix which would not fit on the

memory of a single machine, it is necessary to distribute the matrix across several

processors, and apply a parallel SVD on the distributed data. In this section, we give

first the blocked SVD Algorithm implemented in Julia and discuss potential places

for further parallelism.

5.4.1 SVD Algorithm and Blocked Bidiagonalization

The singular value decomposition algorithm implemented in Julia consists of two

major components: Reducing the matrix A to bidiagonal form by orthogonal trans-

formation (for example by Householder reflections), and applying an iterative QR

algorithm such that the bidiagonal matrix converges to diagonal form, with the di-

agonal entries being the singular values. Here we focus on the discussion of the first

component, bidiagonalization, because it is usually the more time-consuming step in

the algorithm. The idea of the second component QR iteration was introduced in

section 2.3.2, and was implemented in Julia with LAPACK routine calls to ensure

good convergence and precision, especially for small singular values.

The blocked bidiagonalization algorithm we implement is based on the ones used

in [14, 20, 37]. The main idea is to aggregate Householder transformations and to

apply them to trailing submatrices in a blocked fashion that is rich in matrix-matrix

multiply, thus allowing updates to be performed in parallel and achieving speedups

from optimized BLAS operations.

For an m x n matrix A, a series of Householder reflections is applied to zero out

the entries under the diagonal and the entries to the right of the first superdiagonal

(or subdiagonal). This reduces A to the bidiagonal form B such that QAP = B,

109

where Q and P are the matrices storing the Householder reflectors, and B is upper

bidiagonal if m > n or lower bidiagonal otherwise. In the following, assume m > n.

ACk) denotes A after the (k - 1)-th update, and Ai:j,k:t denotes the submatrix of A

consisting of rows i through j and columns k through 1.

For a sequential unblocked algorithm, after the k-th update, the first k columns

of A has zeros below the diagonal and the first k rows of A has all zeros to the right

of the superdiagonal. Rewriting the Householder transformation in terms of rank-one

updates, we have

A(k+1) Q(k) A(k)P(k) -(I -- u (u')Ak) (I -VVk)

= A(k) - u kUk) - A(k)vavj -T UT kA) kVT

= A(k) - UkyT - (A(k)vk - UkYrVk)v ,

where Uk and Vk are the left and right Householder reflectors for the k-th step, Yk =

A(k)T Uk. Let Xk = A(k)vk - UkyTVk, we have

A (k+1) = A(k) - uyT - xkvT (5.1)

Using induction, we can show that

A(k+1) = Ak - UkYT - XkV[, (5.2)

where Uk = (u1 ,--- ,Uok), Vk - (V1 ,- ,Vk), Xk -- (Xl,.- ,Xk) and Y= (yl,... ,Yk)-

Using Equation (5.2), we get

yk = A(k)Tu= (A(') - Uk _Y 1 - XkV 1J)Tuk

= (A(' -Yk-1Ui 1 - Vk1X[1)uk (5.3)

Xk A (k)vk - ukV - (- U Tk-lk- Xk_1V1j)Vk -kyk Vk

- (A(') - Xk V_1 - (Uk-1, Uk) - (Yk , yk)T)Vk

= (A(') - XklV_ 1 - UkYkT)vk (5.4)

110

The blocked bidiagonalization algorithm follows naturally. For simplicty we assume

A to be a square n x n matrix and that A is divided into square blocks of size nb x nb.

In step k of the algorithm, the k-th block Aki:k2 ,ki:k2 , where ki = (k - 1)nb + 1

and k2 = knb, is reduced to bidiagonal form. The block reflectors U and V, and

the corresponding matrices X and Y are formed and used to update the trailing

submatrix Ak2 +1:n,k 2 +1:n. Figure 5-3 shows step k of the blocked algorithm.

BlockBidiag-k(A, k, nb)

1: Let k 1 = (k - 1)nb + i. Repeat steps 2 to 7 for i = 1,- ,nb

2: Update column ki of A.
3: Compute the column Householder reflector ui.
4: Compute yi using equation (5.3).
5: Update row ki of A.
6: Compute the row Householder reflector vi.
7: Compute xi using equation (5.4).
8: Update the Aknb+1:n,knb+1:n trailing submatrix by Asub = Asub - UYT - XVT.

Figure 5-3: k-th step of Blocked Bidiagonalization. Input A is n x n

Using the blocked bidiagonalization algorithm, converting the sequential imple-

mentation to parallel is straightforward. The input data A can be distributed accord-

ing to the blocking scheme, and the main operations boil down to parallel matrix-

vector multiply and matrix-matrix multiply. Blocked bidiagonalization returns the

diagonal and superdiagonal (or subdiagonal) elements as the output, which are in

turn passed as input to an iterative QR algorithm to compute the singular values and

vectors.

5.4.2 Further Parallelism

The blocked bidiagonalization outlined above leads to a straightforward parallel im-

plementation. One goal of the Julia project is to allow flexible parallelism beyond

what is already used in common numerical algorithms in practice. We discuss poten-

tial source for further parallelism here. In the discussion that follows, we assum A is

a square matrix divided into p x p blocks of equal size nb X nb and assume the data

111

are distributed in parallel with some blocked layout:

Anl A1 - A1p

A A2 1 A2 2 ... A2,

A, 1 A, 2 ... A,

" Concurrent bidiagonalization of upper-left block and update of trail-

ing submatrix Consider the first step of the bidiagonalization algorithm,

after the upper-left block Anl is bidiagonalized, the matrices U, V, X, Y are re-

turned and used to update the trailing lower-right matrix blocks in terms of par-

allel matrix-matrix multiplications Aij = Aij - UiY - X.-V , where (i,j) E

{2, ... , n} x {2, --- ,n}. The second step of the bidiagonalization algorithm

starts with bidiagonalization of the next upper-left block A22 , which depends

on the second column panel A22, A 32, ... , A, 2 and row panel A22, A23 , -- , A2,-

When the matmul updates from the first step on the second column and row

panels are finished, then the bidiagonalization of A22 can start, and it does not

need to wait for the matmul update of the remaining blocks in the lower-right

submatrix. This concurrent work scheduling is possible in every k-th step of the

algorithm. Whether this kind of dependency should be handled by the work

scheduler or the information should be provided by the user is one of the tasks

currently worked on in the Julia project.

" Minimizing idle time before updating trailing submatrix As described

above, after the upper-left block Anl is bidiagonalized, the trailing submatrix

is updated by A = A - UYT - XVT. Recall from the algorithm in Figure 5-3,

when each column and row within the block An is updated with Householder

transformation, the corresponding vectors ui, vi, xi and yi are formed, and each

of these vector forms the i-th column of the matrices U, V, X and Y respectively.

From now on, we refer to the matrices U, V, X, and Y collectively as updator

matrices. Following the algorithm, the update of the trailing submatrix (the

112

lower-right blocks starting at A22) can only be updated once all the updator

matrices are ready. However, recall that the trailing submatrix updates using

matrix-matrix multiply are derived from grouping rank-one updates:

nb nb

A UYT - XVT - uTy -_ xv (5.6)A=A-J i (5.6)
i=1 i=1

Since the bidigaonlization within each block Akk is serial, the columns of the

updator matrices wil be filled in serially from left to right. During this series

of serial operations, all the other processors storing the lower-right submatrix

will just be idle waiting for the updator matrices. One question we ask is

can we break down the update into smaller parts and start the trailing matrix

update earlier? For example, when half of the columns of the updator matrices

are ready, we can start forming those updates and reduce idle times of many

processors:

nb/2 nb2 nb nb

A = A - UY N - XV9 E =N ii-(xv si-(xv
i=1i=1 i=nb/2+1 i=nb/2+1U 'yT Z xaTvTu T

=A-UaY -XaV - UbY b - XbV T ,

wher Ua = (u1, ... , unb/2), Ub = (unb/2+1, - , unb) and similarly for other upda-

tor matrices.

Will starting the updates earlier save enough idle time to compensate for the

larger communication costs? Since 4 matrix multiplications with half of the

matrix sizes are performed instead, will starting the updates earlier be worth

the decrease in speedup from BLAS-3? How can Julia expose this kind of

possible parallelism control to the user? Finding the right level of abstraction is

key to finding the right answers. A level that is too high does not give enough

control in this kind of parallelism, while very low-level makes it difficult to

program.

113

The kinds of update outlined in this section are common in many blocked al-

gorithms in numerical algebra, such as Cholesky factorization and tridiagonal-

ization. They all reduce to performing matrix-matrix multiplications C = AB,

when not all the columns/rows of A and B are ready at the same time. Finding

a good way to experiment with this kind of scheduling choices in Julia, which is

lacking in standard numerical linear algebra packages, can lead to improvement

in parallel performance of many common kernels.

5.4.3 Other SVD Algorithms

[50, 57] present divide-and-conquer algorithms for the SVD of a bidiagonal matrix.

The LAPACK routine xbdsdc uses variation of these algorithms. Divide-and-conquer

can possibly be implemented to replace the QR iteration step in the future parallel

implementation of Julia. Another bidiagonal SVD algorithm based on the Multiple

Relatively Robust Representation (MRRR) algorithm [33, 34, 74] for computing nu-

merically orthogonal eigenvectors is presented in [91]. A recent divide-and-conquer

SVD algorithm, which uses randomized rank-revealing decompositions and aims at

minimizing communication in parallel, is studied in [9].

5.5 Chapter Summary

This chapter introduced Julia, a new high-level programming language. The ongo-

ing Julia project aims at filling the gap between dynamic language and traditional

compiled languages by giving good performance and offering ease of use and flexible

parallelism without extensive effort. We gave a brief tutorial of Julia and presented

some elementary results of Julia. By implementing a serial blocked SVD algorithm,

we repeated the SVD-based algorithm for terrain analysis presented in Chapter 4, and

found that the values of the roughness measures y obtained agree with our prediction.

We also discussed parallel implementation of our SVD algorithm and discussed how

potentially further paralleism can be explored in Julia. Our proposed implementation

of parallel SVD suggests asynchronous work in bidiagonalization and trailing matrix

114

update, which has not been explored in standard numerical linear algebra packages.

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

Chapter 6

Conclusion

In this thesis, we presented two recent parallel programming languages, PetaBricks

and Julia.

We have re-examined a number of numerical algorithms including the symmetric

eigenproblem, LU Factorization, k-means clustering, preconditioned conjugate gra-

dient, with PetaBricks. PetaBricks allows users to express algorthimc choice and

accuracy requirements explicitly so the compiler can perform deeper optimization.

We have shown that even with familiar classic numerical algorithms, the optimal se-

lection of algorithms is nontrivial when fine-grained algorithmic choice is added to

the many other choices involved in parallel computation. PetaBricks can increase the

lifetimes of programs since the compiler and autotuner can easily start the autotuning

process again and compose a complex program with different choices to produce an

optimal composition with changing architecture. This gives programs the portable

performance needed for longer effective lifetimes.

Future work for PetaBricks includes extending the benchmark suite and support

for different data structures and storage format, such as sparse matrices and graphs.

Dynamic choices of algorithms where run-time analysis for algorithm and parameter

tuning can also be explored. Another future direction is adding a distributed mem-

ory backend to the PetaBricks compiler, which can further highlight the importance

of choices for algorithms. Exploring compiler for interesting architectures such as

CPU-GPU heterogeneous systems and embedded systems can also be an interesting

117

direction.

We also introduced a new high-level programming language Julia, and applied it to

perform terrain data analysis. We presented some results of Julia and demonstrated

that programming in Julia can be as easy as one of the most popular high-level

language Matlab for the numerical computing community. While still an ongoing

project, Julia aims at providing easy but flexible parallelism. In this thesis, we used

the parallel SVD algorithm as an example and motivation, but once the ideas are

explored further and implemented with our SVD algorithm, many other numerical

kernels can be written in similar fashion in parallel using Julia easily without losing

too much control over the parallelization. We believe we have introduced what is the

first step of truly flexible and elegant parallelism.

Throughout the thesis, we have presented new ways to approach high-performance

computing, including autotuning of parallel algorithmic choices, and using a new dy-

namic programming language to fill in the gap between full-control low-level pro-

gramming interface, and high-level tool that hides every detail from the user. With

the advent of multicore processors, parallel computing has been brought to the main-

stream, but the complications involved with parallel computing compared to serial

codes still present major challenges for researchers and programmers. By no means

we are suggesting that PetaBricks and Julia are the only solutions to the difficulties,

but we believe these two languages provide promising potential to address some of

the major issues in high-performance computing.

118

Appendix A

PetaBricks Code

A.1 Symmetric Eigenproblem

A.1.1 BisectionTD.pbcc

#ifndef BISECTIONTDPBCC

#define BISECTIONTDPBCC

%{

extern "C" void dstebz_(char *range, char *order, int *n, double *vl,

double *vu, int *il, int *iu, double *abstol, double *d, double *e,

int *m, int *nsplit, double *w, int *iblock, int *isplit,

double *work, int *iwork, int *info);

extern "C" void dstein_(int *n, double *d, double *e, int *m, double *w,

int *iblock, int *isplit, double *z, int *ldz, double *work, int *iwork,

int *ifail, int *info);

%}

// Find eigenvalues and eigenvectors of input matrix IN (symmetric)

// by LAPACK Bisection routine

transform BisectionTD

from Diag[n], Subdiag[n-1]

to Eigenvalue[n], Eigenvector[n,n]

119

to (Eigenvalue Eig, Eigenvector Vec) from (Diag Din, Subdiag Ein)

{

char range = 'A';

char order = 'B';

int size=n;

int info = 0;

int il;

int iu;

int m;

int nsplit;

int nsquared=n*n;

double vl;

double vu;

double abstol=O;

// allocate and initialize matrices

double *Z = Vec.baseo;

double *D = Din.storageo->datao;

double *E = Ein.storageo->datao;

double *work = new double[4*size];

int *iwork = new int[3*size];

double *W = Eig.baseo;

int *iblock = new int[size];

int *isplit = new int[size];

int *ifail = new int[size];

// call LAPACK bisection routine for tridiagonal matrix

dstebz_(&range, &order, &size, &vl, &vu, &il, &iu, &abstol, D,

E, &m, &nsplit, W, iblock, isplit, work, iwork, &info);

// call LAPACK dstein routine for eigenvectors

delete [] work;

work = new double[5*n];

delete [] iwork;

120

iwork = new int[n];

dstein_(&size, D, E, &size, W, iblock,

isplit, Z, &size, work, iwork, ifail, &info);

delete

delete

delete

delete

delete

work;

iwork;

iblock;

isplit;

if ail;

}

}

#endif // BISECTIONTDPBCC

A.1.2 QRTD.pbcc

#ifndef QRTDPBCC

#define QRTDPBCC

extern "C" void dsteqr_(char *compz, int *n, double *D, double *E,

double *Z, int *ldz, double *work, int *info);

#include ". ./simple/copy.pbcc"

// Find eigenvalues and eigenvectors of tridiagonal matrix

// by LAPACK QR iteration routines

transform QRTDsub

from Subdiag[n-1]

to Eigenvalue [n], Eigenvector [n,n]

t

to CEigenvalue Eig, Eigenvector Vec) from (Subdiag Emn)

121

char compz='I';

int size=n, lwork=2*n-2, info=O, nsquared=n*n;

// allocate and initialize matrices

double *Z = Vec.baseo;

double *D = Eig.baseo;

double *E = Ein.storageo->datao;

double *work = new double[l];

if (lwork > 1) { work = new double[lwork];}

dsteqr_(&compz, &size, D, E, Z, &size, work, &info);

delete [1 work;

}

}

transform QRTD

from Diag[n], Subdiag[n-1]

to Eigenvalue[n], Eigenvector[n,n]

{

to (Eigenvalue Eig, Eigenvector Vec) from (Diag Din, Subdiag Ein)

{
CopylD(Eig, Din);

QRTDsub(Eig, Vec, Ein);

#endif // QRTDPBCC

122

A.1.3 EigTD.pbcc

#ifndef EIGTDPBCC

#define EIGTDPBCC

X{

extern "C" void dlaedl(int *n, double *D, double *Q, int *ldq,

int *indxq, double *rho, int *cutpnt, double *work, int *iwork,

int *info);

%}

#include ". ./simple/copy.pbcc"

#include "QRTD.pbcc"

#include "BisectionTD.pbcc"

transform mergeQ

from Q1[nl,n1], Q2[n2,n2]

to Q[nl+n2,nl+n2]

{
to (Q.region(O,O,nl,nl) qin) from(Q1 ql){

Copy2D(qin,ql);

}

to (Q.region(nl,nl,nl+n2,nl+n2) qin) from(Q2 q2){

Copy2D(qin,q2);

}

secondary Q.cell(i,j) from () { return 0;}

transform ComputeEig

from Vecl[nl,nl],Vec2[n2,n2], RHO

to Eigenvalue[n1+n2], Eigenvector[nl+n2,nl+n2],

WORK [(nl+n2)*(nl+n2)+4*(nl+n2)]

{
to (Eigenvalue eig, Eigenvector vec, WORK work)

123

from (Vec1 q1, Vec2 q2, RHO b)

{

if(nl==O) PetabricksRuntime::aborto;

int i;

int info;

int size=nl+n2;

int cutpnt=nl;

int nsquared=size*size;

double rho=b;

double *D = eig.baseo;

double *Q = vec.baseo;

int *indxq = new int[size];

int *iwork = new int[4*size];

mergeQ(vec,ql,q2);

for(i=O; i<cutpnt; i++) {

indxq[i]=i+1;

}
for(i=cutpnt; i<size; i++){

indxq[i]=i-cutpnt+1;

}

dlaedl(&size, D, Q, &size, indxq, &rho, &cutpnt, work.baseo),

iwork, &info);

delete [iwork;

delete [indxq;

}

}

// Find eigenvalues and eigenvectors of input matrix T (tridiagonal symmetric)

transform EigTD

from Diag[n], Subdiag[n-1]

to Eigenvalue[n], Eigenvector[n,n], TMP[n,n], WORK[n*n+4*n]

124

//Bisection

recursive

to (Eigenvalue eig, Eigenvector vec, TMP tmp, WORK work)

from (Diag Din, Subdiag Ein) {

if (n == 1) {

eig.cell(O) = Din.cell(O);

vec.cell(0,0) = 1;

}
else {

SPAWN(BisectionTD, eig, vec, Din, Ein);

}

}

//QR Iterations

recursive

to (Eigenvalue eig, Eigenvector vec, TMP tmp, WORK work)

from (Diag Din, Subdiag Ein){

if (n == 1) {

eig.cell(O) = Din.cell(O);

vec.cell(0,0) = 1;

}

else {

SPAWN(QRTD, eig, vec, Din, Ein);

}

}

//Recursive: Divide and Conquer

recursive

to (Eigenvalue eig, Eigenvector vec, TMP tmp, WORK work)

from (Diag Din, Subdiag Ein){

if (n == 1) {

eig.cell(O) = Din.cell(O);

125

vec.cell(0,0) = 1;

}
else if (n<=3) {

QRTD(eig,vec,Din,Ein);

}
else {

int cutpnt=n/2;

double rho=Ein.cell(cutpnt-1);

MatrixRegion2D q1 = tmp.region(O, 0, n/2, n/2);

MatrixRegion2D q2 = tmp.region(n/2, n/2, n, n);

MatrixRegion2D t1 = tmp.region(n/2, 0, n, n/2);

MatrixRegion2D t2 = tmp.region(O, n/2, n/2, n);

int wSize = (n/2)*(n/2) + 4*(n/2);

JASSERT(wSize < work.counto/2);

MatrixRegionlD w1 = work.region(0, wSize);

MatrixRegionlD w2 = work.region(work.counto/2, work.counto/2 + wSize);

CopylD(eig, Din);

eig.cell(cutpnt-1) -= rho;

eig.cell(cutpnt) -= rho;

SPAWN(EigTD, eig.region(0,cutpnt),ql, t1, w1,

eig.region(0,cutpnt),Ein.region(O,cutpnt-1));

SPAWN(EigTD, eig.region(cutpnt,n),q2, t2, w2,

eig.region(cutpnt,n),Ein.region(cutpnt,n-1));

SYNC();

SPAWN(ComputeEig, eig, vec, work, q, q2, Ein.cell(cutpnt-1));

}

}

}

transform EigTDMain

from Diag[n], Subdiag[n-1]

through TMP[n,n], WORK[n*n+4*n], Eigvectemp[n,n]

to Eigenvalue[n], Eigenvector[n,n]

126

to (Eigenvalue eig, Eigenvector vec, Eigvectemp vectemp,

TMP tmp, WORK work)

from (Diag Din, Subdiag Ein){

EigTD(eig, vectemp, tmp, work, Din, Ein);

Transpose(vec, vectemp);

}

}

#endif // EIGTD_PBCC

A.2 LU Factorization

A.2.1 PLU.pbcc

#ifndef

#def ine

PLUPBCC

PLUPBCC

#include ". ./simple/copy.pbcc"

transform PLUleftwork

from IN[n,m]

to OUT[n,m]

{

primary to (OUT. column(n-1) out) from (IN in)

{
ElementT sum;

int minjn;

out.cell(O)=in.cell(n-1,O);

for (nt j=1; j<m; j++)

{
sum = 0;

127

(j<n)

minjn=j;

}
else

minjn=n-1;

}

for (nt k=O; k<minjn; k++)

sum+=in. cell (k, j)*out. cell (k);

}
out. cell(j)=in. cell(n-1,j)-sum;

}

}

OUT.cell(j,i)

from (IN.cell(j,i) in)

r

return in;

transform PLUscalecolumn

from IN[n,m]

to OUT[n,m]

primary OUT.cell(0,0) from (IN.cell(0,0) in)

return in;

}

OUT.cell(O,j) from (IN.cell(0,0) diag, IN.cell(O,j) in)

r
return in/diag;

128

secondary OUT.cell(i,j) from (IN.cell(i,j) in)

{
return in;

transform PLUleft

from IN[n,m], Pin[m]

through TEMPEn,m], Ptemp[m]

to OUT[n,m], Pout[m]

{

to (OUT out, Pout pout, TEMP temp, Ptemp ptemp)

from (IN in, Pin pin)

{
ElementT MaxElement;

int MaxIndex;

int
int
int

minmn;

j ;

k;

Copy2D(temp, in);

CopylD(ptemp, pin);

if (m >= n) {

minmnnn;

}

else {

minmn=m;

}

for (j=0; j<minmn; j++)

129

if (j>O)

{

PLUleftwork(temp.region(O,O,j+1,m),out.region(O,O,j+1,m));

}

CopylD(out.column(j),temp.column(j));

//find pivot

MaxElement=temp.cell(j,j);

MaxIndex=j;

for (k=j+1; k<m; k++)

{

if (abs(temp.cell(j,k)) > abs(MaxElement)){

MaxElement=temp.cell(j,k);

MaxIndex=k;

}

//swap rows

pout.cell(j)=ptemp.cell(MaxIndex);

CopylD(out.row(j), temp.row(MaxIndex));

for (k=j+1; k<m; k++)

{

if (k==MaxIndex)

{

pout.cell(k)=ptemp.cell(j);

CopylD(out.row(k),temp.row(j));

}

else

{

pout.cell(k)=ptemp.cell(k);

Copy1D(out.row(k), temp.row(k));

CopylD(ptemp.region(j,m),pout.region(j,m));

130

Copy2D(temp.region(O,j,n,m),out.region(O,j,n,m));

PLUscalecolumn(out.region(j,j,j+1,m),temp.region(j,j,j+1,m));

}

for (j=minmn; j<n; j++)

{

PLUleftwork(temp.region(O,O,j+1,m),out.region(O,O,j+1,m));

CopylD(out.column(j),temp.column(j));

}

}

}

transform PLUrightwork

from IN[n,m]

to OUT[n,m]

{

primary OUT.cell(j,O) from (IN.cell(j,O) in)

{

return in;

OUT.cell(O,j) from (IN.cell(O,j) in, IN.cell(0,0) diag)

{

return in/diag;

secondary OUT.cell(j,i)

from (IN.cell(j,i) aPrev,

OUT.cell(O,i) left,

IN.cell(j,O) up)

{

return aPrev - left * up;

131

transform PLUright

from IN[n,m], Pin[m]

through TEMP[n,m], Ptemp[m]

to OUT[n,m], Pout[m]

{

to (OUT out, Pout pout, TEMP temp, Ptemp ptemp) from (IN in, Pin pin)

{
ElementT MaxElement;

int MaxIndex;

int minmn;

int j;
int k;

Copy2D(temp, in);

CopylD(ptemp, pin);

if (m >= n) {

minmn=n;

}
else {

minmn=m;

}

for (j=0; j<minmn; j++)

{

MaxElement=temp.cell(j,j);

MaxIndex=j;

for (k=j+1; k<m; k++)

{

if ((temp.cell(j,k) != 0) && (abs(temp.cell(j,k))

> abs(MaxElement)))

{
MaxElement=temp. cell Cj, k);

132

MaxIndex=k;

}

}

pout.cell(j)=ptemp.cell(MaxIndex);

CopylD(out.row(j), temp.row(MaxIndex));

for (k=j+1; k<m; k++)

i

if (k==Maxlndex)

pout.cell(k)=ptemp.cell(j);

CopylD(out.row(k),temp.row(j));

}
else

pout.cell(k)=ptemp.cell(k);

CopylD(out.row(k), temp.row(k));

CopylD(ptemp.region(j,m),pout.region(j,m));

Copy2D(temp.region(O,jn,m),out.region(O,j,n,m));

PLUrightwork(temp.region(j,j,n,m),out.region(j,j,n,m));

if (j == minmn-1)

{

Copy2D(out.region(j,jn,m),temp.region(j,j,n,m));

}

}

}

}

transform PLUnoblock

from IN[n,m], Pin[m]

133

OUT [n,m], Pout [m]

to (OUT out, Pout pout) from (IN in, Pin pin)

{

PLUright(out, pout, in, pin);

to (OUT out, Pout pout) from (IN in, Pin pin)

{

PLUleft(out, pout, in, pin);

transform PLU

from IN[n,m]

through Pinitial[m]

to OUT[n,m], P[m]

{

Pinitial.cell(j) from() { return j;}

to (OUT out, P pout) from (IN in, Pinitial pin)

{

PLUnoblock(out,pout,in,pin);

#endif // PLUPBCC

A.2.2 PLUblockdecomp.pbcc

#ifndef PLUBLOCKDECOMPPBCC

#define PLUBLOCKDECOMPPBCC

#include "LUtrisolve.pbcc"

134

#include "PLU.pbcc"

#include "LAPACKmatmul.pbcc"

transform SwapElements

from IN[n], P[n]

to OUT[n]

{
to (OUT out) from (IN in, P p)

{
for (nt j=O; j<n; j++)

{
if (p.cell(j) >= 0 && p.cell(j) < n) {

out.cell(j)=in.cell(p.cell(j));

}
else {

out.cell(j)=in.cell(j);

}

}

}

}

transform SwapRows

from IN[n,m], P[m]

to OUT[n,m]

{
to (OUT out) from (IN in, P p)

{
for (nt j=0; j<m; j++)

{
if (p.cell(j) >= 0 && p.cell(j) < m) {

CopylD(out.row(j), in.row(p.cell(j)));

}

else {

CopylD(out.row(j),in.row(j));

135

}

transform PLUblock2

from IN[n, n], Pin[n]

through TEMP[n, n], Ptemp[n], Phalf[n-n/2]

to OUT[n, n], Pout[n]

/get LU of left block by recursion

to (TEMP.region(O,O,n/2,n) temp, Ptemp ptemp)

from (IN.region(O,O,n/2,n) in, Pin pin)

I
PLUnoblock(temp,ptemp,in, pin);

}

/upper left block is final

to (OUT.region(O,O,n/2,n/2) out) from (TEMP.region(O,O,n/2,n/2) temp)

{
Copy2D(out, temp);

}

I/first half of Permutation vector is final

to (Pout.region(O,n/2) pout) from (Ptemp.region(O,n/2) ptemp)

f

CopylD(pout, ptemp);

}

//swap right block

to (TEMP.region(n/2,0,n,n) temp)

from (IN.region(n/2,0,n,n) in, Ptemp ptemp)

f
SwapRows(temp, in, ptemp);

}

//upper right block

to (OUT.region(n/2,0,n,n/2) out)

136

from (TEMP.region(n/2,0,n,n/2) swappedin,

TEMP.region(O,O,n/2,n/2) leftdiag)

f

LUtrisolve(out,leftdiag,swappedin);

}

/lower right block

to (OUT.region(n/2,n/2,n,n) out, Phalf phalf)

from (TEMP.region(n/2,n/2,n,n) in,

OUT.region(n/2,0,n,n/2) up,

TEMP.region(O,n/2,n/2,n) left)

{

//Atemp = in - left*up (this updates the lower right block)

MatrixRegion2D Atemp = MatrixRegion2D::allocate(n-n/2, n-n/2);

//MatrixMultiply(out,left,up);

//MatrixSub(Atemp,in,out);

LAPACKmatmul(Atemp,left,up,in);

//recursion to get LU of the remaining updated block

PLUrecur(out,phalf,Atemp);

}

//lower left block

to (OUT.region(O,n/2,n/2,n) out)

from (TEMP.region(0,n/2,n/2,n) temp, Phalf phalf)

{

SwapRows(out,temp,phalf);

}

I/last half of Permutation vector

to (Pout.region(n/2,n) pout) from (Ptemp.region(n/2,n) ptemp, Phalf phalf)

{

SwapElements(pout, ptemp, phalf);

}

137

}

transform PLUblock4

from IN[n, n], Pin[n]

through TEMP[n, n], Ptemp[n], Phalf[n-n/4]

to OUT[n, n], Pout[n]

//get LU of left block by recursion

to (TEMP.region(O,O,n/4,n) temp, Ptemp ptemp)

from (IN.region(O,O,n/4,n) in, Pin pin)

f
PLUnoblock(temp,ptemp,in, pin);

/upper left block is final

to (OUT.region(O,O,n/4,n/4) out) from (TEMP.region(O,O,n/4,n/4) temp)

{
Copy2D(out, temp);

}

I/first half of Permutation vector is final

to (Pout.region(O,n/4) pout) from (Ptemp.region(O,n/4) ptemp)

f
CopylD(pout, ptemp);

//swap right block

to (TEMP.region(n/4,0,n,n) temp)

from (IN.region(n/4,0,n,n) in, Ptemp ptemp)

{
SwapRows(temp, in, ptemp);

//upper right block

to (OUT.region(n/4,0,n,n/4) out)

from (TEMP.region(n/4,0,n,n/4) swappedin,

138

TEMP.region(O,O,n/4,n/4) leftdiag)

f

LUtrisolve(out,leftdiag, swappedin);

}

/lower right block

to (OUT.region(n/4,n/4,n,n) out, Phalf phalf)

from (TEMP.region(n/4,n/4,n,n) in,

OUT.region(n/4,0,n,n/4) up,

TEMP.region(0,n/4,n/4,n) left)

{

//Atemp = in - left*up (this updates the lower right block)

MatrixRegion2D Atemp = MatrixRegion2D::allocate(n-n/4, n-n/4);

//MatrixMultiply(out,left,up);

//MatrixSub(Atemp,in,out);

LAPACKmatmul(Atemp,left,up,in);

//recursion to get LU of the remaining updated block

PLUrecur(out,phalf,Atemp);

}

//lower left block

to (OUT.region(O,n/4,n/4,n) out)

from (TEMP.region(O,n/4,n/4,n) temp, Phalf phalf)

{

SwapRows(out,temp,phalf);

}

I/last half of Permutation vector

to (Pout.region(n/4,n) pout) from (Ptemp.region(n/4,n) ptemp, Phalf phalf)

{

SwapElements(pout, ptemp, phalf);

}

139

#endif // PLUBLOCKDECOMPPBCC

A.2.3 PLUrecur.pbcc

#ifndef PLURECURPBCC

#define PLURECURPBCC

#include "PLUblockdecomp.pbcc"

#include "PLU.pbcc"

transform PLUrecurinner

from IN[n,n], Pin[n]

to OUT[n,n], Pout[n]

{

(OUT out, Pout pout) from (IN in, Pin pin)

if (n < 2) {

PLUnoblock(out, pout, in, pin);

}
else {

PLUblock2(out, pout, in, pin);

(OUT out, Pout pout) from (IN in, Pin pin)

if (n < 4) {

PLUnoblock(out, pout, in, pin);

else {

PLUblock4(out, pout, in, pin);

140

to (OUT out, Pout pout) from (IN in, Pin pin)

{

PLUnoblock(out,pout,in,pin);

}

}

main transform PLUrecur

from IN[n,n]

through Pinitial[n]

to OUT[n,n], Pout[n]

{

Pinitial.cell(j) from () { return j;}

to (OUT out, Pout pout) from (IN in, Pinitial pin)

{

PLUrecurinner (out ,pout, in,pin);

#endif // PLURECUR._PBCC

A.3 k-means clustering

A.3.1 newclusterlocation.pbcc

#ifndef NEWCLUSTERLOCATIONSPBCC

#define NEWCLUSTERLOCATIONSPBCC

transform NewClusterLocationsGen

to X[n,2], A[n]

{

X.cell(i,j) from() { return PetabricksRuntime::randInt(-50,50); }

A.cell(i) from() { return PetabricksRuntime::randInt(O,n-1); }

141

transform NewClusterLocations

param k //input parameter: number of clusters

from X[n,2], A[n]

through Sum[k,2], Count[k]

to C[k,2]

generator NewClusterLocationsGen

{
to (Sum s, Count count) from (X x, A a)

{
int i, j;

//zero s and count

for(i=O;i<k;i++){

s.cell(i,0)=0;

s.cell(i,1)=O;

count.cell(i)=O;

}
for (i=O; i<n; i++) {

j=a.cell(i);

JASSERT(j>=O && j<=k)(j);

s.cell(j,O)+=x.cell(i,O);

s.cell(j,1)+=x.cell(i,1);

count.cell(j)+=1;

}

}

to (C.column(i) c) from (Sum.column(i) s, Count.cell(i) count)

{
if (count == 0) {

c.cell(0)=0;

c.cell(1)=0;

}
else {

c.cell(0)=s.cell(O)/count;

c.cell(1)=s.cell(1)/count;

}

142

}

#endif // NEWCLUSTERLOCATIONSPBCC

A.3.2 assignclusters.pbcc

#ifndef ASSIGNCLUSTERSPBCC

#define ASSIGNCLUSTERSPBCC

transform AssignClustersGen

to X[n,2], C[n/10,2], A~n]

{
X.cell(i,j) from() { return PetabricksRuntime::randDouble(-50,50); }
C. cell(i,j) from() { return PetabricksRuntime: :randDouble(-50,50); }

A.cell(i) from() { return PetabricksRuntime::randInt(O,n/10-1); }

}

transform AssignClusters

from X[n,2], C[k,2], A[n]

through D[n,k], ctemp[n]

to Anew[n], cflag

generator AssignClustersGen

{

to (D.cell(i,j) d) from (X.column(i) x, C.column(j) c)

{
Distance(d,x,c);

}

to(Anew.cell(i) anew, ctemp.cell(i) changed)

from(D.column(i) d, A.cell(i) aold)

{

IndexT oldindex = aold;

IndexT minindex = 0;

ElementT mindist=d.cell(0);

143

for (nt j=1; j<k; j++) {

if (d.cell(j) < mindist) {

minindex=j;

mindist = d.cell(j);

}

}

anew = minindex;

changed = (oldindex!=minindex);

}

cflag from (ctemp c) {

int i;

ElementT sum=O;

for (i=O; i<n; i++) {

sum+=c.cell(i);

}
return sum;

}

}

#endif // ASSIGNCLUSTERS_PBCC

A.3.3 kmeans.pbcc

#ifndef KMEANSPBCC

#define KMEANSPBCC

#include "../simple/copy.pbcc"

#include "newclusterlocations.pbcc"

#include "assignclusters.pbcc"

#include "../simple/rollingsum.pbcc"

transform Distance

from A[2], B[2]

to Dis

{

144

Dis from (A a, B b)

{
ElementT xdiff, ydiff;

xdiff = a.cell(O)-b.cell(O);

ydiff = a.cell(1)-b.cell(1);

return sqrt(xdiff*xdiff + ydiff*ydiff);

}

}

transform DistanceSQ

from A[2], B[2]

to DisSQ

{
DisSQ from (A a, B b)

{
ElementT xdiff, ydiff;

xdiff = a.cell(O)-b.cell(O);

ydiff = a.cell(1)-b.cell(1);

return xdiff*xdiff + ydiff*ydiff;

}

}

transform GetD

from X[m,2], C[n,2]

to D[m,n]

{
to (D.cell(i,j) d) from (X.column(i) x, C.column(j) c)

{
Distance(d,x,c);

}

}

transform GetMin

from X[m,n]

to MinX[m]

{

145

MinX.cell(i) from(X.column(i) x){

int j;
ElementT minvalue=x.cell(0);

for (j=1; j<n; j++) {

if (x.cell(j) < minvalue) {

minvalue=x.cell(j);

}

}

return minvalue*minvalue;

}

transform randomcenter

from X[n,2]

through Xtemp[n,2]

to C[k,2]

generator kmeansinputgen

{
to (C c, Xtemp x) from (X xin){

int 1;

int m;

Copy2D(x,xin);

for (m=0; m<k; m++)

{

1 = PetabricksRuntime: :randInt(mn);

CopylD(c.column(m),x.column(l)); /new center picked

if (l!=m) {

CopylD(x.column(l), x.column(m));

}//swap columns for next iteration

}

}

}

transform centerplus

from X[n,2]

146

through D [n,k], DMIN [n], DSQ [n], Xtemp [n, 2]

to CEk,2]

generator kmeansinputgen

{

to (C c, D d, DMIN dmin, DSQ dsq, Xtemp x) from (X xin){

int 1;

int m;

ElementT rvalue;

Copy2D(x,xin);

CopylD(c.column(O), x.column(O));

for (m=1; m<k; m++) {

//get distance of all remanining x with current cluster centers

GetD(d.region(m,O,n,m), x.region(m,O,n,2), c.region(O,O,m,2));

//find minimum of each column, squared and compute cumulative sum

GetMin(dmin.region(m,n), d.region(m,o,n,m));

RollingSum(dsq.region(m,n),dmin.region(m,n));

//pick center with probability proportional to dmin (D(x)2)

rvalue=PetabricksRuntime::randDouble(0,1)*dsq.cell(n-1);

for (l=m; l<n; 1++){

if (rvalue<=dsq.cell(1)){

Copy1D(c.column(m),x.colun(l)); /new center picked

if (l!=m) { CopylD(x.column(l), x.column(m)); }

//swap columns for next iteration

break;

}

}

}

}

}

147

main transform kmeans

from X[n,2] // X - x,y coordinates of n points

through Ctemp[k,2]

to C[k,2], A[n]

// C - centroids, A - cluster assignment,

// WCSS - within-cluster sum of squares (error measures)

accuracy-metric WCSS

accuracy-bins 0.025, 0.05, 0.1, 0.2, 0.5, 0.75, 0.95

accuracy-variable k(1,1)//min=1, initial=1

generator kmeansinputgen

{

//Assign initial cluster centers randomly

to (Ctemp ctemp) from (X x)

{

//Copy2D(ctemp,x.region(0,0,k,2));

if(k>n)

PetabricksRuntime: :abort();

randomcenter(ctemp, x);

}

//or Assign initial cluster centers using k-means++ algorithm

to (Ctemp ctemp) from (X x)

{

if(k>n)

PetabricksRuntime: :abort(;

centerplus(ctemp, x);

}

/iteratively find local optimum

to (C c, A a) from (X x, Ctemp ctemp)

{

ElementT change=1;

Copy2D(c,ctemp);

AssignClusters(a,change,x,c,a);

for-enough {

148

if (change > 0) {

NewClusterLocations(c, x, a);

}else{

break;

}
AssignClusters(a,change,x,c,a);

}

}

}

transform WCSS

from C[k,2], A[n], X[n,2]

to Accuracy

{

//accuracy measure

Accuracy from(X x, C c, A a)

{
ElementT dis;

ElementT sum;

int i;

sum=0;

for (i=0; i< n; i++) {

DistanceSQ(dis, x.column(i), c.column(a.cell(i)));

sum+=dis;

}

if(sum<=O)

return 0;

return sqrt(2*n/sum);

}

}

transform kmeansinputgen

from IN[n]

149

to X[n,2]

{
//PetabricksRuntime::randNormal(double mean, double sigma);

to (X x) from() {

int i,j,k;

int numclus=sqrt (n);

int binlength=(n-numclus)/numclus;

for (i=0; i < numclus; i++) {

x.cell(i,0) = PetabricksRuntime: :randDouble (-250,250);

x.cell(i,1) = PetabricksRuntime::randDouble(-250,250);

for (j=0; j < binlength; j++) {

k = numclus + i*binlength + j;

x.cell(k,0)=x.cell(i,0) + PetabricksRuntime::randNormal(0,1);

x.cell(k,1)=x.cell(i,1) + PetabricksRuntime::randNormal(0,1);

}

}

for (i=k+1; i<n; i++){

x.cell(i,0)=x.cell(n-i-1,0) + PetabricksRuntime: :randNormal(0,1);

x.cell(i,1)=x.cell(n-i-1,1) + PetabricksRuntime::randNormal(0,1);

}

}

}

#endif // KMEANSPBCC

A.4 Preconditioning

A.4.1 poissionprecond.pbcc

#ifndef POISSONPRECONDPBCC

#define POISSONPRECONDPBCC

#include "CG.pbcc"

#include "PCG.pbcc"

#include "jacobipre.pbcc"

150

#include "polypre.pbcc"

#include "demv.pbcc"

#include "ComputeError.pbcc"

#include "../simple/transpose.pbcc"

#include "../multiply/multiply.pbcc"

main transform poissonprecond

from X[n], A[n,n], B[n]

// X - initial guess, A - input matrice, B - RHS vector

to OUT[n]

generator PoissonGenerator

accuracy-metric ResidualNorm

accuracybins 0, 0.5, 1, 1.5, 2, 3

accuracy-variable NumIterations

//Jacobi preconditioner

to (OUT out) from (X x, A a, B b)

JacobiPre(out, x, a, b, NumIterations);

}

//Polynomoial preconditioner

to (OUT out) from (X x, A a, B b)

MatrixRegion2D p = MatrixRegion2D::allocate(n,n);

PolyPre(p,a);

PCG(out, x, a, b, p, NumIterations);

}

//no preconditioner

to (OUT out) from (X x, A a, B b)

CG(out, x, a, b, NumIterations);

}

}

151

transform PoissonGenerator

to X[n], A[n,n], B[n]

{

B.cell(i) from() { return PetabricksRuntime::randDouble(0,100); }

X.cell(i) from() { return 0; }

to (A a) from()

{

int i,j;

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

if (i== j) { a.cell(i,j) = 2; }

else if (i==j+1) { a.cell(i,j) = -1;}

else if (j==i+1) { a.cell(i,j) = -1;}

else { a.cell(i,j) = 0; }

}

}

}

}

transform ResidualNorm

from OUT[n], X[n], A[n,n], B[n]

through AY[n], AX[n],E1,E2

to Accuracy

{

to (Accuracy acc, AX ax, AY ay, El el, E2 e2) from(B b, A a, X in, OUT out)

{

int i;

ElementT error;

demv(ax,a,in);

demv(ay,a,out);

ComputeError(el,ax,b);

152

ComputeError(e2,ay,b);

if (e2 == 0) {

acc = 10;

}
else {

acc=loglO(el/e2);

}

#endif // POISSONPRECONDPBCC

153

THIS PAGE INTENTIONALLY LEFT BLANK

154

Appendix B

Matlab Code

B.1 rmbump.m

xyz=load('94wC2_e.xyz');

x=xyz(:,1);y=xyz(:,2);z=xyz(:,3);

x=reshape(x,94, []);y=reshape(y,94, []);z=reshape(z,94, []);

N=size(xyz, 1)/94;

kmax=N/10;

kmax=kmax-mod(kmax, 4)+4;

zs=z(1,:);

dx=diff(x(1,:)); dy=diff(y(1,:));

ds=sqrt(dx.^2+dy.^2);

t=[0 cumsum(ds)];

global t

global zs

figure,

plot(tzs)

xlabel('s')

ylabel('z')

title ('profile')

k=16;

155

kindex=1;

while (k<kmax)

sigma=k/4;

vx=[-k:k];

v=1./sqrt(2*pi)/sigma*((vx.^2-sigma^2)/sigma^4).*exp(-vx.^2/2/sigma^2)

v=v/abs(sum(v));

w=conv(zs,v);

k=(length(w)-length(zs))/2;

lm=(length(v)-1)/2;

zs2=[zs(1)*ones(1,1m) zs zs(end)*ones(1,1m)];

w=conv(zs2,v);

ws=w(2*lm+1:end-2*lm);

ws2d=diff(ws);

zsd=diff(zs);

ws3=ws.*([O ws2d]<0).*([ws2d 0]>0); %local min of LoG

index=find(abs(ws3)>0);

zs2=zs;

t2=t;

len=sigma*ones(1,length(index));

len(1)=sigma/2; len(end)=sigma/2;

for i=1:length(index)

i1=max(index(i)-len(i),2);

i2=min(index(i)+len(i),N-1);

t2=t;

zs2(il:i2)=[];

t2(il:i2)=[];

zs2=spline(t2,zs2,t);

end

figure

plot(t,zs)

hold on

156

plot(t,zs2,'r')

title('profile')

xlabel('s')

ylabel('z')

legend('original profile', 'bump removed')

bumps=z-zs2; % get the bumps

figure, plot(t,bumps), title('bumps')

xlabel('s')

ylabel('z')

numofneg(kindex)=sum(bumps(index)<0);

numofpos(kindex)=sum(bumps(index)>0);

kvar(kindex)=var(bumps(index));

krange(kindex)=max(bumps(index))-min(bumps(index));

kvalue(kindex)=k;

k=k+8;

kindex=kindex+1;

end

numofbumps=numofneg+numofpos;

kop=find((diff(numofneg)>=0).*(diff(numofpos)>=0))+1;

koptimal=kvalue (find(kvar==min(kvar(kop))))

B.2 filternoise.m

xyz=load('94wC1_b.xyz');

x=xyz(:,1);y=xyz(:,2);z=xyz(:,3);

x=reshape(x,94,[]);y=reshape(y,94,[]);z=reshape(z,94,[]);

zs=z;

for i=1:94

zsl=zs(i,:);

k=length(zs(i,:))/100*2;

zs(i,:)=gaussfilter(zsl,k);

end

n2=zs-z;

157

noise=n2(:);

dx=diff(x(i,:)); dy=diff(y(i,:));

ds=sqrt(dx.^2+dy.^2);

t=[0 cumsum(ds)];

figure,

plot(t,zsl)

xlabel('s')

ylabel('z')

title('noisy data')

hold on

plot(t,zs(i,:),'r')

xlabel('s')

ylabel('z')

title('smoothed data')

figure, qqplot(noise)

figure, hist(noise,100)

%Compare with Normal

A=randn(size(noise,1),1);

A=A-mean(A)+mean(noise); A=A*std(noise);

[NormalX,NormalY]=hist(A,100);

hold on

plot(NormalY, NormalX, 'g')

mean(noise), var(noise), skewness(noise), kurtosis(noise)

B.3 gaussfilter.m

function fx=gaussfilter(x,k)

sigma=k/4;

vx=[-k:k];

v=1./sqrt(2*pi)/sigma*exp(-vx.^2/2/sigma^2);

lm=(length(v)-1)/2;

158

x2=[x(1)*ones(1,1m) x x(end)*ones(1,lm)];

w=conv(x2,v);

fx=w(2*lm+1:end-2*lm);

end

B.4 roughness.m

function mu=roughness(data)

xyz=load(data);

x=xyz(: ,1);y=xyz(: ,2);z=xyz(: ,3);

x=reshape(x,94, []);y=reshape(y,94, []);z=reshape(z,94, []);

mu=svdratio(x,y,z);

end

function sr=svdratio (x, y, z)

dx=dif f (x, 1, 2) ; dy=dif f (y, 1, 2) ; dz=dif f (z,1, 2);

ds=sqrt(dx.^2+dy.^2);

dfl=dz./ds;

[Ua Sa Va]=svd(df1,'econ');

Sda=diag(Sa);

sr=Sda(1).^2/sum(Sda.^2);

end

159

THIS PAGE INTENTIONALLY LEFT BLANK

160

Appendix C

Julia Code

C.l randmatrixtest.j

function randmatrixtest()

t=200000

n=20

V =

Opfor (+) i=1:t begin

a = 2*float64(rand(n,n)<.5) - 1

(q,r) = qr(randn(n,n))

a = q*a

(a[1,1]*a[2,2])^2 - 1

end

v/t

end

C.2 roughness.j

function roughness()

f=open("94w_C1_b.bin")

data7read(f,Array(Float64,582800,3))

x=data[:,1];

y=data[:,2];

161

z=data[: ,3];

x=reshape(x,94,6200);

y=reshape(y,94,6200);

z=reshape(z,94,6200);

dx=dif f (x, 2);

dy=dif f (y, 2);

dz=diff(z,2);

ds=sqrt(dx.^2+dy.~2);

df=dz./ds;

S=svd(df);

sigma-diag(S[2]);

sigma[l]*sigma[l]/sum(sigma.*sigma)

end

162

Bibliography

[1] Moore's law: Made real by intel innovations.
http://www.intel.com/technology/mooreslaw/index.htm.

[2] A. ALI, L. JOHNSSON, AND J. SUBHLOK, Scheduling FFT computation on
SMP and multicore systems, in Proceedings of the ACM/IEEE Conference on
Supercomputing, New York, NY, USA, 2007, ACM, pp. 293-301.

[3] G. M. AMDAHL, Validity of the single processor approach to achieving large
scale computing capabilities, in Proceedings of the April 18-20, 1967, spring joint
computer conference, AFIPS '67 (Spring), New York, NY, USA, 1967, ACM,
pp. 483-485.

[4] B. S. ANDERSEN, J. WASNIEWSKI, AND F. G. GUSTAVSON, A recursive for-
mulation of cholesky factorization of a matrix in packed storage, ACM Trans.
Math. Softw., 27 (2001), pp. 214-244.

[5] E. ANDERSON, Z. BAI, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DON-
GARRA, J. Du CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY,
AND D. SORENSEN, LAPACK Users' Guide, Society for Industrial and Applied
Mathematics, Philadelphia, PA, third ed., 1999.

[6] J. ANSEL, C. CHAN, Y. L. WONG, M. OLSZEWSKI, Q. ZHAO, A. EDELMAN,
AND S. AMARASINGHE, Petabricks: A language and compiler for algorithmic
choice, in ACM SIGPLAN Conference on Programming Language Design and
Implementation, Dublin, Ireland, Jun 2009.

[7] J. ANSEL, Y. L. WONG, C. CHAN, M. OLSZEWSKI, A. EDELMAN, AND
S. AMARASINGHE, Language and compiler support for auto-tuning variable-
accuracy algorithms, in CGO, Chamonix, France, Apr 2011.

[8] D. ARTHUR AND S. VASSILVITSKII, k-meansf-t: the advantages of careful seed-
ing, in ACM-SIAM Symposium on Discrete Algorithms, January 2007.

[9] G. BALLARD, J. DEMMEL, AND I. DUMITRIU, Minimizing communication for
eigenproblems and the singular value decomposition, tech. rep., EECS Depart-
ment, University of California, Berkeley, Feb 2011.

163

[10] G. BALLARD, J. DEMMEL, AND A. GEARHART, Communication bounds for
heterogeneous architectures, Tech. Rep. UCB/EECS-2011-13, EECS Depart-
ment, University of California, Berkeley, Feb 2011.

[11] R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DON-

GARRA, V. EIJKHOUT, R. Pozo, C. ROMINE, AND H. V. DER VORST, Tem-
plates for the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition, SIAM, Philadelphia, PA, 1994.

[12] J. BEZANSON, S. KARPINSKI, AND V. SHAH, The Julia Programming Lan-

guage. User Manual for Julia, Jan. 2011.

[13] J. BILMES, K. ASANOVIC, C.-W. CHIN, AND J. DEMMEL, Optimizing matrix

multiply using PHiPAC: a portable, high-performance, ANSI C coding method-
ology, in Proceedings of the ACM/IEEE Conference on Supercomputing, New
York, NY, USA, 1997, ACM, pp. 340-347.

[14] C. H. BIsCHOF AND C. V. LOAN, The wy representation for products of house-

holder matrices., in PPSC'85, 1985, pp. 2-13.

[15] L. S. BLACKFORD, J. CHOI, A. CLEARY, E. D'AZEVEDO, J. DEMMEL,
I. DHILLON, J. DONGARRA, S. HAMMARLING, G. HENRY, A. PETITET,
K. STANLEY, D. WALKER, AND R. C. WHALEY, ScaLAPACK Users' Guide,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[16] L. S. BLACKFORD, J. DEMMEL, J. DONGARRA, I. DUFF, S. HAMMAR-
LING, G. HENRY, M. HEROUX, L. KAUFMAN, A. LUMSDAINE, A. PETITET,
R. Pozo, K. REMINGTON, AND R. C. WHALEY, An updated set of basic linear

algebra subprograms (blas), ACM Trans. Math. Softw., 28 (2002), pp. 135-151.

[17] J. J. BUONI, P. A. FARRELL, AND A. RUTTAN, Algorithms for lu decomposi-

tion on a shared memory multiprocessor, Parallel Computing, 19 (1993), pp. 925
- 937.

[18] C. CHAN, J. ANSEL, Y. L. WONG, S. AMARASINGHE, AND A. EDELMAN,
Autotuning multigrid with petabricks, in ACM/IEEE Conference on Supercom-
puting, Portland, OR, Nov 2009.

[19] 0. Y. K. CHEN AND A. B, A comparison of pivoting strategies for the direct
lu factorization.

[20] J. CHOI, J. J. DONGARRA, AND D. W. WALKER, The design of a parallel

dense linear algebra software library: Reduction to hessenberg, tridiagonal, and
bidiagonal form, Tech. Rep. 92, LAPACK Working Note, Feb. 1995.

[21] R. CHOY, A. EDELMAN, J. R. GILBERT, V. SHAH, AND D. CHENG, Star-
p: High productivity parallel computing, in In 8th Annual Workshop on High-
Performance Embedded Computing (HPEC 04), 2004.

164

[22] E. CHU AND A. GEORGE, Gaussian elimination with partial pivoting and load
balancing on a multiprocessor, Parallel Computing, 5 (1987), pp. 65 - 74.

[23] C. W. CRYER, Pivot size in Gaussian elimination, 12 (1968), pp. 335-345.

[24] T. A. DAVIS, Direct Methods for Sparse Linear Systems, Society for Industrial
and Applied Mathematics, Philadephia, PA, 2006.

[25] C. DE BLAS CARTON, A. GONZALEZ-ESCRIBANO, AND D. R. LLANOS, Ef-
fortless and efficient distributed data-partitioning in linear algebra, High Perfor-
mance Computing and Communications, 10th IEEE International Conference
on, 0 (2010), pp. 89-97.

[26] W. F. DE LA VEGA AND G. S. LUEKER, Bin packing can be solved within
1+epsilon in linear time, Combinatorica, 1 (1981), pp. 349-355.

[27] J. DEMMEL, L. GRIGORI, M. F. HOEMMEN, AND J. LANGOU,
Communication-optimal parallel and sequential qr and lu factorizations,
Tech. Rep. UCB/EECS-2008-89, EECS Department, University of Califor-
nia, Berkeley, Aug 2008. Current version available in the ArXiv at
http://arxiv.org/pdf/0809.0101.

[28] J. DEMMEL, L. GRIGORI, AND H. XIANG, Calu: A communication optimal
lu factorization algorithm, Tech. Rep. UCB/EECS-2010-29, EECS Department,
University of California, Berkeley, Mar 2010.

[29] J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, August 1997.

[30] J. W. DEMMEL, S. C. EISENSTAT, J. R. GILBERT, X. S. Li, AND J. W. H.
LIu, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Analysis
and Applications, 20 (1999), pp. 720-755.

[31] J. W. DEMMEL, J. R. GILBERT, AND X. S. LI, An asynchronous parallel
supernodal algorithm for sparse gaussian elimination, SIAM J. Matrix Analysis
and Applications, 20 (1999), pp. 915-952.

[32] J. W. DEMMEL, M. T. HEATH, AND H. A. VAN DER VORST, Parallel numer-
ical linear algebra, in Society for Industrial and Applied Mathematics, SIAM,
1997.

[33] 1. S. DHILLON, A New 0(n 2) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem, PhD thesis, EECS Department, University of Cali-
fornia, Berkeley, Oct 1997.

[34] I. S. DHILLON AND B. N. PARLETT, Multiple representations to compute or-
thogonal eigenvectors of symmetric tridiagonal matrices, Linear Algebra and
Appl, 387 (2004), pp. 1-28.

165

[35] J. J. DONGARRA, J. Du CROZ, S. HAMMARLING, AND I. S. DUFF, A set of

level 3 basic linear algebra subprograms, ACM Trans. Math. Softw., 16 (1990),
pp. 1-17.

[36] J. J. DONGARRA, J. Du CROZ, S. HAMMARLING, AND R. J. HANSON, An ex-
tended set of fortran basic linear algebra subprograms, ACM Trans. Math. Softw.,
14 (1988), pp. 1-17.

[37] J. J. DONGARRA, D. C. SORENSEN, AND S. J. HAMMARLING, Block reduction
of matrices to condensed forms for eigenvalue computations, Journal of Compu-
tational and Applied Mathematics, 27 (1989), pp. 215 - 227. Special Issue on
Parallel Algorithms for Numerical Linear Algebra.

[38] A. EDELMAN, The complete pivoting conjecture for gaussian elimination is false,
The Mathematica Journal, 2 (1992), pp. 58-61.

[39] E. ELMROTH AND F. G. GUSTAVSON, Applying recursion to serial and par-
allel qr factorization leads to better performance, IBM Journal of Research and
Development, 44 (2000), pp. 605 -624.

[40] M. FRIGO AND S. G. JOHNSON, FFTW: An adaptive software architecture
for the FFT, in Proceedings of the IEEE International Conference on Acoustics
Speech and Signal Processing, vol. 3, IEEE, 1998, pp. 1381-1384.

[41] M. FRIGO AND S. G. JOHNSON, The design and implementation of FFTWS,
Proceedings of the IEEE, 93 (2005), pp. 216-231. Special issue on "Program
Generation, Optimization, and Platform Adaptation".

[42] M. FRIGO, C. E. LEISERSON, H. PROKOP, AND S. RAMACHANDRAN, Cache-
oblivious algorithms, in Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science, FOCS '99, Washington, DC, USA, 1999, IEEE
Computer Society, pp. 285-.

[43] M. FRIGO, C. E. LEISERSON, AND K. H. RANDALL, The implementation of

the Cilk-5 multithreaded language, in Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Montreal, Quebec,
Canada, Jun 1998, pp. 212-223. Proceedings published ACM SIGPLAN Notices,
Vol. 33, No. 5, May, 1998.

[44] G. A. GEIST AND C. H. ROMINE, lu factorization algorithms on distributed-
memory multiprocessor architectures, SIAM Journal on Scientific and Statistical
Computing, 9 (1988), pp. 639-649.

[45] A. GEORGE, J. W. H. Liu, AND E. NG, Communication results for parallel
sparse cholesky factorization on a hypercube, Parallel Computing, 10 (1989),
pp. 287 - 298.

[46] N. GOULD, On growth in gaussian elimination with complete pivoting, SIAM
Journal on Matrix Analysis and Applications, 12 (1991), pp. 354-361.

166

[47] C. GOUTTE, P. TOFT, E. ROSTRUP, F. . NIELSEN, AND L. K. HANSEN, On
clustering fnri time series, Neurolmage, 9 (1999), pp. 298 - 310.

[48] L. GRIGORI, E. G. BOMAN, S. DONFACK, AND T. A. DAVIS, Hypergraph-
based unsymmetric nested dissection ordering for sparse lu factorization, SIAM
Journal on Scientific Computing, 32 (2010), pp. 3426-3446.

[49] L. GRIGORI AND X. S. Li, A new scheduling algorithm for parallel sparse lu fac-
torization with static pivoting, in Supercomputing, ACM/IEEE 2002 Conference,
2002, p. 25.

[50] M. GU AND S. C. EISENSTAT, A divide-and-conquer algorithm for the bidiagonal
svd, SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 79-92.

[51] F. G. GUSTAVSON, Recursion leads to automatic variable blocking for dense
linear-algebra algorithms, IBM J. Res. Dev., 41 (1997), pp. 737-756.

[52] J. A. HARTIGAN, Clustering algorithms, Wiley New York, 1975.

[53] P. HZNON, P. RAMET, AND J. ROMAN, PaStiX: A Parallel Direct Solver for
Sparse SPD Matrices based on Efficient Static Scheduling and Memory Manag-
ment, in Tenth SIAM Conference on Parallel Processing for Scientific Computing,
Portsmouth United States, 2001.

[54] P. HUSBANDS AND K. YELICK, Multi-threading and one-sided communication
in parallel lu factorization, SC Conference, 0 (2007), pp. 1-10.

[55] E. IM AND K. YELICK, Optimizing sparse matrix computations for register reuse
in SPA RSITY, in Proceedings of the International Conference on Computational
Science, Springer, 2001, pp. 127-136.

[56] M. INABA, N. KATOH, AND H. IMAI, Applications of weighted voronoi dia-
grams and randomization to variance-based k-clustering: (extended abstract), in
Proceedings of the tenth annual symposium on Computational geometry, SCG
'94, New York, NY, USA, 1994, ACM, pp. 332-339.

[57] E. R. JESSUP AND D. C. SORENSEN, A parallel algorithm for computing the
singular value decomposition of a matrix, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 530-548.

[58] J. KEPNER, Parallel MATLAB for Multicore and Multinode Systems, SIAM
Press, 2009.

[59] A. B. LAWSON AND D. G. T. DENISON, Spatial Cluster Modelling, Chapman
& Hall CRC, London, 2002.

[60] C. L. LAWSON, R. J. HANSON, D. R. KINCAID, AND F. T. KROGH, Basic
linear algebra subprograms for fortran usage, ACM Trans. Math. Softw., 5 (1979),
pp. 308-323.

167

[61] R. LI, Solving secular equations stably and efficiently, tech. rep., University of
California at Berkeley, Berkeley, CA, USA, 1993.

[62] X. LI, M. J. GARZARAN, AND D. PADUA, A dynamically tuned sorting li-

brary, in Proceedings of the International Symposium on Code Generation and
Optimization, March 2004, pp. 111-122.

[63] X. LI, M. J. GARZARN, AND D. PADUA, Optimizing sorting with genetic algo-

rithms, in Proceedings of the International Symposium on Code Generation and
Optimization, IEEE Computer Society, 2005, pp. 99-110.

[64] X. S. LI, An overview of superlu: Algorithms, implementation, and user inter-
face, ACM Trans. Math. Softw., 31 (2005), pp. 302-325.

[65] X. S. LI AND J. W. DEMMEL, SuperLUDIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems, ACM Trans. Mathematical
Software, 29 (2003), pp. 110-140.

[66] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J.
Matrix Anal. Appl., 11 (1990), pp. 134-172.

[67] M. MAHAJAN, P. NIMBHORKAR, AND K. VARADARAJAN, The planar k-means

problem is np-hard, in WALCOM: Algorithms and Computation, S. Das and
R. Uehara, eds., vol. 5431 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2009, pp. 274-285. 10.1007/978-3-642-00202-1.24.

[68] K. V. MARDIA, J. KENT, AND B. J.M., Multivariate Analysis, Academic
Press, 1980.

[69] V. MENON AND K. PINGALI, Look left, look right, look left again: An application
of fractal symbolic analysis to linear algebra code restructuring, Int. J. Parallel
Comput, 32 (2003), p. 2004.

[70] G. MEURANT, The Lanczos and Conjugate Gradient Algorithms: From Theory
to Finite Precision Computations (Software, Environments, and Tools), SIAM,
2006.

[71] G. E. MOORE, Cramming more components onto integrated circuits, Electronics,
38 (1965), pp. 114-117.

[72] A. OKABE, B. BOOTS, AND K. SUGIHARA, Spatial tessellations: concepts and

applications of Voronoi diagrams, John Wiley & Sons, Inc., New York, NY, USA,
1992.

[73] M. OLSZEWSKI AND M. Voss, Install-time system for automatic generation of

optimized parallel sorting algorithms, in Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, 2004,
pp. 17-23.

168

[74] B. N. PARLETT AND I. S. DHILLON, Relatively robust representations of sym-
metric tridiagonals, Linear Algebra and Appl, 309 (1999), pp. 121-151.

[75] A. POTHEN AND C. SUN, A mapping algorithm for parallel sparse cholesky
factorization, SIAM Journal on Scientific Computing, 14 (1993), pp. 1253-1257.

[76] M. PDSCHEL, J. M. F. MOURA, B. SINGER, J. XIONG, J. R. JOHNSON,
D. A. PADUA, M. M. VELOSO, AND R. W. JOHNSON, Spiral: A generator for
platform-adapted libraries of signal processing alogorithms, IJHPCA, 18 (2004),
pp. 21-45.

[77] G. QUINTANA-ORTI, E. S. QUINTANA-ORTI, E. CHAN, AND ET AL., Design
and scheduling of an algorithm-by-blocks for lu factorization on multithreaded
architectures, tech. rep., 2007.

[78] R. H. RAND, Computer algebra in applied mathematics: an introduction to
MACSYMA, no. 94 in Research notes in mathematics, 1984.

[79] M. ROUSHDY, Comparative study of edge detection algorithms applying on the
grayscale noisy image using morphological filter, ICGST International Journal
on Graphics, Vision and Image Processing, 06 (2007), pp. 17-23.

[80] P. SISKA AND I. HUNG, Advanced digital terrain analysis using rougness-
dissectivity parameters in gis, in Proceedings of the 2004 ESRI International
User Conference, San Diego, California, USA, 2004.

[81] J. STROBL, Segmentation-based terrain classification, in Advances in Digital
Terrain Analysis, Q. Zhou, B. Lees, and G.-a. Tang, eds., Lecture Notes in
Geoinformation and Cartography, Springer Berlin Heidelberg, 2008, pp. 125-
139. 10.1007/978-3-540-77800-4_7.

[82] C. A. SUGAR, GARETH, AND M. JAMES, Finding the number of clusters in a
data set: An information theoretic approach, Journal of the American Statistical
Association, 98 (2003), pp. 750-763.

[83] S. THRUN, M. MONTEMERLO, AND A. ARON, Probabilistic terrain analysis
for high-speed desert driving, in Proceedings of Robotics: Science and Systems,
Philadelphia, USA, August 2006.

[84] S. TOLEDO, Locality of reference in lu decomposition with partial pivoting,
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 18 (1997),
pp. 1065-1081.

[85] L. N. TREFETHEN AND D. BAU, Numerical Linear Algebra, SIAM: Society for
Industrial and Applied Mathematics, June 1997.

[86] V. VOLKOV AND J. W. DEMMEL, Benchmarking gpus to tune dense linear
algebra, in Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
SC '08, Piscataway, NJ, USA, 2008, IEEE Press, pp. 31:1-31:11.

169

[87] R. VUDUC, J. W. DEMMEL, AND K. A. YELICK, OSKI A library of auto-
matically tuned sparse matrix kernels, in Proceedings of the Scientific Discovery
through Advanced Computing Conference, Journal of Physics: Conference Se-
ries, San Francisco, CA, USA, June 2005, Institute of Physics Publishing.

[88] R. C. WHALEY AND J. J. DONGARRA, Automatically tuned linear algebra

software, in ACM/IEEE Conference on Supercomputing, Washington, DC, USA,
1998, IEEE Computer Society, pp. 1-27.

[89] R. C. WHALEY AND A. PETITET, Minimizing development and maintenance
costs in supporting persistently optimized BLAS, Software: Practice and Experi-
ence, 35 (2005), pp. 101-121.

[90] J. H. WILKINSON, Error analysis of direct methods of matrix inversion, J. ACM,
8 (1961), pp. 281-330.

[91] P. R. WILLEMS, B. LANG, AND C. VOEMEL, Computing the bidiagonal svd
using multiple relatively robust representations, SIAM J. Matrix Anal. Appl., 28
(2006), pp. 907-926.

[92] J. P. WILSON AND J. C. GALLANT, Terrain Analysis: Principles and Appli-
cations, Wiley, New York, 2000.

[93] D. YOUNG, Iterative solution of large linear systems, Dover Publications, 2003.

[94] L. A. ZADEH, Fuzzy logic, neural networks, and soft computing, Commun. ACM,
37 (1994), pp. 77-84.

[95] L. ZHILIN, Multi-scale digital terrain modelling and analysis, in Advances in
Digital Terrain Analysis, Q. Zhou, B. Lees, and G.-a. Tang, eds., Lecture Notes
in Geoinformation and Cartography, Springer Berlin Heidelberg, 2008, pp. 59-83.
10. 1007/978-3-540-77800-4.4.

170

