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ABSTRACT

In this thesis we develop two heuristic algorithms for large-scale
multi-vehicle advance-request version of the dial-a-ride problem. This
problem is concerned with developing a set of routes for a fleet of
vehicles serving customers who have to be picked up from specified origins
and be delivered to specified destinations. In this thesis it is assumed
that each customer has specified either a desired pick-up time or a
desired delivery time and that customer requests for service as well as
the number of available vehicles throughout the time period of interest
are known well in advance of the time of actual vehicle dispatching.

The first heuristic approach consists of three successive and
distinct steps: "grouping", "clustering" and "routing". Grouping divides
customers into "time groups" on the basis of their desired pick-up and
delivery times. Clustering separates customers in each time group into
"clusters" and assigns vehicles to serve each cluster. Finally routing
generates routes for each individual vehicle to serve every cluster in
turn and for every time group.

The second algorithm, Advanced Dial-A-Ride with Time Windows
(ADARTW), treats customers' desired service times as strict constraints
and can guarantee prespecified standards of service quality. The service
quality constraints refer to guarantees that (i) customer's ride time will
not exceed a pre-specified maximum and (ii) the service time will not
deviate from the most desired time by more than a pre-specified amount
("the time windows"). The algorithm builds up vehicle tours through
sequential insertion of customers and uses a nonlinear objective function
to guide such insertions. Variations of this basic approach are also
discussed.

We have tested the two algorithms on many simulated cases using
computer-generated data. Computational experience with a large-scale real-
world dial-a-ride problem (2617 customers and 30 simultaneously operating
vehicles) is also presented.
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CHAPTER 1 INTRODUCTION

1.1 Description of Dial-A-Ride Systems

Dial-a-ride is a form of mass transit system which would serve

areas of low travel demand and/or a population with special needs. Such a

system is run with a fleet of vehicles operating on flexible routes

without fixed schedules. Customers call the dial-a-ride agency requesting

to be carried from specified points to other specified points. The agency,

in turn, is responsible for dispatching this fleet of vehicles to meet

such demands during a typical day of operation. The aim of the dial-a-

ride system is to provide a quality of service similar to that of a taxi

at a cost much lower than that of a taxi. It also can serve as an

alternate means of transportation for handicapped people and senior

citizens.

Such demand-responsive transportation systems have been in

operation in several metropolitan and suburban areas of the U.S. (e.g.

Rochester, New York and Dade County, Florida). Several cities abroad

(e.g. Montreal, Canada and Tokyo, Japan) also provide similar services to

their residents.

The concept of dial-a-ride service is simple; the difficult part is

to operate such a system efficiently. There has been increasing concern,

about the high operating costs experienced by many dial-a-ride systems.

Many studies have investigated various facets of system operations Much

research, in particular, has concentrated on ways to utilize efficiently
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the resources and fleet of vehicles operated by dial-a-ride agencies. This

thesis is devoted to the development of a set of tools that can help to

operate such vehicles in an efficient manner. The focus of the work is on

designing computerized algorithms which will either serve as planning aids

for operators or will actually produce a (preliminary) set of vehicle

routes and schedules which can be followed by the operators. In the

following section, we will discuss various types of dial-a-ride problems

that might arise in this context. In Section 1.3 we explain the purposes

of this thesis and present an outline of this work.

1.2 Dial-A-Ride Problems

The successful implementation of a dial-a-ride system depends on

the efficient utilization of its vehicles while providing satisfactory

quality of service to its customers. The problem of developing efficient

vehicle routes and schedules for a dial-a-ride system to satisfy customer

travel demands has become known as the Dial-A-Ride Problem (DARP).

Several versions of DARP exist depending on the type of service being

offerred by the system. In [24], Psaraftis classified different types of

dial-a-ride services as follows:

(1) Many-to-many vs many-to-one

"Many-to-one" refers to a service in which customers are picked up

from distinct points but delivered to one common destination.

Operation of "feeder" services, carrying passengers to a bus

terminal, a train station or an airport are typical examples of a
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"many-to-one" configuration. The reverse situation, "one-to-many",

is clearly a similar problem. In the "many-to-many" problem

customers can have distinct origins and distinct destinations.

(2) Immediate-request vs advance-request

For "immediate-recuest" service, customers call the dial-a-ride

agency and request to be serviced as soon as possible. For

"advance-request" service, customers are required to inform the

agency of their intended trips before a closing time, e.g. no

later than 5 p.m. the day before the intended trips. No request is

accepted after this deadline. It is of course possible that a

dial-a-ride system may serve a mix of these two types of

customers.

The "many-to-one" dial-a-ride problem can be considered as a

special case of the "many-to-many" problem and thus it can be at most as

difficult as the latter. Most research efforts to date have been directed

toward solving the more general many-to-many version of the problem. In

this thesis all the dial-a-ride problems discussed are assumed to be

many-to-many problems unless otherwise specified.

The dial-a-ride problem can be viewed as a more complicated

extension of the vehicle routing problem (or truck dispatching problem)

which was first formulated by Dantzig and Ramser [8] in 1959. The basic

vehicle routing problem (VRP) involves a set of customers, each with a

known location and a known requirement for some commodity, and a fleet of
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delivery vehicles of known capacity located at a central depot. The

problem is to design the delivery routes for these vehicles such that

(a) the requirements of all the customers are met.

(b) the vehicles' capacity is not violated.

(c) the total distance for each vehicle to complete its tour does not

exceed some predetermined level.

The objective of a solution can be stated in general terms as that

of minimizing the total cost of delivery, namely the sum of costs

associated with the fleet size and the costs of completing the delivery

tours.

In the above formulation, if the fleet is a single vehicle having

sufficiently large capacity, and if constraint (c) is ignored, then the

vehicle routing problem becomes the well-known travelling salesman

problem (TSP). When the vehicle routing problem has additional

constraints on delivery times and on the sequence of demand points to be

visited, a combined vehicle routing and scheduling problem (VRSP) arises.

Such problems are abundant in practice and are representative of many

real-world applications. The DARP can be considered as a combined vehicle

routing and scheduling problem in which a customer's pick-up point must

be visited before his(her) delivery point and the customer pick-up or

delivery must be made within certain time intervals so that some service

quality criteria are met.

Vehicle routing problems have been intensively studied during the

past decade. An overview of the major advances in this area is
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instrumental in our study of the dial-a-ride problem. A useful taxonomy

for various vehicle routing and scheduling problems can be found in Bodin

and Golden [2]. Solution procedures are also classified in [2] as

following one of the approaches listed below:

1. Cluster first, route second.

2. Route first, cluster second.

3. Savings/insertion.

4. Improvement/exchange.

5. Mathematical-programming-based heuristics.

6. Interactive optimization.

7. Exact procedures.

Categories 1 through 6 in the above classification are considered

to be heuristics which solve the problem approximately. Exact procedures

in category 7 can solve the problem optimally by branch and bound

techniques, but are viable only for very small problems. The

computational complexity of vehicle routing problems has been shown by

Lenstra and Rinnooy Kan [18] to be NP-hard which suggests that

algorithmic possibilities for optimization methods are limited. (To our

knowledge, the largest vehicle routing problem that has been solved

exactly involved only 31 customers [4].) This suggests that it is

unlikely to find an exact procedure which is polynomial-time bounded with

respect to the input size for the dial-a-ride problem.

In view of the computational complexity involved, we have chosen

to put the emphasis of this thesis on heuristics as the solution to dial-
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a-ride problems. For the large-scale DARPs which we attempt to solve (30

vehicles and 2000 customers) only efficient heuristics are practical in

terms of computation effort involved. In this section we examine

algorithmic approaches that have been developed for vehicle routing

problems and have direct applications to dial-a-ride problems. Based on

the Bodin and Golden classification, we divide the various approaches for

VRP into one of four generic types:

(i) tour-building heuristics,

(ii) tour-improvement heuristics,

(iii) two-phase methods, and

(iv) exact procedures.

The four types are not mutually exclusive. For example, type (iii) might

use both type (i) and (ii) approaches. We now discuss each type of

approach separately:

(i) Tour-building heuristics

Tour-building heuristics build up tours by adding one customer at

a time to some tour until all customers have been assigned to some tour.

Some measure of cost savings guides the choice of the next customer to be

included in a tour. The Clarke and Wright method [5] is one example of

this type of heuristic. Modifications to the basic Clarke and Wright

method have been suggested by numerous authors, including Gaskell [12]

and Yellow [44]. Golden et al. [14] have used computer science techniques

to reduce the running time of this method.
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(ii) Tour-improvement heuristics

Tour-improvement heuristics begin with a feasible vehicle route.

At each step, some combination of links is exchanged for another with a

reduced overall cost while maintaining feasibility of the route. This

prodedure continues until no additional cost reductions are possible. All

heuristics of this type are based on the Lin [19] and Lin and Kernighan

[20] heuristic for the travelling salesman problem. Christofides and

Eilon [3] and Russell [31] have extended this approach to the multiple

vehicle routing problems. Cook and Russell [6] later applied the approach

in [31] to problems with time window constraints.

(iii) Two-phase method

This category includes the sweep algorithm by Gillett and Miller

[13], and those work of Christofides et al. [3] and Tyagi [39]. Usually,

phase 1 involves the assigment of customers to vehicles and the

establishment of initial routes. Phase 2 uses the tour-improvement

heuristic to obtain tours for each vehicle. Recently, Fisher and Jaikumar

[10] used Lagrangian relaxation to solve the generalized assigment

problem in the first phase and used an exact procedure by Miliotis

[21,22] to solve the travelling salesman problem in the second phase.

(iv) Exact procedures

Christofides and Eilon [3] have used the branch and bound app-oach

to solve the vehicle routing problem. The lower bound used in the branch
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and bound method was based on the le.ngth of the minimum spanning tree.

Pierce [23] developed a similar approach. Balinski and Quandt [1] and

Foster and Ryan [11] employed the cutting plane technique in solving the

integer programming formulation of the problem. Recent work by

Christofides et al. [4] is based on spanning tree and shortest path

relaxasions.

A comprehensive survey of the state of the art in solving vehicle

routing and scheduling problems can be found in Bodin et al.[2].

Applying approaches designed for VRP to solve DARP directly, one

may encounter the following problems: (a) DARP is a two-end problem in

which a customer's pick-up point must be visited before the delivery

point and they must be served by the same vehicle. (b) A Dial-a-ride

vehicle's passenger load is difficult to model mathematically. (Vehicle

load can increase or decrease at each stop.) (c) DARP is likely to

include some forms of time constraints. These complications have

motivated researchers to seek specialized algorithms for DARP (one

exception might be those tour-improvement heuristics which are flexible

enough to deal with complicated constraints). We will discuss some of

these approaches designed for DARP in Chapter 2.

1.3 Purpose of This Thesis

The goal of this thesis is to develop computerized algorithms for

solving large-scale advance-request dial-a-ride problems. The capability

to solve large-scale problems is important since manual scheduling in
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such an environment seems impossible or, at best, inefficient.

Computerized scheduling offers great savings in time and with sufficient

sophistication it is likely to produce better schedules than the manual

process.

Past work in the area of dial-a-ride problems has concentrated on

the immediate-request version of the problem. Little has been known about

the advance-request problem. Recently, several simultaneous efforts,

including the work described in this thesis, have focused on the advance-

request version of the problem.

Another important concern' in designing heuristics for the dial-a-

ride problem is that some form of service quality should be considered.

Two fundamentally different scenarios have been suggested by various

researchers during the past decade or so. One scenario has been that

desired pick-up or delivery times should be treated as "hard" time

constraints and that service is acceptable only if the actual pick-up or

delivery times fall within a so-called "time window" of specified

duration. A delivery time window of (say) 20 minutes would allow delivery

of a customer within up to 20 miuntes prior to that customer's desired

delivery time and would consider any late delivery infeasible. Another

scenario is that desired pick-up or delivery times are not "hard"

constraints and that the service operator will try to bring a customer's

actual pick-up or delivery time as close as possible to the desired ones,

without providing guarantees.
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Both scenarios are plausible and each of them may be applicable to

certain classes of system users. We will examine both scenarios in this

thesis. For each scenario, one specialized algorithm was developed and

extensive computational experience with each algorithm was obtained over

a wide range of problem sizes.

Chapter 2 of this thesis gives an overview of past work on

various versions of the dial-a-ride problem. Chapter 3 describes the

first algorithm which treats the time constraints as "soft" constraints.

Chapter 4 introduces the second algorithm which guarantees a pre-

specified level of service quality. Chapter 5 provides computational

results with the second algorithm. Chapter 6 suggests strategies which

may improve the algorithms and concludes this work by suggesting possible

areas for future research.
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CHAPTER 2 REVIEW OF ALGORITHMS FOR DIAL-A-RIDE PROBLEMS

2.1 Introduction

This chapter reviews earlier work that has investigated the dial-a-

ride problem. The discussion consists of four parts. In Section 2.2, the

immediate-request dial-a-ride problem is discussed followed by the

advance-request version in Section 2.3. Section 2.4 discusses a

probabilistic analysis of the problem and finally Section 2.5 outlines two

algorithmic approaches taken in this thesis for solving the multi-vehicle

advance-request dial-a-ride problem.

2.2 Immediate-Reauest Dial-A-Ride Problem

The immediate-request dial-a-ride problem involves diapatching a

fleet of vehicles in response to customer demands that require immediate

service. When a dial-a-ride agency receives a new customer request, its

vehicles are either in an idle state, i.e. waiting for further

assignments, or are busy executing tasks that have been assigned to them

previously. Similarly, customers in the system are either on board some

vehicle on the way to their destination or are still waiting to be picked

up. With the current status of vehicles and customers known, the problem

is to determine which vehicle should serve the new customer and to develop

a new route and schedule for the responsible vehicle.

Wilson and others (40,41,42,43] have examined this problem is. their

pioneering work associated with the Rochester, New York Dial-A-Ride
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Demonstration Project. In [26], Psaraftis introduced an algorithm which

can solve the single-vehicle immediate-request problem optimally using

dynamic programming. Psaraftis and Tharakan [25] later extended this

approach to the multi-vehicle case and in [29] Psaraftis enhance the

dynamic programming algorithm by including the capability of handling time

window constraints. Moreover, Tharakan and Psaraftis [34] have shown that

this dynamic programming approach can be extended to a similar problem

with an exponential disutility function. We now discuss these approaches

in detail.

2.2.1 An Assignment Algorithm (Wilson et al. [42,43])

This algorithm selects the best way to incorporate the new customer

into the existing vehicle route which is called "the provisional route".

All possible combinations of insertions of the new customer into the

provisional route are examined and preferences are determined by using a

cost criterion which is a weighted sum of customer disutility and a

vehicle resource function.

Customers are divided into classes depending upon the type of

service demanded. Different classes of customers have different disutility

functions. Let Di. be the disutility for the ith customer in class j. Then

D.. is defined as:

DP = aW + b R + c P (2-1)

where aj, bi and cj are constants which reflect the particular service

preferences of customers in class j.

Wi is the waiting time between the instant when a request was made
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and the actual pick-up time.

Rg is the time between a passenger's pick-up and delivery,

i.e. the ride time.

Pi is the time between the promised pick-up time and the actual

pick-up time.

The objective function, Z, that determines the relative merits of

different insertions for a new customer p (in class q) is the sum of three

parts:

1) The new customer p's own disutility: Dpq

2) The marginal disutility of other customers caused by the insertion

of the new customer into the provisional route:

D - D )

where Dij is the disutility for customer i in class j after the

insertion of customer p into the route.

3) The cost in system resources:

( TLA - TLv ) ( d-TL + e-TLv

where d and e are parameters.

TLv and TLv are the tour length for vehicle v before and

after the insertion of customer p.

TL is the mean tour length for all active vehicles.

The system resource function is designed to conserve system

resources, i.e. vehicle time, in relative response to the changing

pattern of demands and to equalize workload among all vehicles.
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Thus, the total objective function used in determining the desirability of

an insertion is:

Z - D + ( D(j - Dij ) +(T TL ) ( + eeTLv
i j

After Z values are evaluated for all possible insertions, the algorithm

selects the one which has the minimal Z value as the best insertion. The

new customer is then incorporated into the schedule according to the

selected insertion.

Wilson also included a reassignment capability in the algorithm

which reconsiders previous assignments if required to do so. For example,

if a vehicle is considerably late in carrying out its route, all customers

waiting to be served by that vehicle are considered for reassignment. In

[431, Wilson and Miller described an alternative approach, "deferred

assignment, which defers the decision on assignment until as late as

possible in the hope that better routes can be developed as more

information on future customers is available. However, the effect of such

a strategy was not reported.

2.2.2 Dynamic Programming (DP) Approach by Psaraftis [261

Psaraftis has developed an algorithm which can solve the single-

vehicle immediate-request problem with a linear objective function to

optimality using dynamic programming. In [25], he further extended the

approach to solve the multi-vehicle immediate-request problem. In this

section. we will describe in detail the single-vehicle DP formulation and

its extension to the multi-vehicle case, both within the immediate-request

environment.
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(i) Single-vehicle case

Assume that a dial-a-ride agency receives a customer request at

time t=O and the vehicle is located at A at that time with none or some

customers on board. The problem is to develop a new vehicle route which

includes the new customer and minimizes a generalized objective function.

The generalized objective function is expressed as follows:

minimize wl-I T + w2 - (a-WTi + (2-a) -RTi) (2-2)

where T is the duration of the jth leg of the trip.

WTi is the waiting time of customer i.

RTi is the ride time of customer i.

wl, w2 , a are weights associated with each term which can be

specified by the user.

0 . a . 2

The term, [ Tj, represents the time to serve all N customers

(including the new one). The other term, (a WTi + (2-a) - RT1 ),

represents the total customer disutility which is a linear combination of

the time each passenger waits for the vehicle and of the time he spends

inside the vehicle until his delivery.

Constraints on the problem include: (a) vehicle capacity

constraints (b) the maximum possible position shift from the customer's

original standing in the call list. This second constraint acts as a

"service guarantee" for each customer.
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States in the DP formulation are represented by the vector

(L,K,...,KN) where

a) L: Point the vehicle is currently visiting. It is assumed that:

Between 1 and N : Vehicle is at origin of customer L

L = Between N+1 and 2N : Vehicle is at destination of

customer L-N

2N+1 : Vehicle is at starting point A.

b) K.: "status' of customer j (j=1,.....,N). It is assumed that:

3 : Customer j has not been picked up so far

K = 2 : Customer j is in the vehicle

1 : Customer j has been delivered.

Stage variable n is zero when the vehicle is at the starting point

A, one at the first pick-up stop and so on, until n = 2N at the last

delivery stop.

Based on the above formulation, the DP algorithm can solve the

single-vehicle problem to optimality. Due to the exponential growth in

computation time with respect to the number of customers involved, the

algorithm can solve only small problems, i.e. 8-10 customers, within

reasonable computer time. For example, it takes 2.7 seconds of CPU time

(VAX 11/782) for the case of N = 5, 46.8 seconds for N = 7 and 591.4

seconds for N = 9.

(ii) multi-vehicle case

In the multi-vehicle problem, Psaraftis and Tharakan [25] have
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designed an assignment procedure which determines which vehicle should

serve the new customer. After such an assignment is made, the untravelled

portion of the chosen vehicle's route is reoptimized with the new customer

included using the single-vehicle algorithm. The assignment procedure

employs an objective function which determines the desirability of

assigning the new customer to a vehicle. The objective function can take

two forms:

(a) MINIMAX: The objective here is to minimize the latest time for all

vehicles to complete their assigned route.

minimize max [ 1 T ]
j k

where m is the number of vehicles, Nk and Tk are as defined in

(2-2) for the kth vehicle

(b) MINISUM: The objective here is to minimize the sum, evaluated over all

vehicles, of expressions similar to (2-2). It can be written as

follows:

minimize Y Vk
k

where Vk represents the expression in (2-2) for vehicle k.

The complete multi-vehicle algorithm can be outlined as follows:

Let Z denote the adopted form of the objective function.

Step 1 : For all vehicles j ( j=1,...,m ), compute V., the objective

function for the jth vehicle. If Z = MINIMAX, set Q = max V .

This is an initialization step which does not involve the

new customer.

Step 2 : Tentatively assign the new customer to each vehicle j and

evaluate the prospective V . After V is obtained, 4o the

following: If Z = MINIMAX and V' . Q, then the new customer is
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assigned to vehicle j. The assignment procedure terminates.

Otherwise, obtain V for another vehicle.

Step 3 If Z = MINISUM, then the new customer is assigned to that

vehicle j for which (V - V.) in minimized. If Z = MINIMAX,

then the new customer is assigned to vehicle j for which

max(V',Q) is minimized.

This assignment procedure is optimal if there is only one new

customer and changing previously committed assignments is not allowed.

Like the single-vehicle algorithm, this multi-vehicle algorithm is limited

by the exponential growth in computation time with respect to the number

of points unvisited by each vehicle at the time of the new request. For

large problems, the algorithm can be used under a constraint which limits

the number of points to be considered for resequencing at the time of

appearance of the new customer.

2.2.3 Two Extensions of the DP Algorithm [29,38]

(i) With exponential disutility function:

In [38], Tharakan and Psaraftis show that the DP formulation used

for solving the immediate-request problem with a linear objective function

(see (2-2)) can be extended to the problem with an exponential disutility

function:
N

minimize 1 ai exp ( 1 t (s)) (2-3)
i=1

where S = the set of all feasible sequences of stops.

s = an element of S.
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ai= constant for customer i (i=1,...,N).

= constant.

t'(s) = incremental time customer i "suffers" from either waiting

for the vehicle or riding on board it, when the vehicle travels

between the nth and the n+lst stops of sequence s.

(ii) With time window constraints:

In [29], Psaraftis shows that the same DP formulation can be

modified to consider time window constraints on customers' pick-up times

and delivery times. The backward recursion used in [26] has to be replaced

by a forward recursion so that the temporal aspect of the problem can be

tracked. The computation effort of this modified version is the same as in

the original algorithm.

2.3 Algorithms for the Advance-Request Dial-A-Ride Problem

Algorithms for the advance-request dial-a-ride problem can be

divided into two categories: single-vehicle or multi-vehicle algorithms.

Since the single-vehicle problem is a subproblem of the multi-vehicle

case, its algorithms are mostly used as "subroutines" in the multi-

vehicle problem. In this section, we first introduce three heuristic

single-vehicle algorithms, followed by three multi-vehicle algorithms.

2.3.1 Single-Vehicle Algorithms

The single-vehicle advance-request dial-a-ride problem can be
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defined as follows: Given N pairs of pick-up and delivery points, find the

shortest route covering all the points with a customer's pick-up point

visited first before visiting his delivery point. This problem is similar

to the travelling salesman problem with precedence constraints. The

objective function can vary from the basic shortest route length to

include some measurement of customers' disutility. Time constraints can

also be added to the basic problem so that some quality of service can be

guaranteed. We first discuss two heuristic algorithms by Psaraftis [27,28]

for this version of DARP followed by. a Bender's Decomposition method by

Sexton and Bodin [32].

(i) Two polynomial-time heuristics

Psaraftis [27,281 has developed two polynomial-time heuristics for

the single vehicle dial-a-ride problem with the objective of minimizing

route length. Time constraints and customer disutility are not considered

in this case. The first heuristic is rather simple: It is based on the

Minimum Spanning Tree (MST) that is defined on the N origins and the N

destinations of the problem. From the MST in question, an initial

travelling salesman tour To through the above 2N points can be

constructed. Choose any customer origin on To as the first pick-up point

P1 on the dial-a-ride route. From this point, move on To clockwise until

all points are visited and then return to A (the initial vehicle

location). While doing this , do not visit any point that has been

previously visited, or any destination whose origin has not been

previously visited. Call this dial-a-ride tour T.
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The procedure described above is a generic version of the

heuristic. Several optional steps are possible: (a) Instead of moving

clockwise on To, we can choose to move counterclockwise and compare with

the previous result. (b) Each time choose a different customer origin as

P1 . (c) Improve upon Ti by performing a sequence of local interchanges

(see details below).

The computational complexity of this heuristic in 0(N2). A

pathological case is constructed which shows that the relative error of

the heuristic can potentially go as high as 300%. However, the average

performance of the heuristic is projected to be 13% off the optimum by

comparing simulation results with the asymptotic value obtained by Stein

[37].

In the optional step (c) of the MST-based heuristic, it is

indicated that T, can be improved by applying a sequence of local.

interchanges. As the second polynomial-time heuristic, Psaraftis [28] has

designed a k-interchange procedure which draws from the k-interchange

procedure introduced by Lin [19] and Lin and Kernighan [20] for the TSP.

As in the TSP, a k-interchange in the dial-a-ride problem is a

substitution of k of the links of a dial-a-ride tour with k other links. A

dial-a-ride tour in said to be k-optimal (or k-opt) if it is impossible to

obtain another dial-a-ride tour of shorter length by replacing any K of

its links by any other set of K links.

In [28], Psaraftis was able to develop a method that finds the best

k-interchange that can be produced from an initial feasible dial-a-ride
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tour in O(Nk) time, the same order of magnitude as in Lin's heuristic for

the TSP. Psaraftis has described in detail the k-interchange procedure for

the cases of k=2 and k=3. Computational experimentation shows that the 3-

opt procedures outperform the corresponding 2-opt algorithms by producing

tours that are about 30% shorter on the average if the initial tour is

random and about 6% shorter on the average if the initial tour is MST-

generated.

(ii) Bender's Decomposition

In [32], Sexton and Bodin introduce a heuristic algorithm aimed at

minimizing total inconvenience for all N customers. The total

inconvenience Di of customer i is defined to be a weighted sum of his

excess ride time, ERTi, and his delivery time deviation, DVi (all

customers specify a desired delivery time).

Di = A - ERTi + B - DVi A,B are given constants.
N

The problem is to find a schedule that minimizes i Di.
i=1

Constraints of the problem include that vehicles have limited

capacity and customers cannot be delivered later than their desired

delivery times.

The algorithm can be outlined as follows:

Step 1 Use a space-time heuristic to form an initial feasible route.

Step 2 Find the optimal schedule for the given route by converting

the problem to a maximum profit network flow problem which can
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be solved without substantial computational effort.

Step 3 Improve upon the solution at hand by changing the objective

function coefficients of the routing problem and see whether

the new route and schedule produced yields better results in

terms of total customer inconvenience.

This algorithm was coded in FORTRAN and implemented on a UNIVAC

1100/70 computer. Test data were obtained from operating sites with

problem size ranging from 7 - 20 customers per vehicle. Computation time

averaged roughly 18 seconds of CPU time per vehicle. This algorithm is

later used as a core component in a multi-vehicle algorithm by the same

author.

2.3.2 Multi-Vehicle Algorithms

The multi-vehicle advance-request dial-a-ride problem has attracted

much interest lately among several groups of researchers. The main purpose

of this thesis is to develop algorithms for this particular problem. We

will examine other works on this problem in this section:

(i) Bender's Decomposition

Bodin and Sexton proposed a heuristic algorithm which employs the

single vehicle dial-a-ride algorithm described in Section 2.2 as the core

component for solving the multi-vehicle case. It first partitions

customers into several clusters. Within each cluster, the single-vehicle

algorithm is used to develop the vehicle route and schedule which
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minimizes customer inconvenience. After initial schedules are obtained for

each vehicle, a route improvement procedure, the "swapper" algorithm, is

used to swap customers one at a time between vehicles so that the total

customer inconvenience is reduced. This improvement procedure is repeated

until no further improvement can be found.

This algorithm was applied to one small data set consisting of

about 85 afternoon customers of the dial-a-ride system in Baltimore, MD.

It took about 2-3 minutes CPU time on Univac 1108 to complete a single

run. Results compared favorably with the manual solution.

(ii) NEIGUT/NBS algorithm [15]

The NEIGUT/NBS algorithm is aimed at maximizing vehicle

productivity by determining the minimum number of vehicles necessary to

provide dial-a-ride service. The algorithm uses the concept of a "base-

trip" which is defined as a vehicle route starting from a customer's

origin and ending at his destination. The base-trip customer serves as a

seed in attracting other customers to share the ride with him. By packing

as many customers as possible into a base trip, the algorithm forms a

vehicle sub-tour (partial schedule) which starts with the first pick-up of

a customer when the vehicle is empty and ends after delivering the last

customer on board in the expanded base-trip. A vehicle's whole-day

schedule is then constructed by linking different sub-tours together. Not

all customers have to be served since the algorithm assumes that a

supplemental service ,e.g. taxi, is available and might be less expensive

than using the dial-a-ride vehicles.
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The algorithm also seeks to meet a specified quality of service for

all customers. Customers are guaranteed to be served within given time

intervals and their maximum on-board times cannot exceed a prespecified

limit. No customer disutility or inconvenience is assumed in the model.

The algorithm starts by treating every customer as a base-trip and

for each base-trip, it evaluates the possibility of insertion of another

customer into the base-trip. For example, assume that the base-trip

customer is customer k and Pk and dk denote the pick-up and delivery of

customer k. To insert another customer, say , i to this base-trip, two

possible permutations are examined: Pk' pi, di, dk, and pk' pi, dk, di. Of

all possible permutations (there might be more than two if the base-trip

has been expanded already), the permutation selected is the one that is

feasible in term of service time constraints and maximum on-board time

constraints and that minimizes the travel time from pk to dk. This

procedure is repeated until no more customers can be added to the base-

trip. The partial schedule formed is then assigned to a vehicle by linking

it with other partial schedules already assigned to that vehicle.

The process of constructing partial schedules is repeated over the

remaining set of unassigned customers until all customers are included in

the vehicle schedules. It is to be expected that the routes generated

first are the most productive and the routes generated last tend to be

inferior in this respect. As a result, vehicle workloads tend to be

unevenly distributed.
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(iii) Parallel insertion [30]

Roy et al. [30] develop an insertion-oriented algorithm for dial--

a-ride systems in Canada which provide transportation service to the

handicapped. The algorithm guarantees a quality of service similar to

that of the NEIGUT/NBS approach. Each customer is allowed to specify

either a desired departure time or desired delivery time. Deviation from

the desired service time is kept below a specified limit. The algorithm

also places an upper bound on a customer's excess ride time. The customer

disutility function is taken to be a linear weighted sum of service time

deviation and excess ride time. Without considering customer disutility at

first, the algorithm constructs an initial set of vehicle routes and

schedules by sequentially inserting customers to the routes that have been

built up from previous insertions. After all customers have been inserted

into the initial set of routes, the algorithm then considers exchanging

customers between vehicles so that customers' disutility can be reduced.

Before considering the insertions of customers, a concept of

"neighbor" is introduced to group together neighboring customers who are

likely to be served by one vehicle. For example, customer k is considered

to be a neighbor of customer i if

(a) LPTk - EDTi > d(-i,+k) and d(-i,+k) . MAXSEP,

where MAXSEP is a pre-determined constant

or

(b) LDTk - EDT i d(-i,-k) and d(-i,-k) MAXSEP

and d(+i,+k) + d(+k,-i) < 1.4-d(+i,-i)

The constant 1.4 is a parameter which approximately defines an ellipse
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around the stops. A "time-horizon" concept is also used to define the set

of customers considered simutaneously as the candidates for the next

insertion. The time-horizon is defined by a time window and a maximum

number of customers allowed in the horizon.

The algorithm starts by worting the customers in ascending order

with respect to their desired service time. Initialization occurs by

identifying those customers whose desired service time falls within the

specified horizon. For each customer in the horizon, find his neighbors

satisfying the relationship (a) or (b) above. Initialize one or several

routes with groups of neighboring customers (details of which are not

clear in [30]). Then, repeat the following procedure:

Step 1 Update the horizon, i.e. move the time window defining the

horizon later in time and introduce more customers into the

horizon.

Step 2 Attempt to find the best route for a chosen customer d in the

horizon. If it is infeasible to insert customer d, then relax

the time windows of customer d and try again. If still not

feasible, initialize a new route for customer d.

Step 3 Attempt to insert the neighbors of customer d in the

horizon into the same route to which customer d is inserted.

Step 4 If all customers are assigned to routes, go to Step 5.

Otherwise, go to Step 1.

Step 5 Attempt to reduce customer disutility by exchanging customers

between vehicles. Start with the customer who has the highest

disutility and repeat the procedure until no improvement can

be realized.
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In [30], it is not clear that the algorithm will eventually provide

a feasible solution in terms of satisfying service quality guarantees when

time window constraints are relaxed in Step 2 above. In other words, the

exchange procedure in Step 5 does not guarantee reestablishment of those

relaxed constraints after exchanging customers between vehicles.

Test results of the algorithm are obtained for actual problems in

Montreal and Sherbrooke in Canada. The results show that the algorithm can

provide smaller cost schedules and better service quality when compared

with the schedules produced by the dial-a-ride agencies. A case of 451

customer requests and 31 vehicles required 472.3 seconds of CPU time( type

of computer used is not known).

2.4 Probabilistic Analysis

Stein [37] conducted a probabilistic analysis of the dial-a-ride

problem. The approach taken is one of preplanning at a global level. It is

assumed that in a large system where there is a large number of

passengers, it should be possible to predict quite closely the behavior

patterns of the set of all customers, and to design the system

accordingly. With such an analysis, any proposed schemes in system design

can be evaluated analytically, without the need to resort, at this basic

level, to simulation.

Assume that there are n customers demanding service. Customers'

origins and destinations are independently and uniformly distributed over

a region R with area A. In [37], Stein proves the following theorem:
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THEOREM i. Let Y* be the length of an optimal bus tour through N random

demand pairs in a region of area A. If N is large, then with high

probality

Y : 1.89 b V T

The constant b has been estimated by Monte Carlo experiments to be

0.765.

For a multi-vehicle fleet problem, Stein states that to minimize

total travel time without transfers, one tour would suffice. If transfers

are permitted and the objective is to minimize the time-to-completion,

then passengers are to be serviced in parallel by a fleet of k vehicles

and the maximum length of any tour is shown to be

yk ,~
AN 4/ 3 2b/k R' I

Stein also evaluates asymptotically the performance of the design

scheme for the dial-a-ride system in Ann Arbor, Michigan. Models and

algorithms for the immediate-request problem are also discussed.

2.5 Two Algorithmic Approaches Proposed in This Thesis

The two algorithms proposed for the multi-vehicle advance-request

dial-a-ride problem are heuristic in nature which can solve large-scale

problems efficiently. The first algorithm, to be described in Chapter 3,

assumes that the time constraints on customers' desired service time are

"soft". In other words, the algorithm will try to serve customers close

to their desired times, but does not guarantee it. The second alqorithm

treats service quality constraints as "hard" constraints. Furthermore, it
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assumes the presence of customer disutility with respect to the quality of

service offered. We will describe this algorithm in Chapter 4.
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CHAPTER 3 A HEURISTIC ALGORITHM FOR DARP WITH SOFT TIME CONSTRAINTS

3.1 Introduction

This chapter describes a heuristic algorithm developed for the

multi-vehicle advance-request dial-a-ride problem without "hard" time

constraints. The heuristic approach has been designed with three basic

objectives in mind. The first, motivated by increasing concern about the

exceptionally high costs of many existing dial-a-ride systems, is to

achieve high "vehicle productivity". Vehicle productivity is defined here

as the "number of customers served per vehicle hour".

A second objective is to design routes and vehicle schedules that

result in an acceptable level of service to the system's customers. We

measure this level of service in two ways: (i) through the "circuity" of

each customer's ride, i.e. the ratio of the distance actually ridden to

the direct distance between the customer's origin and destination; and

(ii) through the absolute value ("deviation") of the difference between

each customer's actual and desired pick-up (or delivery, as appropriate)

times. Clearly the minimum values of these two measures are 1 and 0,

respectively.

The third major objective is to develop a solution procedure which

can be used to solve large-scale problems efficiently. The target size is

systems with approximately 60 simultaneously active vehicles serving as

many as 500 customers per hour. (Problem size is best measured by hourly

demand rather than by the total number of subscribers as in most vehicle
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routing problems because of the way this algorithm treats the time

dimension of the problem - see also Section 3.2). To our knowledge, no

existing algorithm has been applied to date to problems of comparable

size.

Since the nature of the problem does not require strict time

constraints be met, it is assumed that the service operator will try to

bring a customer's actual pick-up or delivery time as close as possible to

the desired ones, without actually guaranteeing that. Thus, as will be

seen in Section 3.2, if a customer has specified a desired delivery time

of (say) 10:23 a.m., the proposed algorithm will attempt to deliver that

customer within a specified "time group", say, between 10:00 a.m. and

10:30 a.m. The projected actual delivery time will be recorded and

accounted for in the algorithm's overall performance. Moreover,in Section

3.4 we shall see that the routing part of the algorithm provides a

capability of satisfying "hard" time window constraints within each

individual time group, or minimizing the number of late deliveries or a

related tardiness measure. Those customers whose deviations, despite all

efforts, are excessively long can either refuse service, or be denied

service, or finally serviced by a back-up fleet of vehicles (e.g.

taxicabs) at the option of the dispatcher.

The algorithm that has been developed as a result of the above

considerations consists of three successive and distinct steps, namely

grouping, clustering, and routing. Figure 3.1 shows the algorithm's basic

structure. Grouping consists of dividing customers into "time groups" (or,

simply, groups) on the basis of their desired pick-up and delivery times.
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Structure of the GCR algorithm.Figure 3.1
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Customers in each time group must be picked up or delivered (or both)

within the corresponding time interval. After the groups are formed

clustering is performed, starting with the first group (associated with

the earliest time interval under consideration) and proceding sequentially

to the last one. The aim of clustering is to separate customer groups into

smaller "clusters" so that each vehicle can serve the cluster to which it

is aasigned within the bounds of the corresponding time interval. Finally,

a routing algorithm is called to generate routes for each individual

vehicle, the routing algorithm being applied to every cluster in turn and

for every time group. We shall describe each of the three basic steps of

the algorithm in Section 3.2, 3.3 and 3.4, respectively. Section 3.5

provides an example of clustering and Section 3.6 describes our

computational experience which includes runs using both simulated data and

a real data base of 2,617 customers covering approximately 16 hours of

service of the dial-a-ride system operating in the city of

Friedrichshafen, West Germany. Section 3.7 discusses the computational

complexity of the algorithm.

3.2 Grouping

During the grouping process we divide the time horizon into equal

and consecutive time intervals and then assign customers to groups,

according to the time interval into which the customers' pick-up and

delivery times fall. To perform customer assignment to groups we associate

a desired pick-up time (DPT) and a desired delivery time (DDT) with each

and every customer. Specifically, for a customer j who has specified a

desired delivery time, we estimate a desired pick-up time by using:
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DPT . = DDT . - CF - DRT . (3-1)

where CF is a conversion factor (CF 2 1) and DRT. is the direct trip time

of customer j.

Similarly, if a desired pick-up time has been specified by the customer,

we set:

DDT. = DPT . + CF - DRT. (3-2)

The conversion factor CF is a user input. Indeed, CF is used as a

"calibration* parameter in our algorithm. A small value of CF (~ 1.0)

would force the algorithm to design relatively non-circuitous routes.

Larger values of CF would likely result in longer ride times, but, at the

same time, lead to higher productivity.

For any time interval, we identify three categories of customers:

Category 1: Those customers whose DPT only falls within the time

interval. Category 1 customers will only be picked up during the time

inetrval in question, if this is feasible with available resources.

Category 2: Those customers whose DPT and DDT fall within the time

interval. Category 2 customers will be picked up and delivered during

the time interval in question, if this is feasible with available

resources.

Category 3: Those customers whose DDT only falls within the time

interval. Category 3 customers will only be delivered during the time

interval in question (presumably they have been picked up at an earlier

time) if this is feasible with available resources.
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Example 3.1:

Assume that the time horizon has been sub-divided into 30-minute

time intervals with the first interval beginning at 7:55 A.M. Then a

customer with DPT = 8:08 and DDT = 8:36 is a category 1 customer with

respect to group 1, i.e., the group associated with the first time

interval (7:55-8:25) and a category 3 customer with respect to group 2

(8:25-8:55). A customer with DPT = 7:58 and DDT = 8:15 is a category 2

customer with respect to group 1. (End of Example 3.1)

The length DT of the time intervals on which grouping in based is

also a calibration parameter that is specified by the algorithm's user.

Note that the time interval serves as a time bracket during which the

algorithm will try to schedule pick-ups and/or deliveries for all the

customers in the corresponding group. Thus, the length of the time

interval should be long enough so that the DPTs and DDTs associated with

all customers assigned to the same group can be treated as if they were

approximately the same.

Note also that if the above defined customer categories are to be

collectively exhaustive for each time group, DT must be chosen such that

all category 1 customers in a time group k are category 3 customers in the

next time group k+1. It is straightforward to see that the lowest possible

value of DT that can be chosen so that the above is valid is:

DTmin = 0.5 - CF - Max DRT

(the maximum is taken over all customers of the problem at hand).
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To avoid a possible deterioration of service quality, special

attention should be paid to cases where DTm in proves to be higher than the

minimum interval desired for assuring decent service: this may be caused,

for instance, by some customers who have excessively long direct ride

times relative to other customers. From a worst-case point of view, the

larger the value of DT, the higher the risk of large pick-up or delivery

deviations and/or excess ride times for all customers requesting service.

To reduce such a "worst-case" risk, some straightforward procedures

can be implemented within the grouping part of the algorithm. Such

procedures, collectively referred to as "enhanced grouping", will be

discussed in Chapter 5 of this thesis. For the moment, we shall assume

that DT, CF, the dimensions of the service region and the vehicle speed

are such that every customer's DPT and DDT are guaranteed to fall either

within the same or within consecutive time intervals. A sensitivity

analysis on CF and DT will be reported in Section 3.6.

Even if its "enhanced" version is used, grouping is by far the

simplest step in our algorithm. By sub-dividing customers into groups, we

can subsquently deal with one time interval at a time, i.e., we decompose

a large problem into many smaller ones. Of course, these smaller problems

are not independent of each other, since a category 1 customer picked up

by a vehicle during interval k will automatically become a category 3

customer on that same vehicle at the beginning of time interval k+1. We

thus have to deal with each of the small problems individually as well as

with the interface between these problems. The next section will d'scribe

the way this can be done.
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3.3 Clustering

Through clustering each of the time groups of customers is sub-

divided into subsets called "clusters". Each cluster is then assigned a

vehicle which will service all points in that cluster, hopefully within

the time bounds of the interval associated with the corresponding time

group. More specifically, for a given time group , a cluster is a subset

of customers which will be serviced (picked up or delivered or both) by

the same vehicle during that time group.

The clustering part of the algorithm attempts to provide answers to

the following questions:

(1) How do we divide customers into clusters?

(2) How do we assign vehicles to clusters?

(3) How do we link clusters belonging to adjacent time groups?

A cursory glance at the clustering component of our problem can reveal at

least the following two facts:

(1) Clustering in a many-to-many environment is difficult. In fact,

there is no guarantee that if a set of customers have origins close

to one another (and hence potentially suitable to be serviced by

the same vehicle), those same customers will have their

destinations in roughly the same area too. This fact alone

disqualifies the use of straightforward geometric procedures (such

as the "sweep" algorithm of Gillett and Miller (13]) that have been

proposed for the routing of a fleet of vehicles from a central

depot to specified delivery points.
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(2) Little or nothing on the problem of clustering of multi-vehicle

many-to-many dial-a-ride systems has been reported in the

literature to date. Sexton abd Bodin [33] address the problem of

improving clusters by "swapping" customers among them but do not

present a method for obtaining good initial clusters.

It was consequently decided to design a clustering procedure from

scratch. In designing such a procedure the following cluster attributes

and procedure features were considered important:

(1) Clusters should be "spread out" from one another as far as

possible. Indeed, it would make little sense to have two clusters

that end up producing similar directional travel patterns for two

vehicles in the same region.

(2) Clusters should be such that resulting vehicle workloads are "about

the same" for all vehicles. In other words, it would be

unreasonable to have one or few vehicles "bear the brunt" of the

demand load while the remainder of the fleet remain underutilized.

(3) Clusters should be such that resulting routes are as short and

compact as possible. It is felt that such a feature would

ultimately increase total vehicle productivity.

(4) There is a need to provide a good "predictor" of the route

length associated with a cluster, without using a routing algorithm

to do so. In this approach it is decided to use the length of the

spanning tree associated with a cluster as such a predictor.

Asymptotic analysis by Stein [36] has shown that the optimal dial-
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a-rdie tour is proportional to the square root of the size of the

area and the number of customers served (see Section 2.4). Similar

relationship exists between the length of a minimum spanning tree

and the number of vertices defining the graph and the size of the

area . Since in the clustering step we only need the relative

magnitude of workloads among vehicles, the length of a spanning

tree provides reasonably good approximation for this purpose.

(5) There ia a need for "look-ahead" procedures to link the current

time group with the next time group. In other words, the clusters

at time group k should somehow take into account the destinations

of category 1 customers that will be visited (as category 3

customers) at time group k+1.

(6) There is a need for each cluster to provide for good "directivity"

in the resulting routes. A route has good "directivity" if it does

not deviate too much from a simple directional pattern (e.g. east

-to-west, north-to-south). An example of a cluster that

provides good directivity is shown in Figure 3.2(a). The cluster of

Figure 3.2(b) provides poor directivity, despite the similarity

with the one in Figure 3.2(a). The procedures used should be able

to discriminate between apparently similar clusters with different

directivity characteristics.

In the approach chosen, clusters are formed using a tree-building

process. In other words, at each iteration each cluster can be represented

by a tree that connects the origins and destinations that comprise the

cluster. We start with as many trees as the desired number of clusters by

identifying an equal number of "seed customers" who will form a nucleus
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for each tree. We then add customers to trees (clusters), one at a time,

until all customers in each given time group have been assigned to a

cluster.

The clustering algorithm processes each time group consecutively,

starting with the group of the time period under consideration. The number

of clusters into which each group is sub-divided is set equal to the

number of vehicles available during the corresponding time interval (more

on this point in Section 3.7). Let the required number of clusters for a

given group be m. The clustering procedure can then be summarized by the

following three steps:

Step 1: Identify the first customer for every cluster. Each of these m

first customers serves as a "seed" for a cluster.

Step 2: Assign vehicles to clusters.

Step 3: Add other customers in the group to clusters one by one

according to several geographical proximity rules until every

customer belongs to one of the clusters.

Detailed descriptions of each of these three steps follow, along

with explanations of the reasoning behind this approach. The list of

symbols in Table 3.1 will be helpful to the discussion.

Step 1: Find seeds as a basis for the clusters.

As mentioned earlier the fundamental idea behind the selection of

"seed customers" is that it is preferable to have these customers be as

"spread out" (in the geographical sense) as possible within the region of

interest. This will make it more likely that the clusters (and eventually
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Table 3.1 List of Symbols for Clustering Step

i,j,n,t

Ct:

d(j,Ct):

d(j,CSt):

dir(xl,x
2 ):

m:

+j:

-j:

APk.t.

S.:

S.:

St:

Sj:Is I:
Tk:

V.:

Wt:

FWt:

AWt, j:

AFWt, j:

indices.

the set of customers serving as cluster t's seed.

the distance between customer j and cluster t (see also Tables

3.6 and 3.7).

the distance between customer j and cluster t's seed

(see also Table 3.2).

direct distance between point x, and point x2'

number of vehicles used in Tk.

origin point of customer j.

destination point of customer j.

slack or surplus of path length of vehicle serving cluster t

at the end of Tk.

the set of category j customers in Tk.

the set of category j customers in Tk who have not yet been

assigned to any clusters.

the set of category j customers in cluster t.

total number of members in set S.

group k; Tk ia also used to represent the group in which

clustering or routing is being performed.

location of vehicle j when it becomes available in Tk.

workload predictor for cluster t.

future workload (in the next time interval) of cluster t.

incremental workload introduced by adding customer j to
cluster t.

incremental future workload introduced by adding category 1

customer j to cluster t.
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the routes) which will be developed around these seed customers will be

compact and geographically distinct. In addition, customers who are

geographically far from each other would be poor choices for inclusion in

the same clusters (and routes) and, therefore, can justifiably be chosen

as seeds for distinct clusters from the very beginning.

Category 3 customers in Tk are already on board some of the vehicles

at the beginning of the current time interval k (these customers have been

picked up, as category 1 customers, during time interval k-1). Thus

vehicles with category 3 customers on board do not require a seed

customer: the destination point(s) of the customer(s) on board will

provide the seed(s) for the clusters associated with such vehicles. Call

this set of vehicles v. Then, we have to find seed customers only for the

remaining m - lvi vehicles.

Our choices now lie in category 1 and 2 customers. Since category 2

customers, for whom both origin and destination must be visited in Tk, are

more indicative of the likely area where a vehicle will travel, we prefer

to choose them as seeds first. Only when there are no category 2 customers

left can category 1 customers be considered as possible seed customers.

Selecting seed customers is an iterative procedure during which one

seed customer is selected at a time. Each time we try to select a seed

customer, one of the following four collectively exhaustive situations

must apply:

(1) no cluster seeds present, and S2

(2) no cluster seeds present, and S2 S1
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(3) some cluster seeds present, and S2 =

(4) some cluster seeds present, and S2 =' S1 ~

(Note that it is possible that S = S.). In situations (1) and (2), we are

trying to select the very first seed. The somewhat arbitrary rule that we

have used is to choose the customer who has the most distant trip to make.

In situations (3) and (4), we cry to select a seed at a time when some

other seeds have already been identified. The seed selection rules in

these cases can be described as literally choosing the customer who has

the maximum distance to the closest cluster. The distance between customer

j and the seed t, d(j,CSt), is defined in Table 3.2. The mathematical

expressions for the seed selection rules under different situations are

given in Table 3.3.

Step 2: Assign vehicle to clusters.

The reason why assignment is performed now instead of at the end of

clustering when we have complete information about clusters is that,

associated with each vehicle i, we have some useful information, namely

API (to be defined later) which will be used in the subsequent

clustering procedure.

It is desired that vehicle i be assigned to a cluster t as long as

the location of vehicle i, Vi, is close to the position where the vehicle

will start serving the cluster t. A good approximation for this starting

point might be the origin point of the seed customer in cluster t. So, the

cost of assigning vehicle i to cluster t is defined by dir(Vi,+j), j e

CSt, |CStj = 1. Our objective is to minimize the total cost ,f the

assignment. Instead of using an optimizing assignment algorithm (e.g., the
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Definition of distance d(j,CSt) between customer j and seed t.

Seed selection rules

Table 3.2

Table 3.3

j e S j e Si

S j = 1 impossible case dir(+j,+n) + dir(-j,-n), neSt

St = 1 dir(+j,+n) + dir(-j,-n), neSt min [dir(+j,+n),dir(+j,-n)]

ne2

ISj > 1 min[dir(+j,-n)] + min~dir(-j,-n)] min[dir(+j,-n)]
neSt neSt neS3

Situations Choose customer i who solves

(1) max [ dir(+j,-j) ]
jBS

2

(2) max [ dir(+j,-j) I
jeS

1

(3) max, { min [ d(j,CSt) I
jeS2  t

(4) max, { min [ d(j,CSt) I
jeSi t
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Hungarian Method), we have chosen to use a simple and quick heuristic --

the greedy approach. This can be stated as follows:

Set up the assignment matrix C with rows corresponding to vehicles

and columns corresponding to clusters. Find the least cost element

C * in C. Assign vehicle i to cluster j. Eliminate row i and column'a
j from C. Repeat .he process until every cluster has been assigned

a vehicle.

Step 3: Add remaining customers to clusters.

The population of customers, Tk, is categorized into three sets,

S1, S2 S3. Since all the customers in S3 (as well as those in S2 and/or

SI who have been chosen as cluster seed) already belong to clusters, we

only have to consider the remaining population S2 and S, to add to

clusters. Our strategy for clustering is to use some geographical

proximity rules to evaluate which customer should be added to which

cluster so that high vehicle productivity can be achieved. As noted

earlier we would also like to distribute "workload" evenly among vehicles

so that ride circuity and time deviations are minimized. The "workload" is

defined simply as the distance that a vehicle will have to travel in order

to serve every customer in the cluster to which it has been assigned. For

computational efficiency reasons, i.e., in order to avoid calling a

routing algorithm every time a customer is being considered for addition

to a cluster, we have devised predictors for workloads. Note that each

addition of a category 1 customer to a cluster obligates the corresponding

vehicle to visit that customer's origin point in Tk, as well as the

customer's destination point in Tk+l. For each cluster, we thus need two
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predictors, Wt and FWt, which denote respectively the workload of cluster

t in Tk and the future workload of cluster t in Tk+l. An addition of a

category 1 customer to a cluster t increases both Wt and FWt. Let the

incremental workload to Wt and FWt' due to adding customer j to cluster t

be AWt,j and AFWt,j. With knowledge of Wt, FWt' AWt,j, AFWt,j, we can then

prevent a cluster from growing out of proportion with respect to others by

choosing t and j such that the resulting Wt + AWt,j and/or FWt + AFWt,j
are consistent with the objective of equalizing workloads.

We now proceed to present the details of this process which can be

summarized in four iterative steps:

Step 3.1:

Step 3.2:

Step 3.3:

Step 3.4:

Compute each cluster's workload following completion of the

seeding procedure.

For each cluster, find a candidate customer to join it and

determine the incremental workload incurred. Category 2

customers are considered first.

Choose one customer among all candidate customers such that

if this customer is added to the corresponding cluster, the

resulting maximum workload among all clusters is minimized.

Add this customer to the corresponding cluster and update

the cluster's workload.

If all customers have been assigned to clusters, stop.

If not, go to Step 3.2.

Let us consider the details of these four steps.

Step 3.1: The starting workload for cluster t (which only contains a seed
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at this stage)

Component (A):

Component (B):

Component (C):

is composed of three components:

Distance between cluster t and the location of vehicle i

responsible for the cluster. Table 3.4 gives this

distance as a function of the seed customer's category.

Workload introduced by seed customers in the cluster.

See Table 3.5. FWk-1 in Table 3.5 indicates the workload

required to fulfill the obligation of delivering category

3 customers on board (who were picked up in Tk-1 and are

thus acting as seed customers in time group Tk).

Surplus or slack workload transferred from the previous

time group, Tk-1,

If a vehicle serving cluster t cannot finish its assigned path in

Tk-1 and the unfinished path APk-i must be extended into Tk we shall

transfer APk-i to the workload of vehicle t in Tk. Note that APk-1 can beT. t

(and often is) negative which indicates that the vehicle can finish its

assigned path earlier than the end of Tk-1. Thus, we have: Component (C) =

pk-1
t

On completion of Step 3.1 we therefore have:

Wt = Component (A) + Component (B) + Component (C)

Step 3.2: In this step, we wish to choose one candidate customer for

every cluster. We give priority in this selection process to category 2

customers for the same reasons that they were considered first as possible

seed customers earlier. To formalize the decision rules for choosing these

candidates, we need to introduce the quantity d(j,Ct), which denor s the

distance between customer j and cluster t. The value of d(j,Ct) depends on
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Table 3.4 Component (A): distance between cluster t and the location of

vehicle i responsible for the cluster.

Table 3.5 Component (B): workload introduced by seed customer in the

cluster.

Seed customer 1 2 3
j's category

Component (B) zero dir(+j,-j) FWk-1
t

Seed customer 1 2 3
j's category

Component (A) dir(Vi,+j) dir(Vi,+j) min [ dir(Vi,-j) ]
jeCSt
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customer j's category and the categories of customers in cluster t. Table

3.6 and 3.7 give the expression for d(j,Ct) for all possible different

cases.

The category 2 candidate customer for cluster t should be that

customer i who solves:

min, [d(j,C tjest

The incremental workload then is: AWti = d(i,Ct), AFWt'i = 0

If all category 2 customers have been exhausted, the category 1 candidate

customer for cluster t should be the customer i who solves:

min, [d(j,C t
jest

The incermental workload then is: AWt,i = Ai, AFWt,i = bi where Ai and 6i

are as defined in Table 3.7.

Step 3.3: Let (t,i) denote the fact that customer i is the candidate for

cluster t. Which candidate should actually be added to his corresponding

cluster is determined by solving, for all (t,i):

min ( max [ max(W + AW ., FWt + AFW .) , W. ] i
all (t,i) jt t tl t t,i j

Let (t*,i ) solve the above expression. (Should a tie arise, choose that

(t*,i*) among the tied candidates which is associated with the smallest

AWti). Then, add customer i* to cluster t* and update the workload of Ct

as follows:

Ct* + {i*} ->C t

Wt* + AWt*,i t
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Table 3.6 Definition of distance d(j,Ct) between customer j and cluster t

(jeS2)

22

min [ dir(+j,+n) I min [ dir(+j,+n) I
neSt neSt

j3S2
j eS2 + +

min [ dir(-j,-n) I min [ dir(-j,-n) I
neS3 neS

Table 3.7 Definition of distance d(j,Ct) between customer j and cluster t

(jeSj)

d(j,Ct)

d~sCt = s . A + &

d(j Ct j + Sg d(j,Ct) ~ j + 6

A. = min [ dir(+j,x) ] A. = min dir(+j,x) ]
x is any point in Ct x is any point in Ct

jeS6 = 0.5 - (A/N)1/2  8. = min dir(-j,-n) ]
n eS t

A the service area,

N the number of category
3 customers in Tk.

* See Larson and Odoni [17].
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FWt* + AFWt*,i t

t i t I* ~ *1 *
If i' a S2 , then: S - i -> S2 . If ieS,, then: S1  - (} ->S

Go to Step 3.4

Step 3.4: If S2 and S=, stop. Otherwise, go to Step 3.2.

3.4 Routing

Upon completion of the clustering process, the routing part of

algorithm is called to generate a route and time schedule for every

cluster in every time group. Each cluster corresponds to a single-vehicle

dial-a-ride routing problem. The objective is to find the shortest route

that serves all points in the cluster. This objective is consistent both

with achieving high vehicle productivity and with providing relatively

efficient service to the system's customers.

According to the review of dial-a-ride algorithms in the previous

chapter, we have a "menu" of 5 different algorithms that can be used

independently or in combination to solve the single-vehicle problems that

are defined for each cluster. The menu of routing algorithms is as

follows:

(1) Exact algorithm without time constraints (Psaraftis,[26]).

(2) Heuristic "Minimum Spanning Tree" algorithm (Psaraftis,[27]).

(3) Heuristic "k-interchange" algorithm (Psaraftis,[28]).

(4) Exact Dynamic Programming algorithm with time windows

(Psaraftis,[29]).

(5) Heuristic "k-interchange/tardiness" algorithm.
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The basic version of the multi-vehicle algorithm is implemented

using the second and third algorithms sequentially, with the third

algorithm implemented for k = 3. No experience exists with using any of

the other algorithms within the multi-vehicle environment; however a

nearest-neighbor algorithm has also been used for a specific application

(see Section 3.6.2 for the circumstances that led to that choice).

3.5 An Example of Clustering

We now use an example to illustrate some of the details of the

clustering algorithm. The example is based on a 6 x 6 mile service region

which, intentionally, contains relatively few points. Figure 3.3 depicts

each customer's origin (denoted by a "+") and destination (denoted by a

"-"). Four vehicles, located respectively at V1 , V2 ' V3 , and V4 , will

provide service to customers in this time group. The time group includes

all three categories of customers. Table 3.8 indicates the category of

each customer. It should be noted that customer 20, 23 and 24 are category

1 customers, i.e., only their pick-up times fall within the current time

interval. The destination points of these customers ( -20, -23, -24 ) are

shown in Figure 3.3 only because they will be used during the clustering

process to assign customer 20, 23 and 24 to a cluster. However, these

destination points will not be visited during the current time interval

and do not properly belong to the current group.

With respect to category 3 customers, it is assumed for this

example that customers 1 and 2 are already on board vehicle 1, while
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Locations of pick-ups and deliveries for the

example.
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Table 3.8 Customer category classification for the example

Category Customers

1 20, 23, 24

2 5, 6, 7, 8, 9, 10, 11

3 1, 2, 3, 4

Table 3.9 Step 1: customer 8 is selected as the third seed

Customer j d(j,CSI) d(j,CS2 ) min(d(j,CSI),d(j,CS2))

5 360 + 228 = 588 177 + 382 = 559 559

6 127 + 98 =225 282 + 169 = 451 225

7 177 + 363 = 540 241 + 117 = 358 358

8 378 + 209 = 587 297 + 374 = 671 587

9 412 + 127 = 539 153 + 50 = 203 203

10 308 + 197 = 505 355 + 104 = 459 459

11 181 + 60 =241 344 + 117 = 461 241
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customers 3 and 4 are on board vehicle 2.

We now work through this example step by step to show how the

clusters are obtained:

Step 1: Seed Selection

Since vehicles 1 .nd 2 already have category 3 customers on board

we only need to select two more seeds one each for V3 and V4. In selecting

the first additional seed, it is clear that situation (3) in Table 3.3

applies since S; = { 5, 6, 7, 8, 9, 10, 11 } - 0. From the definition of

d(j,CSt) in Table 3.2, we set up Table 3.9 to identify the seed to be

selected.

It can be seen that customer 8 satisfies the seed selection rule of

situation (3) in Table 3.3. So we have, CS3 = (8). We now select the last

seed needed by setting up Table 3.10.

It is clear that customer 10 is selected as the seed needed, CS4 =

{10}. The four seeds are now shown in Figure 3.4.

Step 2: Assignment of vehicles to seeds

Cluste.:s 3 and 4 need assignments to vehicles. We first set up the

assignment cost Matrix [C] as follows:

Cluster

Vehicle 3 4

3 81 163

4 185 227

Following the greedy approach, Vehicle 3 is first assigned to clcster 3

and then vehicle 4 to cluster 4.
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Table 3.10 Step 1: Customer 10 is selected as fourth and final seed

Customer j d(j,CS ) min ( d(j,CS t
all t

5 154 + 128 = 282 282

6 315 + 380 = 695 225

7 208 + 520 = 728 358

9 366 + 336 = 702 203

10 165 + 348 = 513 459*

11 433 + 265 = 698 241

Table 3.11 Step 3.1: Determination of each cluster's starting workload

Cluster Component (A) (B) (C) ** Wt=(A)+(B)+(C)

1 dir(V1 ,-1) = 185 dir(-1,-2) = 138 -10 313

2 dir(V2 ,-3) = 132 dir(-3,-4) = 190 +45 367

3 dir(V3 ,+8) = 81 dir(+8,-8) = 425 -85 421

4 dir(V 4 ,+10) = 227 dir(+10,-10) = 255 -40 442

* We arbitrarily assume those workloads are carried over from previous
time group.
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Customers selected as seeds for clustering
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Step 3: Add remaining customers to clusters.

We follow the four iterative steps.

Step 3.1: Determine each cluster's starting workload.

This is performed in Table 3.11.

Step 3.2: For each cluster, find a candidate customer to join it.

We consider only category 2 customers at this stage. From the

definition of d(j,Ct) in Table 3.6, we have the situation

displayed in Table 3.12.

It is clear that customers 5, 6, 7 and 9 are the candidates for

inclusion in clusters C3 , C1 , C4 and C2 , respectively, as indicated by the

Step 3.3: Add a candidate to a cluster. As can be seen from Table 3.13,

customer 6 is added to cluster C1 .

Step 3.4: S; 1& 0, go to Step 3.2.

Step 3.2: Update the candidate list for cluster C1 . Table 3.14 shows

that customer 11 in the new candidate for C1 .

Step 3.3: Add another candidate to a cluster. Table 3.15 shows that

customer 9 in thus added to cluster C2.

Step 3.4: S; ) 0, go to Step 3.2.

After repeating this process several times all category 2 customers

are assigned to clusters in the manner shown in Figure 3.5. At that stage

we have:

C 1 = 1 , 2 , 6, 11), W1 = 879

C2 = 3 4 , 9 , W2 = 570

C3 = 5 8, W3 = 703

C4 = 7 ,10}, W4 = 755
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Table 3.12 Step 3.2: Candidate customers for inclusion in clusters

are shown by "**.

j d(j,C 1 ) d(j,C 2 ) d(j,C 3 ) d(j,C 4)

5 588 559 282 283 + 285 = 568

6 225* 451 695 202 + 357 = 599

7 540 358 728 140 + 173 = 313*

9 539 203* 702 471 + 162 = 633

11 241 401 698 297 + 154 = 451

Table 3.13 Step 3.3: Customer 6 is added to cluster C1 .

Cluster Candidate i Wt AWt,i Expression (1)

1 6 313 225 538

2 9 367 203 570

3 5 421 282 703

4 7 442 313 755
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Table 3.14 Step 3.2;

Table 3.15 Step 3.3:

Update candidate list for cluster C1.

Customer 11 is the new candidate.

Customer 9 is added to cluster C2.

j d(j,C1 )

5 351 + 440 = 791

7 113 + 476 = 589

9 464 + 197 = 661

11 124 + 217 = 341*

Cluster Candidate i Wt Ait,i FW t AFWt,i Expression (1)

1 11 538 341 0 0 879

2 9 367 203 0 0 570

3 5 421 282 0 0 703

4 7 442 313 0 0 755
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Category 2 customers are assigned to clusters
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We next proceed to assign category 1 customers to clusters:

Step 3.2: Using the expressions in Table 3.7 we set up Table 3.16.

Step 3.3: (6. = 0.5 x (360,000/3)1/2 = 173) Add another candidate to a

cluster. This is done by setting up Table 3.17.

At this point, we have a three way tie at 879, the maximum workload. As

noted in Section 3.3 the tie is broken by selecting the customer

associated with the least AWt,i. Thus customer 20 is added to cluster C3.

Step 3.4: S1 0 , go to Step 3.2.

Step 3.2: Update the candidate list for cluster C3 . Table 3.18 shows

that customer 23 is the new candidate for C3.

Step 3.3: Add another candidate to a cluster. ( Table 3.19 ).

Again, we use the tie-breaking rule of choosing the candidate associated

with the minimum AWt,i and assign customer 23 to cluster C4.

Step 3.4: S # 0, go to Step 3.2.

Step 3.2: Update the candidate lists for clusters C3 and C4

(Tabel 3.20)

Step 3.3: Add another candidate to a cluster (Table 3.21). It can be

seen that customer 24 is added to cluster C2.

Step 3.4: Sj = 0, S; = 0, stop.

We conclude the clustering procedure with the result shown in Figure 3.6:

C1 = { 1 , 2 , 6 , 11 }

C2 = { 3 , 4 , 9 , 24 }

C3 = { 5 , 8 , 20 }

C4 = { 7 , 10 , 23 }

Note that in Figure 3.6 how the disparate locations of the

destinations of category 1 customers (20, 23 and 24) affected the



- 75 -

Table 3.16 Step 3.2: Candidate customers for inclusion in clusters

are shown by "**.

j d(j,C1 ) d(j,C 2 ) d(j,C3 ) d(j C4 )

20 265 + 173 301 + 173 57 + 173 108 + 173

23 137 + 173 321 + 173 102 + 173 85 + 173*

24 125 + 173 80 + 173 233 + 173 93 + 173

Table 3.17 Step 3.3: Customer 20 is added to cluster C3.

Cluster Candidate i Wt AWt,i FWt AFWt,i Expression (1)

1 24 879 125 0 0 1004

2 24 570 80 0 0 879

3 20 703 57* 0 0 879

4 23 755 65 0 0 879

Table 3.18 S..ep 3.2: Update candidate list for cluster C3.

Customer 23 is the new candidate.

j d(j,C 3 )

23 102 + 224*

24 233 + 485
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Table 3.19 Step 3.3: Customer 23 is added to cluster C4.

Cluster Candidate i Wt AWt FWt AFWt Expression (1)

1 24 879 125 0 0 1004

2 24 570 80 0 0 879

3 23 760 102 0 224 879

4 23 755 65* 0 0 879

Table 3.20 Step 3.2: Update candidate lists for cluster C3 and C4 .

j d(j,C 3 ) d(j,C 4 )

24 233 + 485 93 + 531

Table 3.21 Step 3.3: Customer 24 is added to cluster C2.

Cluster Candidate i Wt AWt FWt AFWt Expression (1)

1 24 879 125 0 0 1004

2 24 570 80 0 0 879*

3 24 760 233 0 485 993

4 24 820 93 0 531 913
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allocation of the origins of these customers to a different cluster for

each. The routes which will eventually result from the clusters are

provided in Figure 3.7. They are efficient and have good directivity

characteristics.

3.6 Computational experience

This algorithm is coded in FORTRAN and -has been implemented on VAX

11/750 minicomputer at M.I.T.

A series of computer runs was conducted to gain some insight on

the performance and computational effort of the algorithm. They can be

divided into two categories: (a) runs using simulated data and (b) runs

using real data.

3.6.1 Runs using simulated data

Runs in this category involved simulations of several hours of

service in a rectangular area of given dimensions. Without loss of

generality, 4-stomer origins and destinations were assumed to be

distributed uniformly and independently over the area of interest.

Requests for service were distributed over the simulation interval at a

user-specified (and not necessarily constant) rate per hour. Also

specified externally were the number of available vehicles as a function

of time, the desired length of time interval for grouping and the

conversion factor CF.
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The routing option exercised in all those runs was the MST

heuristic followed by the 3-opt breadth-first search procedure without the

tardiness option (which could be used for further minimizing the number of

late deliveries). Table 3.22 presents sample results from this series of

simulation runs. All runs involved 4 simulated hours of service in a 6 x 6

square mile geographical area. All vehicles were initially located at the

center of the square and their speed was 15 mph. all runs assumed that the

probability of a random customer having specified a desired pick-up time

(as opposed to a desired delivery time) was 0.5. Those times are assumed

uniformly and independently distributed within each hour of the 4-hour

simulation interval. Delivery time deviations (positive for lateness and

negative for the earliness) were evaluated only for customers who had

specified a desired delivery time (similarly for pick-up-specified

customers). In Table 3.22 we present various statistics of system and

algorithm performance as functions of the following four parameters:

1. Customer demand rate: 100, 300 and 500 customers/hour.

2. Number of vehicles used (assumed here constant throughout the 4-hour

interval): 10, 20, 30, 40, 50 and 60 vehicles.

3. Length DT of grouping interval: 30 and 60 minutes.

4. Conversion factor CF: 1.0 and 1.5.

(It should be mentioned that all runs referring to the same customer

demand rate (e.g. 100) correspond to the same customer origins,

destinations and desired pick-up and delivery times. Also, DT and CF were

varied for calibration purposes.)

Although the runs shown in Table 3.22 are not necessarily

representative of the full potential of the algorithm, they seem to
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Table 3.22 Sample test runs of GCR algorithm on Vax 11/750

No. of customers
in 4 hours 400 (seed #57) 1200 (seed #234) 2000 (seed #98)
No. of vehicles 10 20 30 30 40 50 50 60
DT (mins) 30 60 30 60 30 60 60 60 30 60 30 30 30
CF 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5
No. of late
deliveries 202 197 90 160 102 118 32 25 42 17 120 81 263 66 803 459 141
Average deviation
given late
delivery (mins) 62 56 18 24 10 15 12 12 6 11 10 8 9 7 19 12 5
Average deviation
given early
delivery (mins) -8 -8 -21 -13 -8 -8 -31 -27 -13 -38 -25 -29 -9 -30 -7 -11 -14
No. of late
pick-ups 162 167 32 105 43 98 10 25 19 8 33 43 156 20 667 458 159
Average deviation
given late
pick-up (mins) 63 51 11 19 8 10 6 10 6 7 7 6 8 5 17 12 7
Average deviation
given early
pick-up (mins) -8 -9 -27 -16 -11 -9 -37 -30 -15 -39 -33 -35 -11 -34 -9 -13 -15
Average ride
time ratio 1.99 2.15 2.38 2.69 1.54 1.74 1.84 1.86 1.30 1.50 2.72 1.88 1.47 1.74 1.64 1.79 1.62
Productivity
(pass/veh. hr) 6.46 6.69 9.54 8.98 5.15 4.86 5.63 6.18 3.62 3.96 10.4 8.22 6.02 6.72 8.13 8.23 7.38
CPU time
(mins) 0.91 2.12 4.36 4.78 0.52 1.07 1.30 1.50 0.62 1.17 15.7 12.9 6.29 12.3 15.3 15.2 15.7

(1
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support the following general conjectures:

1) With the possible exception of the average ride time ratio which

predictably increases when CF increases, there seems to be no overwhelming

evidence in favor of or against using a specific value for CF. None of the

remaining statistics of Table 3.22 is an unambiguously monotonic (either

increasing or decreasing) function of CF.

2) By contrast, the length DT of the grouping time interval seems to be

an important calibration parameter. The first observation is counter-

intuitive: The number of late deliveries decreases when DT goes from 30

minutes to 60. A possible explanation of this behavior may be that the

algorithm is less successful in linking adjacent time groups if their

duration is very short and thus its performance deteriorates when the

number of time groups increases. Other quantities that decrease when DT

increases are the average deviation given a late delivery, the number of

late pick-ups and the average deviation given a late pick-up. By

constrast, the number of early deliveries, the average deviation given

early delivery, the number of early pick-ups, the average deviation given

early pick-up, the average ride time ratio as well as the overall vehicle

productivity and CPU time increase when DT increases.

It is conjectured that these trends may not necessarily remain the

same if DT increases substantially more than 60 minutes.

3) The behavior of the system as the number of vehicles increases is

predictable. All "service" parameters ameliorate if more vehicles are

present but productivity goes down. However, the CPU time is not

necessarily a monotonic function of the fleet size. The reason seems to be

the tradeoff in computational effort between the clustering and routing

parts of the algorithm.
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3.6.2 Runs using real data:

The most interesting test of this algorithm to date has been with

data associated with the advanced-reservation flexible-route system

operated by Rufbus GmbH Bodenseckreis in the city of Friedrichshafen, West

Germany. The particular database used to test the algorithm included

information covering approximately 16 hours of operation of the system. Of

the 2,617 customers of the data base, 2,397 were pick-up-specified, while

the remaining 220 were delivery-specified. Some of the pick-up-specified

customers in the database were actually "immediate-request" customers by

defining their DPT as the time of the request (Such a conversion of course

has certain implications regarding our ability to compare results obtained

from the algorithm with results from the actual Rufbus schedules).

The direct trip times between all possible vehicle stop pairs were

part of the database. Vehicle stops were located at "checkpoints" across

the entire Rufbus system. It should be noted here that due to one-way

streets and other "peculiarities" of the system, the direct trip time

matrix was nc: symmetric. The database also included information on the

actual vehicle schedules for the period of interest with a 28-vehicle

fleet, consisting of one 33-passenger vehicle, four 9-passenger vehicles,

and twenty-three 17-passenger vehicles.

Applying the algorithm on the above database presented some initial

difficulties: For instance, the direct trip time matrix was not sym.etric.

Since this algorithm is designed for symmetric matrices, we replaced every
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entry Dij of the original matrix with 0.5'(Di + D..). A second handicap

we had to face was that it was impossible to identify the locations of

customer origins and destinations (say, on a city map) just by looking at

the trip time matrix. Our inability either to observe, or, a fortiori,

interactively to improve upon the results of the algorithm by looking at

visual display of either clusters or routes, put us at a disadvantage in

comparison to Rufbus schedulers, who had full access to (and fully

exploited) such information. In addition, the lack of such information

forced us to abandon the use of the MST heuristic in the routing part of

the algorithm, since this would require information on the relative

orientation of customer locations, which was not available. The routing

option exercised instead was a nearest-neighbor procedure followed by a 3-

opt breadth-first search.

Despite these difficulties we decided to test the algorithm with

this database since it is the only database with a large number of

customers that we were able to obtain.

Statistics of six different runs of our algorithm together with

Rufbus' own performance are displayed in Table 3.23. In all runs DT and CF

are set to be 30 minutes and 1.0 respectively. The number of vehicles

specified in the runs was varied throughout the service period quasi-

arbitrarily (matching the demand for service) and having a peak of 21 or

22 vehicles. From the table we can also observe that the algorithm

achieves productivities ranging from about the same as, to about 20%

higher than that achieved in the actual schedule. This was accomplished

with about a 22% reduction in the fleet size and with no serious
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Table 3.23 Rufbus database runs. For explanations see text.

Actual Run Run Run Run Run Run
Schediling #1 #2 #3 #4 #5 #6

Fleet size
(maximum) 28 22 21 21 22 21 22

No. of late
deliveries 0 148 130 104 92 57 64

Average deviation
given late
delivery (mins) 0 15 13 12 11 10 8

Average deviation
given early
delivery (mins) -6 -10 -10 -12 -14 -15 -15

No. of late
pick-ups 2337 1250 1237 1222 973 763 639

Average deviation
given late
pick-up (mins) 13 13 17 14 11 13 10

Average deviation
given early
pick-up (mins) -3 -11 -12 -12 -13 -13 -14

Average ride
time ratio N.A. 2.3 2.3 2.2 2.2 2.1 2.2

Productivity
(pass/veh. hr) 8.87 10.52 10.53 9.93 9.74 9.26 8.97

N.A. : Not available
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deterioration in service quality. Running time in all runs averaged

between 6 and 7 CPU minutes on a VAX 11/750.

We consider this experience in testing this algorithm with

realistic data particularly encouraging, especially since the Rufbus

database had features that did not match the design assumptions of the

algorithm. It is believed that the performance of the algorithm would

certainly be much better if it were tailored to the special conditions of

the database, as is usual when an algorithm is implemented on a real

system.

3.7 Computational Complexity of the Algorithm

Table 3.22 has shown some empirical computation times required for

the algorithm to solve a range of medium to large size problems. In this

section we investigate the computational complexity of the algorithm from

a theoretic point of view.

Since the algorithm consists of three independent sequential steps,

grouping, clustering and routing, we can analyze its complexity by

addressing each step separately. For the following discussion we assume

that the problem deals with N customers whose desired service times are

distributed equally among t time groups and there are m vehicles in each

time group.

(i) Grouping



- 87 -

The grouping procedure determines which customer's desired service

time falls in which time group. The effort involves the comparison between

each customer's desired pick-up and delivery times with the starting and

ending times of every time group. For one customer this procedure can take

at most 2-t comparisons. Thus the total number of comparisons required to

process N customers can only be as large as 2-t-N. In other words the

required effort for thie grouping step increases linearly with the number

of customers.

(ii) Clustering

The clustering procedure divides the set of customers in each time

group into smaller clusters. Let n denote the number of customers in a

given time group. According to the clustering procedure, if m vehicles are

in service, m clusters must be formed. At the start of clustering, we

select seeds for each of the m clusters. The selection of each seed takes

O(n) comparisons and additions. The additions refer to the calculation of

customer-to-seed distances. The comparisons refer to the selection of the

customer who maximizes the minimum-customer-to-seed distances. The total

effort required. to select m seeds is therefore O(mn). After seed customers

have been selected, the clustering step continues with the assignment of

the rest of the customers to clusters. The initialization of the customer-

to-cluster distance matrix requires O(mn) work. When one customer is

assigned to a cluster an update of the distance matrix requiring O(n)

effort is needed. For n customers, the updating effort thus increases as

0(n2 ). In summary the clustering step involves 0(mn+n2 ) effort.
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(iii) Routing

The routing step uses one or a combination of two single-vehicle

routing algorithms to find the optimal route. Therefore, the computational

complexity of the routing step depends on which routing algorithm is used.

For ease of discussion we assume that the n customers in the given time

group are evenly distributed among m vehicles, i.e. a vehicle would carry

n/ customers. Assume now that a 2-opt tour-improvement procedure is used

for routing. Such a 2-opt procedure involves computational effort that

increases in proportion to the square of the number of customers in the

route (see Psaraftis [28]). As a result, the computational complexity of

finding m routes for m vehicles is 0( m-n2 /m2 ). (If customers are not

evenly distributed among clusters, i.e., one cluster has most of the

customers, the total routing effort would be at most of order n2 ,)

From the above discussion, we see that the computational complexity

of the GCR (denoting Grouping, Clustering, and Routing) algorithm depends

mainly on the routing algorithm used. If a 0(n2) routing algorithm is

used, the complexity of the clustering and the routing steps together is

0(mn+n2 ), where n is the average number of customers in a time group. If

all N customers of the problem are in one time group, the overall

computational complexity is at most 0(mN+N2 ). It can now be concluded that

the algorithm is a polynomial-time algorithm.

Further discussion of this Grouping-Clustering-Routing algorithm

(referred as "GCR algorithm" from now on) is provided in Chapter 6.
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CHAPTER 4 AN ALGORITHM FOR DARP WITH STRICT SERVICE QUALITY CONSTRAINTS

4.1 Introduction

This chapter describes a second heuristic algorithm, Advanced

Dial-A-Ride With Time Windows (kDARTW), for the advance-request version of

the multi-vehicle DARP w..th service-quality constraints that include time

windows. Service quality constraints - as described in detail in Section

4.2 - refer to guarantees that (i) each customer's ride time will not

exceed a pre-specified maximum and (ii) the time of pick-up or delivery of

a customer will not deviate from the most desired time by more than a pre-

specified amount ("the time windows").

The algorithmic approach to be described is interesting for two

reasons. First, it addresses what is probably the most applicable and

realistic version of the real-world problem in a way that avoids excessive

abstraction and simplification. It also emphasizes flexibility and

convenience to the users of the algorithm. Second, it can generate at low

computation cost what are apparently good-quality solutions to problems of

much larger size (e.g., 2,500 customers and over 30 simultaneously active

vehicles) than have hitherto been attempted in this area.

ADARTW derives some of its fundamental concepts from the pioneering

work of Wilson et al. [42,43]. It builds up vehicle tours through

sequential insertion of customers and uses a nonlinear objective function

to guide such insertions. A recent paper by Solomon [34] pr-sented

substantial evidence supporting the use of insertion-oriented algorithms
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for vehicle routing and scheduling problems having time window

constraints. Our experience with ADARTW has also been very favorable.

Chapter 5 will report all our computational findings.

This chapter focuses on the structure of ADARTW and the heuristic

techniques that it uses. These are to a large extent dictated by the

operating scenario within which the algorithm has been conceived. This

scenario is described in Section 4.2. Table 4.1 defines the mathematical

notation. Section 4.3 then presents an overview of ADARTW, Section 4.4

describes the search for feasible insertions of customers into vehicle

work-schedules and finally, Section 4.5 the optimization procedure used to

assign customers to vehicles and to fix pick-up and delivery times.

4.2 Operating Scenario

The dial-a-ride system with which ADARTW is designed to operate is

assumed to have a number of characteristics. The most important among

those is that each of the system's customers is asked and willing to

specify either a desired pick-up time (DPT) at his origin or a desired

delivery time (DDT) at his destination, but not both. This implies that

the customer is able to decide for himself whether he is constrained by a

pick-up time or by a delivery time in his intended trip. For example, most

individuals are constrained in the morning by a desired "delivery" time

(e.g., the time one has to arrive at the work place) and adjust their

"pick-up" time ( e.g., the time when they leave their homes) accordingly.

In a similar fashion, a dial-a-ride system's customer who specifies a

desire to be delivered at a commuter train station (or an outpatient
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Table 4.1 : Definitions of quantities not explicitly defined elsewhere in
the text.

N the number of customers on the subscriber list

m the number of available vehicles

DPTi ( DDT ): the desired pick-up (delivery) time of customer i

EPTi ( EDTi ) the earliest possible time at which the pick-up (delivery)

of customer i can be made

LPTi ( LDTi ) the latest possible time at which the pick-up (delivery)

of customer i can be made

APTi ( ADTi ) the time when the pick-up (delivery) of customer i will

actually take place according to the schedule

DRTi : the time it would take a vehicle to go directly from the origin to

the destination of customer i, [ DRTi = D(+i,-i) I

ARTi : the actual ride-time of customer i , ART, = ADTi - APTi.

D(x,y) the time it takes a vehicle to go from point x to point y (using

fastest route)

+i (-i) the event "pick-up (deliver) customer i"; the indication "+i"

("-i") is also used to denote the point of origin (destination)

of customer i

DVi : the deviation in the time schedule of customer i from his desired

pick-up or delivery time [for DPT-specified customers DVi = APTi -

DPTj; for DDT-specified customers DVi = DDTi-APT1 ]

WSi : the maximum acceptable deviation of customer i from his desired

pick-up or delivery time. (DV. < WSi)

d : the number of stops (pick-ups and deliveries) in a schedule block.

SLACK the duration of vehicle slack time before schedule block j.

If there are n schedule blocks, SLACKn+1 = *
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clinic) by time X, will be a "DDT-specified" customer. In our system, this

customer would rely on the operator of the system to tell him at what time

he will be picked up from his origin so that he can be delivered at his

destination by time X. The reverse is, of course, true for DPT-specified

customers (e.g., "I can be picked up from the shopping mall at 2 P.M. for

transportation to my house"). Normally, one would expect a preponderance

of DDT-specified customers in the morning and DPT-specified customers in

the afternoon and evening.

A second and related assumption is that DPT-specified customers

will be asked to give as their DPT, the earliest time at which they can be

picked up. Similarly, DDT-specified customers will give the latest time

at which they can be acceptably delivered at their destination as their

DDT. This actually implies no loss of generality, but is particularly

convenient for the algorithm, since the time-window during which a DPT-

(DDT-) specified customer can be picked up (delivered) can be defined as

beginning (ending) with the specified DPT (DDT).

In the dial-a-ride system in question one would certainly expect a

commitment to quality of service on the part of the system's operator.

Consider, for instance, a DDT-specified customer who lives 15-minutes away

(by car) from a community center and who desires to be at that center by

10 A.M. It would clearly be unreasonable to deliver that customer at the

center at, say 8 A.M. or to offer him a 90-minutes circuitous ride -

picking up and/or delivering many other customers on the way. For these

reasons it will be assumed that the system will operate under three types
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of service quality constraints :

(i) No DPT- (DDT-) specified customer will be picked up (delivered)

earlier (later) than his DPT (DDT).

(ii) No customer's actual ride time will exceed a given maximum ride time

for that customer - the maximum ride time being specified as a

function of the direct origin-to-destination ride time for that

customer.

(iii) The difference ("time deviation") between the actual pick-up

(delivery) time and the desired pick-up (delivery) time of a

customer will not exceed a given maximum for DPT- (DDT-) specified

customers.

The values of the maximum ride-time and of the maximum time-

deviation can either be determined unilaterally by the system's operator

and applied universally or, can be left open to negotiation between the

operator and each individual customer. In the former case, an operator

might advertise, for example, that a customer's ride time would "under no

circumstances" exceed twice his direct ride time and that he would be

delivered (pi.1ed up) no earlier (later) than 20 minutes prior to (after)

his desired delivery (pick-up) time.

The problem

The version of DARP solved by ADARTW can now be summarized as

follows: Given a subscription list of N customers, each specifying either

a DPTi or DDTi ( i = 1,2,...,N ) and a fleet of m vehicles, find an
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effective allocation of customers among vehicles and an associated time

schedule of pick-ups and deliveries such that:

1. For all customers i:

ADTi - APTi S MRT (4-1)

2. For DPT-specified customers:

DPTi ( APTi DPTi + WSi (4-2)

3. For DDT-specified customers:

DDTi - WSi < ADTi < DDTi (4-3)

Several comments are in order concerning this formulation:

(a) We have not yet specified what is our measure of effectiveness (see

Section 4.3 and 4.5).

(b) It may prove infeasible to serve some of the N customers with the

given vehicle resources and service-quality constraints.

(c) MRTi, the maximum ride time for customer i, will normally be specified

as a function of the direct ride time, DRTi. In our work we have used:

MRTi = A + B * DRTi (4-4)

where A and B are user-specified constants (e.g. A = 5 minutes , B =

1.5). A reasonable alternative might be:

[ DRT. + A if DRT. ( T
MR.=1 1- 0

B - DRT. if DRT. > T

where, again, A, B and To are operator-specified constants (e.g., A =

10 minutes, To = 20 minutes, B = 1.5) satisfying the relationship

T0+A=B-TO. Other functional forms can, of course, be used to specify MRTi,

if desired.

In conclusion, ADARTW is designed for use under the following
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scenario: The system's operator would advertise the dial-a-ride service

and the service-quality guarantees that will be offered. Customers will

call and specify origin, destination and a desired DPT ( = EPT ) or DDT (

= LDT ). A subscription list will be compiled up to a closing time (no

sign-ups accepted after that time). With the data available on the

subscription list and with the assistance of ADARTW, the system's operator

will then prepare a detailed work-schedule for each of the vehicles,

listing times and locations for each of the pick-ups and deliveries. These

work-schedules will be distributed to the drivers of the vehicles. Each

customer will also be called and given an (approximate) APT and ADT,

satisfying constraints (4-1) and (4-2) or (4-1) and (4-3) as the case may

be. Those customers, if any, whom it is infeasible to serve will also be

so notified.

Before proceeding to the description of the algorithm a number of

additional assumptions in our scenario will now be listed. While all these

assumptions are natural ones, they are mentioned here because they create

complications that some existing DARP algorithms cannot deal with:

a) The capacity of vehicles is assumed finite and is not necessarily the

same for all viicles.

b) Dwell times - the amount of time needed to pick up and deliver

customers - can be non-zero and different customers are allowed to have

different dwell times. In our following discussion, we assume that the

dwell times are all zero for every customer. It should be noted that non-

zero dwell times can be handled by adding them to the distance matrix in a

way consistent with the definitions of APT and ADT.
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c) A vehicle is not allowed to wait idly when it is carrying passengers.

For example, it is not permissible in ADARTW to have a vehicle, with one

or more passengers on board, arrive at the pick-up point of a DPT-

specified customer i prior to DPTi and then wait idly until time DPTi to

pick up i (remember that due to (4-2) customer i cannot be picked up

earlier than DPT1 ). Such idle waiting periods by non-empty vehicles are

accepted by some vehicle-routing algorithms with time window constraints

(see Sexton and Bodin [32]). It is felt, however, that, in practice, such

idle waiting would not be tolerated by dial-a-ride customers and ADARTW

has been designed accordingly. Actually, this can be viewed as a fourth

service-quality constraint, imposed in addition to (i) - (iii) above.

Finally, it is useful to define availability periods, active

periods and slack periods for vehicles. As shown in Figure 4.1 for a

particular vehicle j, a vehicle can be unavailable during periods of a day

(usually due to driver constraints, labor union agreements or vehicle

maintenance requirements). An available vehicle can be either in a slack

period (i.e., waiting idly) or it can be active (on the way to pick up its

first customer during an active period, transporting, picking up or

delivering customers or returning to a depot). Note that because of

asssumption c) above, a vehicle cannot be in a slack period as long as it

has even one customer on board.

4,3 Overview of the Algorithm

ADARTW is a heuristic algorithm that processes ride requests
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Figure 4.1

A typical schedule of a vehicle during a service period AB.

The vehicle is available during AC and DB and unavailable during CD. The vehicle

leaves a depot at time A and returns there at time C, leaves again at D and returns

at B. Intervals AE, FG, HI, JC, DK, LM, NB are active periods while EF, GH, IJ, KL,

and MN are slack periods. Black dots within active periods indicate pick-up or

delivery of a customer.
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sequentially, inserting one customer at a time into the work-schedule of

some vehicle until all ride requests have been processed. This section

describes in qualitative terms how this procedure works.

Central to the process of assigning customers to vehicles are : a

search for feasible insertions of customers into work-schedules; and a

sequence of optimization steps designed to find the most desirable one

among all the feasible insertions on each occasion. An insertion of a

particular customer i into the work-schedule of a specific vehicle j is

feasible only if it does not lead to violation of any service-quality

constraints for customer i and for all other customers already assigned to

vehicle j. The optimization steps deal with minimizing the additional

"cost" due to inserting customer i into a vehicle's work-schedule. The

cost function that we use is a weighted sum of disutility to the system's

customers (due to excess ride times and to deviations from tha most

desirable pick-up or delivery times) and of system costs as represented by

a function that quantifies the "consumption" of available vehicle

resources.

Consider now a case in which there are N (advance-request) customer

demands for service and m available dial-a-ride vehicles. ADARTW begins by

indexing customers in the order of their "earliest pick-up times", EPTi (

i = 1,2,...,N ), i.e. according to the earliest time at which they are

expected to be available for a pick-up. The first customer in the sequence

is the one with the smallest EPTi (Section 4.4 shows how the EPTi are

computed).
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The algorithm then processes the first, second, third, etc.

customers in the list, one at a time (see also below), and assigns each

customer to a vehicle until the list of customers is exhausted. The

processing of customer i goes as follows:

Step 1 : For each vehiclc j ( j = 1,2,...m ),

(i) Find all the possible ways in which customer i can be inserted into

the work-schedule of j (details in Section 4.4). If it is

infeasible to assign customer i to vehicle j, examine the next

vehicle j+1 (re-start Step 1); otherwise:

(ii) Find the insertion of customer i into the work-schedule of vehicle

j that results in minimum additional cost (details in Section 4.5).

Call this additional cost, COST .

Step 2 : If it is infeasible to insert i into the work-schedule of any

vehicle, then declare i a "rejected customer" otherwise assign i to a

vehicle j for which COST * < COST for all j = 1,2,...,m.

The above is only the "generic" version of the algorithm. We have,

in fact, developed a number of options which are available at various

points in the procedure:

(a) Customers can be indexed and processed according to criteria other

than EPT. For example, one can also process customers "backward" by

ordering them according to their latest delivery time, LDT - with the

customer having the largest LDT being processed first (see Section 4.4 for

computation of LDT). Such alternative processing orderings can be used to
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generate several alternative solutions to any given problem instance.

(b) Instead of processing one customer at a time, the user can specify how

many (yet unassigned) customers should be considered in Step 1 above. For

example if the number "5" is specified, the top 5 (in terms of their

ordering index) unassigned customers will be considered on each occasion

as candidates to be assigned next to a vehicle. It should be emphasized

that each of the candidates is considered separately in Step 1, so that in

Step 2 the one among (the 5, in our example) candidates with the smallest

COSTJ* will be assigned to vehicle j*. We can term such a group of

candidates as the candidate "pool" from which the next customer for

insertion is selected. There exist two possible strategies for bringing

unassigned customers into the pool. One strategy would be to bring a new

customer into the pool every time a customer in the pool is inserted into

some vehicle's work-schedule. In this way, a pool always maintains the

same number of candidate customers in it. A customer will leave the pool

either when he is selected for next insertion in Step 2 or when it is

infeasible for any vehicle to carry him. Such a strategy is termed

"immediate-refill". An alternative is to let the candidate pool become

smaller and smaller as customers in the pool are inserted, one at a time,

to vehicle work-schedules. When the pool is finally exhausted, refill it

with the next batch of customers in the list. This strategy is termed

"periodic-refill". Computational experience with both strategies will be

reported later in Chapter 5.

This multi-candidate option is provided for the purpose of

improving the performance of the algorithm by making it less "myopic",

i.e. by giving it an opportunity to select among more than one customer
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for the next assignment. The penalty, of course, is that as the number of

candidates that are considered each time increases the efficiency of the

algorithm decreases.

(c) If the user so desires, ADARTW will not reject any customers. Instead,

if it ever proves infeasible to assign a customer i to any of the m

initially available vehicles, an option of ADARTW will introduce an

additional vehicle to serve that customer. This additional vehicle will

join the fleet of vehicles from that time on and will be available to

serve subsequent customers. If at some later time, it turns out that

customer k cannot be feasibly introduced into the work-schedule of the m +

1 available vehicles an additional vehicle, m + 2, will be introduced, and

so on.

4.4 Search for Feasible Insertions

We now turn to an outline of the steps taken to identify feasible

insertions of customers into vehicle work-schedules. A notion which plays

an important role in this respect is that of a "schedule block". This can

be illustrated through Figure 4.2, which shows part of the work-schedule

of a vehicle . A schedule block is a period of continuous active vehicle

time between two successive periods of vehicle slack time. A schedule

block always begins with an empty vehicle starting (either from a depot or

after an inactive period) on its way to pick up a customer and ends with a

period of slack time or at the end of the vehicle's entire work-schedule.

It should not be confused with the "Base-Trip" definition as described in

Hung [15] which is a period of active vehicle time between two conse-utive
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vehicle-is-empty statuses. In the case of a schedule block, a vehicle

might become empty several times before the schedule block ends.

Associated with a schedule block is a "schedule sequence" indicating the

sequence of stops in the block and a "time schedule" indicating the time

when each stop is scheduled to take place. For example in Figure 4.2, the

schedule sequence associated with the middle schedule block is {+k, +m, -

m, +n, -k, -n} while the time schedule is {APTk, APTm, Tm APTn, ADTk'

ADTn)*

Suppose now that we wish to examine whether a yet-unassigned

customer i can be inserted into the work-s-chedule of vehicle j. The

objectives of the search for feasible insertions are:

(i) To identify new feasible schedule sequences.

(ii) For each of the feasible schedule sequences to obtain a feasible time

schedule and its associated bounds within which the time schedule can be

advanced or delayed and yet remain feasible.

ADARTW accomplishes these objectives by examining systematically

and efficiently all possible schedule sequences associated with each and

every schedule block on the work-schedule of vehicle j. For example, with

respect to the middle schedule block of Figure 4.2, the possible schedule

sequences involving the insertion of customer i are {+i, -i, +k, +m, -m,

+n, -k, -n}, {+i, +k, -i, +m,..., -n). , {+k, +m, ., -n, +i, -i. In

all, if there are d stops already on a schedule block, there are

(d+2)(d+1)/2 possible schedule sequences that involve the insertion of a

new customer into that schedule block, while adhering to the constraint
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Part of the work-schedule of a vehicle j.
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that the "+i" stop must precede the stop "-i". In view of the maximum ride

time and maximum time-deviation constraints of our version of DARP

(relations (4-1) - (4-3)) only some (and possibly none) of the above

possible sequences may be feasible.

More schedule sequences are possible if we consider the insertion

of stop "+i" and stop "-i" into different - not necessarily consecutive -

schedule blocks. Such insertions will result in merging all the schedule

blocks between (and including) the ones where the pick-up and delivery are

inserted. ADARTW can consider both types of insertions, but uses different

methods (see below) to test the feasibility of schedule sequences formed.

It should be noted that, in addition to inserting customer i into

one of the already existing schedule blocks of any vehicle j, ADARTW will,

naturally, consider creating an entirely new schedule block for vehicle j,

as shown in Figure 4.3, in order to accommodate customer i. For example,

the first customer ever assigned to a vehicle will obviously always create

a new schedule block. Such new schedule blocks are added to the list of

existing schedule blocks to which ADARTW attempts to add new customers

through the insertion procedure.

A Fast Screening Test For Insertions Within The Same Schedule Block

To facilitate the feasibility search, ADARTW includes a procedure

that increases greatly its efficiency and is fundamental to its viability

in dealing with large-scale problems. This procedure involves defining two



New schedule block
fe-I

FiCr >

Figure 4.3

A new schedule block may be created for customer i
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time windows for each customer as follows:

For DPT-specified customers, we define:

EPTi = DPTi (4-5)

LPT i = EPTi + WSi (4-6)

EDTi = EPTi + DRTi (4-7)

LDTi = LPTi + MRTi (4-8)

These earliest and latest pick-up and delivery times are shown in Figure

4.4(a). Note that (4-5) and (4-6) contain the same information as (4-2).

Similarly, for each DDT-specified customer, we define (see also

Figure 4.4(b)) :

LDTi = DDTi (4-9)

EDTi = DDTi - WSi (4-10)

LPTi = LDTi - DRT (4-11)

EPTi = EDTi - MRTi (4-12)

((4-9) and (4-10) contain the same information as (4-3))

For any customer i, whether DPT- or DDT-specified, a set of

necessary, but not sufficient conditions for feasibility is then provided

by (4-13) and (4-14):

EPT i APT i LPTi (4-13)

EDT i ADT1 i LDTi (4-14)

(From Figure 4.4, it can be seen that (4-13) and (4-14) are not sufficient

because it may be possible that APTi and ADTi satisfy them but (4-1) is

nonetheless violated. It should also be noted that LPTi need not be
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smaller than EDTi.)

The conditions (4-13) and (4-14) are particularly convenient to

work with. The quantities EPTi, LPTi , EDTi and LDTi computed for all

customers i = 1,2,...,N define "fixes" on the time axis within which the

customer must be picked up and delivered. To understand the usefulness of

these fixes let us return to the problem of checking the feasibility of

inserting customer i into a particular schedule block "p" of vehicle j.

Let us consider such a schedule block and let us index the

successive stops on the schedule sequence with the subscript r =

1,2,.,.d. Note that from (4-13) and (4-14) we have an upper and lower

bound for each element in the time schedule associated with our schedule

block ((4-13) providing the bounds if the entry is an APT and (4-14) if

the entry is an ADT).

For convenience let us now drop the indication of whether a

particular stop on the schedule block is a pick-up or a delivery and use

ETr, ATr and LTr to denote earliest, actual (scheduled) and latest time,

respectively, for stop r. For instance in Figure 4.2, we would indicate

EPTk, APTk, LPTk by ET1 , AT1 and LT1 , respectively, and EDTm, ADTm and

LDTm by ET3 , AT3 and LT3 , respectively, for the middle schedule block.

In ADARTW, we compute and store four statistics for each stop r

( r = 1,...,d ) on each schedule block, defined as follows:
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BUP =Min [ Min (AT - ET ) ,SLACK 1 (4-15)
r 13tdr -t tp

BDOWN = Min (LT - AT ) (4-16)

AUP = Min (AT - ET ) (4-17)
r ritid tt

ADOWN = Min Min ( LT - AT ) , SLACK 1 (4-18)
r rit.id ttp+

where SLACKP and SLACIp+1 denote, respectively, the duration of the

slack period immediately preceding and immediately following the schedule

block p in question.

There is a very real intuitive meaning associated with the four

quantities defined by (4-15) - (4-18). Specifically, BUPr (BDOWNr)

represents the maximum amount of time by which every stop preceding but

not including stop r+1 can be advanced (delayed) without violating the

time-window constraints. Similarly, AUPr (ADOWNr) represents the maximum

amount of time by which every stop following but not including stop r-1

can be advanced (delayed). Essentially, the quantities BUP, BDOWN, AUP and

ADOWN indicate by how much, at most, each segment of a schedule block

(e.g. the segment that precedes the pick-up of the inserted customer i)

can be displass" in order to accommodate an additional customer i.

The uses of the four statistics defined at each stop for checking

the feasibility of an insertion differ depending on where in the schedule

block th.e pick-up and delivery of the new customer are inserted. ADARTW

divides all insertions into four basic cases (as shown in Figure 4.5(a)-

(d)) which account for the total of (d+2)(d+1)/2 combinations mer+ioned
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earlier:

(i) Both the pick-up and delivery of customer i are inserted at the end of

the last schedule block, i.e. they become the last two stops in the

vehicle's work-schedule. We note that this is the only case where a new

schedule block can be created.

(ii) Both the pick-up and delivery of customer i are inserted between two

consecutive stops on the schedule block. This includes the insertions of

pick-up and delivery immediately before or after a slack period.

(iii) The pick-up of customer i takes place somewhere within the last

schedule block while his delivery is inserted at the end of the vehicle's

work schedule.

(iv) The pick-up and delivery of customer i are separated by at least one

other stop and the delivery of i is not the last stop in the vehicle's

work-schedule.

The details of the algorithm's logic for each one of these four

cases are provided in Figure I.1(a) - (d) of Appendix I. Each flowchart

depicts how it is determined whether it is feasible, as far as the time-

window constraints are concerned, to insert customer i within a schedule

block in the ,,y defined by one of the four cases above.

Besides checking for violations of the time-window constraints, we

have to check that no maximum-ride-time constraints are violated for the

newly inserted customer and for the customers already in the schedule

block. This can be done very easily by scanning through the list of these

customers and comparing the respective actual ride-times and v'ximum
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allowable ride-times. Finally, vehicle loads at each stop between the

inserted pick-up and delivery of customer i are checked so that vehicle

capacity is not exceeded.

Feasibility Test for Insertions into Different Schedule Blocks

The insertion of the pick-up and delivery of customer i into

different schedule blocks requires the elimination of all the slack time

contained between these schedule blocks since, otherwise, the vehicle

would wait idly with customer i on board. The previous approach which

employs four statistics at each stop becomes unnecessarily complicated in

this case in dealing with the slack time involved. We have chosen instead

to design another approach which is straightforward in terms of logic and

yet efficient enough to meet our computational requirements. This new

approach also achieves the two objectives in our search for feasible

insertions, namely, to obtain a time schedule for each new feasible

sequence and to find corresponding bounds on the displacement of each

time schedule.

For demonstration purposes let us consider the case of inserting

the pick-up of customer i somewhere in schedule block k and the delivery

of customer i into schedule block k+n (n 1). We limit our search for

feasible insertions to those that will not affect other customers on

schedule blocks q, q < k or q > k+n. Consequently, as a priori condition

for an insertion to be considered in our search is:



- 113 -

k+n+1
AP. + AD. < 1 SLACK (4-19)

j=k

where APi ( ADi ) is the extra vehicle time required to serve the pick-up

(delivery) point of customer i.

The algorithmic approach works as follows:

Form a new schedule sequence by merging schedule blocks k to k+n

and with customer i inserted. Let d denote the number of stops in the new

schedule sequence. Construct an earliest time schedule (without

considering the time constraints at each stop) for the new sequence with

all the slack time eliminated, i.e. by taking SLACKk = 0, SLACKk+1 =

0,..., SLACKk+n = 0. Let us denote this tentative time schedule by "T."

For every stop r (r = 1, 2, ...., d) in the new schedule sequence, compute

two statistics, Rr and Ar:

Rr = I Min ( Tr - ETr 0) (4-20)

Ar = LTr - Tr (4-21)

where Tr is the visiting time of stop r in time schedule T.

Rr denotes the minimum time by which the visit time of stop r, Tr' should

be delayed for it to fall within the time window of stop r. Ar denotes the

maximum time by which Tr can be delayed for it not to violate the time

window constraint of stop r. After Rr and Ar are computed for all r in the

new schedule sequence, we can define Rmin and Amax for time schedule T as:
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Rai = Max ( Rr ) (4-22)
all r

Amax = Min(A ) (4-23)
all r

Ri represents the minimum amount of time by which the time schedule T

should be delayed so that every stop in T is visited at or after its

earliest feasible time. Amax represents the maximum amount of time by

which the time schedule T can be delayed without a stop being visited

later than its. latest feasible time. For a schedule sequence to be

feasible we must have

R <in < Amax (4-24)

(4-24) indicates the fact that the amount of time by which T has to be

delayed must be less than or equal to the maximum amount of time that T

can be delayed. (4-24) is the necessary and sufficient condition for a new

sequence to be feasible with respect to satisfying the time window

constraints. To check for violations of vehicle capacity and customer's

maximum-ride-time constraints, a screening test through the new time

schedule would suffice. (Such screening can be performed at the same time

when Rr and Ar are computed. See Figure 1.2 in Appendix I.)

We have so far accomplished our first objective by identifying new

feasible sequences. The second objective in the feasibility test is to

obtain a feasible time schedule and its associated bounds on the

displacements. Recall that T -is the earliest schedule for the new sequence

and it has to be delayed by at least Rmin to remain feasible. If the

condition of (4-24) is met, we can obtain a feasible schedule T' by
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shifting T by Rmin. By the definitions of T and Rmin, T' becomes the

earliest feasible time schedule for the new sequence. Consequently, the

lower bound, LB, on the displacement of T' is equal to zero.

LB = 0 (4-25)

In other words, no schedule earlier than T' would be feasible.

The upper bound, UB, representing the maximum amount of time T' can be

delayed is obtained by

UB = Amax - Rmin (4-26)

The detailed logic of the approach described above is depicted in the

flowchart of Figure 1.2 of Appendix I..

In summary we have designed two different methods for testing

feasibility of insertions, one for insertions within the same schedule

block and the other for insertions into two different schedule blocks.

Both methods achieve objectives i) and ii) described above. We now proceed

to discuss the optimization procedures used to choose the most desirable

insertion.

4.5 The Optimization Procedure

In order to select among all feasible insertions of customer i into

the work-schedules of the available vehicles, we use an objective function

designed to evaluate the incremental "cost* of each insertion. This cost

is taken to be a weighted sum of disutility to system's customers and of

operator costs - the latter measured in terms of "consumption" of

available vehicle resources.
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As-sume that it is feasible to insert customer i into the work-

schedule of vehicle j. Then the incremental disutility of that insertion

to the system's customers consists of the sum of two parts: the disutility

to customer i, i.e. the customer being assigned to a vehicle; and the

additional disutility suffered by all other customers already assigned to

that vehicle because of the insertion of customer i. The first part

(disutility to customer i) is given by

DUg = DU + DUr (4-27)

where DU = disutility due to deviation from most desired time

=Ci- + C2 '2 0 < xi < WSi (4-28)

and,

D1 = disutility due to excess ride time

= C3 'yi + C4 y yi > 0 (4-29)

In (4-28) and (4-29), C1, C2, C3 and C4 are user-specified constants and

APT. - DPT. for DPT-specified customers

DDT.[ - ADT for DDT-specified customers
1 1

and y, = ART, - DRTi (4-31)

The quadratic terms allow the modeling of situations in which

disutilities are believed to increase nonlinearly with xi and/or yi.

Clearly, by varying C1 , C2 , C3 and C4 (including assigning the value of
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zero to some of them) many different types of behavior can be represented.

The second part (additional disutility to other customers) is given

by:

0 
= eDew -DU old )-(32)DU.= D -(4
k on j

where DU ew and DUld are,respectively, the disutilities to customer k

after and before the insertion of customer i into the schedule of vehicle

j. The summation is over all customers k who were already assigned to

vehicle j prior to the assignment of customer i.

The incremental cost, VC1 , to the system's operator due to

inserting customer i into the work-schedule of some vehicle is quantified

in somewhat unusual terms by our objective function. We have,

VCi = C5 -zi + C6 'wi + U1 -( C7 -z1 + C8'wi) (4-33)

where CS, C6, C7 and C8 are externally set constants.

zg is the additional active vehicle time required to serve the customer i

wi is the change in vehicle slack time due to the insertion

Ui is an indicator of system workload defined as:

U = ( No. of system customers in [EPT WEPT +W2 (4-34)
(Effective no. of vehicles available in [EPT -W , W2)

In (4-34), Wi and W2 are externally specified constants. For

example, if W1 ,W2 = 60 minutes, U1 is equal to the ratio of the number of

customers demanding service to the available number of vehicles duriig the
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two-hour time period that has the earliest pick-up time of customer i as

its mid-point. The word "effective" is used in the denominator of (4-34)

to account for the fact that some vehicles may be available for service

only for a fraction of the time interval (e.g., two hours) in question -

usually because of driver constraints, union rules, etc.

The following should be noted with respect to (4-33):

(i) The change in vehicle slack time, wi, can be positive or negative. It

will be negative if the insertion means that slack time in the original

schedule will now be utilized to serve customer i; it will be positive if,

in order to serve customer i, additional vehicle slack time must be

created (this will happen if a new schedule block is created to serve

customer i).

(ii) In practice, the cost per unit of time of a vehicle in the "active"

state is greater than in the "slack" state (e.g. no fuel consumption in

slack state). Therefore, we must have C5 2 C6 and C7  C8.

(iii) Obviously Ui will be larger during periods of heavy demand. Since

the total "cost" of an insertion is given by DUi + VCi - i.e. by the sum

of (4-27), (4-32) and (4-33) - it is clear that during heavy demand

periods, the objective function places more emphasis on the system

operator's costs (relative to customers' disutility) than during low

demand periods. This is as it should be, since during periods of high

utilization vehicle resources are scarcer and it is thus important to

"conserve" these resources as much as possible. For all test runs of

ADARTW to be described in Chapter 5, W1 =0 and W2 =60 minutes are chosen to

compute Ui in (4-34). Ui in this case can be explained as the average
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number of customers a vehicle would have to carry in the next hour

starting from the earliest pick-up time of customer i. As a result, the

objective function in the optimization step which includes Ui as a

parameter will take into consideration the customer demands for the next

hour and adjust automatically the weight placed on the vehicle resource

term. In the last hour of dial-a-ride operation Ui will become smaller as

we approach the end of the subscription list. This is a desirable feature

since at the end of a day no urgent conservation of vehicle resources is

necessary.

Given this background, the optimization steps of ADARTW can be

summarized as follows: Consider customer i who is to be inserted into the

work-schedule of one of m available vehicles. Assume that for each vehicle

j ( j = 1,2,...,m ) all feasible sequences for inserting customer i into

the work-schedule of j have been identified in the manner outlined in

Section 4.4. Then, to select the optimum insertion, we use a sequence of

three steps:

(a) For each and every feasible sequence pertaining to vehicle j, find a

time schedule (including the pick-up and delivery times APTi and ADTi for

customer i) that minimizes the incremental cost DUi + VCi. Note that this

requires shifting the feasible time schedule associated with each feasible

sequence (obtained in section 4.4) within its bounds of displacements.

(b) Choose the one sequence among those examined above which results in

the smallest incremental cost. This smallest incremental cost is COST.

the additional cost associated with inserting customer i into th' work-
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schedule of vehicle j as defined in Section 4.3 above.

(c) Finally, assign customer i to a vehicle j such that COST.* .S COST.

for all J = 1,2,.. .,m.

In steps (b) and (c) above, the goal is to find the minimum among a

finite number of values. Such procedures are straightforward. However,

step (a) presents some difficulties. Finding the optimal time schedule

(i.e. the one with the least incremental cost) for a schedule sequence is

very similar to the problem defined and solved in Sexton and Bodin [32].

However, our problem is different in two aspects (i) A combination of

DPT-specified and DDT-specified customers are present in our problem (in

[32], only one type of customers is allowed); (ii) Our objective function

is nonlinear if non-zero C2 or C4 is chosen in (4-28) and (4-29). Bodin

and Sexton transformed their version of the problem into a maximum profit

network flow problem which can be solved using noniterative procedures.

For our case, we need a highly efficient way to solve the problem since it

is encountered for every instance of a feasible insertion.

Before presenting our solution approach to this optimization

problem, we first use an example to illustrate the nature of the problem

involved.

Example 4.1:

Consider a subscription list of three customers, each having

service quality constraints and distinct pick-up and delivery locations as

shown in Table 4.2.
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Table 4.2 Subscription list of three customers.

Customer # EPT LPT EDT LDT DRT MRT

1 7:30 8:00 8:10 9:20 40 80

2 7:35 8:30 8:25 8:55 25 50

3 7:35 8:05 8:10 9:15 35 70

Table 4.3 D(x,y)

1

matrix

-2

(in minutes)

-3 +1

Time Specified

DPT

DDT

DPT

+2 +3

In Table 4.3, the distance matrix between any pair of points is given in

terms of vehicle travel time. The current schedule sequence and the

corresponding time schedule are provided in Table 4.4.

For de.onstration purposes, let us focus on one particular

insertion, that of customer #3 to this schedule block as shown in Figure

4.6. The new sequence {+1,+3,+2,-2,-3,-1) is feasible and can correspond

to many different time schedules. Table 4.5 lists three such feasible time

schedules, the first one being the earliest possible, the second one the

latest possible while the third is the one obtained as a result of the

feasibility test described in Section 4.4.
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Table 4.4 Current Time Schedule

STOPS

+1

+2

-2

-1

TIME-SCHEDULE

7:52

8:07

8:32

8:52

DEVIATION

+22

-23

Three Feasible Time Schedules After The Insertion

EARLIEST-SCHEDULE

7:30

7:40

7:50

8:15

8:30

8:40

LATEST-SCHEDULE

7:55

8:05

8:15

8:40

8:55

9:05

INITIAL-SCHEDULE

7:47

7:57

8:07

8:32

8:47

8:57

Table 4.5

STOPS

+1

+3

+2

-2

-3

-1



(
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_ Route before the insertion

Figure 4.6 An incidence of insertion of customer #3

(Distance in minutes)
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The time difference between the earliest and latest time schedules

is 25 minutes. Any time schedule which falls in this 25-minute span is

considexed feasible for this new sequence. The problem is to find the time

schedule that minimizes the incremental cost caused by this particular

insertion of customer #3.

( End of Example 4.1 )

Let To denote the initial time schedule which has been obtained

from the feasibility test. Recall that in Section 4.4 we have also

obtained the associated upper and lower bounds on displacement for this

initial time schedule. Based on this initial time schedule it can be shown

that our optimization problem is equivalent to minimizing a single-

variable convex fuction, the variable being the amount by which the

initial time schedule should be shifted. Let f(a) denote the objective

fuction to be minimized. Variable "a" represents the amount of time by

which the initial time schedule, To, is shifted. Let Ta denote the time

schedule after shifting To by time a. The optimization problem can be

formulated as follows:

Minimize f(a) : C(Ta) - C(TO) (4-35)

s.t. LB a S UB ( "a" can be negative ) (4-36)

where CO denotes the incremental cost of a time schedule.

Note that by shifting To by time a, the customers' excess on-board

time disutility and the vehicle's active time remain unchanged. Only

customers' service time deviation and vehicle slack time will vary with
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different time schedules. Let ADUa and AVCa denote respectively the change

in customers' disutility and vehicle resources after shifting To by time

a. Then we can express ADUa and AVCa as follows:

ADUa = (A) -(B) (4-37)

(A) = C (DV + a) + ) (DVd - a)]

all p all d

+ C *[ I (DV + a)2 + 2 (DV - a) ]
2 all p alld d

(B) = C( DV + DVd ) + C2 ( DV + DV)

all p all d all p al d

where DVi represents the time deviation between the actual service time of

customer i in T and customer i's desired service time,

p is the index for DPT-specified customers,

d is the index for DDT-specified customers.

Part (A) and part (B) in (4-37) represent respectively customers'

disutility after and before the shifting of To by time a. (4-37) can be

simplified to :

ADUa = C1 -(P) - N(D))a

+ C 2[ 2a( Y DV - DVd ) + (N(P) + N(D))a2 ] (4-38)

all p all d

where N(P) ( N(D) ) denote the number of DPT-specified (DDT-specified)

customers in the new schedule sequence.

AVCa can be expressed by the change in vehicle slack time:
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AVCa = ( C6 -a + C8 -a-Ui )-1 (4-39)

where I = 0 if the schedule block containing customer i is contained

between two other schedule blocks or the schedule block

is the only schedule block in the vehicle's work-

schedule,

= -1 ( = +1 ) if the schedule block containing customer i is

the first ( last ) schedule block in the vehicle's work-

schedule.

We can now express function f(a) in terms of ADUa and AVCa:

f(a) = ADUa + AVCa

= [C1 -(N(P)-N(D)) + 2C2 -( DV - DVd ) + (C6 + C80Ui)-I ]-a
all p all d

+ C2 -(N(P)+(N(D)) -2 (4-40)

We observe in (4-40) that f(a) is a convex quadratic fuction with

respect to a. According to the property of a convex fuction, f(a) is

minimized at a* which satisfies the relationship df(a)/da = 0. The value

a* might not be the true minimum in our optimization problem due to the

presence of the bounding constraint in (4-36). However, since f(a) is

convex, we can easily find the true minimum a* by comparing a* with the

constraining bounds.

We now summarize the above discussion : The optimization problem of

(4-35) and (4-36) can be solved by first finding the minimum a* for the

convex fuction in (4-40). Then by comparing a* with constraint (4-36), we

can obtain the true minimum a*.
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Results can be classified into two cases:

(i) C2 = 0

This is the case of linear objective function. The function f(a) in

(4-40) becomes:

f(a) = [ C1 -(N(P)-N(D)) + ( C6 + C8'Ji )-I I - a (4-41)

For the minimization of (4-41) subject to (4-36), we have:

If Cg-(N(P)-N(D)) + ( C6 + C8 'Ui )'I > 0 , then a* = LB

If Cl-(N(P)-N(D)) + ( C6 + C8 -Ui )- < 0 , then a = UB

If C1 -(N(P)-N(D)) + ( C6 + C8 'Ui )-I = 0 , then a* can be set

arbitrarily

between UB and LB.

(ii) C2 > 0, the case of nonlinear objective function:

-[C -(N(P)-N(D))+ 2C2 -( 5 DV - 2 DVd) + (C6 + C8. Ui).I]

a= all p all d (4-42)

2(N(P)+N(D)) -C2

If a* ( LB then a = LB

If a* > UBE, then a = UB

If LB a* UB , then a* = a*

After the optimal "shift" a* is found, we can obtain the optimal

time schedule, T , for the new sequence by shifting To by time a . From T

the incremental cost caused by this insertion can be evaluated.
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To further demonstrate the process of finding a , we choose the

same situation used in Example 4.1 and work through the entire procedure

of computing the incremental cost for that particular insertion.

Example 4.2 :

Table 4.6 lists the initial time schedule, To, obtained as a result

of the feasibility test (see flowchart in Figure 1.1(d) in Appendix I. and

Table 4.5). The upper and lower bounds on the displacement of T0 are: UB =

8, LB = -17, i.e., -17 . a . 8. Other information pertaining to To

*
required for finding a are:

N(P) = 2 , N(D) = 1, I = 0, DV1 = 17, DV2 = 23, DV3 = 22.

Assume that the user of ADARTW has specified the objective function

constants as:

C1 = 0 , C 2 = 0.5 , C3 = 0 , C4 = 0.3

C5 = 0 , C6 = 0 , C7 = 1 , C 8 = 0.5

Suppose that it has also been determined that the average vehicle workload

of the system, U3, defined by (4-34), is equal to 3.

Since C2 > 0, we use (4-42) to compute a*. We get a* = - 16/3.

By comparing the value of a* with constraint (4-36), we note that:

-17 . -16/3 . 8

So, a = a* = - 16/3. The optimal time schedule T* is then obtained by

shifting To early by 5.33 minutes1 . Table 4.7 shows the would-be optimal

1For simplification purposes, 5.33 is rounded off to 5 in the following
discussion.
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Table 4.6 The Initial Time Schedule TO

STOPS

+1

+3

+2

-2

-3

-1

TIME-SCHEDULE

7:47

7:57

8:07

8:32

8:47

8:57

Table 4.7 The Optimal Time Schedule

TIME-SCHEDULE DEVIATION

+12

+17

7:42

7:52

8:02

8:27

8:42

8: 52

-28

STOPS

+1

+3

+2

-2

-3
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time schedule T* if customer #3 is inserted.

With the time schedule T* found, we can evaluate the incremental

cost caused by this insertion of customer #3. The incremental cost

consists of two parts:

(i) Customers' disutility

a) Customer #3's disutility:

DU3 = DU + DUr

= C-x 3 + C 2  + C3 3 + C42

x3 = APT3 - DPT3  ( customer #3 is a DPT-specified customer )

= 7:52 - 7:35 ( compare Table 4.6 and Table 4.2 )

= 17

y3 = (ADT3 - APT3 )

= (8:42 - 7:52)

= 50 - 35

= 15

- DRT
3

- 35 ( see Table 4.7 and Table 4.2 )

DU3 = ( 0.5-172 ) + ( 0.3-152 )

= 312

b) Other customers'( #1's and #2's ) additional disutility:

e = 1 ( DUnew - DUld )
j 3

= ( 0.5-122 ) - ( 0.5-222 ) (compare Table 4.4 with Table 4.7)

+ ( 0.5-282 ) - ( 0.5-232 )

+ ( 0.3-702 ) - ( 0.3-602 )

= 1300.5
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(ii) Operator cost

z3 = [ D(+1,+3) + D(+3,+2) - D(+1,+2) ]

+ [ D(-2,-3) + D(-3,-1) - D(-2,-1) I

= 10

w 3 
= 0

VC3 = C5'z3 + C6 'w3 + U3-( C7 -z3 + C8 'w3

= 1-3-10

= 30

The total incremental cost is the sum of (i) and (ii):

Cost = 312 + 1300.5 + 30

= 1642.5

(End of Example 4.2)

We have described the logic of ADARTW and used numerical examples

to highlight parts of the algorithm's procedures. We now proceed to the

discussion of some computational results.
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CHAPTER 5 COMPUTATIONAL RESULTS OF ADARTW

5.1 Introduction

In order to gain insights into the performance of ADARTW under

various operating environments, we have designed a set of nine computer-

generated customer subscription lists based upon combinations of three

levels of demand scenarios and three different sizes of time windows. The

three demand scenarios correspond to low (10 customers/hr), medium (50

customers/hr) and high (100 customers/hr) demand levels that have been

typical of those experienced by some of the existing dial-a-ride systems.

The set of three time window sizes (10, 20, and 30 minutes) represent a

possible range of service quality levels that could be guaranteed by the

system operator. We also tested ADARTW on a real-world data base obtained

from Friedrichshafen, West Germany. In the following sections we present

our computational findings on ADARTW based upon these two categories of

tests. Section 5.2 examines the computational results using simulated

data. Section 5.3 discusses the computation efficiency of ADARTW and

finally in Section 5.4 experience with ADARTW on the real-world data base

is presented.

5.2 Runs Using Simulated Data

5.2.1 Data

The nine simulated data sets are randomly generated by the computer

using the following scenarios:
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Service area : 6 x 6 square miles.

Distance metric : Euclidean.

Customer origins/destinations : Uniformly and independently distributed

in the area.

Depot location : Center of the area.

Vehicle speed 15 miles/hour.

Hourly demand 10 , 50 , 100 customers (low , medium , high).

Duration of time simulated : 9 hours.

Demand pattern : Uniformly distributed within every hour simulated.

Percent of DPT-specified customers : 50%

Time window size 10 , 20 , 30 minutes

Maximum ride time: MRTi = 5 minutes + 2 DRTi

Parameters W1 and W2 used in (4-34) : W= 0 , W2 = 60 minutes.

For notational purposes, we use XN (X = L,M,H and N = 10,20,30) to

represent the data set generated by using one of the three demand levels,

10, 50 and 100 customers per hour and one of the three sizes of time

window. For example, M30 represents the data set of 50 customers per hour

and guaranteed time window of 30 minutes.

5.2.2 Computational Results and Analysis

We divide the discussion of computational results on simulated data

into two parts. The first part focuses on the question of how different

parameters (C1 , C2 and others) in the objective function affe-t the

results of ADARTW. The second part examines the performance of one
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possible variation from the basic approach of ADARTW which employs a pool

of candidate customers. We also evaluate the advantage gained by

considering all possible insertions, instead of just those made into the

same schedule block.

5.2.2.1 Investigation on the effects of individual parameters

In the first part of the investigation, we use C1 ,C2 ,C3 ,C4 ,C5 ,C6 =

0 , C7 = 1 , C8 = 0.8. as the base case parameter set. By varying one

parameter at a time in the subsequent test runs, we attempt to separate

the effects of the individual parameters. Statistics collected at the

end of each run include the following:

N
a) Vehicle productivity =

Total vehicle time

1 N
b) Average deviation - 5 DV.

N i=1

1 N ADT.- APT.
c) Average ride time ratio = - (5-1)

N i=1 DRT.
1

d) Number of vehicles used.

e) Maximum vehicle capacity required.

Active vehicle time
f) Vehicle utilization rate =

Total vehicle time

We have chosen the M30 data set as the primary test data in this

part of the investigation. Initially, the system has 10 available

vehicles. Whenever an infeasibility condition occurs during a run, another
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vehicle is introduced into the system and it stays available throughout

the simulation time. Test results are summarized as follows:

(i) Parameter C1 :

In this experiment it is assumed that the customer disutility

function is a linear function of the service time deviation, i.e. DU in

(4-28) can be expressed as: DUd= C x . To investigate the effect of

different values of C1 on the solution of ADARTW, a series of test runs

were conducted by varying the value of C1 from the base case scenario in

each successive run. Statistics on the quality of schedules produced by

ADARTW with respect to different values of C1 are tabulated in Table 5.1.

As can be seen in column 1 of the table, a wide range of possible values

for C1 was tested. The second column of the table indicates the number of

vehicles used in order to reach a feasible solution (initially there were

only 10 vehicles). It is noted that as C1 increases, the number of

vehicles required also increases despite some minor fluctuations when C1

is small. The average deviations shown in column 3 seem to decrease

monotonically with increasing values of C1 within the range of 0 to 20.

After C1 excee-s 20, the average deviation becomes somewhat unpredictable

but eventually settles down to 3.22 minutes for C1 2 160. We also observe

the fact that the average time deviation is more sensitive to changes of

C1 when C1 is small. As C1 becomes larger the rate of decrease in average

deviation as a result of increasing C1 slows down.

The fourth column of Table 5.1 records the average ride tim, ratio

as defined in (5-1) for each run. Although no customer disutility was
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Table 5.1 Base case scenario with varying C1

(C7 = 1, C8 = 0.8, Others = 0)

No. of Average Average Maximum
Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run C1  Required (minutes) Ratio Prod. Rate Required

#1 0 13 14.59 1.60 4.54 0.94 6

#2 1 12 11.94 1.60 4.47 0.94 6

#3 3 15 7.95 1.58 3.77 0.90 5

#4 5 14 6.54 1.48 3.81 0.96 5

#5 7 15 4.65 1.47 3.61 0.95 4

#6 9 14 4.28 1.46 3.64 0.96 5

#7 20 15 3.68 1.43 3.38 0.95 4

#8 50 15 4.11 1.40 3.35 0.96 4

#9 75 15 4.85 1.37 3.37 0.96 5

#10 100 15 4.42 1.40 3.36 0.95 5

#11 150 15 4.94 1.38 3.36 0.96 5

#12 160 17 3.22 1.38 3.18 0.94 5

*4-
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assumed for excess ride time in this series of test runs (C3 = C4 = 0),

the average ride time ratio recorded actually decreases as C1 increses.

One explanation for such behavior is that as more weight is placed on time

deviation, customers are likely to be delivered directly from their

origin to their destination so that their service times are close to their

desired times. Another reason right be that as the value of C1 increases

more vehicles are introdiced into the system and consequently the system

will provide less circuitous ride service when the workload is shared by

additional vehicles.

Another important statistic, vehicle productivity, is listed in the

fifth column of Table 4.8. When no customer disutility was specified in

run #1 (C1,...,C 4 = 0), ADARTW achieved a system productivity of serving,

on the average, 4.54 customers per vehicle hour. The quality of service

rendered can be evaluated by an average deviation of 14.59 minutes from a

customer's desired service time and by an average of 60% more ride time

than necessary. As the quality of service improves when C1 increases, the

vehicle productivity decreases until it reaches the lowest level of 3.18,

a 30% reduction from the highest value of 4.54. The tradeoff between the

service quali.y and vehicle resources is real and the objective function

has demonstrated its capability of providing a wide range of choices for

the system operator. However, we note that in Table 5.1 there are some

solutions which clearly dominate others (e.g. the solution for run #4 (C1

= 5) dominates run #3 (C1 = 3) in terms of the number of vehicles used,

the average deviation, the average ride time ratio, and vehicle

productivity). This can happen when the difference between paramec-rs is

small and the "myopic" nature of ADARTW can make the tradeaff less
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predictable. But the global trend between the quality of solution and

parameter C1 is obvious and predictable in the long run.

The utilization rate1 of vehicles in column 6 of Table 5.1 remains

more or less constant at the value of 0.96. In other words, only 4% of the

total vehicle time is slack time. We would expect that as the time window

gets smaller, the utilization rate would decrease since the vehicles are

more likely to wait for customers in order to meet their time window

constraints.

Since vehicle capacities are assumed to be unlimited during all

test runs, it is important that we record the maximum vehicle capacity

required by the ADARTW-generated schedule. It can be seen in the last

column of Table 5.1 that the maximum capacity required is quite small (at

maximum, 6) when compared with other forms of public transportation.

However, it is recognized that the required capacity might increase

significantly if we consider situations like groups of passengers

travelling together, the demand population being unevenly distributed

within the service region, the possibility of peak hour demand, etc.

(ii) Parameter C2:

1Note that the total vehicle time used in defining the utilization rate is
the sum of the vehicle time for every vehicle between it leaves the depot
and after delivering the last customer assigned to it.



- 139 -

Here we assume that the disutility function, DU1, is quadratic in

the service time deviation: DU = C2 x . Similar experimental runs were

designed as in the case of C1. Table 5.2 compiles statistics on the

scheduling results of ADARTW for different values of C2.

For run #1, the number of vehicles required is 13 when C2 = 0. It

increased to 14 and stayed at 14 for C2 = 0.1 to 0.9. It again increased

to 15 after C2 reaches the value of 2. The increasing trend in this regard

is consistent with our observation during previous investigation of C1 .

In Table 5.2 the average deviation decreases as the value of C

increases until it reaches a minimum of 3.25 minutes when C2 = 2. Then

when C2 becomes disproportionally large with respect to the vehicle

resource terms (i.e. C2 >> C7 , C8 ) the average deviation responds to

changes of C2 somewhat randomly. This phenomenon is also observed in Table

5.1 when C1 becomes exceedingly large. It is believed that there exists a

limit up to which the average deviation can be decreased by assigning more

weight to the disutility term. After the weight exceeds this limit, the

result is governed more by chance than by the weight itself.

Other statistics listed in Table 5.2 follow the same pattern as

those listed in Table 5.2. Specifically, both the average ride time ratio

and the vehicle productivity decrease as the parameter C2 increases. The

utilization rate remains more or less constant at 0.96 throughout the

runs. The maximum capacity required is similar to that of Table 5.1.

After we have examined the linear and quadratic disutility
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Table 5.2 Base case scenario with varying C2

(C7 = 1, C8 = 0.8, Others = 0)

No. of Average Average Maximum
Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run C2  Required (minutes) Ratio Prod. Rate Required

#1 0 13 14.59 1.60 4.54 0.94 6

#2 0.05 12 11.01 1.62 4.44 0.95 6

#3 0.1 14 8.87 1.60 4.11 0.95 5

#4 0.3 14 5.60 1.51 3.90 0.96 6

#5 0.5 14 5.33 1.49 3.60 0.96 5

#6 0.7 14 4.87 1.47 3.67 0.96 4

#7 0.9 14 4.20 1.49 3.60 0.96 4

#8 2 15 3.25 1.44 3.37 0.95 5

#9 50 15 3.98 1.41 3.36 0.95 4

#10 100 15 5.64 1.42 3.39 0.98 4

#11 200 15 4.45 1.42 3.38 0.96 4
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functions individually, it is appropriate to ask the following questions:

1) What is the difference between the two functions?

2) Which functional form should be used in practice?

It is not difficult to see that if we have two functions with the same

mean, the quadratic function will assign more customer disutility to

longer deviations than the linear function. To demonstrate this point, we

have selected an example of two particular disutility functions, one

linear and the other one quadratic. Parameters C1 and C2 in each function

are chosen to be 1 and 0.05 respectively such that the two disutility

functions when considered over a uniform distribution in a time window of

30 minutes have the same mean.

a) Linear function

DU4= C1 -x1

= xi (C 1 = 1)

d 0 1

E(DU) =po - - x. dx.
1 0 30 1

151
= 15

b) Quadratic function

DU C2'

= 0.05- x (C2 = 0.05)

d 0 1 2
E(DU.) x. dx.

1 i 3 IL

= 15

The results of ADARTW using each disutility function can be found

by as run #2 in Table 5.1 and Table 5.2. The linear disutility function

results in an average deviation of 11.94 minutes and the quadratic
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function of 11.01 minutes. Figure 5.1(a) and (b) plot the histograms of

customer service time deviations under each scenario. By comparing the

distribution of deviations in each figure, it can be seen that the

quadratic function results in fewer deviations in the high-end range, e.g.

47 deviations in the range of 25 to 30 minutes (59 for the linear

function) and 40 in the range of 20 to 25 minutes (59 for the linear

function). This observation indicates that the difference between the two

functions lies in the distribution of deviations in the schedules.

The second question on when to use which function refers

essentially to a policy issue. There is no clear indication that the

quadratic function will perform better than the linear function in areas

other than generating a preferable distribution of deviations. For

practical purposes, the quadratic function is suggested for large time

windows since it is a more realistic representation of the disutility

function in such cases.

(iii) Parameter C3:

Parameter C3 represents the weight placed on the linear term of

excess ride time in the disutility function of (4-29). In this part of the

investigation it is assumed that DUT = C3 yTi

Table 5.3 compiles the results from a sequence of runs of ADARTW

using different values for C3 , ranging from 0 to 200. As expected, the

average ride time ratio in column 4 decreased from a maximum of 1.60 when

C3 = 0 to a minimum of 1.04 when C3 is sequentially increased to 100.
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Table 5.3 '3ase case scenario with varying C3

(C7 = 1, C8 = 0.8, Others = 0)

No. of Average Average Maximum
Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run C3  Required (minutes) Ratio Prod. Rate Required

#1 0 13 14.59 1.60 4.54 0.94 6

#2 1 13 14.22 1.49 4.57 0.92 8

#3 3 13 15.15 1.28 4.00 0.89 5

#4 5 11 15.23 1.22 4.45 0.96 5

#5 7 13 15.92 1.12 4.08 0.97 5

#6 9 14 15.63 1.07 3.97 0.98 5

#7 100 15 15.62 1.04 3.39 0.98 4

#8 200 15 15.42 1.04 3.41 0.98 4
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Since no disutility function was specified for service time deviation in

these runs, the average deviations recorded remain at approximately 15

minutes which happens to be one half of the time window size. Also in

Table 5.3, the vehicle productivity shows a small increase (4.57 from

4.54) when C3 is increased from 0 to 1, but decreases to 4.00 in the next

run (C3 = 3). It increases again at C3 = 5 and decreases gradually

afterwards. Note that the number of vehicles used in run #4 (C3 = 5) is 11

which is the smallest fleet size found so far to satisfy all demands in

this data set. Another interesting result is that depite the small ride

time ratio, e.g. 1.04 in run #7, the maximum capacity required remains at

least 4. Logically, we would have expected very few shared rides at such a

low level of ride time ratio. Finally in column 7, the utilization rate

seems to be higher when the average ride time ratio is small.

(iv) Parameter C4

A quadratic excess-ride-time disutility function is assumed in this

test: DU= C4 -y . Table 5.4 gives the computational results under this

scenario. The parameter C4 was varied from 0 to 200 with smaller

increments at small values. The average ride time ratio indicates a

decreasing trend with repect to the increase of C4 which is consistent

with the design purpose of this function. The highest vehicle productivity

and the smallest fleet size achieved are recorded in run #2 (C1 = 0.1).

This coincides with the results in Table 5.3 which also indicate that

instead of assuming no disutility at all, better vehicle productivity can

be achieved by assigning a relatively small weight on the excess ride time

disutility.
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Table 5.4 Base case scenario with varying C4

(C7 = 1, C8 = 0.8, Others = 0)

No. of Average Average Maximum
Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run C4  Required (minutes) Ratio Prod. Rate Required

#1 0 13 14.59 1.60 4.54 0.94 6

#2 0.1 12 15.13 1.42 4.73 0.96 5

#3 0.2 13 15.00 1.25 3.99 0.90 4

#4 0.3 13 15.21 1.21 4.11 0.95 6

#5 0.4 13 15.37 1.20 3.90 0.93 4

#6 0.5 13 15.71 1.15 4.03 0.99 3

#7 2 15 15.88 1.07 3.42 0.96 3

#8 100 14 15.12 1.10 3.54 0.99 5

#9 200 14 15.12 1.10 3.54 0.99 5
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The difference between a linear DUr and a quadratic DUr also lies

in the distribution of excess ride times experienced by the customers in

the schedule. A quadratic DUr places a higher penalty on longer excess

ride times than the linear DUr, and thus results in fewer excessively long

ride times.

(v) Parameters C5 and C6:

Parameters C5 and C6 in the vehicle resource function provide with

an alternative vehicle resource function which does not employ Ui. All

runs so far have used Ui in the vehicle resource function by specifying C5

0, C6 = 0 and C7 k 0, C8 k 0. That is:

VCi = U - (C7-zi + C8 'wi) (5-2)

If instead C7 = 0, C8 = 0 and C5 # 0, C6  ' 0, we have the alternative

function:

VCi = C5'zi + C6 'wi (5-3)

As explained in Chapter 4, Ui is used to conserve vehicle resources during

high demand periods and to put relatively more emphasis on the quality of

service during periods of low demand. The question to be addressed is

whether the U1 term has been effective in serving the role for which it

was originally conceived. During previous test runs, the data set, M30,

was used. Since the data assumes a uniform distribution of demands over

the simulation time, there is no benefit in using Ui. To further analyze

this question, we therefore need another data set with uneven demand

level. A new data set, denoted by UM30, was generated in the same ,ay as

the M30 data set except that the hourly demand distribution of the 450
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customers is: 30, 40, 60, 40, 60, 90, 60, 40, and 30 for the nine hours of

simulation time.

To study the effect of the Ui term in the vehicle resource

function, we can take two approaches: First, we can perform test runs of

ADARTW on data set UM30 using the vehicle resource functions (5-2) and (5-

3) and compare the results. Since one function uses U, and the other one

does not, it should be possible to see whether the use of Ui can improve

the quality of the solutions. The second approach is to use (5-2) as the

vehicle resource function and compare the results of ADARTW on data set

UM30 with results on M30.

Table 5.5 summarizes the scheduling results of ADARTW on the new

data set UM30 using (5-3) as the vehicle resource function. Table 5.6

compiles similar results (the unbracketed numbers) using function (5-2).

To compare the results of different functions directly, we note that since

function (5-2) receives Ui times more weight than function (5-3), other

parameters in function (5-3) must be scaled down so that the relative

weight between parameters is approximately the same for each function. To

do this, we assume that the average value for Ui for data set UM30 is

approximately 3 (an average of 50 customers per hour divided by a

predicted fleet of 16 vehicles). Note that all parameters used in Table

5.5 have been scaled down by a factor of three by comparison to those used

in Table 5.6. Because this is only an approximation, it is still difficult

to say which run is better than the other. For example, run #2 in Table

5.5 has almost identical service quality and vehicle productivity with run

#2 in Table 5.6. By comparing two tables directly (e.g. run #1 in Table
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Table 5.5 Use (5-3) as vehicle resource function (Ui not used)
(C5 = 1, C6 = 0.8, C7 = 0, C8 = 0, Data set = UM30)

No. of Average Average Maximum
Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run C1 C2 C3 C4 Required (minutes) Ratio Prod. Rate Required

#1 0 0 0 0 16 15.11 1.66 5.07 0.97 6

#2 .33 0 0 0 16 11.09 1.59 4.51 0.94 4

#3 1 0 0 0 18 7.39 1.53 4.05 0.96 6

#4 1.7 0 0 0 19 5.42 1.48 3.87 0.96 5

#5 0 .03 0 0 17 7.63 1.61 4.23 0.95 6

#6 0 . 0 0 18 6.39 1.55 3.87 0.97 5

#7 0 .17 0 0 19 5.97 1.50 3.89 0.97 6

#8 0 0 .33 0 16 13.98 1.43 4.73 0.92 6

#9 0 0 1 0 16 14.93 1.28 4.69 0.95 7

#10 0 0 1.7 0 16 15.06 1.18 4.31 0.95 5

#11 0 0 0 .03 16 14.98 1.37 4.75 0.97 5

#12 0 0 0 .1 17 15.23 1.19 4.25 0.96 5

#13 0 0 0 .17 20 14.93 1.17 3.95 0.96 4

#14 .33 0 .33 0 17 10.67 1.44 4.40 0.93 6

#15 0 .03 0 .07 18 9.04 1.25 4.01 0.97 1



Table 5.6 Use (5-2) as vehicle resource function (Ui used)
(C5 = 0, C 6 = 0, C7 = 1, C 8 = 0.8, Data set = UM30 (M30))

Average
Deviation
(minutes)

Average
Ride-Time

Ratio

15.11 (14.59) 1.66 (1.60)

Run

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

C
1

0

1

3

5

0

0

0

0

0

0

0

0

0

1

C
2

0

0

0

0

0.1

0.3

0.5

0

0

0

0

0

0

0

C
3

0

0

0

0

0

0

0

1

3

5

0

0

0

1

Vehicle
Prod.

5.07 (4.54)

C
4

0

0

0

0

0

0

0

0

0

0

0.1

0.3

0.5

0

No. of
Vehicles
Required

16 (13)

16 (12)

18 (15)

19 (14)

17 (14)

18 (14)

20 (14)

16 (13)

17 (13)

18 (11)

16 (12)

18 (13)

18 (13)

16 (12)

Utiliz.
Rate

0.97 (0.94)

0.92

0.92

0.94

0.96

0.96

0.97

0.93

0.95

0.96

0.95

0.97

0.93

0.93

(0.94)

(0.90)

(0.96)

(0.95)

(0.96)

(0.96)

(0.92)

(0.89)

(0.97)

(0.96)

(0.95)

(0.99)

(0.91)

#15 0 0.1 0 0.2 18 (15) 9.19 (8.93) 1.27 (1.25) 3.95 (3.97) 0.95 (0.97)

U

11.31

8.16

6.37

8.47

6.82

5.84

15.27

13.50

13.90

14.67

14.20

14.95

11.34

(11.94)

(7.95)

(6.54)

(8.87)

(5.60)

(5.33)

(14.22)

(15.15)

(15.23)

(15.13)

(15.21)

(15.71)

(11.84)

1.60

1.59

1.47

1.59

1.52

1.48

1.46

1.33

1.22

1.39

1.23

1.17

1.41

(1.60)

(1.58)

(1.48)

(1.60)

(1.51)

(1.49)

(1.49)

(1.28)

(1.22)

(1.42)

(1.21)

(1.15)

(1.48)

4.50

4.01

3.86

4.20

3.93

3.65

4.76

4.53

4.42

4.61

4.35

3.89

4.31

(4.47)

(3.77)

(3.81)

(4.11)

(3.90)

(3.60)

(4.57)

(4.00)

(4.45)

(4.73)

(4.11)

(4.03)

(4.37)

Maximum
Capacity
Required

6 (6)

6 (6)

5 (5)

5 (5)

6 (5)

5 (6)

4 (5)

6 (8)

6 (5)

5 (5)

6 (5)

5 (6)

4 (3)

5 (5)

5 (4)
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5.5 vs run #1 in Table 5.6), four runs in Table 5.5 (#7, #9, #10, #12)

used fewer vehicles than the corresponding runs in Table 5.6 while two

other runs (#13, #14) used more. As far as the vehicle productivity is

concerned, 10 out of 14 runs in Table 5.5 score higher than those in Table

5.6. It seems at this point that no significant advantage can be gained by

using Ui in the vehicle resource function.

In Table 5.6, two numbers are listed in each box, the one in

parentheses represents the results when the M30 data set is used. By

comparing each pair of numbers in each box, the only obvious pattern is

that it requires more vehicles to satisfy customer demands with an uneven

pattern, an observation which is not at all surprising. Ten out of fifteen

runs using data set UM30 recorded higher vehicle productivity than those

using M30. Other statistics remain more or less the same.

The lack of difference between the results of the two vehicle

resource functions might be attributed to the following reasons:

a) the uneven demand pattern designed for data set UM30 is not

sufficiently significant for Ui to be useful.

b) it might be misleading to consider just the average performance. A

detailed study of the schedule for each hour could perhaps reveal more

information on the benefits from use of U1 . For example, the average time

deviation and vehicle productivity in the peak hour should be different

from those of off-peak hours.

(vi) Parameters C7 and C8:
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During test runs conducted in (i) - (iv), C7 and C8 were set to be

constants and other parameters were changed relative to this basis. For

the following discussion, we again fix the value of C7 (= 1) as the base

and vary C8 in the successive test runs. The purpose is to find out the

relationship between C7, the weight on vehicle active time and C8 , the

weight on vehicle slack time. In Table 5.7, scheduling results are

tabulated for different values of C8 . It seems that when no weight is

placed on vehicle slack time (C8 = 0) the vehicle productivity obtained is

the lowest and the utilization rate is also low. This is as expected since

when no penalty is imposed on the vehicle slack time ADARTW will actually

encourage those insertions which incur slack time and thus result in low

utilization of vehicles. However, it is interesting to see that in run #7

a large C8 was specified, but the utilization rate is lower than in those

runs using smaller C8. With an exceedingly large C8, ADARTW is likely to

discourage the increase of vehicle slack time in the short run. But when

a customer happens to be infeasible to most of the vehicles and a case 1

insertion (see Figure 4.5(a)) with significant slack time is the only

feasible insertion, ADARTW has no choice but to make that feasible

insertion and thus increase vehicle slack time in the long run.

Other statistics in Table 5.7 seem to be more influenced by chance

and no significant trend can be discerned. It is conjectured that varying

C8 will not result in much systematic change of the results of ADARTW.

(vii) Simultaneous presence of DUd and DUr:

In (i) - (iv) above, we vary one parameter at a time so that we can
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Table 5.7 Base case scenario with varying C8

(C7 = 1, Others = 0)

No. of
Vehicles
Required

Average
Deviation
(minutes)

Average
Ride-Time

Ratio
Vehicle
Prod.

Maximum
Utiliz. Capacity
Rate Required

#1 0 12 14.73 1.63 4.35 0.85 7

#2 0.2 11 14.41 1.65 4.57 0.90 6

#3 0.4 13 13.73 1.61 4.70 0.96 6

#4 0.6 13 13.73 1.61 4.70 0.96 6

#5 0.8 13 14.59 1.60 4.54 0.94 6

#6 1 12 13.95 1.61 4.65 0.95 6

#7 100 13 14.01 1.61 4.42 0.93 7

Run
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differentiate the effects of one parameter from another. Based upon these

results, we now selectively investigate several cases where parameters

were varied simultaneously. Two basic scenarios are assumed: First, DUd

and DUr are both linear functions. Second, DUd and DUr are both quadratic

functions. Table 5.8 gives the results when DUd and DUr are linear. Table

5.9 provides the results when DUd and DUr are quadratic.

Table 5.8 provides the results of nine test runs using linear DUd

and DUr. The first set of four runs (using C3 = 1) seems to be inferior to

the second set of four runs (using C3 = 2) in terms of the number of

vehicles used, the average deviation, and the average ride time ratio.

When C1 and C3 become dominant by comparison to C7 and C8 in the objective

function (run #9, C1=100 , C3 =100), the number of vehicles required

increases to 16, but no reduction in average deviation is realized. This

is consistent with the results in Table 5.1 and Table 5.2 when C1 and C2

are unilaterally increased to become dominant in the objective function.

Table 5.9 shows the results of another nine test runs using

quadratic DUEd and DUr. The average deviation and ride time ratio responded

reasonably well to the relative changes of C2 and C4 . For C2 = 100 and C4

= 100 in run #9, the result is similar to that of C1 = 100 and C3 = 100 in

Table 5.8.

5.2.2.2 Computational results on variations of ADARTW

For the second part of our investigation using simulated data, we

focus on the effects of considering multiple candidates for each
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Table 5.8 Linear disutility functions, DUd and DUr.

(C7 = 1, C 8 = 0.8, Others = 0)

No. of Average Average Maximum
Vehicles Deviaion Ride-Time Vehicle Utiliz. Capacity

Run C1  C3  Required (minutes) Ratio Prod. Rate Required

#1 1 1 12 11.84 1.48 4.37 0.91 5

#2 3 1 13 8.90 1.48 4.13 0.97 5

#3 5 1 13 6.41 1.44 3.96 0.99 5

#4 7 1 15 5.39 1.40 3.74 0.98 5

#5 1 2 11 12.67 1.42 4.52 0.92 5

#6 3 2 13 8.16 1.39 4.11 0.95 5

#7 5 2 13 5.44 1.38 3.90 0.96 5

#8 7 2 14 4.49 1.32 3.65 0.95 5

#9 100 100 16 5.55 1.15 3.33 0.96 4
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Table 5.9 Quadratic disutility functions, DUd and DUr.

(C7 = 1, C8 = 0.8, Others = 0)

No. of Average Average Maximum
Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run C2  C4 Required (minutes) Ratio Prod. Rate Required

#1 0.1 0.1 14 9.25 1.34 4.24 0.97 4

#2 0.3 0.1 13 6.51 1.42 3.90 0.94 5

#3 0.5 0.1 14 5.48 1.36 3.62 0.96 5

#4 0.7 0.1 14 4.98 1.38 3.64 0.97 5

#5 0.1 0.2 15 8.93 1.25 3.97 0.97 4

#6 0.3 0.2 13 6.64 1.29 3.85 0.96 4

#7 0.5 0.2 14 6.80 1.35 3.79 0.98 5

#8 0.7 0.2 14 5.38 1.29 3.62 0.98 5

#9 100 100 16 5.64 1.17 3.21 0.96 3
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insertion. Both pool-refilling strategies are tested. We also evaluate the

benefits gained by considering insertions made into different schedule

blocks.

(i) Multiple candidates

As described in Ciapter 4, one variation of ADARTW is to consider

multiple candidates for the next insertion, instead of just considering

one each time. Here we conduct tests runs using various numbers of

simultaneous candidates to see whether the performance of ADARTW can be

improved. Three data sets, L30, M30, and H30, were used so that the impact

of different levels of demand in this respect can be examined. The size of

the candidates pool is varied from 1 to 50 candidates by arbitrary

increments. Moreover, two sets of parameters are used for the objective

function in this experiment. The first set, C1 = 0.1, C3 = 0.5, C7 = 1, C8

= 0.8, others = 0, is used primarily to find out whether multiple

candidates will improve the vehicle productivity since C7 is the dominant

parameter in this objective function from our previous experience. The

second set, C1 = 3, C3 = 1, C7 = 1, C8 = 0.8, others = 0, is used to

investigate whether the quality of service can be improved by considering

multiple candidates. Table 5.10(a), (b) and (c) summarizes the statistics

of ADARTW schedules for the three data sets using the first set of

parameters. Similarly, Table 5.11(a), (b) and (c) summarizes the results

using the second set of parameters. Both pool-refilling strategies were

tested for each case. The statistics listed at the upper-left corner in

each box of the two tables is obtained by using the "immediate-, fill"

strategy. The one on the lower-right corner uses the 'periodic-refill"
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Table 5.10(a) Multiple candidates using two pool-refilling strategies

(C1 = 0.1, C3 = 0.5, C7 = 1, C8 = 0.8, Others = 0)

(Data set = L30)

No. of Average Average Maximum
Pool Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run Size Required (minutes) Ratio Prod. Rate Required 0.F.V.

5 13.17 1.35 2.89 0.84 4 4885
#1 1

5 13.17 1.35 2.89 0.84 4 4885

4 11.95 1.29 2.58 0.75 4 5394
#2 3

5 12.02 1.36 2.81 0.83 3 4990

4 13.85 1.30 2.85 0.79 3 5054
#3 5

4 13.06 1.37 3.02 0.88 4 4968

4 14.82 1.35 2.74 0.80 4 5704
#4 10

4 12.83 1.36 2.87 0.80 4 5225

5 13.22 1.32 2.72 0.80 3 5550
#5 15

4 14.43 1.38 2.94 0.85 4 4883

5 12.72 1.26 2.90 0.85 4 4786
#6 20

4 13.17 1.34 2.93 0.84 4 4929

4 15.13 1.44 3.01 0.81 4 5193
#7 30

5 13.17 1.35 2.89 0.84 4 4885

6 14.16 1.28 2.98 0.87 4 5313
#8 40

6 14.76 1.28 2.94 0.86 4 4386
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Table 5.10(b) Multiple candidates using two pool-refilling strategies

(Ci = 0.1, C3 = 0.5, C7 = 1, C8 = 0.8, Others = 0)

(Data set = M30)

No. of Average Average Maximum
Pool Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run Size Required (minutes) Ratio Prod. Rate Required O.F.V.

12 13.89 1.51 4.32 0.88 6 27232
#1 1

12 13.89 1.51 4.32 0.88 6 27232

14 13.48 1.50 4.72 0.94 6 27267
#2 5

12 14.37 1.51 4.43 0.88 6 27200

13 13.61 1.51 4.57 0.94 5 28495
#3 10

12 14.09 1.52 4.90 0.97 7 27292

12 13.68 1.55 4.57 0.95 7 28741
#4 20

12 13.73 1.49 4.64 0.92 6 25969

12 13.36 1.53 4.39 0.91 7 28823
#5 30

11 13.34 1.53 4.63 0.93 6 27744

13 13.94 1.57 4.31 0.89 6 28284
#6 50

12 13.99 1.50 4.44 0.91 6 27000
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Table 5.10(c) Multiple candidates using two pool-refilling strategies

(C1 = 0.1, C3 = 0.5, C7 = 1, C8 = 0.8, Others = 0)

(Data set = H30)

No. cZ Average Average Maximum
Pool Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run Size Required (minutes) Ratio Prod. Rate Required 0.F.V.

20 14.44 1.60 5.38 0.94 7 51120
#1 1

20 14.44 1.60 5.38 0.94 7 51120

20 13.87 1.37 5.36 0.95 7 51368
#2 10

20 13.64 1.55 5.57 0.96 7 49704

20 14.04 1.56 5.37 0.95 7 50844
#3 20

20 13,82 1.56 5.47 0.94 6 49977

20 13.52 1.58 5.17 0.94 7 52920
#4 30

20 13.54 1.58 5.54 0.95 7 49530

20 13.56 1.56 5.41 0.97 8 51020
#5 40

20 14.18 1.57 5.82 0.98 8 47373

21 13.71 1.58 5.07 0.92 8 53621
#6 50

20 13.29 1.56 5.44 0.92 7 49805
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Table 5.11(a) Multiple candidates using two pool-refilling strategies

(Ci = 3, C3 = 1, C7 = 1, C8 = 0.8, Others = 0)

(Data set = L30)

No. of Average Average Maximum
Pool Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run Size Required (minutes) Ratio Prod. Rate Required O.F.V.

6 4.72 1.27 2.50 0.89 3 5961
#1 1

6 4.72 1.27 2.50 0.89 3 5961

6 3.83 1.26 2.09 0.73 3 5840
#2 3

5 6.01 1.18 2.53 0.86 3 6597

5 5.67 1.29 2.63 0.84 3 6517
#3 5

5 4.96 1.19 2.54 0.86 3 6379

5 6.18 1.22 2.31 0.79 3 7523
#4 10

5 4.40 1.21 2.56 0.85 3 6328

5 4.95 1.28 2.59 0.87 3 7070
#5 15

5 4.46 1.23 2.51 0.80 3 6046

6 6.52 1.32 2.31 0.72 3 6990
#6 20

4 6.51 1.26 2.59 0.83 3 7465

5 5.55 1.31 2.88 0.89 3 6638
#7 30

5 4.62 1.29 2.62 0.83 3 6157

5 6.12 1.30 2.65 0.81 3 7279
#8 40

5 4.80 1.29 2.37 0.76 3 6781
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Table 5.11(b) Multiple candidates using two pool-refilling strategies

(C1 = 3, C3 = 1, C7 = 1, C8 = 0.8, Others = 0)

(Data set = M30)

No. of Average Average Maximum
Pool Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run Size Required (minutes) Ratio Prod. Rate Required O.F.V.

13 8.90 1.48 4.13 0.97 5 41776
#1 1

13 8.90 1.48 4.13 0.97 5 41776

14 6.81 1.44 3.87 0.91 5 37828
#2 5

13 8.08 1.48 4.11 0.94 5 40290

14 7.61 1.46 3.75 0.92 5 39950
#3 10

13 7.44 1.45 4.13 0.97 5 39346

14 7.57 1.45 4.08 0.96 5 40742
#4 20

14 6.86 1.44 4.18 0.96 5 38300

13 7.45 1.42 3.94 0.92 5 41360
#5 30

14 5.58 1.40 3.88 0.93 5 36535

13 7.59 1.45 3.95 0.93 5 43600
#6 50

13 5.64 1.43 3.92 0.92J 6 36358
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Table 5.11(c) Multiple candidates using two pool-refilling strategies

(C1 = 3, C3 = 1, C7 = 1, C8 = 0.8, Others = 0)

(Data set = H30)

No. of Average Average Maximum
Pool Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity

Run Size Required (minutes) Ratio Prod. Rate Required O.F.V.

21 8.40 1.49 4.67 0.95 5 80348
#1 1

21 8.40 1.49 4.67 0.95 5 80348

24 7.63 1.48 4.50 0.96 6 77131
#2 10

21 7.96 1.51 4.78 0.96 6 78365

23 7.55 1.47 4.68 0.96 6 77935
#3 20

23 7.17 1.48 4.62 0.95 6 75091

22 7.94 1.49 4.75 0.97 7 79433
#4 30

22 6.85 1.45 4.74 0.97 6 73996

23 7.60 1.50 4.44 0.92 6 79362
#5 40

22 5.77 1.49 4.70 0.96 6 72039

22 7.26 1.46 4.62 0.95 6 77260
#6 50

23 5.36 1.45 4.64 0.95 6 70070
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strategy. The objective function value (O.F.V.) on the last column in the

tables indicates the accumulated total insertion cost.

We divide the discussion of results into two parts. In the first

part, we examine the immediate-refill strategy and in the second part we

examine the periodic-refill strategy. Within each part, the results using

each of the two different sets of parameters will be discussed separately.

Recall that the first set of parameters is biased towards producing high

vehicle productivity and the second set is biased towards producing better

service quality.

1) immediate-refill strategy

(a) C1 = 0.1, C3 = 0.5, C7 = 1, C8 = 0.8. Others = 0.

In Table 5.10(a), the vehicle productivity is recorded at 2.89

customers per vehicle hour for the basic version of ADARTW (run #1). By

considering 3 candidate customers each time (run #2), the number of

vehicles required decreases to 4, but the vehicle productivity also

decreases to 2.58. Similar results are observed for runs #3 and #4 when

compared to run #1. It is not until the pool size reached 20, that the

vehicle productivity begins to outperform the basic version. For the

objective function value, nearly all runs using multiple candidates result

in higher total cost in this regard. Other statistics show no clear

trends. In Table 5.10(b) which compiles the results for data set M30,

vehicle productivities are higher than the basic version for 4 (run #2,

#3, #4, and #5) out of 5 runs using pool sizes other than one. But the



- 165 -

objective function values are also higher for these runs. Again in Table

5.10(c), after comparing runs from #2 to #5 with run #1, it seems that by

increasing the number of candidates for each consideration using the

immediate-refill strategy does not necessarily improve vehicle

productivity. Sometimes, the solution even deteriorates.

(b) C 1 = 3, C3 = 1, C7 = 1, C 8 = 0.8. Others = 0.

In Table 5.11(a), no indication of any improvement over the service

quality statistics (i.e. the average deviation and the average ride time

ratio) can be found by increasing the pool size. However, in Table

5.11(b), a smaller deviation and a smaller ride time ratio (as compared to

run #1) are recorded when pool size is increased. Similar results can also

be found in Table 5.11(c), but at the cost of using additional vehicles.

2) periodic-refill strategy

(a) C1 = 0.1, C3 = 0.5, C7 = 1, C 8 = 0.8. Others = 0.

Vehicle productivity statistics shown in Table 5.10(a) for the

periodic-refill strategy indicate possible improvements using pool sizes

greater than one. Runs #2 and #4 recorded 3% and 1% less vehicle

productivity, but the other five runs resulted in higher productivity than

run #1. Among all runs, only run #8 used more vehicles than run #1, while

other runs used the same number or fewer vehicles. In Table 5.10(b),

vehicle productivity increased by the order of 3% to 12% for vario % pool

sizes while using the same number or fewer vehicles. This observation is
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further supported by the results shown in Table 5.10(c) in which higher

vehicle productivity was achieved by using pool sizes greater than one.

(b) C1 = 3, C3 = 1, C7 = 1, C8 = 0.8. Others = 0.

Statistics for this set of parameters are listed in Table 5.11(a),

(b) and (c). In Table 5.11(a), the average deviation decreased for three

out of seven runs using larger pool sizes. This can be considered to be an

improvement if we take into account the fact that only four or five

vehicles were used during those runs (run #1 uses six vehicles). Lower

ride time ratios are also observed in runs # 2 to #6. Again, the increase

of ride time ratio for runs #7 and #8 can be partially attributed to the

smaller fleet sizes used. In Table 5.11(b), better service quality is

consistently obtained by implementing pool sizes greater than one. Results

for the immediate-refill strategy in Table 5.11(c) support this

observation, but at the cost of additional vehicle resources.

(ii) Is the consideration of insertions into different blocks worthwhile?

In Chapter 4 we presented two fast screening tests to determine the

feasibility of an insertion depending on whether the insertion is made to

the same schedule block or to different schedule blocks. It is conceivable

that in considering insertions into different schedule blocks the

41gorithm might consume a significant additional amount of computer time.

It is therefore necessary to examine whether this additional effort is

worthwhile in terms of improving the quality of solutions. We will

evaluate the addtional computation effort involved when we examine the
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computational efficiency of ADARTW in the next section. In this section we

focus on the quality of solutions produced by such additional effort.

Again we use M30 as the primary test data set. Table 5.12 displays

the test results obtained from a set of runs of ADARTW with a limited

combination of parameter valus. Each box in Table 5.12 contains two

numbers. The number on the upper-left corner of each box is obtained by

considering only insertions into the same schedule blocks. The other

number at the lower-right corner represents the results obtained by

considering all possible insertions.

The last column of Table 5.12 shows the number of insertions

actually made into different schedule blocks when they are considered in

ADARTW. A number 0 indicates that although such insertions are considered

in the run, none is actually made. We note in Table 5.12 that those runs

with zero count (run #9 through #14) used a significant excess ride time

disutility function. Usually, insertions made into different schedule

blocks involve a long excess ride time for the customer being considered

and possibly others already assigned to the vehicle (since the slack time

between schedu-e blocks involved must be converted to active time so that

the vehicle will not wait with that customer on board). A large penalty on

the excess ride time will thus certainly discourage such insertions. As

far as the number of vehicles required is concerned, runs #3 , #5, #8, #15

used fewer vehicles when additional insertions are considered, but runs #6

and #7 used fewer vehicles. For the average deviation, we examine runs #2

through #6 and runs #14 and #15 in which a disutility functi k was

specified in this regard. We note that runs #3, #5, #6, #7, and #15



Table 5.12 Comparison between considering all possible insertions and
considering only insertions into the same schedule block.
(C5 = 0, C6 = 0, C7 = 1, C 8 = 0.8, Data set = M30)

No. of Average Average Maximum 1
Run C 1  C4 Vehicles Deviation Ride-Time Vehicle Utiliz. Capacity DBIAn H -r^ I(mn : I RatiDo+; P-r^ ________I ui din Y.V CvUnT

13 14.61 1.60 4.54 0.93 6 25481 0
#1 0 0 0 0 14.59 1.60 4.54 0.94 6 _2571_

12 11.87 1.61 4.21 0.90 6 31084 0
#2 1 0 0 0 12 11.94 1.60 4.47 0.94 6 29908 1

13 8.25 1.57 3.90 0.91 5 37185 0
#3 3 0 0 0 15 7.95 1.58 3.77 0.90 5 36832 4

14 6.42 1.50 3.80 0.97 6 41289 0
#4 5 0 0 0 14 6.54 1.48 3.81 0.96 5 41622 21

13 9.00 1.60 4.14 0.94 5 33216 0
#5 0 0.1 0 0 14 8.87 1.60 4.11 0.95 5 32546 1

15 6.53 1.51 3.79 0.96 5 36560 0
#6 0 0.3 0 0 14 5.60 1.51 3.90 0.96 6 35010 10

15 5.57 1.44 3.61 0.95 5 44025 0
#7 0 0.5 0 0 14 5.33 1.49 3.60 0.96 5 42894 8

11 13.79 1.48 4.63 0.92 8 28069 0
#8 0 0 1 0 13 14.22 1.49 4.57 0.92 8 27681 2

13 15.15 1.28 4.00 0.89 5 30901 0
#9 0 0 3 0 13 15.15 1.28 4.00 0.89 5 30901 0

11 15.23 1.22 4.45 0.96 5 33531 0
#10 0 0 5 0 11 15.23 1.22 4.45 0.96 5 33531 0

12 15.13 1.42 4.73 0.96 5 30611 0
#11 0 0 0 0.1 12 15.13 1.42 4.73 0.96 5 30611 0

13 15.00 1.25 3.99 0.90 4 31664 0
#12 0 0 0 0.2 13 15.00 1.25 3.99 0.90 4 31664 0

13 15.21 1.21 4.11 0.95 6 33229 0
#13 0 0 0 0.3 13 15.21 1.21 4.11 0.95 6 33229 0

12 11.84 1.48 4.37 0.91 5 33400 0
#14 1 0 1 0 12 11.84 1.48 4.37 0.91 5 33400 0

13 9.28 1.36 4.27 0.98 4 37623 0
#15 0 0.1 0 0.1 14 9.25 1.34 4.24 0.97 4 37776 2
* DR COUNT denotes the number of insertions actually made into different schedule blocks

()U
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recorded a smaller average deviation when all possible insertions are

considered. Only runs #2 and #4 have larger average deviation. The vehicle

productivity and the utilization rate listed in Table 5.12 show no

significant difference between the two considerations. The accumulated

objective function values are smaller for 7 out of 9 runs (where there is

a difference) in favor of considering all possible insertion. It seems at

this point that a slight advantage could be gained by considering all

possible insertions, but no guarantee of this is possible.

5.3 Computational Efficiency

ADARTW has been coded in PL/I and implemented on a VAX 11/750

minicomputer. Table 5.13 indicates the average CPU times that a single run

of ADARTW will take for various problem sizes and time windows. The CPU

times listed in the table include the data input time and computation time

of ADARTW, but do not include the time to print out the vehicle schedules.

It can be seen that for the same problem size, wider time-window cases

take more CPU time than shorter time-window cases. For example, for the

set of medium demand data (M1, M20, and M30), an average of 24% increase

in CPU time is observed whenever the time window is increased by 10

minutes each time. The extra computation time involved can be attributed

to the fact that wider time windows will result in more feasible

insertions and consequently it takes more time for ADARTW to evaluate the

cost of such feasible insertions. The table also records computation times

for considering different-block insertions in ADARTW as opposed to the

case of not considering them. The extra computation effort requir i for

considering different-block insertions are negligible for the cases with
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Table 5.13 Computation time of ADARTW on VAX 11/750.
(CPU time in seconds)

Data
Sets L10 L20 L30 M10 M20 M30 H10 H20 H30

Runs

(A)* 4.7 5 5.4 47 58 69 162 203 250

(B)** 4.7 5 5.6 48 59 72 164 206 259

* The set of runs in (A) does not consider insertions into different
schedule blocks.

** The set of runs in (B) considers all possible insertions.
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time windows not greater than 20 minutes. A small increase in computation

time is observed for the cases with 30-minute time window. This

observation is consistent with the earlier statement that wider time

windows will result in more feasible insertions. This is especially so in

the case in which we allow different-block insertions.

The computation ef2ort required for considering simultaneously more

than one customer at a time as candidates for the next insertion is

illustrated in Figure 5.2(a), (b), and (c). Both pool-refilling strategies

were investigated over a range of pool sizes. The positive correlation

between computation time and pool size, as depicted in Figure 5.2(a), (b),

and (c), is well expected since more candidates in the pool would

certainly require more computations before ADARTW can choose the best

candidate. However, such increasing trends are more significant for the

immediate-refill strategy than for the periodic-refill strategy. The

differences in computation time between the two strategies are mainly due

to the updating efforts involved after a customer is chosen to leave the

pool. To demonstrate this point, let us assume that the pool size is d and

there are N customers on the subscription list. When a customer in the

candidate pool is inserted into the work-schedule of vehicle j, it is

required that for each of the remaining candidates in the pool their

insertion costs to vehicle j be updated. We use the term "one update" to

denote the evaluation of the insertion cost of a customer to a vehicle.

Under the immediate-refill strategy, the number of updates required when a

customer leaves the pool is d-1 since there are always d-1 unassigned

customers in the pool. Consequently, the updating procedure wol ld be

executed (d-1)-N times in total since there are N customers in the list.
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o Immediate-refill

x Periodic-refill
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Pool Size

(a) Data Set L30 - 90 customers
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(b) Data Set M30 - 450 customers

Figure 5.2 Computation time of ADARTW when multiple

candidates are considered. (CPU time in seconds)
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o Immediate-refill

x Periodic-refill
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100C'

CPU
Time
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Seconds

50C.
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Pool Size

(c) Data Set H30 - 900 customers

Figure 5.2 Computation time of ADARTW when multiple

candidates are considered.



- 174 -

Under the periodic-refill strategy, the number of updates required when a

customer leaves the pool is not constant. It varies between 0 and d-1

depending on the number of unassigned customers in the pool at the time of

updating. The total number of updates required for a batch of d customers

can be computed to be (d)(d-1)/2. Since there are N/d batches of customers

to be processed, the total number of updates required for the periodic-

refill strategy is (d-l)N/2 which is only half of what is required for the

immediate-refill strategy.

Another somewhat minor contributing factor to the significant

increase of computation time under the immediate-refill strategy is the

effort involved in the selection of the best customer from a pool of

candidates. Since the pool is always full when a selection is made under

the continuous-refill strategy, ADARTW has to perform d comparisons in

order to choose the minimal cost insertion. Whereas under the periodic-

refill strategy, an average of d/2 comparisons is required each time. The

total difference between the two strategies is again proportional to

(d/2) N.

So far we have examined empirically the computational efficiency of

ADARTW. It is also important that we study the computation complexity of

ADARTW from a theoretical point of view. Normally, the computation

complexity of an algorithm can be determined by the number of elementary

operations required in the process. For ADARTW, the number of possible

insertions for a customer can go as high as N2 (worst case scenario when

all N customers are assigned to one vehicle). For each insertion a

feasibility check is required. Despite the fast screening test we have
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designed to cut down the computation time, a linear search has to be

performed through the list of vehicle work-schedules which can take as

many as c-N comparisons (c is some constant). So for each customer, 0(N3)

elementary operations are necessary for the worst case scenario. Since

there are N customers, the computational complexity of ADARTW is 0(NO).

When considering multiple candidates in ADARTW, the extra effort involved

is also of order N3 (if d << N) for both pool-refilling strategies. So the

computational effort of ADARTW remains at 0(NO) when multiple candidates

are considered at the same time.

Empirically, from Figure 5.2(a), (b), and (c), the computation time

of ADARTW does not seem to grow as fast as O(N4 ) as is suggested

theoretically. This is due to the fact that O(N4 ) is just the worst case

and such a worst case rarely happens in practice. For example, in

practice, the N customers are more likely to be evenly distributed among m

vehicles. Thus, the computation effort of processing one customer reduces

to the order of m-(N/m) 3 . The efficient screening tests introduced in

Chapter 4 will also normally reduce the computation time by detecting

infeasibilities early in the process.

5.4 Runs Using Real-World Data

5.4.1 Data

The real-world customer data base is obtained from the flexible-

route system operated by Rufbus AmbH Bodenseekreis in the c-'y of

Friedrichshafen, West Germany. The same database was used in Chapter 3 to
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test the Grouping-Clustering-Routing (GCR) algorithm. In this part of the

investigation we have made similar conversions of immediate-request

customers to advance-request customers as in Chapter 3 by defining their

DPT as the time of request.

The schedule in the database had been obtained by Rufbus schedulers

by use of a man-machine procedure, details of which were not available.

We have been told that Rufbus operators tried to keep a 15-minute time

window, although at times this constraint was relaxed to 60 minutes to

avoid rejecting customers.

5.4.2 Computational Results

Table 5.14 highlights statistics from one particular run of ADARTW

together with statistics of the actual scheduling (the latter displayed

for illustration purposes rather than for comparison). Options exercised

for this run of ADARTW were the following:

Time Window : 15 minutes

Maximum Ride Time : 5 minutes + 1.5 ( Direct Ride Time )

Vehicle Capacity : 17 customers (all vehicles)

Initial Fleet Size : 10 vehicles

Customer service Option : Add more vehicles if necessary

C1 = 3 , C2 = C3 = C4 = C5 = C6 = 0 , C7 = 1 , C8 = 0.8
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Table 5.14 Performance statistics of Rufbus schedule and ADARTW schedule.

Rufbus ADARTW
Scheduling Scheduling

("mixed" case) ("advance-request" case)

Vehicles used 28 17

Vehicle productivity 8.87 12.06

Average deviation (minutes) 11.9 6.6

Ride time ratio N.A. 1.54

Since the Rufbus procedure was essentially applied to a "mixed"

demand scenario (where some of the requests were "immediate" and some were

"advance") while ADARTW was applied to a case where all demands were

converted to advance-request, it must be stressed that no direct

comparison of the two procedures can be made from Table 5.14. However, the

statistics in the table demonstrates that considerable margins (with 40%

less vehicles achieving 40% smaller deviations) exist between ADARTW's

performance and the Rufbus Schedule in this run. The CPU time for this run

of ADARTW was about 12 minutes on the VAX 11/750.
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CHAPTER 6 DISCUSSION AND CONCLUSIONS

6.1 On Grouping-Clustering-Routing Algorithm (GCR)

The development of the GCR algorithm described in Chapter 3 has

made a number of contributions in the area of routing and scheduling of

dial-a-ride vehicles: First, it provides a systematic methodology for

tackling the problem of forming clusters, a problem that has received

little or no attention in the literature to date. Second, the overall

approach has been applied viably to problems of far greater size than have

been attempted thus far. Finally, extensive computational experience with

the GCR algorithm over a broad range of problem sizes was reported.

In this section we further explore ways through which the

performance of this algorithm can be enhanced. To begin with, we address

the following question: "How successful is the algorithm in producing

schedules that give some guarantee to the system user that the service

provided would be of acceptable quality?"

Although the GCR algorithm is not intended for problems with strict

service quality constraints under which ADARTW is conceived, such a

question is certainly legitimate given the way the algorithm treats the

time dimension of the problem (within the "grouping" part). In this

respect, it would appear (at least from a worst-case point of view) that

there are definitely risks that a customer may suffer either an

intolerably long pick-up (or delivery) time deviation, or a similarly long

excess ride time, or both. Consider for instance the case where 30-minute
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time groups are set up starting at 7:00 a.m., and a particular customer

has specified a DPT of 7:25 a.m. while his direct ride time is 10 minutes.

If CF is chosen to be 1.0, his calculated DDT is at 7:35 a.m. The risk for

this customer is that he may be picked up as early as 7:00 a.m. and

delivered as late as 8:00; in which case he would suffer a 25-minute early

pick-up (which he might be unable to meet), plus, a 50-minute excess ride

time (or equivalently, a ride time ratio of 6.0). Other pathological cases

can be similarly devised, for instance cases where one customer has such a

long direct trip time relative to others, that the value of DTmin

calculated as per Section 3.2 is intolerably high.

Within the above context we can suggest a straightforward set of

adjustment procedures in the grouping part of the algorithm that serve to

reduce the risk of such worst-case scenarios. Such adjustments constitute

the enhanced grouping part of the algorithm and can either be programmed

within the algorithm, or, be left to the discretion of the algorithm's

operator who could invoke some or all of them in an interactive way.

With the assumption that the vehicle fleet size is such that the

clustering part of the algorithm prevents schedules of a time group from

"spilling" consistently into the next time group, we give below an idea of

some of these adjustments (the discussion could also be generalized in

case the above assumption is dropped):

Enhanced grouping adjustment #1: If the difference (DDT - DPT) (as

estimated from (1) or (2) of Section 3.2) for a particular customer is

substantially less than DT (say, i 0.25 DT), and, if that customer's DPT

and DDT fall in adjacent time groups (k and k+1 respectively), then shift
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both that customer's DPT and DDT so that (a) their difference stays the

same and (b) they both fall within the same time group. Specifically,

shift both of them so that DDT falls at the very end of time group k if

the customer has specified a DDT, or so that DPT falls at the very

beginning of time group k+1 if he has specified a DPT.

The implication of such an adjustment is that the customer in

question would now be treated as a category 2 customer, hence picked up

and delivered within the same time group. A customer who has specified a

DPT would the be picked up no earlier than his DPT, and would experience a

ride time no longer than DT. These figures are in constrast to a worst-

case pick-up of DT minutes earlier than DPT and a worst-case ride time of

2DT if no adjustment is made. (Actually, since that customer's origin and

destination are likely to be very close, it is also likely that, with

enhanced grouping, the clustering and routing steps would yield a ride

time much shorter than DT). Of course, such a customer would possibly be

picked up late (in fact, as much as DT minutes late), but, for DPT-

specified customers, a late pick-up may be preferable to an early pick-up

- and, if the opposite is the case for the customer in question, then the

algorithm's operator may choose not to excercise the enhanced grouping

adjustment for that customer.

An analogous argument can be made for customers who have specified

a DDT.

It can be seen that this adjustment alone "fixes" worst-case

scenarios associated with customers who have relatively short direct trip
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times, such as the one of the earlier example.

Enhanced grouping adjustment #2: By contrast to the previous adjustment

which involves strictly manipulations of data, adjustment #2 involves a

structural change in the algorithm. Such an adjustment is recommended in

cases when the length of the minimum time interval DTmin' calculated

according to Section 3.2 as 0.5 - CF - max DRT., is too long to warrent an

acceptable service quality. This may happen if some of the customers have

relatively long direct trip times, and is a direct consequence of the

assumption that all category 1 customers in any time group k are category

3 customers in time group k+1.

This adjustment resets DT to a suitable user-specified value lower

than DTmin. If this happens, some category 1 customers in some time group

k will have their DDTs beyond time group k+1. However, under this

adjustment the algorithm continues to consider such customers as category

3 customers for time group k+1. As a result, clustering for those

customers is executed as usual, and since such customers have their

destinations at rather remote locations, very few (or no) other customers

will be clustered with them in group k+1. This is so because of the

feature of the clustering step that attempts to equalize vehicle workload.

Such a behavior of the algorithm is considered desirable, for it would be

inefficient to cluster customers whose DDT falls within time group k+1

with customers who can only be delivered beyond that time group.

The above discussion indicates that implementing the above



- 182 -

adjustments should improve this algorithm's worst-case performance.

Whether or not significant improvements in the algorithm's average

performance are to be expected too, depends on the relative frequency of

occurrence of customers prone to such worst-case service within the entire

population of customers.

To further improve the quality of solution, a tour-improvement

procedure can be introduced as the final step to seek possible

improvements on the vehicle routes and schedules developed by GCR. Recall

that in the routing step of GCR a k-interchange procedure was used to

minimize the length of the vehicle route within a cluster of customers.

This single-vehicle procedure can be extended to solve the multi-vehicle

problem by considering additionally the interchange of customers between

different vehicles. Christofides and Eilon [3] and Cook and Russell [6]

have applied a similar concept to vehicle routing problems by extending

the Lin-Kernighan algorithm for TSP to the multiple-vehicle routing

problem. However, dial-a-ride problems may present some complications in

implementing the procedure. At least four links in a vehicle route (two

for a customer's pick-up point and two for his delivery point) must be

replaced by another set of four links during one interchange as compared

with two links in 2-opt or three links in 3-opt for the travelling

salesman problem. The computation cost involved can be high. Besides,

scheduling pick-up and delivery times for the new vehicle routes adds

another dimension of complications to the procedure.

Many possibilities exist for the choice of an objective function

for the tour-improvement procedure. Three obvious choices might be : (i)
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To minimize vehicle route length while maintaining "acceptable" service

quality. (ii) To improve service quality, e.g. minimizing the maximum

deviation, minimizing the total deviation, etc. (iii) A combination of (i)

and (ii). If vehicle productivity is the primary concern, objective (i)

should be used. If a solution of better service quality is desired,

objective (ii) is recommended. Objective (iii) takes into account both

concerns and tries to seek a balance between objective (i) and (ii).

Besides implementing the tour-improvement procedure as a follow-up

step after GCR, we can also introduce the procedure repetitively after the

routing step in each time group. The extended multi-vehicle procedure

would only investigate the last portion of the existing vehicle routes

which was formed in the current time group. It is conjectured that through

the interchange procedure, better-quality vehicle routes can be found

early in the process of GCR and might have a riple effect on the quality

of clusters and vehicle routes subsquently formed. Moreover, less

computational effort would be involved when the number of customers is

relatively small.

It is believed that the GCR algorithm can be best used in two ways:

First, in assisting a dispatcher create a preliminary set of vehicle

routes and schedules; and, second, as a planning tool for making some

"strategic" decisions. The ideal environment for such use would be large-

scale, multi-vehicle systems in which customers do not have "hard" time

constraints but would instead find it acceptable if they were picked up

(or delivered) at times reasonably close to their most preferred res, -

especially, if these pick-up and/or delivery times were quoted to them
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well in advance. From discussions with dial-a-ride system operators, it

would appear that some dial-a-ride system users in the United States do

fall in this category.

3ome forms of man-machine interaction can be beneficial to the

first type of use ("assisting with preliminary design of routes and

schedules") that we visualize for this algorithm. Graphical displays of

customer clusters formed after the clustering step and vehicle routes that

are designed for customers within the same clusters can help the operator

to refine the results whenever he thinks is necessary. Such man-machine

interaction appears quite feasible considering that: (i) the algorithm is

very efficient computationally and therefore its repeated use would not be

particularly expensive and some of the procedures in the algorithm can be

carried out in "real-time"; (ii) we are dealing with an advance-request

system in which the operator usually has the benefit of a considerable

margin of time during which to prepare and finalize routes and schedules;

and (iii) the computer program's outputs have been designed to include

detailed information on each customer's processing and level of service

and on each vehicle's routes and time schedules. Such interactive routing

approaches have been suggested by Krolak et al. [16] and Cullen et al.[7].

In using the algorithm as a planning tool, one could address

questions like (i) finding a desirable number of vehicles in service for

some given expected level of demand (possibly time-varying) over a day or

(ii) quantifying the tradeoffs between level of service to customers and

costs to the operator (as reflected through number of vehicles and drivers

used, length of routes, etc.) again for a given level of demand.
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6.2 On ADARTW

ADARTW is an algorithm designed for dial-a-ride problems with

"hard" service quality constraints. It addresses many of the complicated

details of a realistic problem while offering some flexibility and several

options to its user. The pricipal challenge in this instance was obviously

the service-quality constraints, particularly the time windows for pick-

ups and deliveries. ADARTW seems sufficiently efficient from the

computational point of view to deal with multi-vehicle time-constrained

problems of size comparable to the largest ones encountered in practice.

The development of ADARTW has made other contributions to solving

the advance-request dial-a-ride problem. First of all, ADARTW can consider

the simultaneous presence of DPT-specified and DDT-specified customers in

the problem. Second, customers can have quadratic disutility function

which is more realistic than linear one, especially when time window size

is large. No other algorithm has made similar attempts so far. For

example, in the algorithm developed by Sexton and Bodin [32,33], only one

type of customers (either DPT-specified or DDT-specified) is allowed in

the system whichi is a rather restrictive assumption. Moreover, Sexton and

Bodin's algorithm does not guarantee service quality, it only uses a

linear disutility function and tries to minimize the total disutility of

the schedule. The work of Roy et al. [30] allows both types of customers

but also uses a linear disutility function'. The NEIGUT/NBS algorithm

1 The factor of customer disutility is not considered in the procL.s of
building up vehicle routes. During the so called "post-optimization step",
the disutility becomes a cost term to be minimized.
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[15] assumes no disutility function in this regard. Actually. the choice

of the form of disutility function in ADARTW is not even restricted to

linear or quadratic form. It can take any form as long as the resulting

function in (4-35) is convex. The convexity of (4-35) is critical in terms

of finding the optimal schedule efficiently.

Due to the heuristic nature of ADARTW, it can handle many

complications that might be present in the real-world operations. For

example, ADARTW can handle unsymmetric travel times, take into account

nonzero dwell times, different vehicle types, etc. Moreover, a customer

can specify his earliest pick-up time (a latest delivery time) in addition

to his desired delivery (pick-up) time. In other words, customers can

define their desired service quality as long as it is feasible to the

system. The only requirement, as far as the system operator is concerned,*

is that a customer must specify either it is the desired pick-up or the

desired delivery time on which his disutility function should be based. A

customer can of course choose not to specify any disutility function in

which case any service time within the time window would be equally

acceptable to him.

Advanced data structures, e.g. list processing, were introduced in

ADARTW. A vehicle work-schedule is represented by a linear list of stops

linked by pointers. The linear list can be expanded by linking additional

stops with pointers without considering the possibility of exceeding the
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dimension of the list. Such characteristics are crucial in tour-building

heuristics because of the unpredictability of the size of the tour.

Furthermore, an insertion of a customer into a vehicle work-schedule can

be done by changing neighboring pointers where the insertion is taken

place. In this way, ADARTW avoids reshuffling of the sequence as required

if an array is used to represent the vehicle schedule.

As in the case of most heuristic algorithms that solve large-scale

and complex routing and scheduling problems, it is difficult to state in

quantitative terms how good the solutions provided by ADARTW are. There

are no "optimal" solution to compare with since first, no exact algorithms

to solve problems of similar size exist, and second, we lack a precise

closed-form objective function (the objective of dial-a-ride systems can

be viewed as that of "satisfying" both operator and customers). About all

that can be said is that, as dial-a-ride systems go, the solutions found

by ADARTW for simulated or real database are at least as good or superior

to those encountered in practice in all respects (vehicle productivity,

vehicle utilization, ride circuity, deviation from desired pick-

up/delivery times). In addition, of course, ADARTW provides strict

guarantees on the minimum level of service quality to be provided. Through

appropriate adjustmant of the constants C1 through C8 , users of the

algorithm can also give more or less emphasis to customer- or operator-

oriented objectives, as desired.

One variation of the algorithm - by considering multiple candidates

for the next insertion and using the periodic-refill strategy - shows

promising improvements to the solutions obtained through the basic version
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of ADARTW. The increase in computation time for this particular variation

of ADARTW is reasonable and it can be weighted against the advantages

gained by implementing such a variation.

Similar to the GCR algorithm, an interchange procedure can be

introduced to improve the quality of solution obtained by ADARTW. In [6],

Cook and Russel reported computational experience with an interchange

procedure, MTOUR, which was applied to the vehicle routing problem with

time window constraints on some of the demand points. However, it seems

that such an interchange procedure can be computationally expensive for

medium to large problems.

So far we have discussed how ADARTW can be used to help the day-to-

day operations of a dial-a-ride system which quarantees a given level of

service quality. It is conceivable that ADARTW can also be used at the

planning stage of dial-a-ride systems to evaluate alternative levels of

service quality to be guaranteed and their cost implications. Figure 6.1

depicts three-way relationships between service, cost, and demand involved

in the design of a system. Given a particular level of service quality and

a forecasted demand scenario, ADARTW can help to determine the amount of

resources (fleet size, labor, etc.) required to operate the system. To

demonstrate this point, we provide an example which employs the nine data

sets, L10, L20,......, H30, as the possible demand/service scenarios for

the system under consideration. Partial scheduling results of ADARTW using

one set of parameter values for demonstration purposes are shown in Table

6.1. The second number shown in parentheses indicates the number of

vehicles required to satisfy all demands. The other number in each box
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COST

(FARE)

Figure 6.1

Design considerations of a dial-a-ride system
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Table 6.1 Vnhicle productivity and fleet size required for different

system design scenarios

(C1 = 0.1, C3 = 0.5, C7 = 1, C8 = 0.8, Others = 0)

Demand
Time Rate 10 50 100
Window czstomers/hr customers/hr customers/hr
Size

10 minutes 2,28 (4,7) 3.39 (12,17) 4.18 (25,26)

20 minutes 2.50 (4,5) 4.23 (10,12) 4.97 (20,23)

30 minutes 2.89 (3,5) 4.32 (10,12) 5.38 (20,20)

* Vehicle productivity in number of customers per vehicle hour

* (a,b): a - no. of vehicles initially specified in ADARTW.
b - no. of vehicles required by ADARTW to reach a feasible

solution.
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represents the vehicle productivity. As can be seen in the Table, by

relaxing time window of 10 minutes to 20 minutes, the fleet size can be

reduced by a fair amount. No substantial gain can be realized by further

relaxing the time windows to 30 minutes. Table 6.1 also illustrates the

relationship between vehicle productivity and demand levels. For example,

vehicle productivity increases only about 50% when demand increases five

times (10/hr to 50/hr) and about 90% when the increase in demand is about

10 times (10/hr to 100/hr).

We can apply the type of analysis described above to the design of

any dial-a-ride system. However, we note that the results shown in Table

6.1 will in general be data-dependent. For any particular system in

question, we suggest that the following approach be taken: First, define

the service area and a range of service quality standards that may be

acceptable. For each level of service quality planned, obtain forecasts of

demands based on several low-to-high scenarios. The forecasts should

include the likely geographical distribution of demands within the service

area and the distribution of demands over time. Then, use ADARTW to

construct a table of anticipated results similar to that shown in Table

6.1. Based on these results, the system planners can evaluate the cost

implications of each planned service quality under different demand

scenarios and can design the system accordingly.

A question that might arise in using ADARTW concerns the

sensitivity of results to the setting of parameter values in the objective

function and to the choice of service quality standards. By lacing

relatively larger weights on the customer disutility components in the
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objective function one can obtain schedules of better service quality for

most of the customers. But with tighter service quality constraints, one

can provide guaranteed services to all customers. It seems that in a

manner similar to that described in the previous paragraph one can use a

simulation approach to investigate the cost implications of each set of

alternative parameter settings. One systematic approach would be to define

a possible range of service quality standards that are acceptable and for

each service quality standard perform a set of simulation runs of ADARTW

by specifying different parameter values for the customer disutility

components. With a table of results similar to that of Table 6.1, an

appropriate strategy can be selected and its cost can be estimated.

6.3 Comparison Between GCR and ADARTW

The major difference between GCR and ADARTW lies in the "hard"

adherence by the latter to time constraints. It might be conjectured that

by relaxing the quality of service provided, the GCR algorithm would yield

solutions with higher vehicle productivity than ADARTW since the time

constraints in ADARTW are more restrictive. However, in comparing the

results of both algorithms when applied to the German data base, it became

clear that ADARTW gave superior solutions on every account, e.g. vehicle

productivity, average deviation, average ride time ratio, etc. However, it

is not obvious that ADARTW will outperform GCR in every application. To

further clarify this issue, we provide an example to highlight the

characteristics of the two approaches.

Figure 6.2 depicts a case of 25 customers (extracted from the top
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Figure 6.2

Pick-up and delivery locations of the 25

customers in the example
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of the suabscription list of data set L30) distributed in an area of 6 by 6

square miles. Their corresponding time constraints, pick-up and delivery

locations are listed in Table 6.2. The vehicle schedules produced by

ADARTW to serve these 25 customers are shown in Table 6.3. The complete

schedule involves four vehicles and a total vehicle time of 389 minutes

(no vehicle slack time was incurred). Figure 6.3(a) - (d) depicts

pictorially the four vehicle routes as scheduled by ADARTW. Another run

using the GCR algorithm with the same set of customers was performed and

the results are recorded in Table 6.4. This run used a 60-minute time

interval to group customers and used 1 as the conversion factor (CF). The

resulting GCR schedule used the same number of vehicles as ADARTW, but

required only 360 minutes of vehicle time (including 47 minutes of slack

time). The four vehicle routes are plotted in Figure 6.4(a)-(d). By

examining the GCR schedule in Table 6.4, we found that there are three

customer (#2 on vehicle 1, #17 on vehicle 3, #11 on vehicle 4) who will be

delivered later than their desired delivery time and there are another

three customers (#13 on vehicle 1, #9 on vehicle 2, #14 on vehicle 3) who

will be picked up earlier than their desired pick-up time. Only two DDT-

specified customers (#21 on vehicle 2, #22 on vehicle 3) will be delivered

more than 30 minutes earlier than their desired times and no DPT-specified

customer will be picked up more than 30 minutes later than their desired

times. Statistics on the performance of the two schedules are compiled in

Table 6.5. Note that the average ride time ratio produced by the GCR

schedule is 1.33 which is less than the 1.49 of ADARTW schedule and by

further examination of the GCR schedule in Table 6.4 we find no individual

actual ride time exceeds the maximum ride time constraints of ADARTW. In

Table 6.5, the vehicle productivity of the GCR schedule is seen to be 7%



- 195 -

Table 6.2 Subcription list of 25 customers

CUSTOMER TYPE EPT DPT LPT PX* PY EDT DDT LDT DX DY* DRT MRT

1 DDT 649 733 733 180 437 712 742 742 30 582 9 23
2 DDT 652 732 732 380 288 707 737 737 442 198 5 15

3 DDT 700 740 740 412 490 715 745 745 488 404 5 15

4 DPT 702 702 732 27 413 710 710 753 169 516 8 21

5 DDT 711 751 751 197 29 726 756 756 205 153 5 15
6 DPT 714 714 744 326 490 727 727 815 324 166 13 31

7 DDT 714 811 811 62 543 803 833 833 182 14 22 49

8 DDT 715 800 800 163 77 740 810 810 254 293 10 25

9 DPT 721 721 751 394 389 739 739 832 29 144 18 41
10 DPT 723 723 753 31 66 737 737 826 283 278 14 33

11 DDT 730 819 819 377 420 803 833 833 332 97 14 33

12 DDT 744 829 829 528 50 809 839 839 285 98 10 25

13 DPT 748 748 818 465 406 759 759 845 408 144 11 27

14 DPT 751 751 821 472 73 807 807 858 93 34 16 37

15 DDT 752 840 840 212 161 823 853 853 183 474 13 31

16 DDT 756 851 851 243 106 841 911 911 589 436 20 45

17 DDT 800 845 845 253 569 825 855 855 4 547 10 25

18 DDT 810 902 902 89 427 849 919 919 375 128 17 39

19 DDT 811 858 858 448 111 840 910 910 243 298 12 29

20 DDT 812 902 902 362 57 847 917 917 577 337 15 35

21 DDT 816 902 902 333 104 843 913 913 102 251 11 27

22 DDT 821 906 906 352 483 846 916 916 428 259 10 25

23 DPT 828 828 858 491 537 839 839 925 238 584 11 27

24 DDT 828 915 915 348 33 857 927 927 520 259 12 29
25 DPT 840 840 910 27 194 845 845 925 33 299 5 15

*(PX,PY) and (DX,DY) denote respectively the pick-up and delivery location

of a customer using coordinates shown in Figure 6.2.
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Figure 6.3(a)

Vehicle #1's route designed by ADARTW
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Figure 6.3(b)

Vehicle #2's route designed by ADARTW
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Vehicle #4's route designed by ADARTW
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Table 6.3 Velicle schedules generated by ADARTW
(C7 = 1, C8 = 0.8, Others = 0)

VEHICLE #1

LATEST

24:00
7:33
7:32
7:42
8:11
7:53
8:21
8:29
8:39
8:33
8:58
8:58
9:25

TIME
DEVIATION

30
-3

18

-17
-5

30

RIDE TIME
RATIO

1.87
1.55

1.43

1.00
2.09

1.00

VEHICLE #2

LATEST

24:00
7:44
7:51
7:32
7:37
8:15
7:51
8:00
7:56
8:32
8:10
8:45
8:55
9:02
9:15
9:02
9:19
9:27
9:17

TIME
DEVIATION

2
0

-6

-5

0

-23

-17
-17
-3

RIDE TIME
RATIO

1.53
2.11

1.00

1.39

2.29

1.00

1.41
1.08
1.00

(Continued on the next page)

STOP -3

0
1
4

-1
7

-4
14
12

-12
-7

-14
23

-23

EARLIEST

0:00
6:49
7:02
7:12
7:14
7:10
7:51
7:44
8:09
&03
8:07
8:28
8:39

SCHEDULE

7:17
7:25
7:32
7:39
7:42
7:47
8:09
8:12
8:22
8:28
8:32
8:58
9:09

STOPS

0
6
9
2
-2
-6

5
8
-5
-9
-8
17

-17
18
24
20

-18
-24
-20

EARLIEST

0:00
7:14
7:21
6:52
7:07
7:27
7:11
7:15
7:26
7:39
7:40
8:00
8:25
8:10
8:28
8:12
8:49
8:57
8:47

SCHEDULE

7:08
7:16
7:21
7:26
7:31
7:36
7:44
7:47
7:51
7:59
8:10
8:22
8:32
8:38
8:57
8:59
9:02
9:10
9:14
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Table 6.3 (Continued) Vehicle schedules generated by ADARTW

VEHICLE #3

STOPS

0
3

-3
11
10
16

-11
15

-10
-15

22
-16
-22

EARLIEST

0:00
7:00
7:15
7:30
7:23
7:56
8:03
7:52
7:37
8:23
8:21
8:41
8:46

SCHEDULE

7:13
7:22
7:27
7:32
7:52
8:01
8:05
8:11
8:17
8:26
8:33
8:43
8:53

LATEST

24:00
7:40
7:45
8:19
7:53
8:51
8:33
8:40
8:26
8:53
9:06
9:11
9:16

TIME
DEVIATION

-18

29

-28

-27

-28
-23

VEHICLE #4

EARLIEST

0:00
7:48
8:11
7:59
8:16
8:40
8:43
8:40
8:45

SCHEDULE

8:.10
8:18
8: 30
8:33
8:37
8:46
8:52
8:56
9:01

TIME
DEVIATION

30

-24
-21
16

RIDE TIME
RATIO

1.36

1.33
1.36
1.00

RIDE TIME
RATIO

1.00

1.78

2.35

1.15

2.09
2.00

STOPS

0
13
19

-13
21

-19
-21

25
-25

LATEST

24:00
8:18
8:58
8:45
9:02
9:10
9:13
9:10
9:25
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Table 6.4 Vehicle schedules generated by GCR algorithm

VEHICLE #1

DESIRED PICKUP-DEV.

7:42
7:14

7:48
7:45

7:37

STOPS

0
1

-1
6
3
13
-3
2
-2

-13
-6

SLACK
19
12
20
24

-12
16

-19
-24
-20
-16

DELIVERY-DEV.

-15

SCHEDULE

7:07
7:19
7:27
1:39
7:42
7:45
7:45
7:51
7:55
7:57
8:00
8:18
8:24
8:28
8:34
8:35
8:39
8:40
8:47
8:58
9:01
9:04

RIDE TIME
RATIO

1.00
1.62

1.09
1.00

1.00

1.10

1.83
1.83
1.73
1.20

VEHICLE #2

STOPS SCHEDULE

0 7:11
9 7:17
4 7:31
7 7:36

-4 7:40
-9 7:55
-7 8:03

SLACK 8:18
21 8:26
15 8:31

-21 8:37
25 8:40

-25 8:44
-15 8:53

(Continued on the next

DESIRED PICKUP-DEV. DELIVERY-DEV.

7:21
7:02

7:33 -30

9:13
8:40

-36

8:53
page)

8:39

9:10
9:27
9:17
9:11

-23
-29
-16
-7

RIDE TIME
RATIO

2.11
1.13

1.23

1.10
1.10

1.62
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Table 6.4 (Continued) Vehicle schedules generated by GCR algorithm

VEHICLE #3

DESIRED PICKUP-DEV.

7:51

7:23

7:56

8:10

9:16
8:28

8:55

DELIVERY-DEV.

-20

STOPS

0
14
5

-14
10
8

-5
-10
-8

SLACK
22

-22
23
17

-23
-17

VEHICLE #4

DESIRED PICKUP-DEV.

9:19
8:33

DELIVERY-DEV.

-26
22

SCHEDULE

7:18
7:31
7:42
7:46
7:48
7:53
7:56
8:01
8:02
8:16
8:25
8:34
8:45
8:54
8:55
9:04

-42

RIDE TIME
RATIO

1.06

1.07

2.80

1.11

1.00
1.10

1.10

STOPS SCHEDULE

0
18
11

-18
-11

8:20
8:31
8:42
8:53
8:55

RIDE TIME
RATIO

1.29
1.07
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Figure 6.4(a)

Vehicle l's route designed by GCR
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Figure 6.4(b)

Vehicle 2's route designed by GCR
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Figure 6.4(c)

Vehicle 3's route designed by GCR
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Figure 6.4(d)

Vehicle 4's route designed by GCR
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Table 6.5 Performance statistics of GCR and ADARTW schedules for the
example.

ADARTW GCR

No. of Vehicles Used 4 4

No. of Late
Deliveries 0 3

Average Deviatiuon
Given Late Delivery 0 16.3
(in minutes)

Average Deviation
Given Early Delivery 15.6 16.6
(in minutes)

No. of Early Pick-ups 0 3

Average Deviation
Given Early Pick-up 0 9
(in minutes)

Average Deviation
Given Late Pick-up 19.4 19.2
(in minutes)

Average Ride Time
Ratio 1.49 1.33

Vehicle Productivity
(in pass/vehicle hour) 3.86 4.17

CPU time on Vax 11/750
(in seconds) 1.4 1.12
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higher than that of the ADARTW schedule. For this example, GCR has

generated a more productive schedule than ADARTW, but at the expense of

some customers receiving somewhat inferior service (which may, however, be

quite acceptable in the environment for which GCR is designed). However,

since the problem used in this example is rather small, these results

might not be representative of general cases. We only use this example to

illustrate concerns that might arise in comparing the two algorithms.

The particur example above shows that GCR is a viable tool for some

dial-a-ride systems. Its strong point lies in the high vehicle

productivity achieved. One can argue that the gain in vehicle productivity

achieved by using the GCR algorithm may not be substantial (and possibly

inferior to that achieved by ADARTW as in the case of the German data

base) and it is probably better to use ADARTW in all cases to provide

guaranteed service quality to all customers. It is our belief that this is

a point to be genuinely concerned about in practice and one that should

certainly be taken into consideration when designing a system.

6.4 Conclusions

This thesis has examined the advance-request version of the dial-a-

ride problem. Two different scenarios on the treatm.nt of time constraints

have been postilated for the problem : The first scenario assumes that

constraihts on a customer's service time can be relaxed and the system

operator will only try to davelop vehicle schedules that are sufficiently

close to the desired ones. The second scenario requires the strict

enforcement of the service quality constraints which include upper limits
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on the service time deviation and the customer on-board time. Heuristic

algorithms are developed for solving the problem under each of the two

scenarios. The first algorithm, GCR, developed for the first scenario

consists of three steps: grouping, clustering, and routing. In the

grouping step customers are separated into groups according to their

desired service times. Within each group, customers are then divided into

small clusters so that a vehicle can serve a cluster of customers with

service times sufficiently close to the desired ones. Finally, a routing

algorithm is used to develop vehicle routes that minimize travel time. The

GCR algorithm was tested against simulated data and real-world data.

The second algorithm, ADARTW, assumes strict service quality

constraints. It can be characterized as a tour-building heuristic which

builds up vehicle tours through sequential insertions of customers into

existing routes. An objective function which is a weighted sum of customer

disutility and consumption of vehicle resources is used to guide the

selection of the best insertion to be made. Fast screening tests were

developed for finding all feasible insertions of a customer into a vehicle

work-schedule and an optimal vehicle time schedule can be found for each

new feasible schedule sequence through the minimization of a convex

function. Variations of this basic approach were discussed and extensive

computational experience with ADARTW was reported.

Although the two algorithms have been shown to be consistent in

producing good solutions, it is not yet known what the worst-case

performance might be for each of the two algorithms. Solomon [35] has

constructed a pathological case for an insertion procedure applied to the



- 211 -

vehicle routing problem with time window constraints. He has shown that

the error of the solution can grow as the number of customers increases.

It is yet to be proved that this is also true for ADARTW in dealing with

dial-a-ride problems. The existence of a customer disutility component as

part of the objective function of ADARTW is likely to complicate the

search for a pathological case for this algorithm.

A natural extension of the two algorithms would be to perform a

tour-improvement procedure after the solution has been obtained by GCR or

ADARTW. A candidate approach would be to modify the k-interchange

procedure by Psaraftis [28] to solve the multi-vehicle case. However,

according to the computational experience with a similar procedure for

vehicle routing problem reported in Russell [31], such a procedure can be

inefficient for medium to large size problems.

One of the possible areas for future research is to examine how

these algorithms can be used to solve problems with a mix of immediate-

request and advance-request customers. A straightforward strategy would be

to use GCR or ADARTW to generate schedules for all advance-request

customers on the subscription list and then have the system operator try

in "real-time" to incorporate the immediate-request customers into

schedules not yet executed at the time of each request. The addition of

immediate-request customers to a pre-planned schedule may result in

perceived extra waiting times for some customers on that schedale, i.e.

those advance-request customers who have already been notified of cheir

scheduled service time by the agency or those immediate-request cus .mers

who had already been assigned to the schedule before the new request. For
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those systems which guarantee service quality through the specification of

constraints such as those associated with ADARTW, the system operator will

have to perform a feasibility test to ensure that no constraints are

violated by the addition of a new immediate-request customer to a

schedule. ADARTW can be easily modified to perform this kind of test. The

major distinction between an immediate-request and an advance-request

environment is that vehicle schedules, when being executed in real time

cannot be advanced to an earlier time since part of the schedule has

already been committed to or been executed already. The schedule can only

be delayed to accomodate a new request. Actually, such a restriction (in

the immediate-request environment) would simplify the feasibility test of

ADARTW. Only one (i.e., ADOWN) of the four statistics defined in (4-15) to

(4-18) would be needed to determine the feasibility of a new sequence.

Another possible change might be to include customer waiting time in the

objective function to guide the insertion of immediate-request customers.

It would be interesting to compare the performance of such a strategy with

other strategies, e.g. by treating all types of requests as immediate-

requests [41].

It would seem that GCR is not as amenable to such modifications.

Since immediate requests are received one by one, it would be inefficient

to use the GCR algorithm to generate schedules in the immediate-request

environment. By constrast, ADARTW has the advantage of processing one

customer at a time, a characteristic which is ideally suited for the

immediate-request system. Another consideration, in this respect might be

the possibility of re-allocating already assigned customers among

vehicles, once an immediate-request demand becomes known. At the present
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time, ADARTW does not consider such a "reshuffling" of schedule sequences

once they are set. Such a possibility for real-time scheduling also

requires future research attention.

Another interesting future research topic is a more detailed

comparison of the performances of GCR and ADARTW for actual databases

other than the one used in this thesis. The possible enhancement of the

performance of GCR and ADARTW through man-machine interactions should also

be evaluated.

As a final note, recent developments in the area of combinatorial

optimization [9,10] have shown that mathematical-programming based

heuristics can solve vehicle routing and scheduling problems of reasonable

size if some special structures in the formulation of the problem can be

exploited. No mathematical programming formulation of the multi-vehicle

advance-request dial-a-ride problem has been attempted so far. It is

suggested that the initial effort in this regard should concentrate on the

objective of minimizing total route length and disregard the existence of

customer disutility since the nonlinearility of the disutility function

might render the problem unsolvable.
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APPENDIX I

APPENDIX I contains five flow charts which illustrate the procedures

used by ADARTW for the feasibility test of all possible insertions. Figure

I.1(a) - (d) depict procedures used for those insertions with the new pick-

up and delivery points inserted into the same schedule block of a vehicle

work-schdule. Figure 1.2 shows the procedure used for insertions with the

new pick-up and delivery points inserted into two different schedule blocks.

Notations used in Figure I.1(a) - (d) are provided in Table I.1. Notations

used in Figure 1.2 can be found in the text.
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Table 1.1 Notation list (not defined in the text) for Figure 1.1(a) - (d).

p,q,r,s : Indices denoting visit sequence in a vehicle schedule block

having d stops. They are used to define where the insertion

of a new pick-up (+i) and delivery (-i) is made. Four cases

of insertions (also see Figure 4.5) can be defined as

follows:

Case 1) 1 ...... p(= d) +i -i

Case 2) 1 ...... p +i -i q.......d

Case 3) 1 ...... p +i q ....... d -i

Case 4) 1 ...... p +i q ....... r -i s ....d

Ti (T.) : The pick-up time (delivery time) of the new customer i.

ST. : Scheduled visit time of stop j in the schedule block before

customer i is inserted.

W. :Amount of change in vehicle waiting time due to the

insertion of customer i.

SHIFT : The amount of time by which a given time or a time schedule

is being shifted.

AP. (AD.) : The extra vehicle time required to pick up (deliver)

customer i.

PS (DS) : Shift in time schedule for all stops preceding stop +i

(succeeding stop -i) after customer i is inserted.

MS : Shift in time schedule for all stops between stop +i and -i

after customer i is inserted.

GT,ET,LT : Variables.
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Figure 1.1(a) Feasibility test for Case 1 insertions.

T < EPTi

bnRiii- = max

[(C +C-U -C )/C2'01
SHI9=min(SFT,WSi~wi

Ti = Ti - SHIFT

T_- 4= T_4 - SHIFT
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GT < ET
ET < GT S LT

YES

Figure I.1(b) Feasibility test for CASE 2 insertions.

GT > LT
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DDT-SPECIFIED

GT < ET

NO

Continued in
Figure I.1(d)A

Figure 1.1(c) Feasibility test for CASE 3 and 4 insertions
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Figure 1.1(d) Feasiblity test for CASE 4 insertions
(continued from Figure 1.1(c))

- -, I -WOMMUMMONWO
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Figure 1.2 Feasibility test for insertions into different schedule blocks.
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