
MIT Open Access Articles

A Faster Algorithm for the Single Source Shortest
Path Problem with Few Distinct Positive Lengths

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: James B. Orlin, Kamesh Madduri, K. Subramani, and M. Williamson. 2010. A faster
algorithm for the single source shortest path problem with few distinct positive lengths.
J. of Discrete Algorithms 8, 2 (June 2010), 189-198. DOI=10.1016/j.jda.2009.03.001 http://
dx.doi.org/10.1016/j.jda.2009.03.001

As Published: http://dx.doi.org/10.1016/j.jda.2009.03.001

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/67886

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/67886
http://creativecommons.org/licenses/by-nc-sa/3.0/

A Faster Algorithm for the Single Source Shortest Path Problem with
Few Distinct Positive Lengths

James B. Orlin
Sloan School of Management,

MIT,
Cambridge, MA
{jorlin@mit.edu}

Kamesh Madduri ∗

Computational Research Division,
Lawrence Berkeley Laboratory,

Berkeley, CA
{kmadduri@lbl.gov}

K. Subramani †

LDCSEE,
West Virginia University,

Morgantown, WV
{ksmani@csee.wvu.edu}

M. Williamson
LDCSEE,

West Virginia University,
Morgantown, WV

{mwilli65@mix.wvu.edu}

Abstract

In this paper, we propose an efficient method for implementing Dijkstra’s algorithm for the Single Source
Shortest Path Problem (SSSPP) in a graph whose edges have positive length, and where there are few distinct
edge lengths. The SSSPP is one of the most widely studied problems in theoretical computer science and
operations research. On a graph with n vertices, m edges and K distinct edge lengths, our algorithm runs in
O(m) time if nK ≤ 2m, and O(m log nK

m) time, otherwise. We tested our algorithm against some of the
fastest algorithms for SSSPP on arbitrarily (but positively) lengthed graphs. Our experiments on graphs with
few edge lengths confirmed our theoretical results, as the proposed algorithm consistently dominated the other
SSSPP algorithms, which did not exploit the special structure of having few distinct edge lengths.

1 Introduction

In this paper, we provide an algorithm for solving the Single Source Shortest Path Problem (SSSPP) on a graph
whose edges have positive length. The SSSPP is an extremely well-studied problem in both the operations re-
search and the theoretical computer science communities because of its applicability in a wide range of domains.
Ahuja et. al. [AMOT90] describe a number of applications of the SSSPP, as well as efficient algorithms for the
same. This paper provides an efficient algorithm for the SSSPP in the case where the number of distinct edge
lengths is small. Our motivation for focusing on problems with few distinct edge lengths comes from a problem
that arises in social networks (see Section 3).

We consider a graph with n vertices, m edges and K distinct edge lengths. We provide two algorithms: The
first algorithm is a simple implementation of Dijkstra’s algorithm that runs in time O(m + nK). The second

∗This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No.
DE?AC02?05CH11231.
†This research has been supported in part by the Air Force Office of Scientific Research under grant FA9550-06-1-0050 and in part

by the National Science Foundation through Award CCF-0827397.

1

algorithm modifies the first algorithm by using binary heaps to speed up the FINDMIN() operation. Assuming
that nK > 2m, its running time is O(m · log n·K

m).
For various ranges of the parameters n,m, and K, the running time of our algorithm is less than the running

time of Fredman and Tarjan’s Fibonacci Heap implementation [FT87], which runs in O(m + n · log n) time.
In fact, it improves upon the Atomic Heap implementation of Fredman and Willard [FW94], which runs in
O(m + n log n

log log n) time. (This latter paper relies on a slightly different model of computation than is normally
assumed in papers on algorithms.) In particular, our algorithm runs in O(m) time whenever nK = O(m). We
also note that even if all edge lengths are distinct, the running time of our algorithm is O(m logm), which is the
same time as the binary heap implementation of Dijkstra’s algorithm.

The main contributions of this paper are as follows.

(i) A new algorithm for the SSSPP problem that is parameterized by the number of distinct edge lengths.

(ii) An empirical analysis of our algorithm that demonstrates the superiority of our approach when the number
of distinct edge lengths is small.

The rest of this paper is organized as follows. Section 2 formally specifies the problem under consideration.
Section 3 describes the motivation for our work. Related work in the literature is discussed in Section 4. Section
5 describes and analyzes the O(m + nK) implementation of Dijkstra’s algorithm. Section 6 describes the
O(m log nK

m) implementation and also provides a proof of its running time. In Section 7, we provide an empirical
analysis, confirming the improved performance of our algorithm on graphs with few distinct edge lengths. We
offer brief conclusions in Section 8.

2 Statement of Problem

We consider a directed graph G = (V,E), with a vertex set V with n vertices, and an edge set E with m edges.
For each vertex v ∈ V , we let E(v) denote the set of edges directed out of v. Let L = {l1, ..., lK} be the set of
distinct nonnegative edge lengths, given in increasing order. We assume that L is provided as part of the input
and stored as an array. Each edge (i, j) ∈ E has an edge length cij ∈ L.

Rather than store the edge length cij explicitly, we assume that associated with each edge edge (i, j) is an index
tij such that cij = ltij . We note that in practice, one can determine L and all of the indices in O(m+K logK)
expected time. One first uses perfect hashing to identify the K distinct edge lengths, and then one sorts the edge
lengths.

There is a special vertex s ∈ V called the source. We let δ(v) denote the length of the shortest path in G from
vertex s to vertex v. If there is no path from s to v, then δ(v) =∞. Dijkstra’s algorithm identifies a shortest path
from vertex s to each other vertex.

3 Motivation

Our work was motivated by the “gossip” problem for social networks. Consider a social network, which is
composed of clusters of participants. We model the intra-cluster distance by the value 1 and the inter-cluster
distances by a real number l, where l > 1. The goal is then to determine the fastest manner in which gossip
originating in a cluster can reach all the participants in the social network. This is a special case of SSSPP in
which K = 2.

Although the motivating example has K = 2, we have extended our results to values of K that can grow with
the input size.

2

Given that the SSSPP problem arises in so many domains, researchers have called for a “toolbox” [DGJ05,
Gol] of different implementations that are efficient for different types of input. Possibly, the algorithm presented
here would be appropriate for such a toolbox.

4 Related Work

The literature on the SSSPP problem is large; interested readers are referred to Ahuja et al. [AMO93]. In what
follows, we briefly outline various paradigms in algorithmic advancement and provide a context for our work.

The first polynomial time algorithm for the SSSPP problem was devised by Dijkstra [Dij59], the running
time of the algorithm depends upon the data structure used to implement the priority queue, which is part of the
algorithm. Since then, advances in algorithmic techniques have been along the following fronts:

(i) New design paradigms – Thorup provided a linear-time algorithm for the SSSPP when the graph edges are
undirected [Tho97]. He exploited the connection between the Minimum Spanning Tree of an undirected
graph and the Single Source Shortest paths tree.

(ii) Data Structure improvements – Algorithms based on Dijkstra’s approach perform a series of EXTRACT-
MIN() and DECREASE-KEY() operations. Inasmuch as each vertex is extracted only once and each edge
is processed at most once, the running time of any such algorithm can be represented as:
T (n,m) = n∗EXTRACT-MIN()+m∗DECREASE-KEY().

An optimized priority queue design balances the costs between the two operations; in the comparison
based-model, the most efficient priority queue for this pair of operations is the Fibonacci Heap. Dijkstra’s
algorithm with Fibonacci Heaps has a running time of O(m + n · log n). Other heaps proposed for this
problem include the d-heap [CLRS01] and the R-heap [DGST88].

(iii) Parameterization – In this approach, the design focusses on a certain parameter (or parameters) that may
be small in magnitude for an interesting subset of problems. One such parameter is the largest edge length
(say C); [AMOT90] describes how Dijkstra’s approach can be made to run in O(m+ n

√
logC) time.

(iv) Input restriction – Special-purpose algorithms have been designed for the case in which the edge lengths are
drawn from certain distributions. The analysis of such an algorithm exploits this distribution and provides
an estimate of the expected running time [Gol01].

We believe that this is the first shortest path paper to express the running time in terms of the number of distinct
edge lengths. However, this parameter or a closely related parameter has been part of the analysis of algorithms
for other problems.

5 An O(m + nK) implementation of Dijkstra’s Algorithm

In this section, we provide an O(m+ nK) implementation of Dijkstra’s algorithm for solving the SSSPP. While
running Dijkstra’s algorithm, we maintain the following structures:

(i) The set S, which denotes the set of permanently labeled vertices, and

(ii) The set T = V − S, which denotes the set of temporarily labeled vertices.

The value d(j) is the distance label of vertex j. If j ∈ S, then d(j) = δ(j) is the length of the shortest path
from vertex s to vertex j in G. Finally, we let d∗ = max{d(j) : j ∈ S} be the distance label of the vertex most
recently added to S.

3

When implemented naively, the bottleneck operation in Dijkstra’s algorithm is the FINDMIN() operation,
which identifies the minimum distance label of a vertex in T . Each FINDMIN() operation takes O(|T |) steps
and thus the FINDMIN() operations take O(n2) steps in all. All other updates take O(m) steps in total. In
order to reduce the running time for the FINDMIN() step, Dijkstra’s algorithm relies on one of many different
implementations of a priority queue. Of these, the implementations with the best asymptotic bounds are the
Fibonacci Heap implementation [FT87] and the Atomic Heap implementation [FW94]. Here we can dramatically
speed up the FINDMIN() operations in the case that the number of distinct edge lengths is small.

Let L = {l1, . . . , lK} be the set of distinct edge lengths. For each t = 1 to K, the algorithm will maintain a
list Et(S) = {(i, j) ∈ E : i ∈ S, cij = lt}. These edges are sorted in the order that the tail of the edge is added
to S. That is, if edge (i, j) occurs prior to edge (i′, j′) on Et(S), then d(i) ≤ d(i′). The algorithm also maintains
CurrentEdge(t), which is the first edge (i, j) of Et(S) such that j ∈ T . If no such edge exists in Et(S), then
CurrentEdge(t) = ∅. If (i, j) = CurrentEdge(t), then we let f(t) = d(i) + lt, which is the length of the
shortest path from vertex s to vertex i followed by edge (i, j). It is not necessarily the case that f(t) = d(j)
because there may be edges of other lengths directed into vertex j.

These additional data structures makes it possible to determine the vertex in T with minimum distance label
by determining argmin {f(t) : 1 ≤ t ≤ K}. The time for this FINDMIN() operation is O(K) if implemented
directly (and naively) without any priority queue data structure. This leads to an improvement in the overall
running time for Dijkstra’s algorithm when K is small.

The subroutine UPDATE(t) moves the pointer CurrentEdge(t) so that it points to the first edge whose end-
point is in T (or sets CurrentEdge(t) to ∅). If CurrentEdge(t) = (i, j), then UPDATE(t) also sets f(t) =
d(i) + cij . If CurrentEdge(t) = ∅, then UPDATE(t) sets f(t) = ∞. The operator CurrentEdge(t).next
moves the CurrentEdge pointer by one step in the linked list representing Et(S).

Function INITIALIZE()
1: S := {s}; T := V − {s}.
2: d(s) := 0; pred(s) := ∅.
3: for (each vertex v ∈ T) do
4: d(v) =∞; pred(v) = ∅.
5: end for
6: for (t = 1 to K) do
7: Et(S) := ∅.
8: CurrentEdge(t) := NIL.
9: end for

10: for each edge (s, j) do
11: Add (s, j) to the end of the list Et(S), where lt = csj .
12: if (CurrentEdge(t) = NIL) then
13: CurrentEdge(t) := (s, j)
14: end if
15: end for
16: for (t = 1 to K) do
17: UPDATE(t)
18: end for

Algorithm 5.1: The initialization procedure

Theorem 5.1 Algorithm 5.2 determines the shortest path from vertex s to all other vertices in O(m+ nK) time.

4

Function NEW-DIJKSTRA()
1: INITIALIZE()
2: while (T 6= ∅) do
3: let r = argmin {f(t) : 1 ≤ t ≤ K}.
4: let (i, j) = CurrentEdge(r).
5: d(j) := d(i) + lr; pred(j) := i.
6: S = S ∪ {j};T := T − {j}.
7: for (each edge (j, k) ∈ E(j)) do
8: Add the edge (j, k) to the end of the list Et(S), where lt = cjk.
9: if (CurrentEdge(t) = NIL) then

10: CurrentEdge(t) := (j, k)
11: end if
12: end for
13: for (t = 1 to K) do
14: UPDATE(t).
15: end for
16: end while

Algorithm 5.2: Dijkstra’s Algorithm with Few Distinct Edge Lengths

Function UPDATE(t)
1: Let (i, j) = CurrentEdge(t).
2: if (j ∈ T) then
3: f(t) = d(i) + cij .
4: return
5: end if
6: while ((j 6∈ T) and (CurrentEdge(t).next 6= NIL)) do
7: Let (i, j) = CurrentEdge(t).next.
8: CurrentEdge(t) = (i, j).
9: end while

10: if (j ∈ T) then
11: f(t) = d(i) + cij .
12: else
13: Set CurrentEdge(t) to ∅.
14: f(t) =∞.
15: end if

Algorithm 5.3: The Update procedure

5

Proof: The algorithm is identical to Dijkstra’s algorithm except that it maintains some additional data struc-
tures to carry out the FINDMIN() operation. Therefore, Algorithm 5.2 computes the shortest paths from vertex s
correctly.

The initialization takes O(n) time. The potential bottleneck operations are the determining of
r = argmin {f(t) : 1 ≤ t ≤ K} and the time to perform UPDATE(t) over all iterations. All other steps have
running times dominated by one of these two steps. We first note that the time to compute
r = argmin {f(t) : 1 ≤ t ≤ K} is O(K) per iteration of the while loop and O(nK) over all iterations.

We next consider the time needed to perform UPDATE(t) over all iterations. The procedure UPDATE(t) is called
O(nK) times, and its total running time is O(m+ nK). To see this, first note that the running time as restricted
to iterations in which CurrentEdge(t) is not changed is O(nK). We now consider those iterations at which
CurrentEdge(t) is changed. Suppose (i, j) = CurrentEdge(t) at the beginning of an iteration, and suppose
that i ∈ S and j ∈ S. Because the edges in Et(S) are scanned sequentially, the edge (i, j) is never scanned again
after updating CurrentEdge(t). So, the running time over all iterations in which CurrentEdge(t) is changed
is O(m). We conclude that the total running time of Algorithm 5.2 is O(m+ nK). 2

The original motivation for this paper was the case that K = 2, in which case the algorithm is particularly
efficient. In the next section, we show how to speed up the algorithm in the case that K is permitted to grow with
the problem size.

6 A Faster Algorithm if K is Permitted to Grow with Problem Size

We now revise the algorithm to improve its running time in the case that K is not a constant. We let q = nK
m .

We assume that q ≥ 2; if not, Algorithm 5.2 runs in linear time. To simplify the exposition, we will assume that
q is an integer divisor of K, and we let h = K

q . Since we are focused on asymptotic analysis, we can make this
assumption without loss of generality.

We will show that Algorithm 5.2 can be refined to run in time O(m log q). In order to achieve this running
time, we need to speed up the bottlenecks in Algorithm 5.2 that depend on K. We need to compute r more
efficiently, and we need to call UPDATE(t) less frequently. We first address speeding up the computation of r.

In order to speed up the determination of r, we will store the values f() in a collection of h different binary
heaps. The first binary heap stores the values f(j) for j = 1 to q, the second binary heap stores the values f(j)
for j = q + 1 to 2q, and so on. We denote the heaps as H1, . . . Hh. Finding the element with minimum value in
the binary heap Hi takes O(1) steps. The time to insert an element into Hi or delete an element from Hi takes
O(log q) steps. (For more details on binary heaps see [CLRS01].)

We find the minimum f() value by first finding the element with minimum value in each of the h heaps and
then choosing the best of these h elements. Finding the minimum key in a heap takes O(1) steps; so the time for
this implementation of the FINDMIN() operations is O(h) per iteration of the while loop, and O(hn) = O(m)
overall. After finding the minimum element in the h different heaps, we delete the element from its heap. This
takes O(n log q) steps over all iterations.

We now address the time spent in UPDATE(). In order to minimize the time required by UPDATE(), we
first relax the requirement on CurrentEdge. If CurrentEdge(t) has both of its endpoints in S, we say that
CurrentEdge(t) is invalid. We permit CurrentEdge(t) to be invalid at some intermediate stages of the
algorithm. We then modify the FINDMIN() again. If the minimum element in heap Hi is f(t) for some i, and
if CurrentEdge(t) is invalid, the algorithm then performs UPDATE(), followed by finding the new minimum
element in Hi. It iterates in this manner until the minimum element corresponds to a valid edge. In this way,
whenever the algorithm calls UPDATE(), it leads to a modification of CurrentEdge(). Moreover, whenever the
algorithm selects the minimum element among the q different heaps, the minimum element in each of the heaps
corresponds to a valid edge. Since every modification of CurrentEdge() leads to a change in one of the values

6

in a heap, and since there are at most m modifications of CurrentEdge(), the total running time for UPDATE()
over all iterations is O(m log q).

We summarize the previous discussion with Theorem 6.1.

Theorem 6.1 The binary heap implementation of Dijkstra’s algorithm withO(K
q) binary heaps of sizeO(q) with

q = nK
m determines the shortest path from vertex s to all other vertices in O(m log q) time.

7 Empirical Results

7.1 Experimental Setup

We evaluate performance of our algorithms on several graph families. Some of the generators and graph instances
are part of the 9th DIMACS Shortest Path Implementation Challenge benchmark package [DGJ05]:

• Random graphs: We generate graphs according to the Erdos-Renyi random graph model, and ensure that
the graph is connected. The generator may produce parallel edges as well as self-loops. The ratio of the
number of edges to the number of vertices can be varied, and we experiment with both dense and sparse
graphs. Random graphs have a low diameter and a Gaussian degree distribution.

• Mesh graphs: This synthetic generator produces two-dimensional meshes with grid dimensions x and y.
We generate Long (x = n

16 , y = 16) and Square grids (x = y =
√
n) in this study. The diameter of these

graphs is significantly higher than random graphs and all the vertices have a constant degree.

• Small-world graphs: We use the R-MAT graph model for real-world networks [?] to generate graphs with
small-world characteristics. These graphs have a low diameter and an unbalanced degree distribution.

The edge weights are chosen from a fixed set of distinct random integers, as our new algorithm is designed for
networks with small K.

We compare the execution time of our algorithm with the reference SSSPP solver used in the 9th DIMACS
Shortest Paths Challenge (an efficient implementation of Goldberg’s algorithm [?, ?], which has expected-case
linear running time, and highly optimized for integer edge weights) and the baseline Breadth-First Search (BFS)
on every graph family. The BFS running time is a natural lower bound for SSSPP implementations. It is also
reasonable to directly compare the execution times of DIMACS reference solver code and our implementation:
both use a similar adjacency array representation for the graph, are written in C/C++, and compiled and run in
identical experimental settings. Note that our implementation can process graphs with real as well as integer
weights, but is only efficient for networks with a few distinct edges. We use only integer weights in this study for
comparison with the DIMACS solver.

Our test platform for performance results is a 2.8 GHz 32-bit Intel Xeon machine with 4GB memory, 512KB
cache and running RedHat Enterprise Linux 4 (linux kernel 2.6.9). We compare the sequential performance
of our implementation with the DIMACS reference solver [DGJ05]. Both the codes are compiled with the
Intel C compiler (icc) version 9.0, and the optimization flag -O3. We report the average execution time of five
independent runs for each experiment.

7.2 Results and Analysis

We conduct an extensive study to empirically evaluate the performance dependence on the graph topology, the
problem size, the value of K, and the edge weight distribution. We report the execution time of Breadth-First
Search on all the graph instances we studied in Tables 1 and 2. The figures plot the execution times of the shortest

7

path implementations normalized to the BFS time. Thus a ratio of 1.0 is the best we can achieve, and smaller
values are desirable.

We first study the dependence of execution time on the problem size. We vary the size up to two orders of
magnitude for three different graph families, and compute the average SSSP execution time for the reference code
and our implementation. Figure 1 plots these normalized values for the different graph families. The problem
sizes are listed in Table 1. The value of K is set to 2 in this case, and the ratio of the largest to the smallest edge
weight in the graph (denoted by C) is set to 100. Also, note that the ratio m/n is 4 in all the cases. In Figure 1,
we observe that our new implementation outperforms the reference solver for all graph families. Further, the
performance ratio is less than 2 in most cases, which is quite significant. On closer inspection, we observe
that the performance improvements for long and square mesh graphs are comparatively higher than the random
graphs. We attribute this to the fact that we do not maintain a priority queue data structure. Thus we avoid
the priority queue overhead involved in evaluating long paths in mesh networks, such as frequent updates to the
distance values. We also observe that the performance is better for larger graph instances compared to smaller
ones. Also, the performance ratios for sparse random networks (1.02-1.22) are very impressive for the problem
instances we studied.

Problem Instance BFS time (milliseconds)
ID Graph size Long mesh Square mesh Random

1 100K vertices, 400K edges 50 55 95
2 500K vertices, 2M edges 290 350 540
3 1M vertices, 4M edges 660 870 1180
4 5M vertices, 20M edges 4160 6400 8390
5 10M verices, 40M edges 8590 13500 17980

Table 1: Breadth-First Search execution time (in milliseconds) for various graph families on the test sequential
platform.

Figure 1: Performance of our shortest implementation and the reference solver for three graph families, as the
problem size is varied. Graph 1 corresponds to the smallest network in our study, and 5 is the largest.

We next study the performance of the algorithm on each graph family as the value ofK, the number of distinct
edge weights is varied. We vary the value of K from 1 to 8 in each case, and plot the execution time. Figure 2
plots the normalized execution time for a sparse random graph of 4 million vertices and 16 million edges. We
observe that our implementation is significantly faster than the reference solver (up to 70% faster for K = 8),
and also scales slower than the reference solver with increase in K. The SSSP running time for random graphs
is comparatively lower than the execution time for other graph families.

Figure 2: Normalized SSSP Performance for a sparse random graph (4 million vertices, 16 million edges) as the
value of K is varied.

Figure 3 plots the normalized execution time for synthetic small-world graphs. These are low diameter graphs
similar to sparse random networks, but also have topological properties that are observed in large-scale social and
biological networks. In this case, we observe that the reference solver and our algorithm perform very similarly.

For long meshes (Figure 4), we observe significant performance gains over the reference solver. Also, the
execution time of our algorithm scales much slower than the reference solver as K is increased. For square
meshes (Figure 5) also, we find that our implementation dominates for all values of K.

8

Figure 3: Normalized SSSP Performance for a small-world graph (4 million vertices, 16 million edges) as the
value of K is varied.

Figure 4: Normalized SSSP Performance for a long mesh (4 million vertices, 16 million edges) as the value of K
is varied.

Figure 6 plots the normalized execution time for a dense random graph of 100K vertices and 100 million
edges, as the value of K is varied. We observe that the reference solver is faster than our algorithm in this case,
but the speedup falls as the value of K increases. We attribute this to the fast execution time of BFS (as this is
a comparatively small graph instance). The overhead in executing our algorithm is high in this case, and it does
not perform as well as the reference solver for a dense graph of this size.

The execution times of BFS for all these graph instances are listed in Table 2. The ratio of the highest to the
least edge weight in the graph (C) is also listed, as the worst case running time of the reference solver depends
on this value. The performance of our algorithm, however, is independent of C.

8 Conclusions

The SSSPP is a fundamental problem within computer science and operations research communities. In this
paper, we studied the SSSPP when the number K of distinct edge lengths is small. Our algorithm runs in linear
time when the number of distinct edge lengths is smaller than the density of the graph.

Acknowledgments

The third author was introduced to the gossip problem in social networks, also known as the Red-Blue Shortest
Paths Problem, at the Sandia National Laboratories by Bruce Hendrickson.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, Network Flows : Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[AMOT90] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan. Faster algorithms for the
shortest path problem. Journal of the ACM, 37(2):213–223, April 1990.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
2001.

[DGJ05] C. Demetrescu, A.V. Goldberg, and D. Johnson. 9th DIMACS implementation challenge – Shortest
Paths, 2005. http://www.dis.uniroma1.it/˜challenge9/.

Figure 5: Normalized SSSP Performance for a square mesh (4 million vertices, 16 million edges) as the value of
K is varied.

9

Figure 6: Normalized SSSP Performance for a dense random graph (100K vertices, 10 million edges) as the
value of K is varied.

Problem Instance BFS time (milliseconds)
1 Sparse random, 2M vertices, 8M edges, C = 10000 6430
2 Dense random, 100K vertices, 100M edges, C = 100 150
3 Long mesh, 2M vertices, 8M edges, C = 100 3260
4 Square mesh, 2M vertices, 8M edges, C = 100 4900
5 Small-world graph, 2M vertices, 8M edges, C = 10000 5440

Table 2: Breadth-First Search execution time (in milliseconds) for various graph families (the value of K is varied
in experiments) on the test sequential platform.

[DGST88] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert Endre Tarjan. Relaxed heaps:
An alternative to fibonacci heaps with applications to parallel computation. Commun. ACM,
31(11):1343–1354, 1988.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–
271, 1959.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

[Gol] A.V. Goldberg. Network optimization library. http://www.avglab.com/andrew/soft.
html.

[Gol01] A.V. Goldberg. A simple shortest path algorithm with linear average time. In 9th Ann. European
Symp. on Algorithms (ESA 2001), volume 2161 of Lecture Notes in Computer Science, pages 230–
241, Aachen, Germany, 2001. Springer.

[Tho97] M. Thorup. Undirected single source shortest path in linear time. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS-97), pages 12–21, Los Alamitos, Octo-
ber 20–22 1997. IEEE Computer Society Press.

10

