
FLIGHT TRANSPORTATION LABORATORY REPORT R86-9

ATCLAB:

A LABORATORY ENVIRONMENT FOR RESEARCH
IN ADVANCED ATC AUTOMATION

CONCEPTUAL DESIGN

Antonio L. Elias
John D. Pararas

Flight Transportation Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

June 1986

This work vyas carried out under DOT Contract DTRS5785C00083
for the Transporation Systems Center, DOT, Cambridge, Ma.

Contents

1 INTRODUCTION 5

2 BASIC ASSUMPTIONS 6

2.1 Building a Simulation Presents Problems 6

2.2 The Technical Environment is Changing Radically 7

2.2.1 New Trends in Software/Hardware 7

2.2.2 Hardware/Software Cost Tradeoffs 9

2.2.3 Computational Requirements 10

2.3 Labor Considerations 11

3 LABORATORY CONFIGURATION 12

3.1 Hardware Configuration 12

3.1.1 Display and Execution Units 12

3.1.2 Interprocessor Communications 13

3.1.3 System Support Units 13

3.2 Software Configuration 14

3.2.1 System Tools and Services 14

3.2.2 Project-Independent Elements 14

3.2.3 Project-Dependent Elements . 15

3.2.4 System Under Test . 15

3.2.5 Internal Simulation . 15

3.2.6 External Simulation . 15

3.2.7 Simulation Core . 16

3.2.8 Intersoftware Communications 16

3.3 Simulation Configuration . 17

3.3.1 Simulation Timing and Control 17

3.3.2 Display Requirements . 18

3.4 ESIM Architecture . 19

3.4.1 Area Network Level . 19

3.4.2 Air Route Network Level . 20

3.4.3 Free Flight Level . 20

3.4.4 Model Level Intermixing and Compatibility 20

3.5 Interface with Existing Facilities . 21

4 FACILITY DEVELOPMENT 22

4.1 Development Philosophy . 22

4.2 ATCLAB Development Phases . 22

4.3 Pathfinder Project: Traffic Management Unit Support System 24

4.3.1 Project Description . 24

4.3.2 Initial Development Phase . 25

4.3.3 Refinement/Integration Phase . 25

4.4 Pathfinder Project: Dynamic Special Use Airspace 25

4.4.1 M otivation . 26

4.4.2 Initial Development Phase . 26

4.4.3 System-wide Effects of DSUA . 28

4.4.4 ISIM Development . 29

APPENDICES 30

REVIEW OF OBJECT ORIENTED PROGRAMMING 30

A.1 Objects are Individual Artifacts with Local State and Functionality ... 31

A.2 Generic Operations on Objects . 33

A.3 Inheritance of Instance Variables and Behavior 34

A.4 Conclusion . 35

SAMPLE OBJECT DEFINITIONS IN LISP 37

GLOSSARY AND ABBREVIATIONS 40

BIBLIOGRAPHY

1 INTRODUCTION

A large number of ideas and schemes have been proposed and are constantly being
suggested to enhance the Air Traffic Control system's safety, reliability, and efficiency
by means of automation. The capability of the Federal Aviation Administration to
properly specify and procure advanced automation systems depends critically on its
capability to evaluate these ideas from a number of viewpoints:

1. Functional: i.e., is the proposed idea of any value, assuming it could be imple-
mented?

2. Procedural: i.e., can the proposed idea be implemented in conjunction with
existing and/or new ATC procedures?

3. Implementability: i.e., can the proposed functionality and/or procedures be im-
plemented, with sufficient accuracy, reliability, data requirements, etc?

4. Cost/benefit: i.e., are the benefits expected from the proposed functionality suf-
ficient to offset the expected costs and risks?

5. Requirements definition: i.e., is the proposed scheme or system sufficiently well
defined to allow the development of meaningful and supportable requirements?

There are two conventional approaches available to answer these questions: analy-
sis and simulation. The effectiveness of analysis to evaluate an automation proposal
usually depends on the degree to which the proposed function interacts with other
elements of the ATC system. In general, the more isolated and self-contained the func-
tion, the more amenable it is to analytical evaluation. Functions that interact with
many different elements of the system generally require dynamic simulation for effective
evaluation. Traditionally, this has required the development of an ad-hoc simulator to
evaluate the proposed automation scheme, or the adaptation of an existing simulation.
Both approaches are expensive and risk intensive; attempts at building all-inclusive,
general purpose simulations are even more expensive and not entirely risk free.

As an alternative, a mid-ground solution would be the establishment of a flexible
computer-based laboratory environment to perform combined analysis and simulation
evaluation on an ad-hoc basis in response to the specific automation scheme being eval-
uated. To be more effective than traditional analysis and simulation techniques alone,
this environment must reduce the cost of building prototype code by two orders of
magnitude, both in terms of labor and of calendar time, over traditional environments,
such as the ones used to develop existing simulators and prototype systems.

Recent developments in computer hardware and software have drastically altered the

process of developing software, particularly in the systems simulation area. Symbolic

computation and object-oriented languages, along with hardware specialized to ex-
ecute this type of code, have been shown to produce the two orders of magnitude
improvement suggested in the previous paragraph.

This report analyzes the feasibility of establishing such a laboratory environment,
including identification of the required technology, a possible architecture that would
fulfill these requirements, a tentative implementation plan, and two sample pathfinder
projects to show how the proposed environment could be used to evaluate two specific
advanced automation proposals. To facilitate references to this environment, it will be
referred to in this report as ATCLAB; this is not an official FAA-approved name.

2 BASIC ASSUMPTIONS

2.1 Building a Simulation Presents Problems

It is impossible to build a single simulator that would satisfactorily fulfill all the ex-
pected ATC automation research and evaluation requirements, for the following rea-
sons:

1. It is difficult to predict functional modeling requirements for future, unspecified
automation systems. Experience at M.I.T. in testing tactical automation aids has
shown that even for a well-specified system, only about 80% of the simulation
functional requirements can be predicted; that is, some 20% of the simulation's
functions were identified during the progress of the experiments. The fraction of
unexpected simulation requirements may be much higher in the case of incom-
pletely specified or developmental systems.

2. Similarly, some 20% of the expected simulation functionality proves to be un-
necessary in actual testing, even for well specified systems. The combination of
both effects is that the efficiency of an "all bases covered" general-purpose simu-
lation, in terms of needed and actually used functionality cannot be expected to
be greater than 60%.

3. There is a large variance in the costs of implementing different functional capa-
bilities in a simulation; building a general-purpose simulation necessarily implies
including some expensive functions which may not be cost effective in actual
practice, thus increasing the cost/risk product of the project.

Similarly, experience has shown that it is impractical to build a special purpose simu-
lation for every expected ATC research project. Even for major projects, the elapsed

time and labor cost of developing a suitable, custom simulator usually ends up being
the major fraction of the project cost and the major contributor to project risk and
schedule slippage.

On the other hand, the LISPSIM work at M.I.T.'s Flight Transportation Laboratory
has shown that it is possible to develop a set of hardware/software building blocks
from which a project-specific simulation can be built in a reasonable time and at a
reasonable cost, where "reasonable" means a length of time and a labor cost comparable
to that needed to properly specify the simulation requirements. This requires the use
of fourth generation software techniques (symbolic manipulation, automatic memory
management, and object-oriented programming) and appropriate hardware. These
techniques also increase the general level of programming productivity required to
support the analysis capability of an ATCLAB.

2.2 The Technical Environment is Changing Radically

The technical environment expected in the next ten years will affect the design of
the ATCLAB from three directions: new trends in software/hardware, changes in the
hardware/software cost tradeoff, and growth of computational capacity.

2.2.1 New Trends in Software/Hardware

The late 60's and early 70's saw the recognition, on the part of computer scientists, of
the importance of control structures in the efficient production of reliable code - which
gave rise to the "structured programming" approaches and the third generation of
programming languages and systems. These developments produced an improvement
in the productivity - hence, the cost - of programming estimated between a factor
of 2 and a factor of 10. These languages (e.g., PL/1, Pascal, C) were termed "third
generation" by comparison with the "first generation" of assembly languages and the
"second generation" of the early high-order languages. While the basic architecture of
machines until that time adhered faithfully to the Von Neumann model of the mid-50's,
the impact of software on the design of processors was beginning to be felt when the
"stack architecture" was created in response to the development of the first recursive,
"functional" languages such as Algol.

The major development of the late 70's and early 80's was the creation of the "ac-
tor" model of computation, where software "objects" with individual identity, state,
and behavior, were conceived. The effect of this development was to raise the level
of abstraction at which humans interfaced with the programming language one step
further than third generation languages, since these software objects could be made
to resemble the real-world objects that constitute the human programmer's problem
domain. It is interesting to note that simulation of large problems was one of the

original motivations of this development. The military in particular has for some time
now been pursuing this approach for their simulation needs (see for example [KLA 82]
and [NUG 83]). As a result a number of "object-oriented" simulation languages have
been developed ([KLA 82], [BIR 73], [GOL 83]) and established simulation languages
like SIMSCRIPT are following the same route ([ELI 84]).

The combination of this "object-oriented" technology with the "functional program-
ming" and the "symbolic manipulation" models of computation (the latter two devel-
oped by mathematicians) is loosely referred to as "fourth generation" languages. Most
post-1980 developments in programming technology - including ADA' - feature some
or all of these elements.

The practical realization of these newer models of computation was delayed some-
what by the mismatch between these models and the existing computational hardware
architecture' - hence the traditional dictum that "Lisp is a very inefficient language"
which really should be stated, "Von Neumann machines are very inefficient when ex-
ecuting Lisp." The development of virtual memory systems and microprogrammed
architectures made practical the construction of machines capable of executing fourth
generation code as efficiently as a Von Neumann machine would execute third genera-
tion code.

While the development of this technology was motivated by, and in most cases car-
ried out by, researchers in the field of Artificial Intelligence, it is a mistake to assume
that fourth generation software techniques are inseparable from Artificial Intelligence.3

Other myths, such as the inefficiency of these techniques, the difficulty in learning them,
and their inability to be used in real-time work are fast disappearing, while their eco-
nomic advantage over third generation techniques is becoming more apparent. It is
becoming clear that the improvements of this fourth generation over the third gener-
ation are much larger than those that the third generation offered over nonstructured
high-order languages (second generation), or even what these offered over assembly
programming.

'Some experts may argue that ADA is not a true fourth generation language system in spite of its fourth
generation style features. The authors do not wish to express an opinion in this regard.

2 After all, the Von Neumann model was developed taking into consideration the "limitations" of hard-
ware as they could be foreseen in the mid-50's.

'As an example, programming in support of research at M.I.T.'s Flight Transportation Laboratory only
four years ago was performed 80% in second generation systems (mostly FORTRAN) and 20% in third
generation (mostly PL/1), with no experience in fourth generation systems. Today, the ratio is 80%
fourth generation (mostly Lisp) and 20% third generation (mostly C), with only about 20% of the work
being related at all to Artificial Intelligence.

2.2.2 Hardware/Software Cost Tradeoffs

Expected continued improvements in hardware price/performance, coupled with the
nonlinearity of software cost vs. program size indicate that hardware performance can
and should be traded off for increased programming productivity. This will require
short-term performance sacrifices and lead to long-term gains as the HW/SW cost
ratio continues to decline.

Of particular significance is the so-called Halstead's law, or -power hypothesis, which
postulates that the cost of an engineering effort (e.g., programming, or systems analy-
sis) increases with the number of production units N devoted to performing this task
as NI.' The consequence of this effect in the design of the ATCLAB environment
is that it is vital to keep the number of individuals required to program simulations
and analysis to a minimum, even at the expense of hardware costs and traditional,
government approved programming techniques. Of particular concern are government-
mandated approved languages and government-mandated mandatory documentation.
Experience has shown that the benefits from the use of a standardized language, i.e.,
portability and universal recognition, do not overcome the burden of using them for
the following reasons:

1. Except for trivial or mathematically oriented programs, large systems develop-
ment requires access to operating system features or machine characteristics that
are both outside the scope of the language standard and different from system
to system. Not only does portability disappear in these cases, but attempts at
implementing these features with the tools afforded by the standard language are
obscure and difficult to understand, even the author.

2. It is an observed fact that most program documentation produced under gov-
ernment standards is far less useful than comparable commercial documentation.
This is due to the compliance with a standard template for these documents, a
template that assumes the existence of a standard programming problem, stan-
dard programming techniques, etc.

In practice, there are significant differences among software engineering problems, and
the programming techniques that may be used to solve them. Free-form documen-
tation, where the specifics of what to document and how to document it are left to
the initiative (and, in many cases, the art) of the author, will, therefore, always prove
superior to any standardized documentation scheme.

'Popularly, this phenomenon has been stated as "two programmers can do in nine months what any of
them could do in twelve;" the actual ratio, for N = 2 is more like seven to twelve months.

2.2.3 Computational Requirements

Past attempts at predicting the computational requirements of ATC systems sim-
ulations have consistently fallen short of actual requirements. At the same time,
rapidly evolving harware technology precludes solving this uncertainty problem by
over-procurement of computational power, which will soon become obsolete. This man-

dates the use of a distributed computational system with incremental growth capability
so that short-term computational throughput problems can be met by increasing the
number of computational units, while long-term growth is assured by replacement of
individual units with higher technology equivalents as they become available.

There are three ways of implementing distributed processing:

1. As an ad-hoc partitioning of a specific problem into two or more parts. This
is what usually happens when an existing simulation outgrows its mainframe,
and dual mainframes are installed to cope with the problem. Typically in this
situation, the simulation is divided into a master/slave configuration, with com-
munications between both halves taken care of by very special means, e.g., shared
memory. Characteristic of this approach is the inability to incorporate additional
processors in an incremental fashion. This approach usually requires minor op-
erating system support.

2. The development of a program structure that lends itself to partitioning among
a wide range of well-defined lines, with established communication and synchro-
nization protocols capable of operating with one, two, or more processors after
only minor modifications. This usually requires significant language and oper-
ating system support, usually in the form of program-controlled task generation
and memory allocation.

3. The use of a language/operating system environment that offers programmer-
transparent distributed processing, without specific communication or synchro-
nization actions being required of the programmer.

While there are a significant number of existing simulations that implement the first
form of distributed processing, we do not believe that such an ad-hoc approach is
the best way to proceed for the ATCLAB simulations. At the same time, even though
there are important efforts underway to provide transparent distribution of processing,
this capability is not currently available and, in all likelihood, it will be at least five
years before such systems are commercially available. Such approach would therefore
represent an unacceptable risk for the proposed laboratory. This leaves the second
approach - planned partitioning of simulation elements - as the recommended approach
for ATCLAB.

Even this level of distribution is not a solved problem; to date, nobody has demon-

strated concurrent distributed simulation processing in a fourth generation environ-

ment. It is our opinion, however, that the benefits resulting from incremental dis-
tributed processing, especially the capability to increase incrementally the computation
power, far outweigh the technical risks.

2.3 Labor Considerations

The staffing of a computer-intensive operation has traditionally required three distinct
types of labor:

1. Engineer/researchers, whose main task is to define projects, carry out experi-
ments, and write functional specifications for software and tests to validate their
operation.

2. Programmer/analysts, whose main task is to convert the specifications into code
and carry out the validation tests.

3. Operators/technicians, whose task is to physically operate the machine, carry
out repetitive chores such as backups, interface with field maintenance, schedule
the machine's usage, etc.

This three-tier staffing is being made obsolete by fourth generation hardware/software
for the following reasons:

1. The increase in level of abstraction of fourth generation languages is reducing the
burden of programming to the extent that the division of labor between prob-
lem analysis/formulation and coding is no longer appropriate, especially in view
of the communications overhead between the engineer/researcher and the ana-
lyst/programmer; this change is similar to the elimination of keypunch operators,
which came about in the late 60's/early 70's with the introduction of interactive
terminals.

2. Similarly, the reduction in size, power consumption, and physical complexity of
hardware has eliminated the need for dedicated operations people, with network-
ing and file serving reducing the burden of maintenance and backup operations.

Consequently, it is apparent that a facility such as the ATCLAB should have only one
kind of employee: a trained engineer/computer sciences specialist with background and
knowledge in both ATC and fourth generation computer science. While training in the
latter is scarce,' it is nevertheless the authors' opinion that the FAA Technical Center

5As witness the current high demand for these persons by both industry and the Government.
11

can indeed provide the necessary personnel with perhaps some retraining required in
the area of Advanced Computer Sciences.

It is particularly important to realize that the ATCLAB concept does not require large
numbers of programmers 6 but rather fewer, properly qualified individuals. As a result,
staff planning for it should be carried out accordingly.

3 LABORATORY CONFIGURATION

In view of the premises and environmental factors expounded in sections 1 and 2, we
recommend that the ATCLAB be developed and viewed more as a high-performance
computer-based research environment than as simply just another simulator. This does
not contradict the fact that the primary purpose of the facility is to provide fast, low
cost simulation capability for the purposes outlined in section 1, but rather implies
that this capability be achieved by the creation of a suitable high-power environment
- including the kit of simulation building blocks outlined in the next sections.

3.1 Hardware Configuration

The proposed hardware configuration consists of a number of identical high-powered
workstation units interconnected by a high-speed Local Area Network (LAN).

3.1.1 Display and Execution Units

The basic hardware unit of the Lab will be a Development and Execution Unit (DEU).
The initial DEU is a high-end workstation with computational throughput in excess
of 1 MIPS, memory capacity equal to or greater than 4 Megabytes, and a bit-mapped
display with resolution equal to or better than 720 by 348 pixels. 7 As its name im-
plies, this unit is both a single-programmer development station and the basic unit
of computational resources during simulation execution. There is to be at least one
DEU per support person assigned to the Lab, with extra units being highly desirable
both for redundancy and for support or outside experimenters and/or visitors. Unless
specifically required by an experiment, the DEU's display will also be the principal
runtime user interface, requiring a DEU per simulation actor. Additionally, each DEU
will be equipped with local I/O capability to support special-purpose devices, displays,
or Systems Under Test (SUT's).

The DEU attempts to be the least common denominator of the processing requirements
of any system element to be simulated or tested at the ATCLAB, as well as provide
the basic horsepower behind the simulation. This approach appears sub-optimal, since

6 At least compared with a traditional programming effort of similar scope.
7 With some color units being desirable, but not essential.

it is very likely that specialized hardware could be better adapted to each of the tasks:
for example, a large mainframe could be used to generate targets and perform data
logging during the simulation, with smaller minicomputers used to simulate controller
stations, special devices, etc., and special display units used to interface with the
simulation actors.

In contrast, the single DEU type has, by necessity, to be an overkill in most situations:
the DEU that creates and manages targets will have underutilized display capabilities;
the DEU used to simulate an advanced controller display will have excessive computa-
tional power, etc.

But this mismatch, and the apparent underutilization of equipment resources is more
than amply matched by the economies of using a single language, operating system,
display functions, etc. Use of different devices would by necessity require the staffers
either to be proficient in a number of different devices simultaneously, or to specialize
in one or two devices. In addition, the cost of developing interfaces between identical
devices is much lower than the cost of interfacing dissimilar devices. Again, this is a
clear case of trading off equipment costs for labor costs and elapsed time.

3.1.2 Interprocessor Communications

DEU's are connected by a high-speed Local Area Network (LAN). During simulation
development and post-run data reduction, the LAN operating parameters shall be
optimized for maximum throughput in the vicinity of 1 MBaud. During simulation
execution, the LAN parameters shall be optimized for a minimum message transmission
latency between processes executing in different DEU's of the order of 50 msec or less.

The operating system running in the DEU's shall provide support for three types of
network operations:

1. Remote file access and transfer, including backup operations

2. Remote user access of processing nodes ("telnetting" in the network nomencla-
ture)

3. Direct communication between a process running in one DEU and another pro-
cess running in another DEU (interprocess communications).

This last capability is seen as the natural mode in which the distributed computation
capability suggested in section 3.2 should be implemented.

3.1.3 System Support Units

Additionally, System Support Units (SSU's) may be attached to the LAN to provide

file server, back-up storage, remote communications, and printing services. A typical
SSU may be a medium-sized minicomputer (e.g., VAX-780) with disks, a tape unit,
a laser printer, and serial interface lines. Alternatively, the SSU may be a dedicated
and/or specially modified DEU.' Special-purpose devices, such as stroke-written dis-
play systems, are usually best interfaced from a dedicated processor, instead of the
DEU's. Interface with external systems (e.g., the SSF, TATF or even a standalone
SUT) should also be performed from an SSU.

3.2 Software Configuration

The Laboratory software can be categorized in two different ways: by source, and by
usage. By source, the software will fall into one of three categories: System Tools
and Services (STS's), Project-Independent Elements (PIE's), and Project-Dependent
Elements (PDE's). By usage, both PIE's and PDE's fall into one of four categories:
System Under Test (SUT), Internal Simulation Models (ISIM), External Simulation
Models (ESIM) and Simulation Core Elements (SIMCORE).

3.2.1 System Tools and Services

This category includes operating systems, language compilers, editors, and debuggers,
communications software, graphic support packages, etc. It is expected that most of
this software will be off-the-shelf, with perhaps minor customizations on the operating
system and LAN software required to support the ATCLAB. These programs are very
hardware dependent, and their availability and performance is expected to impact the
selection of the DEU hardware to the extent that the DEU/STS procurement should be
considered a single, inseparable one. Mandatory capabilities are: message-passing and
functional programming support, source-level debugging and incremental compilation
capability, multi-tasking with direct operating system services access from a High Order
Language (HOL), and language-sensitive full-screen code editing. A single-language
environment (operating system written mostly in the same HOL as applications) is
desirable.

3.2.2 Project-Independent Elements

Project-Independent Elements (PIE) are Lab-developed modules from which project-
specific simulations can be made. It is expected that the development of PIE's will be
evolutionary, with the initial set of PIE's being determined by the earliest projects to
be supported by the lab, and continuing development of PIE's during the lifetime of
the laboratory. PIE's include both simulation skeleton, or core elements, such as the

'This would have the additional advantage of not requiring the staff to master an additional Operating
System environment.

master scheduler, data gathering and recording tools, simulation assembly and config-
uration control elements, etc., and the basic repertoire of models for both internal and

external simulation elements (see sections 3.2.5 and 3.2.6 below). The fundamental

soundness of the building-block approach to assembling simulations has been demon-

strated at M.I.T.'s Flight Transportation Laboratory on Lisp Machines, albeit on a

single-processor basis.

3.2.3 Project-Dependent Elements

Project-dependent elements (PDE): these are Lab-developed software elements for exe-
cution in the Lab's DEU's for the purpose of running a specific project's simulation.
It is expected that program development efforts will be balanced between PIE's and

PDE's. As individual projects develop PDE's, they become part of the facility library,
thus turning perhaps into PIE's for other projects. For example, a particular project
may require a detailed model of the mode S data link; this model may be developed

exclusively for that project, but is subsequently made available to other projects which,
while not critically dependent on such a model, nevertheless benefit from its availabil-
ity.

3.2.4 System Under Test

The System Under Test (SUT) includes models of the specific ATC element, compo-
nent, program, or device which is the primary focus of the experiment, e.g., an Arrival
Metering Sequencing function. These software elements are characterized by a high
level of functional detail.

3.2.5 Internal Simulation

The Internal Simulation (ISIM) is made up of models of other components of the
present or proposed ATC system that, while not the primary focus of the simulation,
are necessary to support the simulation of the SUT to the required degree of realism.
For example, the Arrival Metering Sequencing Function may require a model of the
mode S data link system and ancillary ground processing functions.

3.2.6 External Simulation

The External Simulation (ESIM) comprises models of elements not part of the ATC
system assumed in the test, such as aircraft, airborne systems, weather, and wind.
This is equivalent to the target generation role of traditional simulations, but will of

necessity be much more complex in the ATCLAB to avoid the need for large numbers
of actors in simulation runs.

3.2.7 Simulation Core

The Simulation Core elements (SIMCORE) comprises all the software required to pre-
pare a project specific simulation (software cataloguer/simulation compiler), prepare
simulation input data (e.g., airways and facilities data base managers, live data), run
and control the simulations in real time or in fast time (including Monte-Carlo run
managers), and analyze, present, distribute, and archive simulation results.

3.2.8 Intersoftware Communications

The reason for the above categorization is to bound the Intersoftware communication
requirements, which affect both the software development cost (due to the program-
ming overhead involved) and hardware performance (both partitioning among DEU's
and LAN loading). Typically, the level of detail or aggregation is uniform in each of
the three categories, with the SUT models being the most detailed ones, and the ESIM
models the least detailed. Most of the intermodel communication will be between
elements of each category, with lower bandwidths required between categories. This
will tend to favor partitioning of the computational burden along these lines, with one
DEU supporting the ESIM, another supporting the ISIM, and one or more supporting
the System Under Test.

The boundaries between SUT, ISIM, and ESIM are quite fuzzy: for example, a model
that is part of the SUT for one particular run may be considered an ISIM model
during another run. Similarly, the SUT may actually be implemented in non-ATCLAB
hardware, with a DEU dedicated to the interfacing between the Lab and the SUT
hardware rather than to running the SUT software itself.

While the individual software elements may be written in any language (as long as
the development environment requirements listed in 3.2.1 are satisfied), interprocess
communications between the ISIM and the ESIM, and between processes within these
two levels, shall use the active object model of computation, also called message passing.
The objective is to facilitate the partitioning of the ISIM and ESIM among multiple
DEU's. It is desirable that the SUT elements also be coded in this style, although
alternative communication protocols between the SUT and ISIM/ESIM elements may
be required. An example of this situation would be a SUT implemented in non-
Laboratory hardware intended to be ported to an actual field location. In this case, the
DEU interfacing the simulation to the SUT must mimic the communication protocol
of the field system that the SUT will eventually interface with.

-. I i , i ' - ,

3.3 Simulation Configuration

3.3.1 Simulation Timing and Control

The ATCLAB simulations shall be capable of running in one of two modes: real-time,
and fast-time. Fast-time simulations are semi-asynchronous simulations where a master
processing unit (a DEU in this case) keeps track of a pseudo real-time (presumably
faster than real time) which then paces the execution of the rest of the simulation
elements in other processing units (the other DEU's). Fast-time pacing represents a
compromise between operating system and programming complexity on one hand, and
efficient hardware utilization on the other, since the load on the DEU's is likely to be
unbalanced, and the effective speed of the simulation is determined by the slowest, or
most highly loaded DEU. This compromise is consistent with the hardware/software
tradeoff principle stated in 2.2.2.

The DEU responsible for maintaining system time (real or accelerated) is also re-
sponsible for allocating and loading the SUT/ISIM/ESIM elements to the appropriate
DEU's, and controlling the starting, freezing, terminating, and data collecting of the
entire simulation. This Master DEU (MDEU) is also the simulation manager's display
and control unit. Under this model, simulation timing shall occur as follows:

1. Each DEU executing ISIM and ESIM models shall have its own executive, with
its own scheduler queue. Processes and events executing within a DEU shall be
scheduled by this program.

2. Simulation time shall have a finite granularity, determined by the requirements
of the experiment being supported.

3. In real-time mode, the MDEU shall issue periodic clock ticks which the executive
process in each DEU shall receive and use to advance its own timer queue. If a
DEU's schedule falls behind the MDEU clock ticks, a warning message is sent
to the MDEU where the simulation manager may elect to take corrective action,
e.g., terminate the simulation.

4. In fast-time mode, the MDEU shall propose to all the DEU's the advancement of
time to the next time tick; upon receipt of a "ready to advance" message from all
the DEU's (indicating that their timer queues have caught up with the proposed
new simtime), the MDEU shall broadcast a "simtime is now..." message to all
the DEU's, which would then advance their timer queues to the new simtime.
All simulator transactions are therefore assumed to occur within that clock tick.

This architecture has the additional advantage that the entire ESIM model group can
be exercised (e.g., for development and testing purposes) in a single, separated DEU (or

sets of DEU's, if necessary) by having its scheduler queue advance autonomously (i.e.,
without receipt of timing messages from the MDEU). It is also conceivable that, given
sufficient number of DEU's, and sufficient LAN throughput, more than one simulation
can run independently of each other.

3.3.2 Display Requirements

It is expected that the ESIM and ISIM will contain a larger percentage of models
of human behavior than existing simulations, thus eliminating the requirement for a
large number of actors, or at least reducing the requirements in cases where actors are
absolutely necessary, such as when voice communications are involved. As much as
possible, ISIM/ESIM models should be manageable from a single display each, thus
supporting the partitioning of the ESIM/ISIM computational load to one DEU each.
In the case where the ISIM or ESIM load is higher than one DEU's resources, this
shall not require an additional operator(s) on the additional DEU(s). Conversely, if
the ISIM or ESIM require additional actors (therefore additional displays) but the
computational load is still under one DEU, it should be possible to use additional
DEU's as simple terminals, with minimal additional software required in them.

The SUT presents a different problem; here, special-purpose displays and display for-
mats may be required. While ESIM/ISIM operator displays may be designed for the
convenience of the program developers, the operators, or both, SUT displays must
satisfy the requirements of the experiment under way. As far as possible, these re-
quirements shall be met with the DEU displays; when this is not feasible, special
project-dependent hardware may be required. Three cases are possible:

1. The SUT may include specialized hardware, including displays. In this case, the
ATCLAB simulator's responsibility is simply to communicate with the SUT, and
the communication DEU's display can be used, for example, to monitor the SUT.

2. The SUT is modeled by ATCLAB DEU's, but specialized displays or I/O units
are required. The special displays may be interfaced with the simulation in one
of three ways: directly with the DEU's, using the DEU's local I/O capability;
through the SSU's I/O subsystems; or directly to the LAN, if the display device
interfaces with the same hardware type and software protocol as the ATCLAB's
LAN.

3. An external simulator or system is used; of particular interest is the use of the
NAS Simulation Support Facility (NSSF). The NSSF has been examined as a
possible source of radar targets for ATCLAB. Its limited capability and expense
of operation in the target generation mode indicates such use is not desirable.
On the other hand, its 8 ARTS III displays and possible 32 NAS displays could

OWWWWMINWA

be very effectively used as SUT displays or, perhaps more interestingly, as ISIM

displays (e.g., for the Arrival Metering and Spacing project).

3.4 ESIM Architecture

The main determinant of the computational requirements of a simulation run and
the complexity of the ESIM/ISIM software is the level of detail of the simulation,
in particular of the data that the ESIM/ISIM has to provide the SUT. A review of
the likely SUT's from 44 Research, Engineering, and Development projects seem to
indicate that a minimum of three levels of ESIM detail are required. These levels will
be identified by the level of detail of the movements of the aircraft modeled in the
ESIM: an Area Network level, an Air Route network level, and a Free-Flight level.

3.4.1 Area Network Level

At this level, referred to as the Area Network Level or Level I, the airspace is modelled
as a network of Areas which behave as aircraft containers. The size of an area may
vary from that of a present sector, to that of several ARTCC's. Each area may contain
traffic sources which generate aircraft that flow through the system, as well as traffic
sinks which absorb aircraft that have reached their destination. Even though sources
and sinks will typically represent airports, they can also entry/exit points from/to
airspace that is of no interest to the current experiment.

Aircraft are generated at traffic sources and are endowed with a flight plan consisting
of a list of areas that the aircraft has to traverse. The last area in that list is the
aircraft destination and must be a sink.' Flight plans are indirectly related to actual
aircraft flight plans (in that they determine the route of each aircraft at the level of
detail allowed by the model). Direct routing can also be modelled by suitably adjusting
the nominal travel times within each area in a direct flight plan. Flight plans can be
dynamically modified thus allowing rerouting of traffic after the beginning of the flight.

The primary simulation events at this level of detail are area crossings. For each
aircraft, there will be information regarding the area in which it currently resides,
the time at which the next area crossing is scheduled to occur, etc. Time variation
in source and sink rates as well as in area capacities will be modelled, thus allowing
simulation of varying weather as well as other operating conditions. The relationship
between area loading and area transition times will be modeled. Aircraft movements
and other events occurring within an area are not modeled.

This level of detail is expected to support SUT's related to National Flow Control

9 Sources and sinks are special cases of areas in that they are nodes in the area network with the proviso
that aircraft never emerge from a sink and never enter a source.

operations; it should be possible to model several thousand aircraft in 10x fast time

on a single DEU at a simulation time granularity of 15 seconds.

3.4.2 Air Route Network Level

At this level, referred to as Level II, aircraft are assumed to flow through a set of finite

(i.e., fixed) airway and direct routes, although the flight plans themselves are dynam-
ically modifiable. The progress of individual aircraft along these fixed routes, using
simplified performance models is supported, as are random (asynchronous) queries

about the state of the aircraft. The time-varying location and severity of areas of spe-
cific weather conditions - including winds - shall be modeled, possibly by statistical
means, as well as their effect on aircraft progress.

This level of detail is expected to support simulations involving ACF-level TMU related
SUT's; it should be possible to model several hundred aircraft in real time on a single
DEU at a simulation time granularity of 4 seconds.

3.4.3 Free Flight Level

At this level, referred to as Level III, detailed aircraft dynamics and avionics/flight
control responses are modeled; flight plans are modeled at the same level of detail as
in a real aircraft flight management computer. High-level models of manual navigation

performance are included to simulate non-FMC equipped aircraft, reducing the need

for pseudo-pilots to voice response modeling. Provisions will be made to support fully
automated aircraft models when the performance of voice recognition/voice synthesis
devices allow it. Weather modeling shall be similar to that of Level II.

This level of detail is expected to support tactical and mixed strategic/tactical level
SUT's, such as Arrival Metering Sequencing functions; it should be possible to model
one hundred aircraft with a single DEU in real time at a simulation time granularity
level of 4 seconds.

3.4.4 Model Level Intermixing and Compatibility

The communications between the SUT/ISIM, and the ESIM shall be through clearly
established messages using the active actor or message-passing model of computation.
Specific sets of messages shall be defined at each level. Aircraft objects in each of the
three levels of detail shall be created in one of three ways:

1. Stochastically, by means of aircraft generator objects driven by a set of statistical
parameters appropriate to each level.

2. Deterministically, in response to a predefined set of script-like events (e.g., real

__ 0-11' _1 '1Ai9ftW§*MM- I

traffic data or output from another simulator), with the necessary logic to supply
any missing required information (e.g., detailed flight plan data).

3. Deterministically, in response to the termination of an aircraft object at a differ-

ent level; this allows the simultaneous existence of simulated regions of different
levels of detail; when an aircraft object reaches the boundary of its level of de-
tail's region of simulation, it is destroyed, and an aircraft object is created at the
other side of the boundary, at a new level of detail. Automatic logic will provide
any necessary detailed information required when the new aircraft object is of a
higher level of detail than the destroyed object, or will abstract the data in the
reverse case.

The coexistence of simulation regions of different levels of detail, which can be thus
provided at a modest incremental development cost, will be unique to this facility
and can provide the opportunity for research in the vertical organization of the ATC
command and control structure. The cost-effectiveness of this feature cannot be ascer-
tained precisely due to lack of previous experience with such hybrid systems. Therefore,
while this capability is not seen as an essential component of the laboratory's basic
cofiguration and cost considerations may preempt its immediate implementation, we
recommend that it be kept open as a possibility in the fundamental architecture of the
ATCLAB.

3.5 Interface with Existing Facilities

The effectiveness of the ATCLAB to support evaluation and development of advanced
ATC automation concepts can be greatly enhanced by interfacing the Lab with other
facilities at the Technical Center. In particular, the NAS System Support Facility (SSF)
and the ARTS Terminal Area Test Facility (TATF) can provide significant support of
short term projects that involve interfacing with the present NAS or ARTS systems.
Indeed, one of the pathfinder projects illustrated in this report assumes the capability
of interfacing with these two systems.

Both the SSF and the TAFT are display systems with local intelligence. They com-
municate with target generator programs through low bandwidth (2400 to 9600 Baud)
serial interfaces; close examination of the Common Digitizer interface documentation
([CD 77]) and the GFP to ACP interface documentation ([NSSF 85]) reveals that it
would be a trivial task to use the ATCLAB facilities to generate pseudo-targets for
these two systems; in particular, the required programming would require at most a
few labor-weeks. In turn, the SSF/TAFT facilities could provide the test bench for
early automation systems, such as the Traffic Management device postulated in section
4.3.

4 FACILITY DEVELOPMENT

4.1 Development Philosophy

As mentioned in subsection 3.2.1, all system tools and service software should be
procured in conjunction with, and simultaneously with, the DEU and LAN hardware.
All ESIM/ISIM software should be developed at the ATCLAB, as well as applicable
SUT software (SUT software and perhaps hardware may be generated outside the
ATCLAB). A complete ESIM for each level of detail should be fully developed and
tested before the ATCLAB can be considered operational. ISIM elements for the first
few projects should be given the next immediate priority, with ATCLAB-developed
SUT software close behind. Periods of low facility utilization, if any, should be devoted
to completing the ISIM library.

It should be remembered, however, that the "Building Block" concept of the facility
implies that the facility should be in a continuous state of growth and evolution; in
other words, the facility is never 100% complete. This has a number of consequences:

1. The Facility Acceptance Tests must be suitably designed; since the degree of
completeness of the facility can only be judged against a particular project, it is
imperative that a pathfinder project be established to determine the degree of
readiness of the facility.

2. The construction phase and operational use phase of the development of the
facility will be ill-defined; as such, great care should be used when applying tra-
ditional management measures and techniques that provide, for example, for the
segregation and differentiation of construction and operations personnel. Indeed,
part of the routine operations of such a facility is recurrent buildup.

3. Traditional measures of progress, such as the PDR and CDR mentioned below,
must be applied appropriately, i.e., taking into consideration item (1) above.

4.2 ATCLAB Development Phases

The expected stages of development of the ATCLAB are as follows:

I. Architecture refinement/ESIM specification. In this phase, the overall architec-
ture outlined in this document shall be refined and criticized. The hardware and
systems software performance specifications shall be refined to the point where
they can support procurement of these elements. ESIM specification shall be to
the level of individual interface messages and functional descriptions of the capa-
bilities of each model. These activities must be supported by a first-level design

of ISIM elements, which in turn requires the identification of pathfinder projects
and their SUT's. In this phase, selection and initial indoctrination of ATCLAB
personnel can begin. It is expected that the personnel running ATCLAB will
be inserted in the facility's design process as soon as practicable. A Preliminary
Design Review (PDR) of the facility, or its equivalent, should be conducted at
the end of this phase.

II. Detailed ESIM design/personnel development. In this phase, contracts for DEU
hardware/software have been awarded, and physical facility construction has
begun. Since the specific DEU hardware/software environment is known, training
of ATCLAB personnel in these areas can begin, so that they will be familiar with
the environment when the DEU's are delivered. This training shall emphasize
procedures and programming methodologies, as well as the specific mechanics of
the environment.

III. Initial ESIM coding/detailed ISIM design. This phase is assumed to begin af-
ter acceptance of the procured DEU hardware/system software. In this phase,
actual development, coding, and testing of ISIM models shall be performed, as
well as detailed design of the ISIM elements required to support the pathfinder
projects. Also at this time, initial analysis of pathfinder SUT's is initiated. Es-
tablishment of the Facility Acceptance Criteria for the pathfinder projects should
be established at this time. The reason these criteria should not be developed
earlier is that sufficient information on what to expect from the facility, including
the nature of the pathfinder projects and SUT's, to develop realistic acceptance
standards may not be available until this moment. A Critical Design Review
(CDR) of the facility, or its equivalent, should be conducted at the end of this
phase.

IV. Pathfinder project preparation. In this phase, ISIM coding and detailed SUT
software design for the pathfinder projects is performed. The ideal number of
pathfinder projects is two, one at each of two levels of detail, with the possibil-
ity of a single project requiring two levels of ESIM detail being an interesting
alternative. Actual production of SUT software is not included in this stage
because it is assumed that SUT software production is part of the experiment
itself. Standalone testing of complete ESIM sets (for each of the Levels) should
be carried out at this time.

V. Pathfinder project execution. In this phase, actual coding of, and experimen-
tation with, the pathfinder SUT's is carried out. At the end of this phase, the
results should be matched against the expectations of the Facility Acceptance Cri-
teria established in phase III. Satisfactory achievement of these standards shall

be used to indicate that the facility has reached operational status, even though
SUT software coding, ISIM element library development, and ESIM refinement

should continue for the lifetime of the facility.

4.3 Pathfinder Project: Traffic Management Unit Support System

The purpose of this hypothetical project is the development of a standalone computer

system to aid the Traffic Manager at an Area Control Facility (ACF) approve direct

route descents for Flight Management Computer (FMC) equipped aircraft which result

both in a smooth metered flow into the terminal area of a high-density airport, and a

minimum of predicted clearance conflicts. For purposes of discussion, we shall call this

system the TSS (Traffic management unit Support System).

The TSS is to be developed as a standalone unit which, after laboratory tests, could be
physically deployed at an ARTCC for operational trials. Experience with the TSS and
its algorithms could then be used as a baseline to develop the Advanced Automation
Traffic Management function.

4.3.1 Project Description

The TSS is to receive position reports and flight plan data from the NAS system.10
In addition, the TSS may receive mode S data link messages with proposed descent
profiles from the aircraft.

The Traffic Manager at the ACF receives all proposed direct route descents about
10 minutes before top of descent; the TSS must then present to the manager the
consequences of that proposal in terms of clearance conflicts and flow into the final
controllers. It is unclear whether approval of the proposed path (which then becomes
a clearance) is to be made by the Traffic Manager alone, or if any of the affected
positions (pre-descent enroute, descent, initial terminal area, final approach) should
be consulted.

After approval of the proposed four-dimensional descent profile, appropriate informa-
tion is presented to the affected positions to allow them to monitor conformance to the
clearance. It is unclear whether this information is to be integrated in the NAS/ARTS
displays (thus necessitating major modifications to these), or to be displayed on an
auxilliary device connected uniquely to the TSS.

The unique development challenges of this project are the short project elapsed time,"

its interaction with the NAS/ARTS systems, and the lack of a precise initial functional

0With the position reports perhaps derived directly fron Common Digitizer messages, thus bypassing
the NAS system.

1 For this project to be useful, it must be carried out in a relatively short time, say 18 months.

description. Thus, the development facility has to be able to cover the entire spectrum
of conceptual development and testing, algorithm refinement, NAS/ARTS integration,
and predeployment validation.

4.3.2 Initial Development Phase

Rapid conceptual development can be achieved by using two or three ATCLAB DEU's;
one DEU will be dedicated to target generation, target control, and controller display.
It does not seem necessary to separate the controller and pseudo-pilot functions at
this time. The ESIM building blocks required are simple Level III aircraft dynamics.
The Flight Management Computer also needs to be modelled. This however can be
done at the functional level. Predefined descent profiles will be used and there is no
need for accurate aircraft performance (e.g., fuel consumption) models. It is however
important to model the aircraft conformance to the descent paths. Finally, modeling
the performance of the mode S data link is also not necessary at this stage. ISIM
blocks are simply a pseudo NAS or ARTS display screen. A second DEU can be used
to provide a second controller screen, if required.

The last DEU is to host the TSS itself; its processor shall model the TSS logic, while its
display will be the Traffic Manager's display. The processing power, memory, advanced
graphics and nonalphanumeric I/O capability required of the ATCLAB DEU's should
be more than sufficient to satisfy even the most demanding requirements at this stage.
Assuming that the ATCLAB is properly staffed and equipped at the time the project
begins, six months should suffice to develop a demonstrable, functional system and
allow the transition to the next phase.

4.3.3 Refinement/Integration Phase

At this stage, the functionality of the TSS would have been sufficiently defined and
tested to indicate whether any special display and/or input device is needed, how many
control positions are involved, and what the data requirements to/from the NAS/ARTS
systems are.

One DEU per involved controller position will be used to simulate the TSS. The use of
a full DEU to simulate, for example, a simple D-controller auxiliary display may appear
an overkill, but it results in a much shorter development time than the procurement
of ad-hoc, simpler units which would require different programming skills.

4.4 Pathfinder Project: Dynamic Special Use Airspace

The purpose of this hypothetical project is to evaluate the feasibility of implementing
the concept of Dynamic Special Use Airspace (DSUA) in the context of the Advanced

En-Route Automation System (AERA), in particular, its effects on the Conflict Probe

and issuance of conflict-free clearances.

The main problem with such a project is the lack of precise definition both of the AERA
functional capabilities and of the way these capabilities are to be used (i.e., procedures).
Thus, this project is attractive not only because it would support continuation of
consideration of the DSUA concept, but also, and perhaps more important, because it
would force a refinement in the definition of AERA and its procedural utilization.

4.4.1 Motivation

Currently the use of airspace by civilian and military traffic is static. Controlled aircraft
generally follow designated air routes, and military maneuvers use restricted, Special
Use Airspace (SUA), which is permanently reserved even when it is not used.

Two developments however will tend to upset the current balance achieved through
static allocation of airspace.

1. The introduction of area navigation capability and flight management computers
in the cockpit has resulted in an increasing percentage of direct routing requests
by the users.

2. The introduction of the new NAS software and AERA is expected to further
promote and encourage use of direct routing, and at the same time allow dynamic
rerouting of traffic.

Both these factors suggest that static allocation of SUA may result in considerable
inefficiencies when AERA is operational and indeed may be totally unacceptable in
the dynamic routing environment which is expected to be present in the NAS of the
1990's and beyond. As a result the concept of dynamically allocating SUA to suit
short-term needs has been proposed.

In this scenario, the Air Force (or any other user of SUA) would notify the TMU
supervisor and specify their requirements for a portion of airspace to be restricted for
some future time interval. The TMU supervisor would then review the projected traffic
during the interval in question and would grant the request by allocating the airspace
which would least disrupt the operation of the ACF. The hope therefore is that, by
tailoring the SUA allocation to specific needs, we can better serve those needs while
at the same time maximizing the net availability of airspace to civilian traffic.

4.4.2 Initial Development Phase

To support this development effort, two ATCLAB DEU's will be needed.

The first will be used for target generation and control. No controller or pseudo-
pilot functions will be required at this stage of development. The simulated area will
encompass an entire ACF. Flight Path Network (Level II) components will be used as
the ESIM building blocks for this project. A simple traffic display may also be needed
for monitoring purposes only. Such a general purpose display would be provided as a
basic Level II building block for the ATCLAB.

The second DEU would be used to house the ISIM blocks as well as the SUT. The ISIM
for this project is a functional simulation of the AERA system. The System under test
can be thought of as an enhancement of AERA and is thus implemented on the same
DEU. A special purpose display will be developed to provide an interface between the
TMU supervisor and the SUT software.

The bulk of the simulation needs for evaluation of the dynamic SUA concept can be
satisfied by the above environment. The major technical task for this project is the
development and implementation of the methodology for choosing among portions of
airspace that meet the requested specifications. Analytical methods of determining
flows and minimum paths in networks can be used in conjunction with a knowledge
based system which can identify SUA candidates that meet the specifications and can
help make decisions based on nonquantifiable factors such as controller workload as a
result of unfamiliar traffic patterns, etc.

At this level of detail we can answer a number of questions:

1. How does a pop-up obstruction affect AERA's routing algorithms and conflict
probe?

2. Are those functions capable of dealing with such an event at the local level or do
we need to introduce the new SUA in the long-range planning process for AERA?

3. What are the advantages of Dynamic SUA when no request for any restrictions
is pending?

4. How do we best decide how to grant the request with minimal disruption of
normal traffic?

Given the answers to the above questions we can begin to formulate and test procedures
for the requests of SUA's. We can determine what lead times may be required for the
requests, and what (if any) bargaining procedures should be available. Finally, we
can identify possible trends that are evident in the allocation of airspace (e.g., certain
portions of the airspace seem to be vital to the traffic movement and are therefore
never allocated) and thus make it possible to simplify the allocation procedures.

We note that the environment described above requires a single operator to run the

simulation. In particular, aircraft control is automatic. The only requirement on the

aircraft is that they follow specified flight plans which can be dynamically modified.
Indeed this is the base capability of Level II aircraft blocks.

4.4.3 System-wide Effects of DSUA

At this point we will have investigated the feasibility and effectiveness of the DSUA in
relative isolation from the rest of the ATC system. Indeed it is conceivable that very
little coordination with other ACF's and Central Flow Control is required to implement
DSUA.

There are several additional questions however which may need further investigation
once the basic concept is well defined and understood. For example:

1. Is the TMU the appropriate level in the command chain to make such decisions?

2. Are there any consequences of SUA allocation in the global traffic flow?

3. If a request for a SUA severely limits the capacity of a ACF to handle traffic,
what are the consequences in the global flow patterns?

4. If the initial phase indicates that it is possible to implement DSUA in the 30
minute to one hour time horizon, how is the tactical control of traffic affected?
How is the information disseminated to the sectors that are affected by the SUA
allocation?

5. How does the new restricted airspace affect the sector boundaries? Static SUA is
well suited for static sector units since they can both be planned in advance for
maximum operational compatibility. Does dynamic SUA also require dynamic
sectorization of the ACF?

6. How does a change in the traffic flow within an ACF affect the tactical control
at the sector level? For example, what happens in sectors adjacent to the newly
allocated SUA? Does the new traffic significantly change the control problem the
sector controller is faced with?

This list is by no means exhaustive. One however can see that there is a wide range
of questions which require simulation of almost the entire ATC command structure.
This seems to be a very common phenomenon among all interesting problems in the
operation of command and control systems and emphasizes the primary reason for
proposing that the ATCLAB be capable of simulating the ATC system in three distinct
levels of detail.

If any of these questions is still open at this point a second phase of simulation will

be required. We will need to use a third DEU in order to simulate the central flow

control environment. For this we will use building blocks from the Level I simulation.
In addition, one or two sectors may need to be simulated in using a fourth and fifth

DEU. As in the case of the TSS project, Level III blocks will be used for this purpose.

4.4.4 ISIM Development

Unlike the TSS project, much of the ISIM blocks required for the DSUA concept
simulation will clearly not be available in the standard ATCLAB kit.

In order to realistically simulate the dynamic allocation of airspace one has to first
implement the AERA conflict probe, the AERA planning process, as well as other
AERA support functions, at least at the functional level. In other words, in order
to implement DSUA one must first have a functional simulation of the entire AERA
capability. Using our nomenclature, AERA functions will become the ISIM to support
the development of this SUT.

This realization points out two facts that have been already emphasized. First, the
evolutionary development of the ATCLAB is a central prerequisite for its success.
Even though AERA I and II are at this point in too much of an advanced stage of
development to be SUT's for the ATCLAB, it is a good example of a system which
after testing becomes a part of the ATCLAB internal simulation capability and can
then be used by (indeed be a crucial part of) future SUT's. Second, in order to simulate
a new concept, the existence of a functional specification is absolutely necessary. If
such functional specification is not well defined, the implementors are forced to clarify
the fuzzy elements by making ad-hoc decisions. In other words a complete functional
specification of a concept will emerge out of the implementation even though this was
not originally intended.

In the case of AERA such a specification does not exist due partly to the fact that a
functional simulation of the AERA concept was never implemented.

APPENDIX A

REVIEW OF OBJECT ORIENTED PROGRAMMING

Object Oriented Programming is fast emerging as one of the most important develop-
ments in computer sciences, far more consequential than the "structured programming"
and "top down programming" concepts of the late 60's and early 70's. It is an approach
particularly suited to programs that model the physical world. This appendix presents
a brief introduction to the concept of Object Oriented Programming and explores its
applicability to ATC simulations.

Object Oriented Programming is a paradigm for computational processes, i.e., a model
of how computation is performed by a machine as seen by the programmer. There are
a number of such paradigms, each leading to a different view of what a computer is
and how it behaves. Some of these are:

1. register machine model, typified by a classical assembly language program

2. functional programming, which is the essence of, and the original motivation for
Lisp, and

3. logic programming, commonly associated with the language Prolog, but implicit
in most Database query applications, such as Honeywell's MRDS (Multics Rela-
tional Data Store) systems.

There are two uses for these paradigms: first, they can serve as the basis for the
construction and use of computing machines, either at the hardware or, more com-
monly, at the software level in the form of computer languages; second, they can be
used as inspiration for programming styles in any language or machine. Thus, we find
both object-oriented languages, such as Smalltalk-80, and applications written in the
object-oriented style in other languages, such as M.I.T.'s LISPSIM Air Traffic Control
simulator.

Reference [ABE 85] is a basic textbook on the structure and interpretation of computer
programs, and includes a comparative study of various paradigms within the framework
of a single pedagogic language. Reference [ELI 84] describes the authors' suggestions
for development of an object oriented version of SIMSCRIPT, a widely used simulation
language based in the FORTRAN programming language. Finally, [STA 84] includes
a very good discussion of Object Oriented Programming and documents the features
of the flavor system, a Lisp-based object oriented package.

A.1 Objects are Individual Artifacts with Local State and Functionality

We view the world as a set of individual and interacting objects, each of which has
a state which may be changing over time. Each object can itself be an aggregate,
composed of various objects. Thus depending on our objective, we may view objects at
different levels of aggregation. An aircraft for example, can be seen as a single entity
capable of flying. We can then talk about its mass, its center of gravity, its lift-to-drag
ratio at specific flight configurations, etc. At the same time it can be seen as made up
of components (wings, engines, control surfaces, instruments, etc.), which are objects
themselves. Finally, to a NAS computer an aircraft may be nothing more than a call
number and a flight plan.

Object Oriented Programming views programs as being built around conceptual enti-
ties that can be likened to real-world things. Each of these entities, called objects, can
be characterized by:

1. internal state: The current instance variables of the object summarizing its his-
tory,

2. methods: A set of operations that can be performed on the object, and

3. individuality: The property of being distinguishable from other objects of the
same type.

In an Air Traffic Control (ATC) simulation, the objects may include aircraft, - which
carry altimeters, airspeed indicators, heading indicators and other instruments - radars,
communication links, displays and display images, etc.

Immediately one can see the suitability of the Object Oriented Programming approach
in modeling physical systems. Using a conventional programming approach, the pro-
grammer has to constantly maintain two mental models: the model of the physical
world and the computer represenatation of that model. The mapping between the two
models is the key to understanding the correspondence. At worst this key is hidden
in the programmer's mind. At best it is hidden between the lines of page after page
of program documentation. In both cases, any large program is very likely to become
unintelligible before the initial coding is complete.

Using the Object Oriented Programming approach, on the other hand, does not require
a key since the mapping is trivial. The model of the physical world and the computer
model are in one-to-one correspondence. Each object abstraction has an equivalent
in the computer model. Understanding the program logic therefore is independent of
any mapping and requires only understanding of the simplifications and assumptions

inherent in the modeling of the physical system. In other words we now only need to
document the engineering assumptions rather than the coding conventions.

Like their real-world counterparts, objects can be grouped into classes or types12 so
that each member of a class exhibits similar behavior. Indeed the aircraft, altimeters,
etc. do not describe specific objects but classes of objects. An object-oriented program,
therefore, defines a number of object types, a set of operations allowable for each object
type, and can create a number of instances of each type. For example, an object class
AIRCRAFT may be defined, and then three instances (three actual objects) of type
AIRCRAFT may be created and manipulated by the program.

In order to distinguish two instances of the same object type, each object must maintain
its own internal state information. A number of terms are used to describe an object's
internal state; state variables, attributes, slots, instance variables, are but a few. We
will use the term instance variables. An object's instance variables can be examined
and altered using the operations that are defined for this object class.

We will consider an aircraft as an example of an object class. The class AIRCRAFT may
have instance variables which include its current position (LATITUDE, LONGITUDE.
ALTITUDE), its current speed vector (NORTH-SPEED, EAST-SPEED, VERTICAL-SPEED),
all the onboard instruments, etc. Some of the operations that can be performed on
aircraft might involve simply accessing the appropriate instance variables, such as
GET-LATITUDE, GET-LONGITUDE, GET-ALTITUDE, etc. In addition, we can define op-
erations like SET-LATITUDE, to alter those instance variables. Finally, we can define
operations such as GET-SPEED and GET-DIRECTION which, rather than simply returning
the value of an attribute, perform the calculations required to compute and return the
polar coordinates of the aircraft's velocity.

Finally, objects have individuality which is distinct from their state description. Con-
sider two instances of AIRCRAFT: ACI and AC2. Neglecting for a moment the physical
impossibility of having two things in the same place at the same time, these two aircraft
may have exactly the same state. It can be said therefore that they are equal. How-
ever, they are not the same aircraft. The only way to find out if ACi is really the same
as AC2 is to change the value of one of the instance variables of ACI and subsequently
compare the states of the two aircraft again. If the states remain the same independent
of what attribute we modify then the two objects are really the same object, and we
state that ACi is equal to AC2. If ACi and AC2 do not pass this test (that is, they are
not equal), but the values of all their instance variables are identical, we state that ACI
is equivalent to AC2.1 3

"The two terms will be used synonymously.

i3 Note that in conventional programming, the identity question does not arise, so that there is no
dichotomy between the terms equal (i.e., being the same object) and equivalent (i.e., having the same

Even in this very basic form, Object Oriented Programming style helps and encourages
the design of simple, modular programs. Since the state of any object can only be
manipulated directly by a well defined set of operations, these become the natural
interface of the object with the rest of the world. The object becomes a black box
which behaves in a well defined way, while the remainder of the program is not required
to have any knowledge of the internal logic and structure of the object. Again looking
at the aircraft example, we could have chosen to implement speed and direction as the
aircraft instance variables and define operations for the aircraft's north and east speeds.
To the world outside the aircraft object, however, our choice between rectangular and
polar coordinates would be transparent.

A.2 Generic Operations on Objects

Let us consider the ATC simulation example. As aircraft are moving in the simulated
airspace, other objects will need to find out their current location. To accomplish this
they will need to access the aircraft's latitude, longitude, and altitude. Those instance
variables, as we know, can be accessed through the operations GET-LATITUDE, GET-
LONGITUDE, and GET-ALTITUDE. Looking a little ahead we can see that this presents
a serious problem. Other objects in the ATC environment are characterized by (i.e.,
need to have as instance variables) latitude, longitude and altitude. However GET-
LONGITUDE as defined previously will work only for aircraft and cannot be used for any
other object type.

The traditional solution to this problem is to use the name GET-AIRCRAFT-LONGITUDE
for the function that is specific to aircraft, so that we can then use GET-RADAR-
LONGITUDE for radar objects, GET-VOR-LONGITUDE for VOR's etc. This approach solves
the immediate problem, but creates an even more formidable one. In a typical ATC
environment we would often need to find distances between objects. Aircraft require
to find their distance from the next waypoint, conflict alert systems need to find the
distance between two aircraft, etc. Can we create a general purpose function to find
the distance between two objects? Obviously not. In fact if there are n objects de-
fined in our program, we would need n2 such functions."' The problem spreads very
quickly since every function that requires latitude and longitude could be specific to a
particular object type. In practice, the Object Oriented Programming structure of our
program would have to be abandoned. We can witness this type of breakdown in con-
ventional computer languages which implement structures (e.g., C, PASCAL, PL/1,
and lately FORTRAN) but do not truly support Object Oriented Programming.

To overcome this problem we introduce the concept of generic operations. We can

value).
1 4or equivalently a single function with n2 distinct branches.

think of GET-LATITUDE not as an operation on a particular object type but rather

as the name of generic operation applicable to all objects which have LATITUDE as

an instance variable. Sending a message is a commonly-used term, inherited from
Smalltalk, denoting a request for the performance of a generic operation on an object.
To perform this operation we still need to know the object's type and the name of the
operation to be performed. In this case however the system keeps associations between
the name of the operation and the actual function to be invoked for each object type.
The function invoked for an object type in response to a message is called the object
type's method for the generic operation. Thus all aircraft objects share a GET-LATITUDE
method, a GET-LONGITUDE method, etc, and these are distinct from the GET-LATITUDE
and GET-LONGITUDE methods for objects of type RADAR, or VOR.

In summary, we have the following universal protocol for performing a generic op-
eration on some object: we send the object a message consisting of the name of an
operation (e.g., GET-LATITUDE) and possibly some arguments. The actual method,
when executed, may return a value, or may perform a side-effecting operation, but in
any case the effects of the message can depend on the type of object which receives it.

Prior to introducing generic operations, we mentioned operations being performed
on rather than by objects. This implied that objects were passive elements of the
program since the caller determined the function which was to be invoked. With
generic operations and message passing, the object itself plays an important role in
determining which function is invoked and therefore the exact effects of the message.
From the user's standpoint, the object is active: it receives messages and it responds
by returning a value, or by some side effect, or both.

The concept of generic operations is not new. The need for generic arithmetic func-
tions was identified and implemented since the early days of FORTRAN. What is
new is the mechanism by which the user defines and uses generic operations. This
simple mechanism has become one of the most powerful concepts of Object Oriented
Programming.

A.3 Inheritance of Instance Variables and Behavior

Often we find we can abstract common behavior from objects of different classes. In
the examples above, we found that many objects have common instance variables. In
addition we found that distance computation is a common feature for all objects that
have latitude, longitude and altitude as their instance variables.

In fact what is evident is that aircraft, radars, VOR's etc, all belong to a more general
class of objects: namely those that have geographic location.15 Object Oriented Pro-

15It is true that this can be said of all physical objects. We however are interested in objects whose

gramming provides a mechanism which allows us to define GEOGRAPHIC-LOCATION as
an abstract object type with instance variables latitude, longitude and altitude, and
then define other object types like aircraft, radar, VOR etc., which inherit both the
instance variables and all the methods of GEOGRAPHIC-LOCATION.

Inheritance opens a horizon of new capabilities which are absent from any other pro-
gramming methodology. In addition to breaking the programming task along the well
understood interactions of distinct objects, we can look at a complex object as an
amalgam of simpler, more manageable behaviors. Thus we can look at an aircraft as
a mixture of the following simpler abstractions:

1. Geographic Location: maintains information on the aircraft's location and pro-
vides methods for calulating distances from other objects of the same type.

2. Moving Object: maintains speeds and accelerations and provides methods for
integrating the aircraft's state.

3. Flying Object: maintains bank angle and relates longitudinal and lateral acceler-
ation to the accelerations provided by moving object.

4. Aircraft Control System: maintains current commanded state and implements all
control loops for the aircraft's autopilot.

5. VOR Receiver: maintains VOR receiver status and implements lateral deviation
indicators for use by the aircraft control loops.

6. Altimeter: provides current altitude indications for altitude control loops.

7. Flight Plan Mixin: maintains flight plan clearances and provides appropriate
editing and display capabilities.

New capabilities can be added to aircraft by defining new abstract object types and
including them in the mixture. Run time mixing of capabilities is also possible. For
example it is possible to define 4D-RNAV capability and only include it in a portion
of the aircraft that are generated for a specific run.

A.4 Conclusion

There are three basic reasons Object Oriented Programming should be considered the
most appropriate approach for implementing system simulations:

geographic location is a significant attribute in their behavior within the context of our model.

1. The abstraction barriers provided by Object Oriented Programming enhance the

desirable modularity in programming that makes large systems manageable.

2. The software architecture that results from programming in object-oriented style
often match the experiential perception of the system being simulated; this sim-
plifies the mapping between elements of the real system being simulated and
the corresponding software elements simulating them, and between the flow of
causality in the simulated system and the flow of control in the simulation.

3. The Active-Object/Message-Passing paradigm of computation seems to lead to a
practical and effective way of implementing concurrent, synchronized multipro-
cessing, and indeed has been proposed as an approach to concurrent simulations

(reference [JEF 85]).

On the other hand, it must be made very clear that there is nothing in an object-
oriented program that could not be coded in a conventional way, much in the same
way that there is no Lisp program that could not be implemented in FORTRAN,
BASIC, or, for that matter, machine code. It is a matter of convenience. And time.

In reading this appendix, one is tempted to translate the Object Oriented Programming
concepts and examples to traditional function calls - after all, that is what the compiler
would be doing; however, when one's mind is in simulation rather than in language
technology, objects and message-passing are much closer to the real world one is trying
to emulate than function calls.

Developers and promoters of Object Oriented Programming styles face the following
two problems: first, the advantages of these styles - as well as their drawbacks - can
only be perceived by practical use; second, since the fundamental advantage of these
methods lies in the management of complexity, it is hard to convey with the simple
programming examples that one is likely to encounter in a textbook or a report. The
authors predict that user experience will be the only real promoter of these styles.

APPENDIX B

SAMPLE OBJECT DEFINITIONS IN LISP

The following code is extracted from LISPSIM, the lisp-based ATC simulator developed
at the Flight Transportation Laboratory at MIT. Note how the object type TRANSMIT-
TER is defined first, and then both VOR and ILS are built on this type. At the same
time TRANSMITTER is itself built on another object type called GEOGRAPHIC-LOCATION.

-*- mode:lisp; readtable:cl; package:atc -*-

;; ATC Ground instruments.

;; Defined instruments are:
;;; VOR, ILS, and soon to come RADAR

;;; Transmitter is a base flavor for ILS and VOR.

;; Transmitter mixin

(defobject transmitter
((frequency 000.0)) ; instance variables

()
(:included-flavors geographic-location)
(:init-keywords :frequency)
(:documentation "Base flavor for all transmiting objects.")
(:equality-criteria :frequency)
:gettable-instance-variables
:flavor-not-instantiable)

(defmethod (transmitter :before :init)(init-plist)
(let* ((freq (get init-plist :frequency)))

(or (null freq)(send self :set-frequency freq))
self))

(defmethod (transmitter :print-self)
(koptional (stream *standard-output*) printlevel slashify-p)

(oustr (format nil "#<a a ~a>" si:name (typep self) frequency)))

(defmethod (transmitter :set-frequency)(new-frequency)
(cond ((numberp new-frequency)(setq frequency new-frequency))

((stringp new-frequency)(char-to-number frequency))
(t (send self :set-frequency
(cerror t C) :wrong-argument-type
"~s is not a number nor a string" new-frequency)))))

;; VOR transmitter

(defobject vor
((type 'h)) ; instance variables
(transmitter) ; included flavors
(:init-keywords :magvar :type)
:gettable-instance-variables
:inherited-equality-criteria)

(defmethod (vor :before :init)(init-plist)
(let ((vor-type (get init-plist ':type)))

(or (null vor-type)(setq type vor-type))
self))

(defun make-vor(&rest keyword-arguments-to-make-instance)
(apply #'make-instance 'vor keyword-arguments-to-make-instance))

;; ILS transmitter

(defobject ils
((glide-slope-tangent 0.0524077793) ; instance variables
(true-course 0.0)
(om-distance 9260.0))

(transmitter) ; included flavors
(:init-keywords :true-course :glide-slope :om-distance)
:gettable-instance-variables
:inherited-equality-criteria)

(defmethod (uls :before :init)(init-plist)
(let* ((uls-course (get init-plist ':true-course))
(glide-slope (get init-plist ':glide-slope))
(om-dist (get init-plist ':om-distance)))

(or (null ils-course)(setq true-course
(* *degrees-to-radians* ils-course)))

(or (null glide-slope)(setq glide-slope-tangent
(tan (* *degrees-to-radians* glide-slope))))

(or (null om-dist)(setq om-distance (* *nm-to-meters* om-dist)))
self))

(defun make-ils (&rest keyword-arguments-to-make-instance)
(apply #'make-instance 'ils keyword-arguments-to-make-instance))

GLOSSARY AND ABBREVIATIONS

ACF Area Control Facility.

ADA New Department of Defense standard language.

AERA Automated EnRoute Air traffic control.

ARTCC Air Route Traffic Control Center.

ARTS Automated Radar Terminal System.

ATC Air Traffic Control.

ATCLAB Authors' acronym for the proposed ATC automation development and
testing facility. Not an official FAA name.

C A third generation programming language.

CD Common Digitizer.

CDR Critical Design Review.

DEU Display and Execution Unit.

DSUA Dynamic Special Use Airspace.

ESIM External Simulation Model.

FMC Flight Management Computer.

FTL Flight Transportation Laboratory, M.I.T.

HOL High Order Language.

HW Hardware.

I/O Input/Output.

ISIM Internal Simulation Model.

LAN Local Area Network.

NAS National Airspace System.

NSSF National Airspace System Simulation Support Facility.

MB Megabytes.

MDEU Master Display and Execution Unit.

MIPS Million of Instructions Per Second.

MIT Massachusetts Institute of Technology.

PDE Project Dependent (software) Element.

PDR Preliminary Design Review.

PIE Project Independent (software) Element.

PL/1 A third generation programming language.

SCE Simulation Core Element.

SSU System Support Unit.

SSF System Support Facility (of NAS).

SUA Special Use Airspace.

SUT System Under Test.

SW Software.

TATF Terminal Area Test Facility (of ARTS).

TMU Traffic Management Unit.

TSS Traffic management unit Support System.

Bibliography

[ABE 85] Abelson, H., and Sussman, G. J., Structure and Interpretation of Computer
Programs, M.I.T. Press, Cambridge, MA, 1985.

[BIR 73] Birtwistle, G. M., Dahl, O-J., Myhrhaug, B. and Nygaard, K., SIMULA
BEGIN, Auerbach Publishers Inc., Philadelphia, PA, 1973.

[GOL 83] Goldberg, A. and Robson, D., SMALLTALK-80: The Language and its
Implementation, Addison-Wesley, Reading, MA, 1983.

[JEF 85] Jefferson, D., and Sowizral, H., "Fast Concurrent Simulation Using the
Time Warp Mechanism." Proceedings of the Conference of Distributed Sim-
ulation 1985, Society for Computer Simulation, January 1985, pp. 63-69.

[KLA 82] Klahr, P. and McArthur, D., "The ROSS Language Manual." Rand Note
N-1854AF, The Rand Corporation, Santa Monica, CA, September 1982.

[NUG 83] Nuggent, R. 0., "A Preliminary Evaluation of Object-Oriented Program-
ming for Ground Combat Modeling." Working Paper WP-83W00407, The
MITRE Corporation, Mc Lean, VA, 1983.

[STA 84] Stallman, R., Weinreb, D., and Moon, D., Lisp Machine Manual, Sixth Edi-
tion (system Version 99), Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, June 1984.

[BAS 79] Basak S., "ATCSF Data Link Communication Interface Analysis." Report
No ATCSF-97-022, Prepared for the FAA Technical Center by Computer
Sciences Corporation, July 1979.

[NSSF 85] "National Airspace System Simulation Support Facility Baseline Simula-
tion Software: Ground Facility Program / ARTS III Controller Display Pro-
gram Software Interface Control Document." Technical Report No NSSF-
85-005-POO, Prepared for FAA Technical Center by Sperry Corporation,
FAA Technical Center, Atlantic City, NJ, April 1985.

[CD 77] "Common Digitizer Record Program: Functional Specification." Technical
Report FAA-4106F-3, Airway Facilities Service, FAA Technical Center,
Atlantic City, NJ, September 1977.

[ELI 84] Elias, A. L., and Pararas J. D., "Object-Oriented SIMSCRIPT." Unpub-
lished Memo prepared for CACI Federal, La Jolla, CA, October 1984.

