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Abstract

Forecasting is arguably the most critical component of airline management. Essentially,
airlines forecast demand to plan the supply of services to respond to that demand. Fore-
casts of short-term demand facilitate tactical decisions such as pricing and seat inventory
control-the allocation of seats among the various booking classes.

In this study, an evaluation was conducted of the relative performance of selected forecast-
ing techniques used to predict short-term demand for air transportation. Short-term in this
context is defined as intervals less than eight weeks prior to the date of departure. The
selected techniques were representative of current practices in the airline industry includ-
ing simple time series, linear regression, and booking pickup models. Two types of pickup
models were analyzed: the classical model and an advanced model. The set of models was
subjected to the same short-term forecasting environment where the historical data was
restricted to ten weekly departures and the forecast horizon limited to seven weeks in the
future. Eight scenarios were examined to study the effects of varying the size of the histor-
ical data set as well as the length of the forecast horizon. Performance was determined on
the basis of the relative accuracy of the forecasts measured through the use of selected
metrics.

It will be shown that the booking pickup models consistently outperformed the time series
and regression models and the advanced pickup model produced the best results. Further-
more, it was discovered that increasing the size of the historical data set beyond seven
weekly departures did not have a significant impact on the performance of the various
models and in most cases the performance of the models deteriorated as the size of the his-
torical data set was increased.

Thesis Supervisor: Peter Belobaba Ph.D.

Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Since the advent of deregulation in 1978, the US domestic airline market has

evolved into one of the most fiercely competitive industries in the world today.

The post deregulation chain of events which led to the industry's current situa-

tion stemmed primarily from two freedoms given to US carriers through the

deregulation act: the freedom to enter or exit any domestic market and the ability

to price to what that market would bear. This ushered in a new era in the US

industry: one that is beset with vicious fare wars, substantial excess capacity, and

consequent reduced margins. The threat of new entrant low cost carriers has

remained real for the traditional majors and the race to match these carriers is on.

The science of Revenue Management was developed as a direct response to this

new environment and is aimed at offering airlines that implement it a significant

competitive advantage. In general, Inventory Control in Revenue Management is

the process of saving seats (rooms, cars) for the late-booking passenger (guest,

driver) [1]. Specific to air transportation, the objective of Revenue Management

is to maximize total passenger revenues through the use of seat inventory control

to allocate seats optimally among the various fare classes on a given flight. At

the core of Revenue Management is the theory of differential pricing which

implies identifying different groups of consumers and charging each group a dif-

ferent price for a homogeneous product [2]. This practice allows total cost to be

covered by total revenues, whereas marginal cost pricing does not. It is estimated
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that the practice of Revenue Management can increase revenues by the order of

5%[3]. Figure 1.1 illustrates the typical seat inventory control process.

HISTORICAL
BOOKING

DATA

FORECASTING
PROCEDURE

SEAT
OPTIMIZATION

ALGORITHM

ALLOCATIONS OF
SPACES AMONG
FARE CLASSES

FIGURE 1.1 The Seat Inventory Control Process

Central to this process is the need for a forecasting and optimization system.

Forecasting and optimization are crucial because they provide the answers to the

two questions at the core of the process:

. How many late-booking passengers should be expected? (Forecast-
ing)
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How many seats should be saved for these passengers? (Optimiza-
tion)

Much research has been done on addressing the second question, the optimiza-

tion of seat allocation among fare classes. However, relatively little attention has

been paid to the question of airline reservations forecasting. This is certainly

striking since the forecast is a key element of the process and the potential pay-

offs of an accurate forecast are substantial, particularly on high demand flights.

Studies demonstrate that each 10% improvement in forecast accuracy on high

demand'flights can potentially translate to a $10 to $60 million increase in total

annual passenger revenues for a major US airline [4].

1.1 Objective of Thesis
The objective of this thesis is to evaluate the performance of selected forecasting

methods used to predict passenger pickup and short term air transportation

demand. Passenger pickup is defined as the incremental bookings received dur-

ing a certain time interval. For example, if on a particular flight the bookings on

hand at day 15 and day 10 before departure are 16 and 26 respectively, then the

5-day pickup is 10 passengers.

At a highly aggregate level, forecasting techniques can be classified as either

qualitative or quantitative and applied to macro-level, micro-level or passenger

choice projections. This study restricts itself to quantitative forecasting tech-

niques used at the micro-level and encompasses regression, time series and

hybrid methods (combinations of the two). The chosen methods represent a

spectrum of commonly used techniques and will be benchmarked using a fixed

data set. Performance is measured on the basis of forecast accuracy as deter-

mined by the absolute and percentage errors, inherent bias, as well as factors

such as ease of implementation and associated complexity. Based on this bench-

marking, a "best practice" protocol is developed to indicate which method is

most appropriate or works best under which circumstances.
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1.2 Organization of Thesis
The remainder of the thesis is organized in the following manner: In the rest of

Chapter 1 the framework for the overall discussion is developed. This entails

introducing and defining the concepts and terminology relevant to the airline

booking process and Revenue Management. Based on this foundation, the need

for forecasting is subsequently distilled.

Chapter 2, Literature Review, presents the salient literature devoted to airline

forecasting problems. While most of the literature discusses macro-level fore-

casting, the primary interest of this thesis lies in micro-level forecasting. Never-

theless, the two levels are described and the general characterization of forecasts

delineated.

Chapter 3, provides a detailed presentation of the methods selected for this study.

The discussion encompasses the rationale behind choosing these methods as well

as certain characteristics such as simplicity, implementation, and data require-

ments.

Chapter 4, Methodology and Data Exploration, begins by outlining the experi-

mental procedure, including the replication of the various models and the choice

of the different forecast scenarios considered. The latter half of the chapter is

devoted to the exploration of the data. This includes the overall structure, market

mix, booking profiles, seasonality, as well as constrained versus unconstrained

demand considerations.

In Chapter 5, Presentation of Results, the discussion centers around forecast

errors. The performance of the chosen methods is evaluated based on accuracy,

determined by the absolute, mean, and percentage errors. The methods are also

scrutinized for inherent biases. Different cases are examined to test the methods

over a range of situations within the short term.

Chapter 6 contains the conclusions of this thesis. A "best-practice" protocol

based on the benchmarking is created. In addition, this chapter discusses practi-
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cal issues surrounding the implementation of an airline reservations forecasting

system and the revenue payoffs for increased accuracy.

1.3 The Airline Booking Process
Although airlines essentially market a service to the consumer, the end product is

a seat on a given aircraft scheduled to fly from point A to point B at a given time

in the future. This product, which can be embellished with meals, drinks, and

entertainment, is purchased by the consumer in search of air transportation. The

inventory of this product is constrained by the overall fleet size of the respective

airlines, as well as the seating capacity of each aircraft, and is therefore fixed.

Nevertheless, identical units (seats) can be priced at different levels on the basis

of purchase conditions and service amenities, and consequently marketed as dis-

tinct service options [2]. Moreover, from the traveller's perspective, the value of

the unsold product or empty seat increases as the departure date approaches and

reaches a maximum just before departure since most travellers booking at this

last minute are willing to pay a premium in order to get a seat on the flight. After

departure, the unsold seat can no longer be sold, regardless of the price. In an

effort to minimize this risk, airlines have invested heavily in pricing and market-

ing schemes aimed at stimulating incremental demand.

The airline booking process can be categorized into three phases: the reservation

phase, the confirmation phase, and the boarding phase as shown in Figure 1.2 [5]



18 Introduction

Denied Boarding Passenger Boarded

FIGURE 1.2 The Airline Booking Process

The Reservation Phase

In the reservation phase a request for air transportation enters the airline's reser-

vations system. A request typically takes the form of a call to a travel agent or
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airline reservation agent for air travel services between an origin city and a desti-

nation city on a specific date. Once the request is accepted a reservation is made

and the inventory of available spaces in the given fare class for the given flight is

decremented. The distinction between spaces and seats is made since an airline

may overbook and sell more spaces than physical seats on a given flight, in antic-

ipation that some of the passengers with reservations will not turn up on the day

of departure.

If space is not available on the given flight in the given fare class, the request is

denied. A fare class is a grouping of similar published fares created for the pur-

pose of controlling reservations. On a given flight, each fare class is assigned a

certain number of spaces. When the spaces allocated to a certain fare class are

filled, the fare class is considered full or closed. Vertical recapture would occur if

the traveler whose request was denied is persuaded to accept a different fare

class on the same flight. If the traveler is accommodated on another flight in the

initially requested fare class, then the airline has made a horizontal recapture [2].

However, if the traveler chooses another airline or decides not to fly at all, the

traveler is lost to the airline.

Ticketing occurs when the traveler pays for the service and is given a ticket con-

firming the itinerary of the trip and the fare class. Depending on the restrictions

of the given fare product, ticketing can be done from the time the reservation is

made right up to the point of departure.

The Confirmation Phase

The confirmation phase begins immediately after a reservation has been made

and continues up to the point of embarkation. During this phase there is the

ongoing risk of cancellation, whether explicitly or implicitly. An explicit cancel-

lation occurs if the traveler cancels a reservation or re-books to another fare class

or to another flight. An implicit cancellation occurs when the airline cancels a

reservation due to the traveler's failure to comply with restrictions. For example,
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several discount fares have associated cut-off dates before which they must be

ticketed. If a traveler makes a reservation for one of these fares and fails to pur-

chase it before the given date, then the airline would automatically cancel the

reservation. In addition, it is well within the airline's prerogative to cancel the

reservations of a traveler who does not show up before a certain time on the day

of departure.

The Boarding Phase

The boarding phase occurs at the airport on the day of departure. A traveler who

shows up with a reservation before the minimum check-in time becomes a pas-

senger. If there are sufficient seats, then the passenger is given a seating assign-

ment and allowed to board. However, if more passengers turn up than there are

available seats, the flight is considered oversold and some passengers will be

denied boarding the aircraft. A denied boarding may be voluntary, where the pas-

senger consents not to board in exchange for some type of compensation. Other-

wise, the denied boarding is involuntary, where the airline refuses to

accommodate the passenger on the flight. Compensation is then in accordance

with the policies of the airline.

1.4 The Economics of The Airline Booking Process
From a microeconomic perspective, the booking process can be viewed as an

economic interaction between a consumer (the potential traveler) seeking to

maximize utility and a producer (the airline) seeking to maximize profits. It is the

consumer who creates the flow through the airline's network by deciding to

travel on that specific airline. Collectively, the consumers generate the demand

for air transportation. The airline, as a producer of the service, provides a sched-

ule of flights between city pairs with a certain number of available seats in the

respective fare classes. Collectively, the world's airlines provide the supply of air

transportation.
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1.4.1 Demand For Air Transportation

It is important at this point to underscore the distinction between the airline's out-

put, defined as an available seat flown from a point of origin to a point of destina-

tion, and the airline product as purchased by the consumer. The demand for air

travel is a derived demand, meaning the consumer does not purchase a quantity

of available seat miles as if they were a commodity. The value of the purchased

air travel is derived from being at a particular place at a particular time.

In keeping with the classical microeconomic theory, travelers will make choices

that are most favorable to them. The measure of favorability of a particular alter-

native is referred to as utility. The consumer's main concern therefore, is to max-

imize utility when requesting air travel. The major factors involved in the

decision making process for air transportation include: travel dates, price, ser-

vice, and restrictions. In general, travelers can be segmented on the basis of the

extent to which these factors dominate their choice of service.

Airlines traditionally have identified demand segments under the assumption,

supported by empirical evidence, that there exist substantial differences in

demand elasticities between business and leisure travelers with little or no cross-

elasticities. It has also been revealed that price and service are the critical ele-

ments responsible for this segmentation. It is the existence of such segmentation

which makes Revenue Management and Differential Pricing possible.

Additional attempts to identify more detailed demand segments have proven to

be inherently difficult and complex to the extent that the use of the non-discre-

tionary (business) versus discretionary (leisure) model has become the virtual

standard of the industry. This model assumes that discretionary passengers are

strongly price sensitive and consequently seek the lowest available fare for any

given service. Discretionary passengers are willing to accept restrictions in order

to obtain a discount fare. For the non-discretionary passenger, however, quality

of service becomes the top priority in choosing a particular flight. As a result,

issues such as departure times, frequency of departures, in-flight amenities, and
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the ability to make changes to the itinerary are weighted significantly higher than

the actual fare. Non-discretionary passengers are willing to pay a premium in

order to obtain this desired quality of service.

The demand for air transportation is also characterized by stochastic and sea-

sonal components. Stochastic variation pertains to the inherent volatility of

human behavior. The unpredictability associated with the choices travelers make

and their responses to certain circumstances adds to the complexity of forecast-

ing. It is this stochastic variation that gives rise to the truism that no forecast of

the demand for air transportation can ever be 100 percent accurate.

Seasonal variation occurs quite naturally in the demand for air travel. During cer-

tain periods of the year, such as Christmas, summer, or Thanksgiving, surges in

demand are typical. In contrast, the period from January to March is well recog-

nized as the "off-season" for air transportation demand. Moreover, at certain

times of the year, certain destinations become more desirable. For example, lei-

sure travelers typically target warm climates during the winter months, such as

Florida or the Caribbean. Consequently, historical booking data should be "de-

seasonalized" before it is used in forecasting, to mitigate the effects of seasonal-

ity.

1.4.2 Supply of Air Transportation

The supply of air transportation consists of three major components. The first

component comprises a schedule of air services between a set of origins and des-

tinations and is consequently defined over a network of markets. To facilitate the

appreciation of this concept and the remainder of the discussion, the fundamental

terminology of the air transportation schedule will be defined [6]. A route map is

a geographical network connecting the cites to be served. A link connects two

cities in the route map if it is flown non-stop by any aircraft. A route is a series of

consecutive links flown by an aircraft from origin to final destination with inter-

mediate stops. Aflight is the passage of an aircraft along a route at some particu-
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lar time and is often considered the basic element of supply. A flight segment is

the portion of a flight over a link. A route segment is synonymous with a link.

Fleet assignment represents the second critical component of air transportation

supply. Once the route map is defined, the airline must decide which aircraft to

assign to each route in its network. In general, the fleet of an airline comprises

aircraft of varied physical and performance characteristics, such as seating

capacity, cruising speed, maximum range, noise emission level, or minimum

takeoff runway requirements. Consequently, factors such as noise abatement

restrictions, length of haul, or the length of the runway at the origin airport,

would bear on the utilization of a specific aircraft on a specific route. To a large

extent, the choice of aircraft determines the operating cost of the flight. From a

profit maximizing perspective, however, the seating capacity of the aircraft

becomes the prime criterion and literally places an upper constraint on the reve-

nue generating potential of a given flight.

The third major element of air transportation is the method of selling individual

seats on the aircraft. An aircraft is typically divided into two or three different

cabins, each offering a different level of service and amenities. A typical three

cabin configuration comprises a First Class cabin, a Business Class cabin and an

Economy (Coach) Class cabin. Recent trends, however, have seen airlines col-

lapse their First and Business Class services into a single and more affordably

priced "Business-First" service to stimulate demand in the premium classes.

Within the domestic US market, most airlines offer only First Class and Econ-

omy Class services on their flights.

Airlines have produced a range of fare products that appeals to the various

demand segments in an effort to exploit their revenue-maximizing potential.

Moreover, most fare structures are designed to minimize seepage between seg-

ments through restrictions on the purchase and use of discounted fares, the most

typical of which include advance purchase, round-trip travel, and minimum stay

23
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requirements. These restrictions are often incorporated with capacity controls or

limits on the number of seats available to particular fare types.

A published fare for a specific market includes the price, the level of service and

any rules, restrictions, or cut-off dates that may apply. For any market, there can

be a vast number of published fares. Yet, given the dynamic nature of the airline

pricing system, a listing of the published fares being offered in a particular mar-

ket at any point in time may well become obsolete within 24 hours. This is due to

the freedom given to US carriers to make changes to their price structures for

domestic origin-destinations markets either instantaneously in their computer

reservation systems or overnight through the Air Tariff Publishing Company

(ATPCO). Published fares are generally grouped into fare classes for the purpose

of controlling bookings in the airline's reservation system. A fare class is desig-

nated by a single letter code, such as "Y," "M" or "Q." Although each fare class

is assigned to a particular cabin, in most cases there are more fare classes than

physical cabins in the aircraft. Consequently, it is quite common for passengers

booked in different fare classes to sit in the same cabin (or even next to each

other) and receive the same level of in-flight service. For example, one major US

carrier uses the codes Y, B, M, H, Q, K, L to designate booking classes within

economy class. The Y fare class corresponds to the full Coach fare. The fare

classes B through L represent increasingly discounted fares with an increasing

number of restrictions.

Recent advances in Revenue Management have introduced the concept of virtual

classes where the use of letter codes to represent the various fare classes is

replaced by associating numbers with distinct revenue intervals (buckets) as

illustrated in Table 1.1
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TABLE 1.1 Example of Virtual Class Structure

Revenue Value Virtual Classi

$900 and up 1

$850 to $899 2

$700 to $849 3

$600 to $699 4

$450 to $599 5

$325 to $449 6

$250 to $324 7

$200 to $249 8

$125to $199 9

$124 or less 10

I. These are not actual classes but
have been created for the purpose of
illustration.

This system is network oriented and addresses the problem of comparing the rev-

enue earning potential of individual legs on connecting flights when allocating

available seats. For example, consider a network of flights to DCA, connecting

through DFW (Figure 1.3) where the number of available seats on the DFWDCA

leg is quite limited.
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DCA

LAX , DFW

LBB
ACT

FIGURE 1.3 Example Hub & Spoke Network

TABLE 1.2 Associated Prices for Network Example

Market Sae e ter ass) Virtual Class Revenue Bucket

LAXDCA $265 7 $250-$324

LBBDCA $210 8 $200-$249

ACTDCA $195 9 $125-$199

DFWDCA $190 9 $125-$199

Placing the fares into virtual classes reveals that more seats on the DFWDCA

flight will be made available to the potential passengers originating in LAX and

LBB and fewer to the passengers in ACT and DFW, because the latter fares are

in a lower virtual class and therefore contribute less to the system revenues.

1.5 The Need for Forecasts
Forecasting is arguably the most critical area of airline management. Essentially,

airlines forecast demand to plan the supply of services to respond to that demand.

Short-term forecasts (less than 6 months) facilitate tactical decisions such as
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catering, pricing, and seat inventory control. Medium-term traffic forecasts, gen-

erally defined as a 6 to 16 month horizon, not only impact the entire operating

plan, but also influence the current and upcoming fiscal budgets [7]. Aircraft

scheduling decisions, maintenance planning, advertising and sales campaigns,

and the opening of new sales offices are among the many decisions which ulti-

mately are dependent on short-term forecasts. However, strategic decisions, such

as the creation of new routes or the acquisition of new aircraft, hinge on longer-

term forecasts. Figure 1.4 shows the major set of forecast-dependent activities

and the associated time frame before departure during which they are applicable.

STRATEGIC PLANNING

BUDGETING

AIRCRAFT ASSIGNMENT

REVENUE MANAGEMENT

CARGO LOAD PLANNING

INFLIGHT MEAL ORDERING

ZERO FUEL WEIGHT

5YRS 1 YR 1MTH 7 DAYS 3 DAYS 2DAYS 1 DAY DEPARTURE

FIGURE 1.4 Forecasting Applications and Time-Frames Relative to Flight Departure

There is a mix of circumstances that require forecasting, each of which poses

contrasting methodological challenges. For instance, airlines need to forecast

traffic growth assuming a continuation of current operating conditions with no

drastic changes in fares or in other supply factors. The global growth of passen-

ger and/or freight traffic must be forecasted on a route, group of routes and/or
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geographic region basis. From this forecast of total demand, the airline must then

predict its own share and corresponding traffic. At the root of such forecasts lies

the assumption that traffic growth will continue in the future very much as it has

done in the past.

There is also a need to forecast the response of demand to changes in the condi-

tions of supply, such as changes in frequency, capacity, existing fares, or depar-

ture times. A significant change in supply conditions may be under consideration

by the airline itself or changes may be imposed by competitors. In any event, an

airline must be in a position to anticipate the reaction of demand to any such

change.

Alternatively, an airline may be faced with the problem of trying to forecast

demand on a particular route which is under consideration for new entry. Quite

often this may even be a route which has had no previous air service. In any

event, the airline has little or no experience nor historical data on which to base

its forecasts. Such circumstances make forecasting quite difficult and increase

the risk of error. Nevertheless, there are appropriate techniques an airline may

utilize in such cases, some of which will be subsequently discussed in Chapter 2.

Lastly, there is the question of segment or disaggregate forecasting. Passenger

traffic on a particular flight is composed of distinct market segments related to

both travel purpose and service requirements. These segments may be further

categorized by point of origin. Studies indicate that each market segment is

likely to have different demand elasticities and growth rates. Consequently, it

should be possible to achieve more accurate forecasts through aggregating fore-

casts of each market segment rather than by forecasting total traffic from the

start. Some airlines already apply a two-market segment approach to forecasting,

namely business and non-business, or devise further segments based on fare

classes. In reality, only a handful of airlines currently possess the resources to

conduct extensive segmental forecasting. However, the incentive of increased
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forecast accuracy has begun to push more airlines to consider disaggregate fore-

casting.

1.5.1 Forecasting for Revenue Management

200
180
160
140

9120

60
40
20

0 29-Dec
0 7 22-Dec

14 15-Dec
2128 8-Dec

Days out 42

FIGURE 1.5 Y Class Demand for a Specific Flight in December 1994.

Forecasting for revenue management is different from traditional forecasting

because it involves two time variables. Traditional forecasting uses only one

time variable: for example, if the rate of inflation for the last 30 years is known,

then it should be possible to predict the rate for the next 5 years.

Revenue Management, however, uses two related time variables: the time of

booking (or sale) and the time of consumption. Alternatively, the time of con-

sumption and the days left before consumption can be used. This two dimen-

sional variable space is illustrated in Figure 1.5, which depicts the bookings

histories of five departures versus days prior to departure. This figure illustrates

the bookings associated with the two time variables of Revenue Management
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forecasting: (1) the consumption date-the departure date of every Thursday in

December, and (2) the days left before this date

The existence of these two dimensions presents one of the many challenges for

Revenue Management forecasting.

Given that the airline wants to maximize profit, it requires an accurate forecast of

total bookings in each fare class. Figure 1.6, which illustrates the major compo-

nents in an automated booking limit system, underscores the fact that the fore-

casting model is central to the entire process

FIGURE 1.6 The Automated Booking Limit System [81

1.5.2 Dependent Variables

Although forecasting demand is often thought of as a major objective of Reve-

nue Management, there are in fact many variables that need to be forecast,

including:
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- Unconstrained Demand. Because limits are placed on the number of seats

sold in each fare class, the airline only sees constrained data. Uncon-

strained demand is defined as the number of reservations that would be

accepted if restrictions or capacity constraints were not in place. This is

certainly difficult to measure and is considered by many to be the "Holy

Grail" of Revenue Management forecasting.

* Bookings. Bookings are the actual reservations being held at a particular

time. Final bookings refers to the number of reservations being held on the

day of departure. This does not, however, indicate the actual load (number

of passengers) that would board the aircraft as that number is subject to no-

shows and go shows (defined below). The final bookings is a measure of

the constrained demand due to the capacity constraints on the aircraft.

. Incremental Demand or Pickup. Some Revenue Management forecasters

estimate demand rates, or number of bookings received during certain time

intervals. For example, if on a particular flight the bookings on hand at day

15 and day 10 before departure are 16 and 26 respectively, then the 5-day

pickup is 10 passengers.

. No-Shows. A no-show is a last minute cancellation by a passenger. In gen-

eral, a no-show is a traveler with a reservation who fails to show at the air-

port on the day of departure.

- Cancellations. Cancellations are similar to no-shows, although there is

usually time remaining before departure to resell the seat.

. Go Shows or Walk-Ups. These are travelers who show up at the last

minute, without reservations, and are willing to purchase a seat.

- Sell-Ups and Recaptures. Sell-ups are travelers who, after having their

initial request denied, purchase a seat in a higher fare class. Price elasticity

is the underlying consumer characteristic here, the measurement of which

poses special problems. Recaptures are rejected requests or reservations
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whose revenue is not lost to the airline but who purchase a seat on another

flight.

This thesis will focus on the forecasting of unconstrained final bookings for a

given fare class for a given flight.



Chapter 2

Literature Review

2.1 Categorization of Forecasting Techniques
In general, the forecasting techniques used by airlines can be divided into three

broad categories: qualitative or judgmental, quantitative or scientific, and deci-

sion analysis, which is a combination of the first two methods (Figure 2.1)[9].

These techniques may be applied at the macro-level, to passenger choice model-

ing, or micro-level. Examples of macro-level forecasts include projections of

total annual domestic traffic and the growth in passenger movements between

the US and Europe over the next five years. Passenger choice modeling is the

process of predicting an individual passenger's behavior or decision based on

socioeconomic factors and the characteristics of alternative options and/or

modes for travel. For example, passenger choice modeling can be employed to

determine whether an individual would choose rail over air transportation, or

choose one airline over another. Micro-level forecasting-the focus of this the-

sis- pertains to predicting passenger demand at a more detailed or specific

level. For example, micro-level forecasting is typically conducted on a flight,

date and fare class basis.
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Market Research
DECISION System Dynamics
ANALYSIS Heuristic

Probabilistic

FIGURE 2.1 Alternative Forecasting Techniques [9]

In the definition of any forecasting problem at any level, the following three time

elements become crucial: the forecasting period, the forecasting horizon, and the

forecasting interval[ 10].

Theforecasting period is the basic unit of time for which forecasts are made. For

example, a forecast may be generated for passenger demand by week, in which

case the forecast period is a week. Theforecasting horizon is the number of peri-

ods in the future covered by the forecast. Therefore, if a forecast is required for

the next 10 weeks broken down by week, the period is once again one week and

the horizon is ten weeks. Sometimes the term lead time is used in place of fore-

cast horizon. Finally, the forecasting interval is the frequency with which the

new forecasts are generated. Quite often the forecast interval coincides with the

forecast period such that the forecasts are revised each period using the most
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recent period's demand and other current information as the basis for revision.

This would occur, for example, if both the forecasting interval and forecasting

period for a particular flight is one week.

In this study, the forecast horizon is restricted to less than 8 weeks and the period

varies within this range. The details of this will be discussed in Chapter 4.

2.2 Quantitative Methods
Quantitative forecasting techniques rely heavily on the existence of historical

data and, to a large extent, on the continuation of historical trends. This group is

divided into two classes: time series analyses and causal methods. Time series

analysis tools include methodologies such as ratio analysis, trend projection,

moving averages, spectral analysis, adaptive filtering and Box-Jenkins. Detailed

discussions on these methods are presented in Montgomery and Johnson [11],

Box and Jenkins [12], Brown [13], Jenkins and Watts [14], Anderson [15], and

Granger [16]. Causal methods range from regression models to Bayesian analy-

sis.

A time series is a time-ordered sequence of observations of a variable. Time

series analysis uses only the time series history of the variable being forecasted

in order to predict future values.

Trend projection is the oldest and simplest application of time-series analysis.

For example, the demand for wide body aircraft can be estimated as a function of

time. Henning [17] further divides this technique into the following three meth-

ods:

1. The mean variation method, which derives the forecast from an analysis of

various growth rates (e.g. linear, or exponential)

2. The sliding average method, for which the time-series forecast points can be

approximated by an analytical function of just a few neighboring values
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3. The trend functions method, which draws upon linear, parabolic, logarithmic,

or logistic functions to describe the development of the trend.

These methods are based on the premise that what has happened in the past has

great relevance to the future. The weakness of this method is that it fails to incor-

porate the determinants of demand. The impact of changes in the demographic,

socioeconomic, and air transportation system variables on air travel is difficult to

ascertain.

Nevertheless, time-series analysis is considered especially useful in producing

short-term forecasts of monthly, weekly, daily, and hourly variations in demand.

Although in the past, the most common methods for dealing with fluctuating pat-

terns have been simple exponential smoothing techniques, significant develop-

ments have also been made in techniques such as adaptive filtering, Box-Jenkins

methods, and spectral analysis. Examples of applications of these methods in the

airline industry can be found in Garvett [18] and Taneja [9].

2.3 Airline Forecasting Literature

2.3.1 Macro-Level Forecasting

At the macro-level of airline forecasting, the principal references are Taneja [9]

and Kanafani [19]. In his book, Airline Traffic Forecasting, Taneja focuses on

regression models for aggregate airline traffic forecasting. He presents statistical

methods for macro-issues such as forecasting total airline traffic (on a regional,

national, and international scale) and projections of traffic growth. In addition,

Taneja argues that causal methods, particularly regression, are the most popular

methods of forecasting demand for air transportation. Pure time-series is consid-

ered "generally statistical." This implies that, from a forecasting point of view,

methods in this class may answer the "when" question, but do not address the

"why" question. Taneja explains that these methods may, for example, be able to

predict quite accurately the level of airline passenger demand in 1995, but not



Airline Forecasting Literature 37

explain why it will be at that particular level. These methods cannot, for exam-

ple, assess the impact of a reduction in fares, the introduction of new aircraft, an

economic recession, or the uncertainties associated with the future labor climate.

He contends that such questions can only be answered if the forecaster has spec-

ified and calibrated a formal model that shows the influence of all the relevant

variables and not just one (i.e. time). This argument is certainly compelling when

the forecasting horizon is considerably larger (beyond 10 months). Yet, when the

horizon is reduced to a short-term of two months, the probability of drastic vari-

ation among the exogenous variables is also reduced. Therefore, the demand

characteristics should depend less on these external variables and thus the virtues

of causal methods within the short-term are not as clearly defined.

Kanafani addresses in one chapter the issues of aggregate measures of air travel

activity such as passenger volume, aircraft operations, and revenue passenger

miles. He contends that these measures can be delineated according to trip pur-

pose, origin-destination, length of haul, and type of service (airline, charter, and

commuter aviation). The idea of forecasting by fare type is also briefly dis-

cussed.

2.3.2 Passenger Choice Modeling Literature

Kanafani [19] offers a brief treatment of passenger choice models in his chapter

on demand in air transportation. A categorization of the types of choices which

occur in air transportation is developed and includes route choice, airport choice,

airline choice, and fare-type choice. A multinomial logic model is presented as a

method of estimating passenger choice models. A more general reference to dis-

crete choice modeling in transportation is Ben-Akiva and Lerman [20].

2.3.3 Micro-Level Forecasting Literature

As stated earlier, not much research has been done on micro-level forecasting by

flight number, day of week, time of day, or by fare class in the short-term. Little-
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wood [21] and Scandinavian Airlines [22] studied some of the basic characteris-

tics of the airline booking process and proposed simple forecasting models for

total bookings on a flight. These models are based on computing the mean of his-

torical bookings on previous departures of the same flight. Although Littlewood

and Scandinavian Airlines allude to the fact that these models could be used to

forecast demand by fare class, the focus is forecasting total demand for the entire

cabin on a particular flight, and the emphasis is certainly on simplicity. The

Scandinavian Airlines paper also addresses the question of the quantity of histor-

ical data necessary to produce accurate forecasts as well as the issue of removal

of outliers corresponding to unusual, non-recurrent events, such as a promotional

sale or the effects of the Gulf war.

The underpinnings of the Scandinavian Airlines paper lie in a study conducted

by Duncanson [23] while at Scandinavian Airlines System (SAS). In this study,

he reviewed short-term forecasting at SAS and proposed incorporating seasonal

analysis and exponential smoothing into the existing models. At that point in

time the scope was considered still quite limited and the focus was only applied

to passenger traffic with a forecasting horizon of 1 to 3 months. The model was

based on historical time series analysis and was directed primarily to relatively

stable markets with particular attention paid to European traffic. Duncanson also

looked at additive bookings models, as proposed by Littlewood, but did not

include cancellations nor day of week effects.

Within academe there are four relevant studies. In his thesis, Sa [24]performed a

rudimentary data analysis based on time series models and regression models.

Two ARIMA time series models were created for a single fare class on a single

flight number. Discouraging results from these models led Sa to subsequently

abandon the discussion on time series. His regression model, however, gave

more positive results. The dependent variable was bookings to come while the

explanatory variables included bookings on-hand, a seasonal index, a day of

week index, and a historical average of bookings to come. Nevertheless, Sa did



Airline Forecasting Literature 39

not test the forecasting ability of the models and therefore the actual predictive

abilities of his model remain speculative. In addition, he did not take into consid-

eration the effect of the data being constrained through booking limits.

Brummer et. al.[25] produced the second relevant study, the objective of which

was to identify the mean and standard deviation of the true unconstrained log-

normal distribution of demand, given a data set with some constrained observa-

tions. This study explicitly factors the effect of data constrained by maximum

authorized booking limits, although the majority of effort is spent on the deriva-

tion of the likelihood function of a censored log-normal distribution and focused

only on total bookings on each flight. No attempt is made to study forecasting by

class nor is there any attempt to validate the developed model with a different

data set.

Research by Ben-Akiva et. al. [26] provides the third relevant study on micro-

level forecasting. Three models are proposed to performed flight-specific, class-

specific demand forecasting: a regression model for advanced bookings on a

given flight, a time series model for historical bookings on previous departures

of the same flight number, and a combined model using both advanced bookings

and historical bookings data. The preliminary analysis is performed using

monthly airline data by flight and fare class. The results indicated that the com-

bined model outperforms both the advance bookings and historical bookings

models. Again, even though the results suggested potential for practical applica-

tion, Ben-Akiva did not have sufficient data to validate the results of the esti-

mated model on future flights. Moreover, the period of the data is monthly, while

accurate micro-level forecasting requires data on a weekly if not daily basis. In

addition, the effects of constrained demand due to booking limits were not taken

into consideration.

Lee devotes his doctoral thesis to developing a comprehensive mathematical

framework for the analysis of the airline booking process. His approach uses the

work from Rothstein [27] as a basis to develop a complex probabilistic model of
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the airline booking process. Unlike Rothstein, however, he considers a stochastic

process with interspersed reservations and cancellations, viewed as immigrants

and deaths to the population of travelers respectively. The end result is a cen-

sored Poisson model for the booking process. A rigorous statistical framework is

subsequently developed building on the work of Ben-Akiva et. al. [26]. The

effects of booking limits are incorporated using the methodology of Maddala and

Schneider [28] to develop a truncated-censored model. Both Maddala and

Schneider have done considerable work on the estimation of truncated regression

models using normally distributed data. Lee also validates the forecasting ability

of his models on actual airline data. The results indicate that the models fit the

data well.

Two sources of concise overviews of forecasting for Revenue Management are

Belobaba [29] and Curry [1]. In his presentation, entitled Yield Management

Forecasting Made Simple, to the 4th International IATA Yield Management Con-

ference, Belobaba discussed the importance of forecasting and optimization and

outlined the standard industry approaches. In addition, he addressed the issue of

revenue benefits derived from accurate forecasts. Curry's technical brief in the

Revenue Management Quarterly, Scorecard, provided a listing on the tools and

techniques as well as related issues such as accuracy factors, revenue impact, and

difficulties inherent in the forecasting process.

On the industry front, there are three relevant papers found in the proceedings of

the Airline Group of the International Federation of Operational Research Soci-

eties (AGIFORS):

1. Harris and Marucci [30] developed a simple regression model in response to

Alitalia's product managers request for a method of predicting traffic on their

routes in the short term. The model uses two forms of data: (1) 5 historical snap-

shots of each individual flight taken at 5 different times prior to the day of depar-

ture, and (2) a set of data describing the booking situation of all of Alitalia's

flights for the next 45 days. The model produces aggregate forecasts for both first
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class and economy class as a function of the number of single passenger book-

ings on hand at a particular point in time as well as the number of groups book-

ings. In the model, Alitalia's flights are broken down by aircraft type, day of

departure, country, continent, and type of flight (i.e. domestic, international, long

distance). It was observed that the day of departure did not have significant influ-

ence on the model's regression parameters, while all the other factors gave

highly significant results. It was also observed that the forecasts for international

flights (particularly long-hauls) were far more reliable than those for domestic

flights. Nevertheless, this model does not consider the issue of constrained data

nor does it address the effects of seasonal variation.

2. Adams and Vodicka [31], while at The Internal Consulting Department at

Qantas Airways, reviewed some of the decision making areas in which reliable

passenger forecasts are beneficial, namely; operational decisions of cargo capac-

ity planning, in-flight meal ordering, and zero fuel weight estimation. The fore-

casting horizon for this study was 0 to 7 days prior to departure. Several

forecasting models were developed in response to the management's need for

various types of information, such as projection reports, threshold curves indicat-

ing the variation of the forecasts, and station manager's reports. The emphasis

was on simplicity and providing timely solutions. Consequently the models were

not very sophisticated and ranged from arithmetic means of segment class load

variations exhibited on historical flights to subjective estimates from marketing

experts.

3. Of particular interest to this thesis is the paper by Ed L'Heureux [32]. While

working for Canadian Pacific Airlines, he developed a "new twist" in forecasting

short-term passenger pickup. This new twist builds on the classical pickup model

which estimates the pickup for future flight by taking the average of the pickup

on previously departed flights. Therefore, on a given day X, using the classical

model to forecast the final bookings for a particular flight in the future would

require summing the bookings on hand on day X and the estimate of bookings to
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come, or pickup, between day X and the day of departure. L'Heureux suggests

that the classical method does not exploit the use of the most recent available

data and consequently violates the basic maxims in forecasting: "use all of the

data" and "give the most weight to the most recent data." This recent data is

found in the bookings on flights that have not yet departed. The key to the new

twist is to estimate the pickup in smaller increments and sum them to arrive at

the pickup for the longer period. In so doing, the data from flights that have not

yet departed can easily be incorporated. L'Heureux contends that his new twist

model is less influenced by irregular flights such as flights during Christmas

time. On the other hand, L'Heureux considers his model to be affected by periods

of odd booking activity, such as during fare wars or when a competitor exits a

market leaving a surplus of demand. In addition, the new method is said to

respond to variations in demand more rapidly, as a direct consequence of using

the most recent data. The details of this approach will be discussed in Chapter 3.
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Discussion of Selected Models

As Discussed in Chapter 2, quantitative micro-level forecasting methods can be

classified as either time series, regression, or a combination/variation of the two.

Consequently, for the purpose of this comparative study-where the objective is

to determine the relative performance of the three classes of forecasting methods

for Revenue Management-it is necessary to study at least one model from each

of these classes.

3.1 Selection Criteria
In determining which models should be chosen for this study, the following

selection criteria were applied:

Simplicity: Based on the industry literature, it is clear that the simplicity of

the model is certainly a prime concern for short-term forecasting. Simplic-

ity in this context refers to the level of computational complexity involved

in generating a forecast. This simplicity criterion is particularly relevant

when considering the time series options that span the gamit of complexity

ranging from extrapolation of simple means to the use of auto-regressive

moving averages.
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. Ease of Application: This criterion is intertwined with the simplicity mea-

sure and pertains to the difficulty associated with reconstructing a particu-

lar model. The concern is to avoid overly sophisticated models that require

considerable amounts of computing resources. Moreover, with highly

sophisticated models the risk of inaccurately reconstructing the model is

increased and consequently jeopardizes the validity of any conclusions on

performance drawn from this study.

. Representative of Industry Practice: Given that this study is fundamen-

tally a benchmarking activity, it is logical therefore, that the focus be on

models that are currently being used in the airline industry, as opposed to

theoretical models that have not been implemented. After all, such a focus

would certainly enhance the value of any conclusions drawn from this

study as airlines would immediately be able to recognize the relative per-

formance of their current short-term forecasting methods.

. Representative of the Spectrum of Complexity: Although simplicity is a

significant driver in the selection of the model set, caution must be taken to

ensure that the set does not comprise only the simplest models as this

would not be representative of the industry practice.

3.2 Selected Model Set
To facilitate the discussion of the selected models, it is necessary to briefly

address the structure of the booking data. Table 3.1 illustrates the generic matrix

representation of the booking profile in a hypothetical booking class for a given

flight. This particular case displays weekly departures over an 11-week period.

Week 0 corresponds to today's date while weeks with negative numbers are his-

torical and those with positive numbers are in the future. For example, week -2

refers to a departure two weeks ago while week 2 represents a departure in two

weeks time.
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TABLE 3.1 Booking History Matrix

Week DayO Day7 Day14 Day2l Day28 Day35 Day42 Day49 Day56

-5 25 22 10 5 3 3 2 0 0

-4 30 21 15 17 12 7 3 1 0

-3 23 25 14 9 8 5 5 2 1

-2 40 34 30 16 11 6 3 0 0

-1 35 29 20 12 13 8 3 1 0

0 39 33 30 21 14 6 4 2 1

1 - 28 22 18 10 5 3 0 0

2 - - 18 11 10 7 4 2 1

3 - - - 15 9 8 6 6 2

4 - - - - 11 7 3 2 0

5 - - - - - 9 8 5 2

The DayN column displays the bookings on

example, DayG refers to

hand two weeks before

final bookings wh

departure. Therefor

hand N days before departure. For

ile Day14 pertains to bookings on

e, on the flight which departed 5

weeks ago, there were 25 final bookings in the sample booking class while there

were 10 bookings 14 days before departure.

3.2.1 Time Series

Two basic time series forecasting techniques were selected: simple mean of final

bookings and exponential smoothing of final bookings.

Model 1: Simple Mean of Final Bookings

This model generates a forecast on the basis of the average of n historical depar-

tures. The forecast of final bookings for a departure t weeks ahead using n histor-

ical departures is therefore given by:
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-n

FIkdt = - Fbkdk 3.1

k = -l

Where Fbkd, is the estimated final bookings for the departure on week t and

Fbkdk is actual final bookings for a departure on week k.

Models 2 & 2b: Simple Exponential Smoothing of Final Bookings

This model uses the same basis as the simple mean but applies a smoothing aver-

age rather than a pure average. The theory of exponential smoothing implies that

the most recent data is weighted heaviest by a smoothing constant a. The fore-

cast for the final bookings for a given period t is given by:

Fbkdt = a x Fbkdt + (1 -a) x Fbkdt 1  3.2

When the smoothing constant has the value, for example, 0.10, the new estimate

places 90% weight on the old estimate and 10% weight on the new observation.

In general, the choice of the smoothing constant has an impact on the characteris-

tics of the exponential smoothing. Essentially, the response of the forecast to

changes in data is a function of the size of a. The smaller the value of a the

slower the response. Larger values of a cause the smoothed value to react

quickly-not only to real changes but also to random fluctuations. Typically,

when the forecasting period is relatively large, the weights (a) sum to unity [11].

This is not the case however, when the period is small and consequently not all

of the data used in the model is captured in the smoothed average. To alleviate

this problem, it is possible to either (a) force the weights to sum to unity by creat-

ing a customized smoothing routine specific to each data case or (b) use a rela-

tively high value for a. Because of the complexity involved in creating a

customized smoothing routine, option (b) was employed in this study.

Consequently it was decided to study the performance of exponential smoothing

by including two smoothing weights (a = 0.2 and a = 0.4) to capture the effects
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of range of applicable values for a as well as address the issue of having the

weights sum to unity.

With both the simple mean and exponential smoothing models, the final book-

ings of departed flights represent the applicable sample of data from the booking

profile matrix (as illustrated by the shaded region in the example matrix below).

TABLE 3.2 Data Subset for Models 1, 2, & 2b

Week DayO Day7 Day14 Day2l Day28 Day35 Day42 Day49 Day56

22 10 5 3 3 2 0 0

-4 30 21 15 17 12 7 3 1 0
-3 23 25 14 9 8 5 5 2 1

-2 40 34 30 16 11 6 3 0 0

-1 35 29 20 12 13 8 3 1 0

0 39 33 30 21 14 6 4 2 1
1 28 22 18 10 5 3 0 0

2 - 18 11 10 7 4 2 1

3 15 9 8 6 6 2

4 - I 11 7 3 2 0

5 9 8 5 2

3.2.2 Regression Models

Model 3

The basis of this model lies in determining a linear trend between the final book-

ings for a departure on week t as a function of the bookings on hand at day 7t

within the same booking class, as described in the following equation:

Fbkdt 0 + P X Bkdnay7 t 3.3

Where Fbkd, is the final bookings for a departure on week t and BkdDay7 t is the

bookings on hand at 7t days before departure.
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A simple least squares regression analysis (with final bookings as the dependent

variable and the bookings at day 7t as the explanatory variable) is used to esti-

mate the constants po and P. This study does not address multi-variate regression

models.

Model 3b

This model is fundamentally the same as model 3 except that the final bookings

for a departure on week t are estimated as a function of the bookings on hand on

day 7t in a higher booking class that is representative of a full fare. The motiva-

tion for this model arises from the assumption that the bookings in all fare

classes are interrelated. Yet, including all the higher booking classes as explana-

tory variables in a single model is outside the scope of this thesis as it is not

intended to study multivariate regression models. As a result, it was decided to

utilize a representative higher booking class for a first order analysis of the rela-

tionship between the discount and full fare booking classes. The final bookings

in booking class Yx for a departure on week t, is given by the following equa-

tion:

Fbkdt = 0+ xBkdDay7 t Ya3.4

where Ya is a higher "full fare" booking class.

The applicable data subset for the regression models encompasses a greater frac-

tion of the booking matrix as compared to the time series models. Applicable in

this context refers to any data that can be potentially used in the model. For

example, given that the largest forecast horizon is 5 weeks ahead using the sam-

ple matrix, the applicable data subset contains the bookings from Day35 to DayG

for departed flights (the shaded region in Table 3.3), while the data used to fore-

cast the final bookings for a departure on week 4 is at Day28 and Day 0 only (as

shown by the darker shaded columns).
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TABLE 3.3 Data Subset for Regression Model

Data Used To Forecast Final Bookings for a Departure on Week 4

3.2.3 Combination (Hybrid) Models

The set of Hybrid models chosen for this study comprises pickup models only.

The generic pickup model implies that the final bookings for a flight departing

on week t is a function of the bookings on hand at a particular day X (X=7t) as

well as the number of booking anticipated to be picked up between the given

point in time X and the day of departure. This general pickup model can be

expressed as:

Fbkdt = Bkdx+PUday(XO) 3.5

where PUday(X,O) is the estimated pickup between day X and the day of depar-

ture. This set of generic pickup models can be further subdivided into the follow-

ing two catergories: Classical Pickup models and Advanced Pickup models [32].

The underpinnings of these two classes are identical to those of the generic
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pickup model defined above. However, the distinguishing feature is found in the

historical data set utilized by each method.

Models 4, 5 & 5b: Classical Pickup Models

Classical Pickup Models as defined by Duncanson [23] use booking data from

departed flights only.

Therefore, in the sample matrix, the applicable data subset, as shown in Table

3.4, comprises all the bookings from the departed flights while the data used to

forecast the final bookings on a particular departure on week t comprises the

shaded regions of the Day X and DayO columns. Furthermore, the applicable

data sets from the time series and regression models are subsets of the applicable

data set for the classical pickup models.

TABLE 3.4 Data Subset for Classical Pickup Model

Week DayO Day7 Day14 Day2l Day28 Day35 Day42 Day49 Day56

-1 4

-5 25 2 22 10 5 3 0 0

3 - - -15 9 8-

-4 30 2- 1 1 11 7 3 2 0
5- - - 9-8 5

-2..... 40 .4.... II .. 30.~

0ae 39e pi3u fro Da21 toDa4 Th 4lsia pikpmdlue1h

Foraarmpleparte fwiht wnted to estimate the expecte booingsp Tin tis virtua-

class~~~~~~~~~~~~~~.... fo a.. flgtdprigi. ek t3.Usn h eei ikpmdlh
bookings~~~ ~. on hada.dyX..y..15.oldhv.t.eade oth si

mated ~ ~ ~ ~....... 3-ekpcuMrmDy .oDy.Tecascl ikpmdlue h
dat fro departed flgt onl to esimt th exece pikp Thi is calcu-.... .... ... N
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lated by substracting the average bookings on Day2l from the average bookings

on DayO for a given number of historical flights (n). If n is chosen to be 4, then,

using a simple average, the 3-week pickup = 20 and the final bookings in the

sample booking class for the departure in three weeks = 15 + 20 = 35.

Therefore, using the classical pickup model, the average pickup between day X

and the day of departure is given by:

PUsay (X,0) = Bkbdayon - BkddayXn 3.6

where Bkddayo, is the average final bookings for n departures while Biddayx, is

the average bookings on day X for n departures.

The specific method used to calculate this average is the distinguishing factor

between models 4, 5, and 5b. Model 4 uses a simple average of n departures:

-n

BkddayX = 1 Bkdsayx 3.7

k = 0

where BkddayX is the bookings held on day X for a particular departure n.

Models 5 and 5b employ exponential smoothing (with a = 0.2 and a =0.4

respectively) defined as:

Bkdayx, = aBkdayX + (1 - a) Bkddayx, 1  3.8

where BkddayX, is the bookings on day X for a departure on week t.

Model 6, 7, & 7b: Advanced Pickup Model

As discussed in Chapter 2, L'Heureux [32] contended that the Classical Pickup

model does exploit the use of all the most recent booking data. L'Heureux argues

that this recent data, found in the booking histories of flights which have not yet

departed, can add valuable information about the recent booking characteristics
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of these particular flights. Consequently, relative to the sample matrix, the appli-

cable data subset for the advanced pickup method, as shown in Table 3.5, com-

prises all of the available booking data.

TABLE 3.5 Data Subsetfor Advanced Pickup Model

Week DayO Day7 Day14 Day2l Day28 Day35 Day42 Day49 Day56

-5 25 22 10 -- 3 3 2 0 0
-4 30 21 15 17 12 7 1 0
-3 23 25 14 9 8 5 5 2 1
-2 40 34 16 1 6 3 0 0
-1 35 29 12 3 1 0
0 39 33 30 .21 14 6 4 2 1

- 28 22 18: 10 5 NZ 0
2 - -11 10 7 4

3 - - - 9 6 6
4 -11 7 3 2 0

5 -- - - - 2

The key to the advanced pickup method involves estimating the aggregate

pickup by summing estimates of the pickup over smaller disaggregate intervals.

Therefore, before the advanced pickup method can be employed a pickup sub-

matrix must be generated.

Returning to the example applied to the Classical model, the pickup submatrix

for the flight departing in 3 weeks is shown in Table 3.6. The pickup between day

X and day X-7, PUday(XX- 7 ) ,for a particular flight is defined as the difference

between the bookings on Day X and Day X-7:

PUday (X, X -7) Bkday (X -7) kddayX 3.9

where BkddayX is the bookings on day X. Applying the advanced pickup method,

with an average of 4 data flights to estimate the pickup for each 7-day interval,

the pickup in the 3-week period before departure becomes:
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3-Week Pickup = Pickup in Week 3 + Pickup in Week 2 + Pickup in Week 1

where the data subset is illustrated by the shaded region in Table 3.6. The term

data flight is used to indicate that historical data is taken from both departed and

non-departed flights.

TABLE 3.6 Pickup Sub-Matrix for Departure in 3 Weeks

Pickup in Wk. Pickup in Wk. Pickup in Wk3
Week 1 before 2 before before

departure departure departure

-5 3 12 5

-4 9 6 -2

-3 - 11 5

-2 6 4 14

-1 6,9 8
0 6 3 9
1 - 6 4
2 - - 7

3 -

4 -

5 -

If a simple average is used to calculate the average pickup for each interval, then

the pickup in week 3 = 7, pickup in week 2 = 5.5, pickup in week 1 = 4, and the

3-Week Pickup = 16.5

Therefore, using the generic pickup model formula, the final bookings in the

sample booking class for the departure in 3 weeks is given by the bookings on

hand at Day 21 + the estimate of 3-week pickup: 15 + 16.5 = 31.5.

The difference between models 6, 7, & 7b lies in the method used to estimate the

average pickup during the 7-day interval. Model 8 uses a simple mean of the

pickup between day X and day X-7 from n departures:
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t - n

PUay(X,X-,) = - PUday (XX -7)

t- 1

3.10

while models 9 and 9b use exponential smoothing with a = 0.2 and a =0.4

respectively:

PUday(X, X-7) = aP Ua, (X, X _,+ (1 - X) PUday(X,X-7)_ 1
3.11

where PUday XX-7> is the pickup between day X and day X-7 for a departure on

week t.

3.3 Summary of Selected Model Set
As summarized in Table 3.7, the set of models selected for this study comprises 3

time series models, 2 regression models, and 6 pickup models. Models 1 and 3b

are designed to serve as the baseline for comparison while the emphasis is delib-

erately placed on pickup models for this comparative study. Once the initial

benchmarking is completed, the set of models will be reduced before conducting

the subsequent detailed studies in this thesis. The details of this reduction of the

model set will be presented in Chapter 5.

TABLE 3.7 Summary of Selected Models

Model # Classification Method

1 Time Series Simple mean of final bookings

2 Time Series Exponential smoothing of final bkd (x=0.2)

2b Time Series Exponential smoothing of final bkd (a=0.4)

3 Regression Fbkd = f(bkdt): same booking class

3b Regression Fbkd = f(bkdt): different booking class

4 Classical Pickup Simple mean of total pickup

5 Classical Pickup Exponential smoothing of total pickup (a=0.2)

5b Classical Pickup Exponential smoothing of incremental pickup (a=0.4)

6 Advanced Pickup Simple mean of incremental pickup

7 Advanced Pickup Exponential smoothing of incremental pickup (a=0.2)

7b Advanced Pickup Exponential smoothing of incremental pickup (a=0.4)



Chapter 4

Experimental Procedure & Data
Exploration

4.1 Methodology
The fundamental premise behind the procedure for this study involves construct-

ing a short-term forecasting environment and reviewing the performance of

selected forecasting models within this environment. The key component to this

methodology becomes, therefore, the application of all the models to the same

data set. Constructing this environment involves constraining the dimensions of

the data set by placing bounds on the forecasting horizon as well as the size of

the historical data set to be utilized. As discussed in Chapter 3, this has a signifi-

cant impact on the choice of forecasting models for this study. Typically, the

horizon for short-term forecasting is confined to within 8 weeks [22]. The further

implications of this short-term environment will be addressed in Section 4.4.

4.2 Experimental Procedure
The experimental procedure can be broken down into the following phases:

1. Reconstruction of Models

2. Data Matrix Generation

3. Forecast Procedure

4. Data Reduction & Error Analysis.
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4.2.1 Reconstruction of Models

The 11 models identified in Chapter 3 were reconstructed using the application

Matlab on a Unix workstation.

4.2.2 Data Matrix Generation

The data for this study was obtained from a major North American carrier and

includes the booking histories in all booking classes for daily flights in 24 mar-

kets over an 18 week period (September I to December 31, 1994). The booking

classes are taken from the set of virtual classes (discussed in Chapter 1) used by

this airline for Inventory Control. A more detailed analysis of the characteristics

of this booking data will be presented in the latter half of this chapter.

From the complete set of data, the booking histories in two specific booking

classes were extracted for weekly departures on a specific day-of-week-chosen

randomly to be day 4 (Thursdays). The two virtual booking classes represent a

Full fare and a Discount fare class, thereby allowing the analysis to encompass a

range of booking activity. These two booking classes will be referred to as

classes A & B respectively in the remainder of the discussion.

The data subset was then used to construct the matrices of booking profiles for

the 18 weekly day 4 departures by market and by virtual class. Table 4.1 illus-

trates the generic form of the booking history matrix.
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TABLE 4.1 Hypothetical Booking History Matrix for Booking Class B for Market AA A-BBB

Week DayO Day7 Day14 Day2l Day28 Day35 Day42 Day49 Day56

1 25 22 10 5 3 3 2 0 0

2 30 21 15 17 12 7 3 1 0

3 23 25 14 9 8 5 5 2 1

4 40 34 30 16 11 6 3 0 0

5 35 29 20 12 13 8 3 1 0

6 39 33 30 21 14 6 4 2 1

7 45 28 22 18 10 5 3 0 0

8 50 42 18 11 10 7 4 2 1

9 33 29 21 15 9 8 6 6 2

10 46 40 29 22 11 7 3 2 0

11 49 37 25 17 10 9 8 5 2

12 25 22 10 5 3 3 2 0 0

13 30 21 15 17 12 7 3 1 0

14 23 25 14 9 8 5 5 2 1

15 40 34 30 16 11 6 3 0 0

16 35 29 20 12 13 8 3 1 0

17 39 33 30 21 14 6 4 2 1

18 45 28 22 18 10 5 3 0 0

4.2.3 Forecast Procedure

Sample Size

A crucial component in the objective of this thesis relies on quantifying the mean

forecast errors for the various models. Consequently, in order to estimate these

values to some level of statistical significance, it is necessary to utilize an appro-

priate sample size. This sample size is determined using the following statistical

theory [33]:

Assuming a normal distribution of size n with a computed sample mean 5c, the

confidence interval for the sample mean at a 100(1-a) percent confidence level is

given by:
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4.1

where a is the standard deviation of the observations about the sample mean and

z(c/2) is obtained from the normal distribution tables. Therefore, to be 100(1-X)

percent confident that the estimate of the sample mean lies within h units of the

true value g, n must be chosen such that

h = z -4.2

or equivalently,

S[Z( 
2

n = aY 4.3
h2

Based on the literature on short-term forecasting, the standard deviation of the

forecast errors is in the vicinity of 35%. Consequently, to be 95% confident that

the estimated mean forecast error of the various models are within 10% of their

true values (h = 10, z(0.025) = 1.96, cY = 35), requires a sample size (n) equal to

47.06 observations.

The sample size for this study was therefore set at 48 observations.

Test Scenarios

Table 4.2 provides a summary of the 8 test scenarios conducted in this study:
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TABLE 4.2 Summary of Test Scenarios

Scenario Hst Data Set Forecast Horizon Virtual Classi Day of Week Data Type"

1 8 2to7 B 4 C

2 4 to 10 4 B 4 C

3 8 2to7 A 4 C

4 4 to 10 4 A 4 C

5 8 2to7 B 4 U

6 4 to 10 4 B 4 U

7 8 2to7 A 4 U

8 4 to 10 4 A 4 U

I. A = Full Fare, B = Discount Fare

II. C = Constrained, U = Unconstrained

The data in scenarios 1 through 4 is constrained while in scenarios 5 and 6 the

data is unconstrained. Scenarios 1, 3, 5, and 7 study the effects of varying the

forecast horizon given a fixed historical data set while scenarios 2, 4, 6, and 8

focus on the importance of the size of the historical data set given a fixed fore-

casting horizon. Eight departures were used in the fixed historical data set (sce-

narios 1, 3, 5, 7), consistent with the size recommended by Scandinavian

Airlines [22]. Given the limits of the values for the forecast horizon and the size

of the historical data set, this test matrix was designed to cover the range of pos-

sible scenarios without having to conduct each specific case.

Unconstraining

The original data set obtained from the airline includes constrained booking pro-

files for particular flights, and therefore represents constrained demand. Within

the data set, in addition to the actual number of bookings held at each incremen-

tal checkpoint (Day56, Day49, etc.) the number of available seats is also

recorded. Constraining arises when the number of available seats in a particular
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booking class on a given day before departure is zero. In such a case, the class

may either be closed and the final bookings remain at the current level, or the

authorization levels may be increased to accommodate additional demand. In

either case, however, the data would still be corrupted due to constraining. As

illustrated by Figure 4.1, constraining truncates the booking profiles and gives

rise to a plateau-like characteristic.
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FIGURE 4.1 Constrained Booking Profiles

The algorithm for the unconstraining process applied in this thesis is the follow-

ing:

1. Identify the departures (n) in each market that are not constrained over the

entire booking profile for the departure.

2. For these n departures, calculate the average bookings at each interval to pro-

duce a single representative unconstrained booking profile, given by:
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n

Bkdkd 4.4
t fl notconstrained

k= 1

Where Bkd, and Bkd, represent the actual and forecasted bookings respectively

on day t.

3. Starting at day 56 (as this is the maximum number of days out in the booking

matrix), compute the percentage of the bookings at day t relative to the bookings

at day t-7, given by:

Bkd
TIt = t4.5

t, t--7 Bkcd 7Bkt - 7

4. For a departure, in a given market, with a booking profile constrained at day t-

7, the unconstrained bookings at day t-7 become:

Bkd = 7 kt 4.6
B - 7 unconstrained t t - 7

5. Repeat step 4 for the bookings on days x < t-7, even if they are not con-

strained, as all data subsequent to the constrained booking at day t-7 are consid-

ered corrupted.

The incremental unconstraining percentages, TIn,.. 7 , computed from the data in

the booking class B for this study are shown in Table 4.3.

TABLE 4.3 Unconstraining Booking Percentages

n 7 ,0  n 1 4,7  n21,14 n28,21 n35,28 n42,35 p49,42 n56,49

0.934 0.897 0.849 0.826 0.848 0.823 0.815 0.841
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To illustrate the unconstraining process, consider the following example of a

booking profile constrained at day 28, as shown in Table 4.3:

TABLE 4.4 Hypothetical Booking Profile

DayO Day7 Day14 Day2l Day28 Day35 Day42 Day49 Day56

15 13 1 98 6 5 2

4 Corrupted Data -

Using the corresponding percentage fI28,35 (84.8%) the unconstrained booking

for day 28 becomes 9.4. Applying the corresponding percentages to the remain-

ing bookings between day 28 and day 0 produces the unconstrained booking pro-

file shown in Table 4.5.

TABLE 4.5 Unconstrained Booking Profile

DayO Day7 Day14 Day21 Day28 Day35 Day42 Day49 Day56

16 15 13,5 11,4 94 8 6 5 2

Once unconstrained, the previously truncated profiles now behave as growing

exponential approaching an asymptotic value (Figure 4.2).

250

200

Days Out 49 56

FIGURE 4.2 Unconstrained Booking Profile
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Data Matrix Manipulation

In order to determine the performance of the various models, the estimated final

bookings must be compared to the actual final bookings received for a given

departure. Consequently, the need arises for actual data to facilitate this compar-

ison. Since the set of booking data comprises historical information only, the

actual data is obtained by dividing the individual data matrices into historical

and future departures. As illustrated in Table 4.6, this division is accomplished

through the use of an artificial present day line (week 0).

TABLE 4.6 Division of Data Matrix

Actual Data From
Future Flights Artificial Present Day Line
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Departures below this line (numbered positively) become future flights- and

therefore provide the actual data-while departures above this line (numbered

negatively) remain as historic departures. Nevertheless, the applicable historical

data set comprises the total shaded region shown in the matrix and includes the

recent booking data from flights which have not yet departed. The data in the

unshaded region of the matrix is not applicable because-given the division of

the matrix-it represents bookings which could not have yet been recorded. For

example, with a flight scheduled to depart in three weeks time (week 3), it is not

possible at this present point in time to know the bookings received on day 7.

As discussed above, the required sample size for this study is 48 observations per

forecast. Yet the original data set obtained from the airline comprised 24 markets

only. Therefore, once a model is applied to the data matrices for these given mar-

kets, the artificial present day line, within each matrix, is shifted forward by one

week (effectively creating a new historical data set) and the model is then reap-

plied-generating the 24 additional observations.

Error Analysis

The output from each of the various models consists of the forecasted and actual

final bookings for a given scenario as well as the errors or residuals defined as

the difference between the actual and forecasted values. Scatter plots of the

residuals were generated to facilitate the identification of outliers, inherent bias,

and covariance. If the models are unbiased, the residuals should be evenly dis-

tributed around a mean of zero. Any bias would displace this mean and concen-

trate the residuals either above or below the zero line. If there is no covariance,

there should be no patterns in the scatter plots-the residuals should give the

impression that they vary independently within a 2a horizontal band around the

mean.
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The following metrics are used to measure performance, where Fbkd and Fbkd

are the actual and forecasted final bookings respectively generated from n obser-

vations:

. The Mean Absolute Deviation (MAD), the average of the absolute values

of the forecast errors, is the simplest statistical measure of forecast errors.

The MAD is defined mathematically as:

n
1

MAE = - abs(Fbkd-Fbkd) 4.7
n

k= 1
The mean absolute deviation is particularly useful when the cost of fore-

casting errors is proportional to the absolute size of the error.

. The Mean Percent Error (MPE) is simply the average of the percentage

deviations, defined mathematically as:

n
1 (Fbkd-Fbkd)MPE = n bd x 100 4.8
n Fbkd

k= 1

. The Mean Absolute Percent Error (MAPE) is the average of the abso-

lute values of the percentage errors. The mathematical formula for comput-

ing the MAPE is:

n

MAPE = - abs [(Fbkx -kFbkd) X 100 4-9
n I I Fbkd

k = 1

One advantage of this measure is that it is dimensionless. Yet, a particular

drawback is that the MAPE is not defined when the actual number of book-

ings is equal to zero-which is also true for the MPE.

. Vhh , h1j, MIN .1. '' WIN111'"JAIIIIIIINIUM 111HIMIU6141,
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- The Root Mean Square Error (RMSE) is the square root of the squared

forecasting errors, defined as:

n

RMSE = 7 (Fbkd- Fbkd) 2  4.10
k= 1

Where n is the number of observations generated for the particular model.

It is important to notice that this measure weighs large forecast errors much

more heavily than smaller errors to the extent that it is considered biased

against large errors. Nevertheless, it is a valuable measure because of the

independence issue.

" Theil's Inequality Coefficient (U) [22] is defined as:

- (Fbkd - Fbkd) 2

U 2  n4.11
!I:Fbkd2

Where n is the number of observations generated for the particular model.

In this equation the numerator is equal to the mean square error while the

denominator is simply the mean square value of the actual final bookings.

The numerator captures the actual forecast error whereas the denominator

provides a comparison statistic which normalizes the overall coefficient.

This metric therefore has the advantage of being dimensionless without the

complication of being undefined for zero denominator values (as with the

MAPE and MPE). For a perfect forecast U is equal to zero. Consequently,

for a particular model, the further away its value of U is from zero the

worse the model performs. The Theil's Inequality Coefficient will serve as

the primary basis for determining the relative performance of the various

models.
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The models are ranked on a scenario basis based on the relative values of the cal-

culated metrics. The statistical significance of this ranking is determined using a

paired-sample t-test. The details of this method of hypothesis testing can be

found in Hogg and Ledolter [34]. For valid hypotheses, the specific differences

in the measures are quantified.

4.3 Data Exploration

4.3.1 Market Mix

In choosing the composition of the set of markets for this study, the prime crite-

rion was a sufficient mix of short, medium, and long-hauls to ensure that the data

would not be overly biased by any one of the three types of markets. Short-haul

markets are defined as distances less than 500 miles, medium-hauls are defined

as distances between 500 and 1000 miles, and long-hauls are greater than 1000

miles. The set of 24 domestic markets used in this study comprises 7 short-hauls,

10 medium haul, and 7 long-hauls. In addition, in order to obtain a relatively

higher amount of booking activity, the market selection focused on hub move-

ments, where 20 of the 24 markets are flights to and from the major hubs of the

carner.

4.3.2 Booking Characteristics

The set of booking data spans the period from September 1, 1994 to December

31, 1994. At an aggregate level, there is a considerable amount of variation in the

characteristics of the booking profiles of the three types of markets over the

entire interval. This variation is attributed to seasonality, particularly in light of

the holiday periods-Thanksgiving and Christmas-giving rise to significant

undulations in demand. The weeks corresponding to these two events are indeed

outliers and were consequently removed from the data set. Nevertheless, because

the data set does not span an entire year, it is not possible to construct seasonal

indices for the specific months within the data set. As a result, it was decided to

Imilgh"I dim 111 wool
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neglect the effects of seasonality during this study especially as the data set spans

a relatively short time frame displaying the typical seasonal behavior for this

time of year (autumn).

At a more disaggregate level, the markets can be separated by length of haul as

well as booking class and then compared on a constrained versus unconstrained

basis.

Booking Class B (Constrained)

Within the discount virtual class, there are 19 of the 24 markets with at least one

constrained flight. 20% of the total number of flights in the data set are con-

strained.
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FIGURE 4.3 Sample Profiles for Booking Class B Bookings in a Single Market

The effects of constraining can be seen by the truncated characteristic of the

booking profiles, as illustrated in Figure 4.3, where the booking levels appear to

saturate before the day of departure.
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Booking Class B: Short-Haul

The booking profiles of the discount booking class for the short-haul markets

display substantial variability over the 18 week time frame. Overall, the majority

of the bookings occur closer to the day of departure, yet, on average, the final

bookings are relatively low and seldom go above 25 passengers. The average

final bookings for the set of short-haul markets is 8.30 passengers with a stan-

dard deviation of 3.6-a 38% variation (Figure 4.4). No significant trends are

observed in the behavior of the final bookings.
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FIGURE 4.4 Average Final Bookings of Class Bfor Short-Haul Flights

At the origin-destination level, these short-haul routes are primarily business

markets-beyond which they serve as hub feeds for connecting leisure travel.

Combined, these two characteristics result in the low booking levels. Because

the demand for this fare class in these markets is not relatively high the majority

of flights remain unconstrained. In fact, the booking profiles indicate that several

of the early bookings are frequently lost before the day of departure. When con-

straining does occur however, it predominantly affects flights within the Christ-

mas holiday period (weeks 15 to 18).

11 "1111WIN I,
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Booking Class B: Medium-Haul

The booking profiles of the medium-haul markets display a more consistent

behavior across the time frame with an average final bookings of 25.7 passengers

as shown in Figure 4.5.

FIGURE 4.5 Average Final Booking in Class Bfor Medium-Haul Flights

Nevertheless, the standard deviation of 3.6 indicates that the variability of the

bookings is comparable to that of the short-haul markets. The majority of the

booking profiles appear truncated revealing the presence of booking constraints.

Compared to the short-haul markets, the medium-haul booking profiles display

greater slopes suggesting the pickup occurs more rapidly and over a shorter

period of time. The booking profiles also show the effects of cancellations-dips

in the upward sloping characteristic-yet these occur closer to the day of depar-

ture Figure 4.6.
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FIGURE 4.6 Sample Discount Booking Profile for Medium-Haul Markets

The medium-haul markets comprise several leisure destinations which accounts

for the overall higher booking levels. Furthermore, it can be argued that the dol-

lar range associated with this virtual class represents a greater discount off the

medium-haul full fares as compared to the short-haul full fares. Consequently,

given the elastic behavior of leisure travellers, it is anticipated that the relatively

greater discount would attract higher demand.
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Booking Class B: Long-Haul

The booking levels of the long-haul markets exhibit the most variability over the

time frame (Figure 4.7).
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FIGURE 4.7 Average Final Booking in Class Bfor Long-Haul Flights

The average final bookings is 20.9 passengers-greater than the short-hauls yet

smaller than the medium-hauls. The standard deviation (5.42) however, exceeds

both the medium and short-haul markets by over 50%. Seasonality does not

appear to be a main contributing factor in this case as the undulations in the

bookings across the 18 weeks behave randomly market to market. Furthermore,

there does not appear to be any point in the booking period where the majority of

bookings consistently occur-some flights receive early pickup, while with oth-

ers the majority of the pickup occurs closer to the date of departure. The majority

of the booking profiles are constrained-as evidenced by the truncated appear-

ance-and show the effects of cancellations prior to departure.

By nature, these long-haul routes represent a mix of business and leisure markets

giving rise to the inconsistent booking patterns.
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Booking Class B (Unconstrained)

The data from departures constrained by closed booking limits are unconstrained

using the algorithm described above (Section 4.2.3). The unconstraining process

removes the truncated appearance of the booking profiles and allows the profiles

to take on the asymptotic exponential behavior (as illustrated in Figure 4.2)

indicative of the true demand. As discussed above, the effects of constraining

occur consistently towards the end of the 18 week time frame-during the holi-

day period-for the majority of the markets. Consequently, it is towards this lat-

ter part of the time frame where the differences between the unconstrained and

constrained final bookings are most pronounced, as illustrated in Figure 4.8.
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FIGURE 4.8 Comparison Between Constrained and Unconstrained Bookings for a Single Market

Notwithstanding, at an aggregate level, the average final bookings of the 24 mar-

kets remain fairly unchanged by the Unconstraining process (as shown in Figure

4.9), despite the significant changes in the individual markets.
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FIGURE 4.9 Average Final Bookings Across the 18 Week Time Frame for Constrained &

Unconstrained Data

Booking Class A (Constrained)

Overall, only 8 of the 24 markets contain flights with constrained bookings in

this full fare booking class. Five percent of the total number of flights in the data

set contain constrained booking profiles. This lack of constraining is consistent

with business passenger bookings where capacity constraints are seldom effected

due to the relatively low volumes of full fare bookings received. In general, the

booking levels in the three market types are relatively low and seldom exceed

single digit values, in contrast to the associated authorization levels which are

typically in the vicinity of 100 bookings. The overall form of the booking pro-

files in this class is exemplified in Figure 4.10.
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FIGURE 4.10 Sample Profiles of Class A Bookings for Short-Haul Markets.

Compared to the virtual B class bookings, virtual A booking profiles display

more zero space-regions where the booking levels are zero. Moreover, because

the pickup is relatively small and occurs over a short range, the profiles exhibit a

step function characteristic.

Booking Class A: Short-Haul

The majority of the bookings in this fare class are zero over the range of days out

before departure across the 18 week time frame. On the occasions when non-

zero bookings do occur, they are received relatively close to the day of departure

and the incremental pickup is marginal. This gives rise to a step function charac-

teristic of the booking profiles for most of the flights in the short-haul markets,

although there is no apparent commonality in the appearance of the booking pro-
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files from market to market. The average final bookings across the time frame is

less than one passenger (0.73) with a deviation of 0.5.
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FIGURE 4.11 Average Final Bookings in Class A for Short-Haul Flights

Considering the average size of the bookings, this deviation is significant (as

shown in Figure 4.11), giving rise to an oscillatory behavior. The fact that these

markets are predominantly business destinations and hub feeders accounts for

the sporadic booking behavior in the equivalent full fare class.

Booking Class A: Medium-Haul

Once again the booking profiles display considerable amounts of zero bookings

over the range of days out before departure across the time frame (Figure 12).

However, the booking profiles also show a mix of characteristic behavior: some

behave as step functions while others display exponential behavior with rela-

tively late pickup.
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FIGURE 4.12 Sample Booking Profiles for Medium-Haul Market: Class A
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As illustrated in Figure 4.13, the average final bookings are relatively high (8.8)

and the variation is considerable (3.1). Again, the phenomena discussed in the

discount class above is at play: Because the chosen full fare virtual class is the

same for the three market types, in certain cases, within the medium-haul mar-

kets, it may correspond to the cost of a true full fare while in others it may repre-

sent some discount of the full fare value. What is missing from this data is an

appreciation of the pricing structure of the individual markets which would allow

the dollar value associated with this virtual class to be placed in perspective. Sea-

sonality is not as significant as the variation in the booking profiles appears quite

random across the 18 week time frame.

Booking Class A: Long-Haul

Weeks

FIGURE 4.14 Sample Booking Profile for Long-Haul Market: Class A

The booking profiles for the long-haul markets also display the step function

characteristic seen in the short and medium-hauls (Figure 4.14). This behavior is
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consistent with the relatively low booking levels combined with the low varia-

tion. Once bookings are received, the levels remain almost at steady state for the

remaining booking duration before departure.
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FIGURE 4.15 Average Final Bookings in Class A for Long-Haul Flights

The average final bookings over the time frame is approximately one passenger

(0.98) with a variation comparable to the short-haul markets (0.53).

Booking Class A (Unconstrained)

Because the majority of the data in this class were originally not constrained, the

unconstraining process did not have a significant effect on the booking profiles.

The step function characteristic is still evident although the magnitudes of the

steps may have increased in certain cases.

4.4 The Short-Term Forecasting Environment
Short-term forecasting can be likened to any fine tuning process involving some

type of feedback. Because the parameters are relatively small, the feedback

required to achieve the desired accuracies appears more precise. In the case of
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this study the parameters are the size of the historical data set, the forecast hori-

zon, and the booking levels while the amount of historical data represents the

feedback to the process. In this light, the constraints imposed on the parameters

to define the environment can be appreciated.

The historical data set is confined to a maximum of 10 weekly departures.

Beyond this point, the additional historical data adds little value in capturing the

recent booking characteristics. The 18 week time frame in this study represents a

section of a time series of booking data. This interval is sufficiently small that the

local variation could be considered independent of the rest of the series. More-

over, as seen in the discussion on the booking profiles, this variation is highly

volatile. Under these circumstances, therefore, it is the recent data that would

provide the most information on the localized booking behavior from which

incremental forecast can be extrapolated.

The forecast horizon is kept to within 8 weeks as this is consistent with the time

frame for tactical decisions for Revenue Management.

Based on the exploration of the booking data the following observations have

been made:

- The variation of the bookings over the entire short-term environment is

truly volatile.

- Although there is certainly some oscillatory behavior in average final book-

ing profiles, the underlying trends are not apparent.

- Due to the relatively small time frame, seasonality does not have a signifi-

cant impact.

. Unconstraining has a more visible impact on the discount bookings than on

the full fare bookings.



Chapter 5

Presentation of Results

5.1 Structure of Presentation
As discussed in Chapter 3, eight scenarios are examined in this study, where sce-

narios 1 to 4 utilize constrained data, while in scenarios 5 to 8, the data is uncon-

strained. The discussion of the results, presented in the order of the scenarios,

will begin with the constrained cases and proceed to the unconstrained cases.

The comparison of results will center around Theil's Inequality Coefficient (U)

(section), the MAD and the MPE, where U will serve as the primary measure in

the evaluation of the relative performance of the models. The RMSE is captured

in the definition of U and consequently there is no need for a separate discussion.

5.1.1 Summary of Selected Models

To facilitate the presentation of results, a summary of the set of models used in

the various scenarios is given Table 5.1

TABLE 5.1 Summary of Selected Models

Model # Classification Method

1 Time Series Simple mean of final bookings

2 Time Series Exponential smoothing of final bkd (a=0.2)

2b Time Series Exponential smoothing of final bkd (a=0.4)

3 Regression Fbkd = f(bkdt): same booking class

" " 1101IN11 10111"



82 Presentation of Results

TABLE 5.1 Summary of Selected Models

Model # Classification Method

3b Regression Fbkd = f(bkdt): different booking class

4 Classical Pickup Simple mean of total pickup

5 Classical Pickup Exponential smoothing of total pickup (a=0.2)

5b Classical Pickup Exponential smoothing of total pickup (a=0.4)

6 Advanced Pickup Simple mean of incremental pickup

7 Advanced Pickup Exponential smoothing of incremental pickup (a=0.2)

7b Advanced Pickup Exponential smoothing of incremental pickup (a=0.4)

5.2 Constrained Scenarios
The constrained scenarios are scenarios 1 to 4. Scenarios 1 and 2 pertain to the

discount booking class B while scenarios 3 and 4 pertain to the higher booking

class A.

5.2.1 Scenario 1

In this scenario, the historical data set (HDS) is fixed at 8 weeks and the forecast

horizon (FH) varied between 2 and 7 weeks for the discount booking class B.

Figure 5.1 shows the Theil's Inequality Coefficient (U) for the 11 models over

the range of forecast horizons. The overall characteristic of the plot suggests that

the U value increases with the forecast horizon indicating that the performance

of the models decreases as the forecast horizon increases. A closer look, how-

ever, reveals fluctuations where not all of the inter-horizon slopes are positive. In

fact, only the U value for Model 5 displays positive growth over the entire range

of forecast horizons.

Most of the models appear to be divided between two distinct bands of similar

behavior. The first band, comprising the pickup models (4, 5, 5b, 6, 7, 7b), is

found on the lower section of the plot where the U values vary between 0.2 and

0.45. The characteristic behavior of the models within this band is a gentle

upward slope. The spread of the U values among the models is initially quite
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FIGURE 5.1 Theil's Inequality Coefficient for Scenario 1

small but diverges significantly beyond 4 weeks out. Spread in this context is

defined as the range of the variation across the models for a particular measure.

The second band, comprising the models 1, 2, and 2b, is situated at the top sec-

tion of the plot and varies between 0.35 and 0.50. The behavior of the models

within this band is almost sinusoidal where the spread of the U values diverges

between 2 and 4 weeks out, after which it quickly converges and remains rela-

tively tight beyond 5 weeks out. The gap separating the two bands indicate the

average differential in performance between the times series and pickup mod-

els-25%.

Models 2 and 2b reside for the most part at the extremes if not outside the two

bands. Model 3 departs from the first band after 3 weeks out and enters the sec-

ond after 5 weeks out-although the behavior is not totally consistent with the

other models in the second band. Model 3b deviates from the second band when

04 ON111 I,, I j"
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the forecast horizon exceeds 4 weeks and continues to behave inversely to the

other models in this band for the remainder weeks out.

This distinct band behavior is also seen in the MAD (Figure 5.2) where the char-

acteristics are almost identical to the Theil's Inequality coefficient. The lower

band of pickup models maintain a MAD of approximately 4 for horizons out to 6

weeks, after which the MAD increases by almost a factor of two.
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FIGURE 5.2 MADfor Scenario 1

A look at the individual weeks reveals the relative performance of the models.

Table 5.2 gives a snapshot of performance metrics for the 2 week horizon where

the 11 models are ranked in order of increasing U.

TABLE 5.2 Theil Performance Ranking for Scenario 1: 2 Week Forecast Horizon

Model # MPE RMSE MAD MAPE Theil

5 -0.090 5.551 3.333 0.229 0.222
6 -0.034 6.148 3.573 0.227 0.246

5b -0.081 6.227 3.555 0.247 0.249
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TABLE 5.2 Theil Performance Ranking for Scenario 1: 2 Week Forecast Horizon

Model # MPE RMSE MAD MAPE Theil

7b -0.057 6.244 3.643 0.273 0.250

7 -0.049 6.286 3.605 0.263 0.252

4 -0.028 6.079 3.583 0.269 0.278

3 -0.013 7.254 3.942 0.250 0.291

2 0.144 8.694 6.448 0.496 0.348

2b 0.056 8.762 6.165 0.469 0.351

1 0.211 9.039 6.716 0.523 0.362

3b 0.242 9.522 7.020 0.553 0.381

Pickup model 5 is the top performer with respect

the MAD, while the regression model 3b performs

to the Theil's coefficient and

the worst. With respect to the

MPE, however, (Figure 5.3), model 3 has the lowest error. In addition, models 1,

2,2b, all show a positive bias, while the biases of the remaining models are nega-

tive.
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FIGURE 5.3 MPEfor Scenario 1

As observed in Figure 5.3, most of the models display substantial positive biases

over the entire range of forecast horizons. The band distribution is again
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observed, although the spread between the models is much more pronounced.

The magnitude of the biases of the time series models increases with the size of

the forecast horizon up to 4 weeks, after which it slowly decreases as the forecast

horizon further increases. The bias of regression model 3b does not conform to

this behavior and becomes progressively worse as the forecast horizon increases.

The ordered performance of the models at the other end of the range of forecast

horizons (7 weeks) is shown in Table 5.3
TABLE 5.3 Theil Performance Ranking for Scenario 1: 7 Weeks Forecast Horizon

Model # MPE RMSE MAD MAPE Theil

7 0.060 10.284 8.283 0.517 0.351

6 0.302 12.125 8.893 0.323 0.419

5b 0.361 12.292 9.391 0.715 0.425

4 0.506 12.921 10.401 0.793 0.447

7b 0.336 12.947 9.495 0.676 0.448

5 0.380 13.573 9.669 0.793 0.469

3 0.410 13.719 8.638 0.861 0.474

2 0.168 13.886 11.192 0.786 0.480

2b 0.125 13.951 11.111 0.800 0.482

1 0.136 14.569 10.930 0.645 0.504

3b 0.808 17.672 13.116 1.018 0.634

Pickup model 7 outperforms the other models with a U value differential of

approximately 20% below the next best performer (model 6). On the other hand,
the top performer on week 2, has now dropped to 6th place. Model 3b again

gives the poorest results. Between these two extremes, models 5b, 6, 7 and 7b are

virtually indistinguishable in terms of performance, particularly when the fore-

cast horizon is small (less than 4 weeks).

5.2.2 Scenario 2

In this scenario, the forecast horizon (FH) is maintained at 4 weeks and the size

of the historical data set is varied from 4 to 10 weeks for the booking class B.
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Model 3b has been eliminated on the basis of its poor performance and the real-

ization that the relationship between the particular higher class bookings and the

bookings in the discount class is not significant. Figure 5.4 shows the Theil's

Inequality Coefficient results for the remaining 10 models.
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FIGURE 5.4 Theil's Inequality Coefficient For Scenario 2

Once again, the distinct band separation is observed. The lower band comprises

the pickup models and the other models are found in the upper band. These per-

formance bands are separated by an approximate 25% differential and the overall

spread of the U values is between 0.2 and 0.4 over the entire range of the histori-

cal data set size. The U values in the lower band of pickup models are relatively

constant except for models 4 and 6 whose U values shows steady growth. The

upper band displays a bit more variation where the spread of the U values

increases with the size of the HDS. This suggests that, in general, increasing the

HDS size does not improve the performance of the models in this scenario. The
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performance of models 1 and 4 deteriorates with HDS size, while model 2 dis-

plays marginal improvement over the range.

Except for the case with 5 weeks of historical data, model 7b consistently outper-

forms the other models. The U value differential between model 7b and the next

best performer (model 5b) is approximately 8%. After 6 weeks of historical data,

the U values for models 7, 7b and 5b remain perfectly constant.

All of the models are positively biased (Figure 5.5) where, apart from models 7

and 7b, the magnitude of the biases increases with the size of the HDS.
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FIGURE 5.5 MPEfor Scenario 2

Tables 5.4 & 5.5, show the ordered performance metrics for the extremes of the

historical data set size (week 4 & week 10).
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TABLE 5.4 Theil Performance Ranking for Scenario 2: 4 Weeks of Historical Data

Model# MPE RMSE MAD MAPE Theil

7b 0.332 5.319 3.720 0.570 0.210

6 0.226 5.430 3.767 0.480 0.215

5b 0.252 5.821 3.933 0.518 0.230

5 0.172 6.237 4.138 0.460 0.247

7 0.494 6.425 4.515 0.752 0.254

4 0.138 6.478 4.274 0.435 0.256

3 0.201 7.345 4.766 0.499 0.290

2b 0.347 8.355 5.734 0.657 0.331

2 0.311 8.714 5.900 0.623 0.345

1 0.299 8.948 6.078 0.617 0.354

TABLE 5.5 Theil PerformanceRanking for Scenario 2: 10 Weeks of Historical Data

Model # MPE RMSE MAD MAPE Theil

7b 0.324 5.384 3.635 0.550 0.213

5b 0.276 5.863 3.873 0.526 0.232

6 0.258 6.360 4.017 0.484 0.252

7 0.494 6.423 4.514 0.752 0.254

5 0.272 6.56 1 4.284 0.508 0.260

4 0.335 7.344 4.869 0.551 0.291

3 0.388 7.989 5.349 0.596 0.316

2b 0.396 8.284 5.740 0.682 0.328

2 0.468 8.933 6.395 0.732 0.353

1 0.577 9.907 7.088 0.824 0.392

The rankings remain fairly constant over the entire range where the pickup mod-

els consistently outperform the regression and time series models-the advanced

pickup models being the top performers with average MAD values centered

around 4 (Figure 5.6).
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FIGURE 5.6 MADforScenario 2

The spread of the MAD for the regression and time series models in the upper

band increases gently with HDS size.

5.2.3 Scenario 3

In this scenario, the size of the historical data set (HDS) is fixed at 8 weeks and

the forecast horizon (FH) is varied from 2 to 7 weeks for the booking class A.

On the basis of the performance in the discount classes the time series models

were removed from model set and the focus directed towards the pickup and

regression models in the remaining scenarios. This decision was based on the

assumption that in the higher booking class, where the data displayed no appar-

ent trends, the performance of the time series models would deteriorate further

relative to the regression and pickup models.

Figure 5.7 shows the Theil's Inequality Coefficients for the reduced set of 7 mod-

els.
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FIGURE 5.7 Theil's Inequality Coefficient for Scenario 3

The overall characteristic is a shallow S-curve with the U values showing little

spread among the models over the range of forecast horizons. Between 2 weeks

and 5 weeks out the U value increases relatively slowly with FH, after which the

magnitude of U increases by a factor of 2 (1.6 for model 3) and then appears to

level off. In this scenario, the regression model 3 consistently outperforms the

other pickup models although for FH less than 5 weeks the difference is mar-

ginal. Among the pickup models, there is no single model that consistently per-

forms best over the entire range.

The plot of the MPE (Figure 5.8) reveals that the biases have a strong relation-

ship with FH.
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For forecast horizons between 2 and 6 weeks out, the magnitude of the biases

behave almost linearly with FH after which they become relatively constant.

Over this range, there is an approximate 50% differential between the magni-

tudes of the biases of the regression and pickup models.

In the case of the MAD (Figure 5.9), however, the values for regression model

exceed the pickup models over the entire range of FH. This differential begins at

approximately 0.5 units at 2 weeks out and diverges to approximately 1 unit at a

forecast horizon of 7 weeks. The values for the pickup models display relatively

little spread and remain fairly constant at 2 units between forecast horizons of 2

to 5 weeks after which a step increase of approximately 1.5 units is observed.

TABLE 5.6 Theil Performance Ranking for Scenario 3: 2 Week Forecast Horizon

Model # MPE RMSE MAD MAPE Theil

6 -0.135 3.490 1.927 0.349 0.327

7 -0.126 3.546 1.954 0.536 0.332

7b -0.114 3.654 2.028 0.540 0.342

5 -0.124 3.655 1.978 0.555 0.342

4 -0.138 3.659 1.997 0.658 0.343

5b -0.103 3.718 1.971 0.572 0.348

3 -0.180 4.445 2.377 0.432 0.354

TABLE 5.7 Theil Performance Ranking for Scenario 3: 7 Week Forecast Horizon

Model# MPE RMSE MAD MAPE Theil

5b 0.623 6.494 3.318 1.428 1.180

5 0.652 6.628 3.450 1.456 1.204

4 0.653 6.675 3.508 1.476 1.213

6 0.672 6.837 3.513 1.522 1.242

7 0.676 6.926 3.503 1.525 1.258

7b 0.685 7.017 3.516 1.563 1.275



94 Presentation of Results

Tables 5.6 & 5.7 display the ordered performance metrics at 2 and 7 weeks out

for scenario 3. The values underscore the fact that for any given metric, the

spread among the pickup models is negligible resulting in the distinct stream-

lined characteristics relative to the discount scenarios. In addition, when com-

pared to the discount cases, the majority of the metrics in class A are consistently

higher.

5.2.4 Scenario 4

In this scenario, the forecast horizon (FH) is held at 4 weeks and the historical

data set varied between 4 and 10 weeks for the booking class A.
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FIGURE 5.10 Theil's Inequality Coefficient for Scenario 4

As seen in Figure 5.10, there is a distinct difference in the U value variation

between the regression and pickup models. The U value for the regression model

decreases almost linearly with HDS size while the values for the pickup models,

after an initially mild divergence, remain relatively constant-centered on

approximately 0.7. This suggests that increasing the HDS size has a significant

.
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effect on the performance of the regression model while only a marginal effect

on the pickup models, and virtually no effect on models 5b and 7b. In this sce-

nario, model 6 displays the best performance with respect to U-although it is

only incrementally better than the performances of models 4 and 7.

The behavior of the MAD is almost identical to the U value where the regression

model shows a downward sloping characteristic while the pickup values remain

relatively constant centered on 2.5 bookings.
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FIGURE 5.11 MADfor Scenario 4

A closer look at the MAD values for the pickup models reveals that only model

7b remains truly constant (at 2.6) while the values for the other models decrease

as the size of the HDS increases from 4 to 7 weeks after which the MAD values

remain fairly constant at approximately 2 bookings-23% less then model 7b.

The MPE variation is a quite similar of the MAD behavior as seen in Figure

5.12.
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FIGURE 5.12 MPEfor Scenario 4

The bias of the pickup models is centered around 40% and remains fairly con-

stant over the entire range of HDS size. The bias of the regression model

decreases steadily across the entire range with over a 50% drop as the HDS size

increases from 4 to 10 weeks. With respect to MPE, model 6 displays the least

bias over the entire range of HDS size. As seen in Tables 5.8 & 5.9, the relative

performance of the models is the same at both extremities (week 4 and week 10).

Moreover, the relative performance remains constant over the entire range of

HDS size. This is the first scenario where the rankings remain fixed over the

entire range.

TABLE 5.8 Theil Performance Ranking for Scenario 4: 4 Weeks of Historical Data

Model# Theil MPE RMSE MAD MAPE

6 0.656 0.365 4.925 2.448 0.722

4 0.662 0.414 4.977 2.354 0.758

7 0.670 0.371 5.033 2.486 0.712
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TABLE 5.8 Theil Performance Ranking for Scenario 4: 4 Weeks of Historical Data

Model # Theil MPE RMSE MAD MAPE

5 0.686 0.431 5.153 2.426 0.770

7b 0.712 0.386 5.348 2.620 0.704

5b 0.745 0.473 5.593 2.620 0.799

3 1.381 0.932 13.051 7.285 1.729

TABLE 5.9 Theil Performance Ranking for Scenario 4: 10 Weeks of historical Data

Model# Theil MPE RMSE MAD MAPE

6 0.574 0.338 4.313 2.148 0.652

4 0.596 0.350 4.475 2.179 0.680

7 0.620 0.353 4.656 2.290 0.663

5 0.648 0.400 4.872 2.311 0.716

7b 0.695 0.379 5.224 2.559 0.686

5b 0.734 0.465 5.515 2.575 0.776

3 0.892 0.417 7.097 4.032 1.218

5.3 Unconstrained Scenarios
The unconstrained scenarios comprise scenarios 5 through 8-5 and 6 focus on

the discount booking class B while 7 and 8 pertain to the higher booking class A.

The constrained booking data used in scenarios 1 through 4 was unconstrained

using the algorithm described in Chapter 4.

5.3.1 Scenario 5

In this scenario the historical data set (HDS) is fixed at eight weeks and the fore-

cast horizon (FH) is varied from 2 to 7 weeks for the discount booking class B.

Based on the performance in the constrained cases, it was decided to continue

the study with the top performing models only, with the regression model serv-

ing as a baseline for comparison. As a result, the classical pickup model 5 and
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the advanced pickup model 7 (both with exponential smoothing coefficients

a=0.2) are removed from the model set.
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FIGURE 5.13 Theil's Inequality Coefficient for Scenario 5

Figure 5.13 shows the Theil's Inequality Coefficients for the 5 models over the

entire range of forecasting horizons. The U values vary linearly with FH between

2 and 4 weeks-at which point the regression model deviates from the other

models and its U value steadily increases. Between 4 and 6 weeks the U values

of the pickup models decrease gently with FH as the spread among the models

diverges. The slope of the variation reverses after week 6 as the U values re-con-

verge at week 7. Model 7b consistently outperforms the other models over the

entire range where the U value is on average 10% smaller than the next best per-

former (Model 5b). Compared to the constrained U values (Figure 5.1), the

unconstrained results appear more streamlined with less spread among the mod-

els-although the overall range of U values is still comparable to the constrained

case. In the unconstrained case, the regression model results are more consistent
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with the pickup models-particularly when the forecast horizon is relatively

small (less than 4 weeks).
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FIGURE 5.14 MADforScenario5

The MAD variation is relatively small for horizons less than 5 weeks. The values

increase relatively slowly with FH and the spread displays a small yet steady

divergence. Beyond week 5 the magnitudes of the MAD increase rapidly to

approximately 20 bookings at 7 weeks out-a factor of 4 increase. This behavior

closely resembles the MAD results in scenario 3 (Figure 5.8) where the similar

step function characteristic, with a break point at 5 weeks, is observed. The con-

strained case (scenario 1) however, does not exhibit this step behavior.

The biases of the models, determined from the MPE (Figure 15), are all positive

over the range of FH (except for a horizon of 2 weeks out) and increase steadily

with FH up to 5 weeks out. Beyond this turning point, the slopes reverse sign and

the biases now decreases with FH-re-converging when the forecast horizon

reaches 7 weeks out. In addition, there is a distinct difference in the spread

before and after the turning point-the post turning point spread is a factor of



100 Presentation of Results

two larger. The turning point for model 5b occurs earlier at a forecast horizon of

4 weeks out. This turning phenomena is in distinct contrast to the downward

characteristic of the constrained case (scenario 1).
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FIGURE 5.15 MPEforScenario5

The ordered performance metrics at the extremities of the range of FH are shown

in Tables 10 & 11. Models 7b produces the best results in all but the final horizon

(7 weeks out). Apart from this top position, the rankings-and consequently the

relative performance-of the models vary with FH.

TABLE 5.10 Theil Performance Ranking for Scenario 5: 2 Week Forecast Horizon

Model # MPE RMSE MAD MAPE Theil

7b -0.042 6.088 3.586 0.270 0.206

5b -0.063 6.198 3.564 0.244 0.210

6 -0.006 6.239 3.806 0.268 0.211

4 0.003 6.265 3.869 0.274 0.212

3 -0.011 6.882 3.558 0.241 0.233
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TABLE 5.11 Theil Performance Ranking for Scenario 5: Week 7

Model # MPE RMSE MAD MAPE Theil

4 0.155 30.829 18.826 0.673 0.437

6 0.034 31.448 18.937 0.635 0.446

7b 0.060 32.481 19.278 0.691 0.461

5b 0.048 32.863 19.288 0.675 0.466

3 0.175 35.405 20.966 0.801 0.502

101

5.3.2 Scenario 6

In this scenario the forecast horizon is maintained at 4 weeks while the historical

data set size is varied from 4 to 10 weeks for the discount booking class B.
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FIGURE 5.16 Theil's Inequality Coefficient for Scenario 6

Figure 5.16 shows the Theil's Inequality Coefficient for the 5 models over the

range of HDS size. Models 5b and 7b both display stable behavior with the U

values remaining relatively constant and quite comparable over the entire

range-increasing the size of the HDS has no significant impact on the perfor-
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mance of these models. Model 7b, with an average U value of 0.175, outper-

forms the other models. Increasing the HDS size appears to have a negative

effect on the performance of models 4 and 6 as indicated by the U values increas-

ing with HDS size. The performance of the regression model however, improves

with the size of the HDS.
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FIGURE 5.17 MADforScenario6

The MAD for models 5b and 7b also remains constant over the entire range of

HDS size. The MAD for model 6 is initially comparable to those of models 5b

and 7b but grows steadily with increasing HDS until week 7 at which point it sta-

bilizes at around 4 units. On the other hand, the MAD for model 4 is originally

relatively stable yet at the same break point (week 7) its performance begins to

deteriorate with increasing HDS size. The MAD of the regression model appears

to be oscillating about a mean value of approximately 4.75.

As illustrated in Figure 5.18, that magnitude of the biases of the models increases

with HDS size. Model 7b has a relatively constant positive bias of approximately

45%-the largest among the models. Model 4 moves from having the least bias
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when the HDS size is 4 weeks to having the second largest when the HDS size

reaches 10 weeks. This factor of 3 deterioration is also exhibited by model 3.

The increase is not as pronounced with model 5b or model 6.
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FIGURE 5.18
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Theil Performance Ranking for Scenario 6: 4 Weeks of Historical Data

Model # MPE RMSE MAD STD MAPE Theil

6 0.320 4.483 3.342 3.019 0.524 0.171

5b 0.275 4.561 3.295 3.187 0.493 0.174

7b 0.454 4.569 3.491 2.979 0.650 0.174

4 0.173 5.294 3.759 3.768 0.418 0.202

3 0.202 6.726 4.391 5.148 0.483 0.255

TABLE 5.13 Theil Performance Ranking for Scenario 6: 10 Weeks of Historical Data

Model # MPE RMSE MAD STD MAPE Theil

7b 0.446 4.577 3.497 2.984 0.629 0.174

50%

45%

40%

35%
30%

25%
20%

15%
10%

5%
0%

103



104 Presentation of Results

TABLE 5.13 Theil Performance Ranking for Scenario 6: 10 Weeks of Historical Data

Model # MPE RMSE MAD STD MAPE Theil

5b 0.308 4.842 3.433 3.450 0.511 0.184

6 0.352 6.109 4.108 4.570 0.512 0.233

3 0.387 6.897 4.924 4.880 0.589 0.263

4 0.407 7.607 5.094 5.709 0.565 0.290

5.3.3 Scenario 7

In scenario 7, the size of the historical data set (HDS) is fixed at 8 weeks and the

forecast horizon (FH) is varied from 2 to 7 weeks for the higher booking class A.
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FIGURE 5.19 Theil's Inequality Coefficient for Scenario 7

Figure 5.19 shows the U value performance of the 5 model subset in this sce-

nario. The overall characteristic is almost identical to that of the constrained case

(scenario 3), exhibiting the same step function behavior-although the step

increase is marginally less in the unconstrained case. The regression model also
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outperforms the pickup models in this case and its U values are relatively more

streamlined after the break point forecast horizon of 5 weeks.

The overall behavior of the MAD and MPE (Figures 5.20 & 5.21) also remain

virtually unchanged compared to scenario 3-although the magnitudes have

diminished slightly.

Consequently, it appear as though the unconstraining of the higher booking class

does not have a significant impact on the performance of the models in this sce-

nario. This is attributed to the fact that there is not much difference between the

constrained and unconstrained data since very little of the original booking data

in the higher class is constrained

4.50

4.00 - - - - - - - -

3 .5 0 -- ------------------------ - - - - - - - - m 3

3.00 - -- - - -- -- ----------- /Z ------- m

250 -- - - - - - m4

m5b
8 2 .00- - - - - - - - - - - - -

Sm6g 1.50 --------------- - -- ---------------- m

1.00 -- -m7b

0 .5 0 -- ---------------------------------

0.00 j i i i

2 3 4 5 6 7

Forecast Horizon (Weeks)

FIGURE 5.20 MADfor Scenario 7

....- . . ...- -.... ammam 1ll mi14 I ll1ll1M I1IM1il



106 Presentation of Results

70%

60%

50%

40%

30%

20%

10%

0%

-10%

-20%

------------- - -- - -

-3 ------ 4 ------ 5 ------ 6 ------ 7

Forecast Horizon (Weeks)

FIGURE 5.21 MPEfor Scenario 7

TABLE 5.14 Theil Performance Ranking for Scenario 7: 2 Week Forecast Horizon

Model Theil MPE RMSE MAD STD MAPE

6 0.327 -0.135 3.490 1.927 2.941 0.349

7b 0.342 -0.114 3.654 2.028 3.071 0.540

4 0.343 -0.138 3.659 1.997 3.098 0.658

5b 0.348 -0.103 3.718 1.971 3.186 0.536

3 0.354 -0.180 4.445 2.377 3.796 0.572

TABLE 5.15 Theil PerformanceRanking for Scenario 7: Week Forecast Horizon

Model # Theil MPE RMSE MAD STD MAPE

3 1.010 0.551 6.352 4.230 5.581 1.395

5b 1.180 0.623 6.494 3.318 5.641 1.428

4 1.213 0.653 6.675 3.508 5.739 1.476

6 1.242 0.672 6.837 3.513 5.928 1.522

7b 1.275 0.685 7.017 3.516 6.137 1.563



Unconstrained Scenarios 107

5.3.4 Scenario 8

In scenario 8, the forecast horizon (FH) is fixed at 4 weeks out while the size of

the historical data set (HDS) is varied from 4 to 10 weeks.

The results from this scenario are almost identical to those of the constrained

case (scenario 4). Figure 5.22 shows the U value performance of the 5 models.

The performance of the pickup models is almost unaffected by the size of the

HDS. Models 4 and 6 display the best performance and show a gradual improve-

ment as the size of the HDS increases while the performance models 5b and 7b

remain constant. The performance of the regression model varies relatively lin-

early and improves significantly as the size of the HDS increases.
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FIGURE 5.22 Theil's Inequality Coefficient for Scenario 8

When compared to the constrained case, the magnitude of the regression model

bias (figure), although still considerable, has decreased. The spread of the MPE

values for the pickup models has also decreased over the entire range of HDS

size. The relative performance of models 6 and 4 is almost indistinguishable.
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TABLE 5.16 Theil Performance Ranking for Scenario 8: 4 Weeks of Historical Data

Model # Theil MPE RMSE MAD STD MAPE

6 0.616 0.365 4.925 2.448 4.319 0.722

4 0.623 0.414 4.977 2.354 4.43 1 0.758

7b 0.669 0.386 5.348 2.620 4.712 0.704

5b 0.700 0.473 5.593 2.620 4.994 0.799

3 1.298 0.932 13.051 7.285 10.974 1.729

TABLE 5.17 Theil PerformanceRanking for Scenario 8: 10 Weeks of Historical Data

5.4 Observations
Based on the above results the following observations have been made:

1. Relative Performance: The pickup models outperformed the time series and

regression models in the discount classes by a distinct margin (of approximately

25%) while the regression model produced the best results in the higher (full

fare) booking class scenarios. Furthermore, among the pickup models, the

advanced pickup models incorporating exponential smoothing with oc=0.4 con-

sistently produced the best results.

As discussed in Chapter 1, the booking space for air transportation demand is

two dimensional consisting of bookings along the days out axis (days before

departure) as well as along the time frame axis (chronological order of depar-

tures). Both of these dimensions contain valuable information on the booking

Model # Theil MPE RMSE MAD STD MAPE

6 0.540 0.338 4.313 2.148 3.780 0.652

4 0.560 0.350 4.475 2.179 3.950 0.680

7b 0.654 0.379 5.224 2.559 4.603 0.686

5b 0.690 0.465 5.515 2.575 4.928 0.776

3 0.839 0.417 7.097 4.032 5.902 1.218
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characteristics of a particular flight in a particular market-the time frame

dimension captures the relationship of the booking level relative to the past

departures while the days out dimension provides data on the behavior of the

booking history of the specific flight.

The simple time series models used in this study forecast on the basis of extrapo-

lating the average level of the final bookings (along the time frame axis) and

consequently utilize data from only one dimension of the booking space. As a

result, the models do not capture the behavior of the booking profiles for individ-

ual flights. Moreover, because the variation of the final bookings is quite volatile

(as seen in Chapter 4), the actual booking levels are relatively distant from the

mean, resulting in substantial forecast errors. Combined, these factors account

for the relatively poor performance of the time series models.

2. Forecast Horizon: In general, the performance of the models decreased as the

forecasting horizon increased. This was particularly true in the case of the higher

booking class where relatively small numbers of bookings were observed. When

the forecast horizon is relatively small (less than 4 weeks) the performance of the

advanced pickup models are indistinguishable and comparable to the results

from the classical model using exponential smoothing. As the forecast horizon

increased beyond 4 weeks, the advanced pickup model (employing exponential

smoothing, oa=0.4) produced the best results.

As the length of the horizon increases, the location of the forecasted point moves

further out in time, away from the fixed historical data set and thereby increases

the chance that the booking behavior will deviate from the information contained

in the historical data set. The advanced pickup models however, exploit the

recent booking data from flights that have not yet departed which effectively

decreases the gap between the forecast point and the historical data set, enabling

local variations in the booking characteristic to be captured in the forecast-result-

ing in the observed superior performance. It is therefore evident that within a

short-term forecast environment the local or recent data provides the most valu-
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able information needed to allow a model to respond to the inherent volatility of

the booking levels.

3. Historical Data Set Size: The performance of the models generally decreased

with the size of the historical data set-although the performance of the pickup

models incorporating exponential smoothing remained fairly stable. At first

glance, this result is quite sobering. Generally in a forecasting situation, it is

expected that increasing the amount of data used in the forecast model should

improve performance. Nevertheless, as argued above, the nature of the short-

term forecasting environment is once again brought to bear on the results. Given

that the inherent variation of the actual bookings is highly volatile, it is not possi-

ble to identify overall trends. Yet if the focus is shifted to the local booking activ-

ity, micro-trends can be observed where the data immediately before the point of

observation gives some indication of the preceding booking behavior. In light of

this logic, therefore, it is the most recent data that would provide the most valu-

able information on the anticipated behavior of future bookings. Incorporating

additional data in the historical data set introduces noise rather than adding use-

ful information about the local booking activity. The pickup models incorporat-

ing exponential smoothing essentially extract the valuable data by weighting the

recent data heaviest while suppressing the historical noise. The results for the

pickup models indicate that beyond 7 weeks of historical data, the value of addi-

tional data is not significant.

When considering the performance of the regression model, the argument

reverses-particularly in the higher booking class. The basis of the linear regres-

sion model uses n pairs of observations (x1,y )...(xn,yn) to find the least square fit

to a linear relationship, where x is the bookings at a given day t and y is the final

bookings. Consequently, the greater the value of n the greater the ability of the

model to identify a significant relationship. This is particularly true in the case of

the higher booking class where a considerable number of the paired observations
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are zero. As a result, increasing the size of the historical data set improves the

performance of the regression model.

4. Bias: In this study, the forecast error was defined as:

Error = Forecast-Actual 5.1

The models all displayed positive biases indicating that the forecasts consistently

overestimated the booking levels. The magnitude of the bias increased with the

size of the historical data set. Recall that the booking data encompasses an 18

week time frame from September 1 to December 31. Over this range, the varia-

tions are mostly positive in sign and sufficiently large to shift the mean booking

level above the majority of the actual bookings. As a result, because the basis for

all of the models depends on the mean booking level to some degree, the fore-

casts are generally high, giving rise to the positive bias. As the historical data set

increases, more of the variation in the demand is captured and the mean level is

displaced further upward. With the advanced pickup models, however, the focus

remains on the recent data and the impact of introducing additional variation is

not as significant. Therefore the advanced pickup models appear less susceptible

to individual flights with unusual booking activity and the bias remains stable.

Yet the magnitude of the bias is relatively quite substantial. This is attributed to

the advanced pickup models being sensitive to periods with drastic changes in

the booking activity. The classical pickup models react very quickly to the dis-

tortions introduced by these changes but this reaction is short-lived and the dis-

tortions are spread over fewer subsequent forecasts. The reason for this rapid

reaction is because the classical pickup model counts all of the distortions at the

same time. The advanced pickup models, however, spread the distortions over a

greater number of the subsequent forecasts. As a result, the impact of periods

with drastic changes in booking activity is felt for a relatively longer duration.

This is particularly true in the case of the unconstrained scenarios where the

drastic changes are more pronounced.
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In the case of the unconstrained discount scenario, the magnitude of the biases

increases with the forecast horizon up to a particular turning point, beyond which

the biases decrease as the forecast horizon increases. This turning phenomenon is

attributed to the characteristics of the unconstrained booking data. The instances

of constraining occur predominantly around the holiday season which is located

towards the end of the time frame, beginning around week 13. Unconstraining

therefore, raises the levels of the booking profiles towards the end of the time

frame (Figure 5.23).
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FIGURE 5.23 Comparison of Constrained and Unconstrained Final Bookings for a Sample Market

Once the horizon moves into this region of the time frame, the actual booking

levels become more consistent with the mean level and the forecast error dimin-

ishes.

This turning phenomena is not observed in the higher booking class as the effects

of constraining are not as significant.

5. Effects of Unconstraining: Unconstraining did not have any significant

impact on the booking characteristics of the higher booking class. This is attrib-

uted to the fact that only a small percentage of the original data in this class was
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initially constrained by booking limits. As a result, the original booking data was

representative of the true demand for this booking class. On the other hand, sig-

nificant differences were observed when the discount bookings were uncon-

strained: The booking profiles-which were originally truncated-were

transformed into growing exponentials. In addition, the unconstrained booking

levels were generally much higher towards the end of the 18 week time frame (as

shown in Figure 5.23)-attributed to the inflated demand due to the holiday

period. In the unconstrained scenarios, the spread of the performance metrics

among the various models decreased resulting in the similar (streamlined)

appearance of the performance plots. In general the performance of the models

improved with respect to the Theil's Inequality Coefficient-although there was

a noticeable increase in the inherent bias (explained above).

5.5 Summary of Results
The following is a summary of the main findings from the results:

1. For forecast horizons less than 4 weeks, the relative performance of the pickup

models is indistinguishable. The advance pickup model incorporating exponen-

tial smoothing with a=0.4 produces the best results as the forecast horizon

increases.

2. The performance of all of the models decreased with forecast horizon.

3. Increasing the size of the historical data set beyond seven weeks did not have

a significant impact on the performance of the models.

4. The models all displayed an inherent positive bias.

5. Unconstraining the booking data improved the performance of the models

with respect to the Theil's Inequality Coefficient, yet the magnitude of the inher-

ence bias increased.
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Chapter 6

Conclusions

6.1 Research Findings
The findings drawn from this study pertain to (1) the nature of the short-term

forecasting environment and (2) the performance of the selected models in this

environment.

6.1.1 The Short-Term Forecasting Environment

In this study, the short-term forecasting environment was defined by confining

the forecasting horizon to 8 weeks out and restricting the size of the historical

data set to 10 weekly departures. The resulting time frame became sufficiently

small such that, although there was considerable variation in the weekly booking

levels, no underlying trends were apparent-the variation appeared purely sto-

chastic and highly volatile. Furthermore, because seasonal and cyclical trends

were not easily identified in this environment, forecasting models which relied

on the extrapolation of trends produced relatively poor results.

Notwithstanding, one distinct seasonal variation was observed where the book-

ing levels increased significantly in the vicinity of the holiday period. It is under

these circumstances, where the levels of demand became inflated that the effects

of capacity constraints were most pronounced. Consequently, it was necessary to

unconstrain the bookings in order to estimate the true demand. In this study,

there was a distinct difference in the characteristics of the constrained and
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unconstrained discount class bookings. Unconstraining the booking data not only

removed the truncated appearance of the booking profiles but also improved the

performance of the forecasting models overall.

6.1.2 The Performance of the Selected Models

Based on this study, it is clear that the pickup models consistently outperformed

the regression and time series models in the various scenarios. When the forecast

horizon was relatively small (less than 4 weeks out), however, the performance

of the pickup models was literally indistinguishable. As the forecast horizon

increased, the advanced pickup model incorporating exponential smoothing pro-

duced the best results. The superior performance of the advanced pickup model

was attributed to the use of the most recent data where the focus was on the local

booking activity. Nevertheless, the advanced pickup model was found to be more

sensitive to periods where the booking activity changed drastically. Although all

the models are subject to the distortions created by rapid changes in demand, the

advanced pickup model spread the effects of this distortion over a greater num-

ber of subsequent forecasts which resulted in a consistently larger bias.

All of the models displayed positive biases indicating that the majority of the

forecasted final bookings were over estimated. This overestimation was attrib-

uted to the high mean booking levels with respect to the actual bookings due to

the relatively large positive variations in demand-inherent in the short-term

environment.

The observed biases could be mitigated through the introduction of a compensa-

tory error term in the models. This becomes more of a challenge when consider-

ing the pickup models, however, as these models do not have coefficients to

calibrate and compensation would therefore have to be done on a case specific

basis. Because the observed bias is an average value, it would not be appropriate

to simply adjust the individual forecasts by the magnitude of the bias.
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Of particular interest is the discovery that, within the short-term forecast envi-

ronment, increasing the size of the historical data set did not have a significant

impact on the performance of the models. In the case of the pickup models, using

more than 7 historical weekly departures had an adverse impact on performance.

The performance of the advanced pickup models, however, remained stable

throughout-independent of the size of the historical data set. This result is

counter-intuitive to conventional statistical principles that suggest that the accu-

racy of an estimation increases with sample size. Yet, a distinction should be

made between the size of the number of observations used to calibrate coeffi-

cients in the forecast models, to which this statistical theory applies, and the size

of the historical data set used to generate the forecast. The pickup models do not

employ coefficients or constants in the forecasting process and therefore the sta-

tistical argument is not applicable.

In light of the above conclusions, it is clear that the advanced pickup models

should be considered as one of the preferred techniques for forecasting the short-

term demand for air transportation. The strength of these pickup models lies in

weighting the most recent data heaviest-particularly the bookings from flights

that have not yet departed-coupled with the use of data from the two dimen-

sions of the booking space: the final bookings across the time frame as well as

data from the booking profiles at given days out before departure. The decompo-

sition of the pickup interval into smaller increments also facilities focusing on

the local booking activity and has consequent improvements on performance.

Indeed, this model has certain shortcomings, yet, the computational efficiency,

ease of implementation, relatively low data requirements, and proven perfor-

mance warrants the further development and utilization of this model.

6.2 Revenue Impact of Forecast Errors
Studies indicate that the revenue impact of the forecast bias is strongly influ-

enced by the overall demand level. In one particular analysis, Curry [1] studied
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the impact on revenue using Monte Carlo simulations. For each set of conditions,

the percent revenue achieved was computed defined as the revenue achieved

with the forecast error divided by the revenue that could have been achieved with

full knowledge of demand. The typical results are shown in Figure 6.1.
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FIGURE 6.1 Revenue Impact vs. Forecast Error [1]

If the demand is low then the forecast errors have little impact because there are

few inventory restrictions regardless of the forecast. On the other hand, the same

error can have a larger impact if the demand is high because too many or too few

seats would be consistently reserved. Over-forecasting will save too many seats

and the flight is more likely to depart with some seats empty, thus losing the

entire amount of a fare. Under-forecasting will lead to full flights but too many

discount passengers onboard (not enough seats saved for the late-booking, high

revenue passenger). The loss in this situation is the difference between the full
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fare and the discount fare. As a result, over-forecasting has a more significant

impact on revenue than under-forecasting.

6.3 Avenues for Further Study
The following represent areas for further study:

1. Given the revenue impact of over-forecasting and the positive bias inherent in

the advanced pickup model, there is a need to study the effectiveness of incorpo-

rating an error factor to compensate for the bias in the pickup models. As alluded

to above, this would have to be done on a case specific basis as the pickup mod-

els do not lend themselves to traditional calibration techniques.

2. Although the advanced pickup models appear less subject to individual flights

with odd booking patterns, they are susceptible to periods of odd booking activ-

ity. One possibility to mitigate this sensitivity would be to incorporate adaptive

filtering, in the estimation of the average incremental pickup. Adaptive filtering

is a variation of exponential smoothing where the magnitude of the smoothing

constant a depends on the average error and the absolute error of the previous

forecast.

3. The markets in this study comprised a collection of short, medium and long

hauls. Studying the performance of the models on the basis of market type would

add some insight into whether the booking characteristics and consequent perfor-

mance of the models are independent across market type. This would allow the

potential of utilizing different techniques for different market types to be

addressed.
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