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ABSTRACT

The purpose of this thesis is to examine the nature of aircraft surface motion on
the airport surface during normal operations. Twelve hours of radar data, gathered by
MIT Lincoln Laboratories from Logan airport in Boston, were made available for this
study. Specifically, the data included target position reports from the ASDE-3 surface
surveillance radar and the ASR-9 radar from the near terminal airspace information. This
data covers a variety of runway configurations, weather conditions, traffic levels and high
or low visibility conditions.

The study is divided into three sections. The first one focuses on the runway, and
examines occupancy times, exit velocities, exit usage and velocity profiles of the final
approach and landing phase. The second section, analyzes fourteen runway-taxiway
intersections. Results are presented for the crossing times and usage of these
intersections. The analysis also focuses on relating crossing times and usage to crossing
direction, runway configuration and aircraft size. Finally, average taxiway velocities and
the overall taxiway usage is measured. Additionally, the role that the location of the
taxiway segment as well as its length, plays in the variation of these velocities are
examined. Where possible, this study includes means, standard deviations and sample
sizes of the variables in question.

Thesis Supervisor: Dr. Robert W. Simpson
Director, Flight Transportation Laboratory
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Chapter 1

Introduction

1.1 Background

After forty years of regulation by the Civil Aeronautics Board, in 1978 Congress enacted

the Airline Deregulation Act, which phased out economic regulation of the industry. In

the years following deregulation many new carriers entered the airline industry. The old

and the new airlines soon started servicing new city-pair markets, offering expanded

services and competitive fares. These developments resulted in a significant increase in

the overall traffic levels. In order to provide higher schedule frequencies and more

efficient use of their fleet, the airlines soon abandoned the point-to-point route networks

and adopted hub and spoke network systems that concentrated traffic around hub airports.
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The increased passenger traffic coupled with the concentration of this traffic around, led

to congestion within the available airspace and subsequent delays in these hub airports.

Due to the aforementioned reasons, the need to develop means for greater

efficiencies in aircraft operations became apparent. Major efforts are undertaken today,

focusing on the use of advanced technologies for airborne and ground traffic control

systems in a concentrated effort to decrease the unused airspace and increase airport

capacity while simultaneously maintaining or even increasing safety levels. One such

area of focus is the airport surface, where especially in periods of low visibility, aircraft

experience significant delays on their way to the gate or departing runway. During the

last decade, various systems have been conceptualized and are currently under

development which deal with problems controllers and pilots face every day on the

airport surface.

The major objective of these surface traffic systems is to enhance the safety,

capacity, and productivity of these airports, while at the same time reducing delays and

the workload of both controller and pilot. This is accomplished via the development of

advanced communications, surveillance and automation techniques for use in the control

towers of major airports. Various subsystems address isolated problems such as runway

incursions, taxiway guidance and surface traffic surveillance.

Airport safety is intrinsically linked to capacity. The spacing between aircraft

necessarily reduces with increasing capacity, and safety suffers unless the reduction in

spacing is done carefully. The suggested long term solution is a surface traffic

management system that will address all these subsets of problems in an integrated

manner and safely control the airport surface area. Such a system must address the

capacity issues of ground congestion and effective departure sequencing through the

M , il1116 1



implementation of efficient routing and sequencing of aircraft on the surface, thereby the

system would decrease delays and increase airport safety. In order for such a system to be

successfully developed and implemented, information about the nature of aircraft motion

on the airport surface must be detailed.

1.2 Motivation

Few studies have been conducted to date on aircraft motion on the airport surface during

normal operations. In 1960 the Airborne Instruments Laboratory at Cornell University

published a series of reports about velocities and accelerations of aircraft at Kennedy

Airport in New York. Later, in 1972 the Flight Transportation Laboratory at MIT studied

the air-side activity of Boston Logan and Atlanta airports. Measurements were taken for

runway occupancy times, velocity profiles along the runways, taxiway speeds and

intersection delays. Unfortunately, most of the aircraft that operated during those years

are not in service today. Additionally, the data was gathered solely in periods of good

visibility and therefore the data of these reports is of little value today. It is therefore of

vital interest to measure the surface movements of today's aircraft as completely and

effectively as possible.

1.3 Scope

An aircraft engages in a series of non-uniform and complex maneuvers on its way

to the gate or the departing runway. A departing aircraft for example, after getting the

clearance to push back from the gate, has to follow a taxi route that will lead it to the

takeoff runway. This path varies depending on the layout of the taxiway system, the



current runway configuration, and the location of the gate. It might be short or long and

might involve a considerable number of turns, stops, taxiway and runway crossings, and

varying length segments of straight taxing. Along this route, the pilot must be constantly

be aware of the position, not only of his own aircraft, but also of nearby aircraft, ground

vehicles (or even terminal buildings) in order to taxi safely and avoid any collisions. The

ability of the pilot to successfully taxi along the path depends on various factors. These

include the type (size) of aircraft that the pilot operates, the amount of traffic at that

particular instant at the airport, the surface visibility, the weather and surface conditions,

and the familiarity that the pilot might have with the specific taxiway system. We must

remember also, that the pilot during his taxi, is usually assisted by the ground controller

who directs him along his taxi route and provides him with information about

surrounding obstacles. It is important to note though, that the pilot is the one who makes

the final decisions and may override the controllers directions. For example, a controller's

request for a landing aircraft to use the first available exit can be ignored, or the pilot may

insist on taxiing to the starting end of a runway rather than start from an intermediate

point.

Such factors as the human element cannot easily be quantified and often introduce

variance into the events that we want to measure, and therefore must be taken in to

account in the final analysis. Among many surface motion variables that can be

measured, those of interest are: the approach speed of a landing aircraft, its landing speed

profile during roll-out, the runway occupancy time, the exit used, the exit velocity, the

time required to cross runway intersections, and the taxiing velocities on different

segments of the taxiway system. The analysis of these variables in conjunction with the

major factors that affect them will be the focus of this thesis.

Owwo



Chapter 2

The Measurement Task

2.1 Introduction

The first section of this chapter describes the existing runway and taxiway system

at Logan airport in Boston so the reader can get a better understanding of the airport

layout and better relate the measured variables. The second section, discusses the main

elements of the data collection method that was employed. Finally, the last section

provides information about the different days that the data was collected. Included in this

information, is a description of the weather and surface conditions as well as any

particular events that occurred during the collection period and which might be of interest

in the later stages of the analysis.

---- N-1---'--------- -



2.2 The Runway and Taxiway System

Boston Logan International Airport lies at the edge of Boston harbor, surrounded

by water in the majority of its perimeter. The commercial and residential area of East

Boston is adjacent to it while the Winthrop area lies across the harbor (Figure 2.2.1).

Figure 2.2.1

Logan is the dominant airport ( 70 % of the passenger traffic 1) in a regional airport

system that also includes airports serving Hartford, Manchester, Worcester, Hyannis,

Portland, and Providence. It has five runways with four of them (4L, 4R, 33R and 27)

1 Boston Logan International Airport Capacity Enhancement Plan, October 1992 published by the FAA.



capable of handling large transport aircraft. Three of these runways (4R, 33R and 27)

have instrument landing capability. The configuration of the runways is rather complex

(Figure 2.2.2), as they intersect six times with each other.

Figure 2.2.2



Typically, peak hour demand is 100 operations per hour. The serving capability

depends on the runway operating configuration, and can vary from 46 operations per hour

during the most restrictive IFR conditions to 120 operations per hour during good VFR

weather2 . This fluctuation is primarily due to the lack of parallel runways within

adequate spacing between them for simultaneous IFR approaches under certain weather

conditions. Consequently, at certain times all landings must be sequenced into a single

arrival stream, thus lowering the airport serving capability. The high proportion of

commuter aircraft operations at Logan further deteriorates the airport effective capacity,

as larger separations maybe needed under certain runway configurations to safely

accommodate these smaller sized aircraft due to the wake turbulence considerations

during mixed (in terms of size) operations. In addition, in order to keep the noise levels

that the nearby communities experience within reasonable levels, the Massachusetts Port

Authority has imposed certain regulations that further complicate aircraft operations.

Specifically, only certain runway configurations can be used at night and airlines are

required to conduct a specific portion of their Logan operations in Stage 3 equipment 3 .

The configurations 4 that are used most often at Logan are:

Table 2.2

Configuration VFR IFR

Arrivals Departures Arrivals Departures

1 4L & 4R 4L, 4R & 9 4R 4L, 4R & 9

2 22L & 27* 22R & 22L 22L 22R & 22L

3 33L & 33R 27 & 33L 33L 33L

4 9, 15R & 15L* 15R & 9 15R 15R & 9
These configurations employ hold-short procedures.

2,4 Boston Logan International Airport Capacity Enhancement Plan, October 1992 published by the FAA.
3 Summary of Logan's Noise Abatement Rules and Regulations published by Massport.



Due to the complexity of the runway system, various procedures for intersection

departures and hold-short arrival are often used.

The taxiway system (Figure 2.2.3) consists of two main circumferential taxi lanes

(inner & outer) around the perimeter of the terminal building area with smaller taxiway

segments supporting the traffic towards the gate area. Longer taxiways also exist to feed

the outbound traffic to the departure runways, and the incoming traffic to the terminal

area. Runways 4R, 33L/15R and 27 have additional high speed exits conveniently located

so that the landing aircraft can vacate the runway as soon as possible, and then there are

various common taxi paths from these exits to the gate areas. For example, the high speed

exit most commonly used for runway 4R is exit 12 (link A29-A56) , and crosses runway

4L (used only for turboprop landings and takeoffs in this case) before joining taxiway N

(link A74-A75) to return to the terminal area.
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2.3 Data Collection

In the past, the techniques used to study the aircraft motion on the surface of

airports fell into two major categories : those that involved direct observation of the

traffic through a number of observers out in the airfield (the MIT study) and those

involving indirect observation through the use of radar or other types of monitoring

equipment.

Each one of the two methods has its own advantages and disadvantages. The

indirect radar method is more complex and requires expensive equipment but is fairly

accurate, imposes no interference in the traffic, and once operational can be employed for

long time periods. On the other hand, the other method (direct observation) is less

complex but requires a large number of observers, often in coordination with each other,

which involves intense manual effort and as one might suspect, and provides changing

levels of accuracy. Nevertheless, both methods require the authorization and cooperation

of the local FAA and airport authorities.

Luckily, in our case the MIT Lincoln Laboratories had installed an experimental

ground surveillance system that gathered data from Logan airport in Boston. Specifically,

the data included target position reports from the ASDE-3 surface surveillance radar and

the ASR-9 radar from the near terminal airspace traffic information. These two outputs of

the surveillance sensors were integrated by a combined tracking system that also provided

derived information about the velocity, heading and acceleration of the targets1 . A

simultaneous interface with the ARTS computer was often used and then information

about the aircraft type and flight number was made available.



2.4 Available Data

As mentioned earlier, Lincoln Laboratory had installed a surface traffic data

gathering system at Logan airport in Boston in 1993 for the development and testing of a

runway status lights network (ASTA-1) to help prevent runway incursions. As much as

ninety hours of traffic data were collected for this purpose. Approximately twelve of

these ninety hours were preprocessed by Lincoln Labs, and made available to this study

for further processing and analysis of the aircraft surface movements. These twelve hours

came in the form of 10 separate blocks of data, each corresponding to an individual data

gathering session. These blocks cover a variety of runway configurations, weather

conditions, traffic levels, and high or low visibility conditions. A brief description of the

available blocks of data follows:

Block-1

Day: Thursday, April 1, 1993

Time: 16:00-17:15 Local

Runway Configuration Table 2.4.1

Arrivals Departures Switched to Arrivals Departures

4R 9, 4L 4R 4R

Wpthpr / ATIS Table 2.4.2

Temp Ceiling Visibility Wind Comments

n/a 500ft ovc 2 miles 50*@ 15knots Rain & Fog

n/a 1800ft ovc 2 miles 40'@24knots Rain & Fog --> Thunderstorms

n/a 11 00ft ovc 2 miles 40*@ 20knots Rain & Fog --> Thunderstorms



Block-2

Day: Friday, March 26, 1993

Time: 10:35-11:35 Local

Runway Configuration Table 2.4.3

Arrivals Departures Switched to Arrivals Departures
4 9 33L, 27 33L, 22R

Weather / ATIS Table 2.4.4

Tern Ceiling Visibility Wind Comments

55 * F 800ft. scat 7 miles 160*@7knots Heavy Traffic, All Taxiways OK.

Block-3

Day: Wednesday, April 21, 1993

Time: 17:35-18:35 Local

Runway Configuration

Arri

Weather / ATIS|Temp Ceiling Visibility

65 * F 2500ft ovc 15miles

Table 2.4.5

Table 2.4.6

Wind Comm

180*@ l7knots Heavy

ients

Traffic.

Block-4

Day: Tuesday, March 26, 1993

Time: 13:15-14:15 Local

Run

Wea.

50

wvay Configuration Table 2.4.7

IArrivals IDepartures
115R 19I

ther / ATIS Table 2.4.8

em Ceiling Visibility Wind Comments

* F Sunny 12 miles 140*@7knots I Busy Traffic, later quieting down-M



Block-5

Day: Thursday, March 11, 1993

Time: 14:50-16:10 Local

Runway Configuration

Weather / ATIS

Table 2.4.9

Arrivals Departures
33L 122R, 33L

Table 2.4.10

Temp Ceiling Visibility Wind Comments

40 * F 5500ft 15 miles 300'@ l5knots Snow in the morning

Block-6

Day: Wednesday, March 31, 1993
Time: 19:15-20:15 Local

Runway Configuration Table 2.4.11

IArrivals DeNpartures
4R, 4L 9,4L

Weather / ATIS Table 2.4.12

Temp Ceiling Visibility Wind Comments

420 F 6500ft 15 miles 110'@ 8knots Snow in the morning

Block-7
Day: Saturday, March 13, 1993
Time: 09:45-10:45 Local

Runway Configuration

Wather / ATTS

Table 2.4.13

vals De artures
9,15R

Temp Ceiling Visibility Wind Comments

31 * F 5000 ft 5 miles 127' @ 8knots ILS approaches 15R

33 * F 3800 ft 12 miles 110@ l7knots ILS approaches 15R, light snow

32* F 1500ftovc 1 mile 110*@ l5knots ILS approaches 4R, light snow

IINNIIIIIIIII Ph



Day: Wednesday, April 21, 1993

Time: 19:50-20:50 Local
Runway Configuration Table 2.4.15

Arrivals Departures
22L, 27 22R, 22L

Weather / ATIS Table 2.4.16

Tern Ceiling Visibilit Wind Comments

59 * F 2500ft scat 15 miles 225 *@11 knots n/a

Block-9

Day: Tuesday, March 30, 1993

Time: 07:45-08:45 Local
Runway Configuration. Table 2.4.17

Arrivals Departures
4 9

Weather / ATIS Table 2.4.18

Tern Ceiling Visibilit Wind Comments

143 * F 1700 ft |2 miles |40'@ l2knots Light drizzle & Fog

Block-10

Day: Wednesday, April 21, 1993

Time: 09:00-10:02 Local
Runway Configuration

Weather / ATIS

Table 2.4.19

Arrivals ep rtures

22L, 27 22R, 27
Table 2.4.20

Tern Ceiling Visibility Wind Comments

60 * F 2500ftovc 15 miles 225@ l6knots n/a



Chapter 3

Data Analysis

3.1 Introduction

The first section of this chapter describes the preliminary data processing that was

undertaken along with various problems that were encountered due to several data

irregularities. The second section, provides a detailed runway analysis that includes

information about occupancy times, exit velocities, exit use, and landing velocities

profiles. The next section analyzes the intersection crossing times and the particular level

of use of each intersection. Finally, an analysis of the taxiway system is presented.



3.2 Preliminary Data Processing

As soon as the ten blocks of collected data were received, all the possible ways to

process and analyze the available information were considered. Each block of data

consisted of information about all the targets that were picked up by the ASDE-3 and

ASR-9 radar during each gathering session. Every target had its own ASDE and target ID

and contained among other things, position information in terms of x and y coordinates

with respect to the radar location, its derived velocity, acceleration, and heading, and the

corresponding time stamp for specific data items, measured in seconds from 0:00 GMT.

In addition, some targets included information about the aircraft type and airline flight

number (Table 3.2.1).

Tt:11584 Length: 287 Start time: 5795.3 1Endtime: 58588.6 States: DEP TAX STP
-deg- (knots) 's

Target ASDE Time Stamp State ASF Position Heading Speed Accel. Flight Type
ID I D ID Num

11584 5575 57995.375 1 TAX 3 North: -827.07 East: 242.13 10.7 13.9 0.0874 SR188 B747
11584 5575 57997.126 2 TAX 3 North: -827.22 East: 249.34 31.3 10.1 -0.0552 SR188 B747
11584 5575 57998.878 3 TAX g9 3 North: -802.69 East: 252.97 14.8 17.9 0.113 SR188 B747
11584 5575 58000.629 4 TAX 3 North: -793.17 East: 256.41 14.9 15.1 0.0166 SR188 B747
11584 5575 58002.382 5 TAX g76 North: -783.10 East: 258.79 12.3 12.5 -0.042 SR188 B747
11584 5575 58004.134 6 TAX g76 North: -769.83 East: 263.59 17.1 14 0.0116 SR188 B747
11584 5575 58005.885 7 TAX g76 North: -756.49 East: 267.36 16.9 15.2 0.0215 SR188 B747
11584 5575 58007.637 8 TAX g76 North: -742.40 East: 271.39 16.4 16.4 0.0215 SR188 B747
11584 5575 58009.388 9 TAX g76 North: -732.36 East: 276.04 22 13.9 -0.0348 SR188 B747

Table 3.2.1: Typical sample information about a target inside a block of data.

The individual position reports for every target, constituted a very large amount of

information, and in order to be useful, had to be related again to the surface layout of the

airport. A graphical replay of the information of the available data was needed since it

would enable us to visualize the actual aircraft motion, check the analysis output, and

explain any possible counterintuitive findings.



Recently, the Flight Transportation Laboratory at MIT had designed and

developed an aircraft Ground Motion Simulator (GMS) to realistically simulate airport

ground activity. The GMS simulates the environment at any arbitrary airport and provides

high quality graphic views, in color on UNIX workstations. This system has an internal

aircraft position generator that provides the simulation with motion updates. It was

decided to use the GMS system for visualization purposes, after bypassing its position

generator function and writing the necessary code to provide it with the actual aircraft

motion information from the Lincoln Laboratory data.

As a second step, the Logan airport geometrical layout along with its features

(terminal buildings, hangars, etc.) had to be inputted in the GMS system (Figure 3.2.1).

Next, the underlying network of nodes and links had to be inserted in GMS format data

files in order to define the runways and taxiways of the airport (Figure 3.2.2). Table 3.2.2

lists the series of nodes that define every taxiway. The next step was to write the

computer code that will associate every aircraft position with an airport link in order to be

able to automate the data reduction process. Various computer subroutines were also

written to perform other preliminary analyses of the recorded data. As a result, computed

values were obtained for approach speeds, exit velocities, intersections crossing times,

and various taxiway velocities. A more complete discussion of these values, and their

significance will start in the next chapter. During the analysis process various routines

had to be modified in order to overcome some irregularities in the collected data.

Taxiway Series of Nodes

JIB08 A92
AV B09 A93

IA00IMA2 A42 A35 A36I

MONOW1111110111WINA Nild HIM NOWN1111m,



Y A55 A56 A29
INNER A97 A98 A80 A99 BOO B01 B02 B03 B04 B05 B06

B07 B08 B09 A95 A96
OUTER A97 A79 A81 B10 A82 A83 A84 A85 A86 A70 A60

AOO A10 A20 A50 A91 A92 A93 A94 A95 A96

z A80 B10 B11
N2 A71 A72

A20 A40 N2 A39 A37 A31 A25
1 A37 B14 A38

B04 A60 A46 A24 A18 A17 A16 A12
02 A33 A32 A31
D A18 A19 A01 A02 A04 A07 A90 A06
NA A73 A59

B06 A10 A43 A44 A09 A08
B A63 A64
2A A32 A26

B03 A70 A47 A48 A23 A22
'A21 A18

01 B14 B13
A49 A48
A48 A14

K A98 A81 A78
L A79 A77
N BOO A83 A75 A74 A73 A71 A69 A66 A63 A62

A A02 A03
A44 A45

B A04 A05
B02 A86 A51 A52
A66 A65

00 A99 A82
s B05 AOO A43 A35 B13 A34 A33 A27
101 B06 A50
T B02 A86 A85 A53

Runy[~~ [ i
4R 22L A61 A62 A64 A65 A57 A29 A14 A23 A49 A24

A45 A09 A28 A27 A26 A25 A87 4R

4L 22R A68 A67 A72 A59 A54 A53 A51 A47 A46 A43
A42 A88 NI A39 4L

15R 33L All A12 A13 A01 A21 A22 A14 A52 A53 A75
_B11 A78 A77 A76 15R

15L 33R A58 A57 A55 A54 A74 A89 15L
27 A15 A06 A05 A03 A13 A17 A08 A28 A36 A34
A38 B14 Ni N2 9

Table 3.2.2
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3.3 Data Irregularities

Due to the performance of the radar tracking system on the surface of the airport,

frequently during the gathering session, an aircraft target was dropped and then picked up

later on by the radar. The result was that in the data file, two different targets with

separate IDs (identification numbers) could in fact have been the same aircraft, and the

intermediate information about the aircraft movement between the time that the aircraft

was dropped from the radar and then picked up again was not available. Another

irregularity was the fact that not all targets had information about the aircraft type or

flight number. This limited the classification of results according to aircraft size to only

those targets where that information was available. In addition, this prevented us from

identifying targets that were not aircraft but rather other ground vehicles moving on the

airport surface and therefore might have infected our results if they were on the runways

or taxiways. Indeed, Blocks 3, 8 and 9 did not include any information about aircraft

types and flight number because the required computer tap was not in service during the

collection period.



3.4 Runway Analysis

3.4.1 Runway Occupancy Time During Landing

Runway occupancy time is the time over which a runway is effectively blocked

(occupied) to any other traffic by a single landing or departing aircraft. As such, it

potentially affects the traffic capacity of that runway. In the case when the runway is used

only for landings, the runway occupancy time and its potential variations currently do not

significantly affect the overall runway capacity as the inter-arrival radar separation

standards of the approaching aircraft cause spacing which is almost always greater than

the occupancy time. On the other hand, if the runway is used for mixed arrivals and

departures, the landing occupancy time becomes more critical. In that case, the shorter the

landing occupancy time, the more the time allowed to insert a takeoff between landings.

This results in higher runway operational capacity, and smaller delays for the departing

aircraft.
Average Occupancy Time During Landing

Runwa Data Block igure
4R 1,6,9 1,2,3
4L n/a n/a

22R n/a n/a
22L 8,10 4,5
27 2,3,8,10 6,7,8,9
9 n/a n/a

33R_ n/a n/a
33L 2,5 10,11
15R 4,7 12,13
15L n/a n/a

Table 3.4.1.1

The following tables (3.4.1.2 to 5) correlate each exit link of every runway from

the GMS airport layout (Figure 3.4.1.1 to 3) to an exit number for the graphs that follow.



Exit Number Link

Runwa 27 Runwa 9
1 12 A06-A90
2 11 A05-A04
3 10 A03-A02
4 A13-AO1

5 A17-A18
6 7 A08-A09
7 6 A02-A28

5 A36-A15
94 A -B13
10 3 B14-A37
11 N1-A39
12 1 N2-A40

Table 3.4.1.2

Exit Number Link

Runwal 33L Runway 15R
1 14 A12-A16
2 13 A13-A17

1 A01-A19
4 11 A21-A18
5 10 A22-A23

6 A14-A23
7I A14-A48

8 7 A52-A51
96 A53-A51

10 5 A53-A85
11 4 A75-A8
12 B11-B10
1 2 A78-A81
14 1 A77-A79

Table 3.4.1.3
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Exit Number I Link

Runwa 4LRunway22RI
1 14 A39-N2
2 13 N1-N2
3 12 A42-A20
4 11 A43-A1O
5 10 A43-AOO
6 9 A46-A60
7 8 A47-A70
8 7 A51-A86
9 6 A53-A75
10 5 A53-A85

11 4 A54-A74
12 3 A59-A73
13 2 A72-A71
14 1 A67-69

Table 3.4.1.4

Exit Number

Runway 4R I Runway 22L
I _____16_7_7 A12-A16

2___ _ 15 A26-A32

3 14 A27-A33
4_ _ 13 ZA3
5LJ 2 ZI941
6 11 4- 4

8F 9 A49-A48

97
10 =7 14A48
11 6 A14-A52
12 _2

13 iF 4I- A57-A55
14 3 JL5-A6

16 = E A62-A63

Table 3.4.1.5
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The occupancy time during landing is measured from the moment the aircraft is

over the runway threshold until the time it has turned in the exit and its tail has crossed

the runway edge. Since our aircraft motion data was in the form of a series of discrete

radar hits (approximately every 1.7 sec on the surface), the time between the first hit

inside the first runway link and the first hit inside the exit link was used. In this way the

size of the error was minimized. As expected before the analysis of the results, occupancy

time tends to increase with the distance of the exit location from the runway threshold.

This is normally true except in some cases ( Figure 3.4.1.4 Exit 12 in Runway 4R and

Figure 3.4.1.7 Exit 11 in Runway 22L) where the particular angle of these exits allow

aircraft to exit with higher speeds, and therefore maintain a higher average landing

velocity resulting in occupancy times similar to exits that are located much closer to the

threshold.

Figures 3.4.1.4 through 3.4.1.16 are graphs of the average occupancy time during

landing for all aircraft types over a single runway and exit for every block of collected

data. It seems there exits a relationship between aircraft weight and occupancy time. We

observe that usually, the standard deviation of the occupancy times are quite small (5-10

seconds) for aircraft using the first exits, unlike for those using exits that are located

further down the runway. Runway 27 under configuration 2 (arrivals 27 and departures

22R) displayed the lowest occupancy time (35 seconds) for aircraft exiting at high speed

from exit 6 (Figures 3.4.1.9, 10, 12). In data block 8 (Figure 3.4.1.11), with similar weather

conditions but at night (20:00-21:00), most aircraft used exit number 8 (low speed) and

the occupancy times were significantly larger (53 seconds). The heavier aircraft tend to

land with higher velocities and require longer landing distances and therefore exit further

down the runway resulting in higher occupancy times. However aircraft using a given

exit have similar occupancy times, independent of aircraft size.
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Average Occupancy Time During Landing
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Average Occupancy Time During Landing Runway 22L
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Average Occupancy Time During Landing Runway 27

Block 2

Avg.Oc.Tim.

Stdev.

--

- 20

-18

- 16
- 14
- 12

- 10

-8
-6
-4
-2

80 -

70 -

60-

50 -

40 -

30 -

20 -

10 -

0- 0. *0 I - I - I - I - I -

1 2 3 4 5 6 7 8 9 10 11 12

Exit

Landing Direction

Figure 3.4.1.9

Average Occupancy Time During Landing Runway 27

Block 3

Avg.Oc.Tim.

Stdev.

-- N

-20

.18

- 16
14

-12

-10

-8

-6

80 -

70 -

60-

50 -

40 -

30 -

20 -

10 -

30 - 8

r - - - - I - I I -

1 2 3 4 5 6 7 8 9 10 11 12

Exit

Landing Direction
-p

Figure 3.4.1.10

--

; - ;- ; - ; - ; - ; = ;

N. i m i = aI



Block 8

80 Avg.Oc.Tim.

70 Stdev. 18
16-

N 14
50 12 * x

40 10

30 8 4.

Landing Direction 6 8 U
20 U 0

10 2

0 *0

1 2 3 4 5 6 7 8 9 10 11 12

Exit

Figure 3.4.1.11

80 -

70 -

60-

50 -

40 -

30 -

20 -

10 -

Average Occupancy Time Durin Landin Runway 27

Block 10

Avg.Oc.Tim.

Stdev.

N

-20

-18

- 16

-14

- 2

-10
- 8

- 6
- 4

- 2

0

1 2 3 4 5 6 7 8 9 10 11 12

Exit

Landing Direction

Figure 3.4.1.12

Average Occupancy Time During LaRng

S

qJ
U
U
a.a

S
U

Sm
U
I-
S

-J

Runway 27



Aveage Occupancy Time During Landing Runway 33L
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Figure 3.4.1.15
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3.4.2 Exit Use

Figures 3.4.2.1 through 3.4.2.13 represent graphically the exit use both for all

aircraft that landed in every runway and for each aircraft (weight) class in every data

block that information about the aircraft types were available. If information was

available during data collection, the exit use per particular aircraft class is presented.

Each aircraft is classified according to its weight into one of the following three classes:

Class Weight Range ('000 LB)
Heavy 300-900
Large 12.6-299
Small 0-12.5

Table 3.4.2

The major observations are that, as expected, the probability of exit is related to

the aircraft size (weight class). Hence, heavier aircraft tended to use exits that are located

further away from the runway threshold while smaller sized ones required shorter landing

distances and exited earlier.

A second factor that affected exit use was the specific turning angle of the exit.

This angle (which could have been acute, right, or obtuse) provides a measure of the

difficulty of using each exit. As a result, independent of runway, most aircraft tended to

prefer the use of obtuse angled (high speed) exits.



Exit Use per Aircraft Clases Runway 4R Block 1 37 Landings

35

30 Small

25 - O Large

20 . Heavy

15

10 Landing Direction

5 -

0 -
Exit

Figure 3.4.2.1

Exit Use per Aircraft Class Runway 4R Block 6 23 Landings

Landing Direction

M .Lp

sr~ ~.O ~ 00 O~ 0 - e~

Exit

en~ . O tW-4 W--4

Figure 3.4.2.2

35

30

25

20

10

5

* Small

o Large

* Heavy

V- CI n

0 1 2 I a a -t~ 2



Figure 3.4.2.3
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Exit Use per Aircraft Class Runway 27 Block 2 11 Landings
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Figure 3.4.2.10
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Exit Use per Aircraft Class Runway 15R Block 4 21 Landings

Small

0 Large

Heavy

Landing Direction
-l i l

50 -
45 -

40 -

35 -

30 -

25 -

20 -

15 -

10 -

5

0-
I. I

N \Q 1~ ':j* r ciI

Figure 3.4.2.12

Exit Use per Aircraft Class Runway 1SR Block 7 28 Landings

M Small

0 Large

* Heavy

Landing Direction

! !

' I

ci | 0 O
W-4 - -

00 E -

Eit

!IIi
~.o "~ ~ ci -

Figure 3.4.2.13

I I I I I I I

'~ ~ C, ..4i 0 O7, 00

Exit

45 -

40 -

35 -

30 -

25 -

20 -

15 -

10 -

5-

0

2MI
I



3.4.3 Exit Velocities

The angle of every exit plays a significant role in the exit velocity of the aircraft.

As figures 3.4.3.1 through 3.4.3.13 show, whenever the landing aircraft are using the

obtuse angled exits the exit velocities are significantly higher than the other ninety

degrees or acute angled exits. However, this is only true for high speed exits which are

accompanied with long exit segments and give the pilot room to brake (exit 6 runway 27:

38 knots and exit 5 runway 33L : 40 knots). Exit 8 of runway 4R, although it is obtuse

angled, the short exit segment that follows does not allow high exit velocities. Each

figure presents, using columns the average exit velocity, and with a line, one high and

one low value which corresponds to the average exit velocity plus or minus one standard

deviation (see figure legend). The letter H denotes a high speed exit.
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Average Exit Velocity All Classes Runway 22L Block 8
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Figure 3.4.3.6
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Average Exit Velocity All Classes Runway 27 Block 8
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Average Exit Velocity All Classes Runway 33L Block 2
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Average Exit Velocity All Classes Rumway 1SR Block 4
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Figures 3.4.3.14 through 3.4.3.22 show the average exit velocities per aircraft class.

These velocities vary from aircraft class to aircraft class but the variation is not consistent

and no conclusions can be drawn in favor of one class or another.
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Average Exit Velocity per Aircraft Class Runway 4R Block 6
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Avenge Exit Velocity per Aircraft Class Runway 27 Block 2
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Average Exit Velocity per Aircraft Class Runway 33L Block 2
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Average Exit Velocity per Aircraft Class Runway 15R Block 4
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3.4.4 Velocity Profiles

3.4.4.1 Landing Velocity Profiles

Figures 3.4.4.1.1 through 3.4.4.1.13 show the landing profiles of all aircraft that

landed in each runway. The aircraft that used a particular exit are grouped together. We

can observe the different exit velocities and the higher or lower deceleration that occur,

depending on the angle and the location of each exit. We must note the fact that some

aircraft actually speed up after the runway threshold.

Figure 3.4.4.1.1
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Landing Velocity Profile Runway 4R Block 9
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Landing Velocity Profile Runway 22L Block 8

h
r
-

Figure 3.4.4.1.4

X- Mean Exit 6

---- Mean Exit 8

- -- O-- Mean Exit 10

----- Mean Exit 11

0.2

eq 0c Il 0 1%0 C4I Wc I 0 %o eC4 C4 .C 0 qT W0 N NO 0
I~ en C4i N - -. W- V- "- 1- N C en

Radar Hits from Runway Threshold



Landing Velocity Profile Rmnway 22L Block 10
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Landing Velocity Profile Runway 27 Block 2
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Landing Velocity Profile Runway 27 Block 3
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Landing Velocity Profile Runway 27 Block 10
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Landing Velocity Profile Runway 1SR Block 4
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Figure 3.4.4.1.13
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3.4.4.2 Final Approach Velocity Profiles

In the final approach velocity profile figures ( 3.4.4.2.1 through 3.4.4.2.13) we

observe that in most runways, there is a small deceleration during the final approach. In

some runways, 27 in particular, this deceleration is quite significant (Figure 3.4.4.2.6). In

the same runway, during night operations (Figure 3.4.4.2.8) we see much more smooth

final approach velocity. In runway 15 R, we note that even under different weather

conditions, aircraft seem to accelerate before the runway threshold.

Overall, the standard deviations of the landing velocities fall between a value of

0.2 for a period of approximately 10 radar hits before the threshold and from then on it

increases significantly. This could be due to the changing size of the available number of

data points (radar hits), as further away from the threshold some aircraft target are not

picked up by the surface radar.
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Final Approach Velocity Profile
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Pinal Approach Velocity Profile Runway 22L Block 8
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Final Approach Velocity Profile Runway 27 Block 2
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Pinal Approach Velocity Profile
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Final Approach Velocity Profile Runway 33L Block 2
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Final Approach Velocity Profile Runway 1SR Block 4
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3.5 Intersection Analysis

3.5.1 Intersection Crossing Times

When an aircraft approaches an intersection it is either cleared to cross it by the

ground controller, or it is instructed to stop or slow down to allow another aircraft to

cross in front of it. Occasionally, in periods of heavy traffic a pilot will have to wait in a

queue to cross a particular intersection or possibly wait for a queue of aircraft to pass

through an intersection.

Figure 3.5.1.1: Typical Intersection

Due to the complexity of the runway and taxiway system at Logan airport, a

departing or arriving aircraft has to cross a significant number of intersections in its way

to the gate or departing runway. In order to measure the intersection crossing time as



C

-AA

Cat



accurately as possible a distance of fifty meters before and after the intersecting runway

or taxiway centerline was chosen. Since the radar hits are skin returns from the center of

the aircraft' s fuselage, such a distance would ensure that the calculated crossing time

would include the initial crossing of the front part of the aircraft and will end after its tail

has cleared the crossing runway or taxiway (Figure 3.5.1.1).

The calculated crossing time was split in two segments. The first (time 1) being

the time from the start until the aircraft crosses the intersecting centerline and the second

segment (time 2) from the centerline until the aircraft clears the runway or taxiway. The

following table lists the series of airport links corresponding to each intersection number.

Table

Figures 3.5.1.3 through 3.5.1.12 show

standard deviations for every intersection in

3.5.1

the average crossing times along with the

the ten blocks of collected data. As figures

Intersection Series of Links
1 A16 A17 A18

2 A02 A01 A19

3 A22 A23 A48

4 A18 A24 A46

5 A08 A09 A44

6 A74 A75 A83

7 A52 A51 A86

8 A48 A47 A70

9 A24 A46 A60

10 A44 A43 A00

11 A44 A43 A10

12 A35 A43 A00

13 A35 A43 AlO

14 A35 A42 A20



3.5.1.13 and 14 show there is a significant difference in average crossing time depending

in the runway configuration and thus in the direction of use of some intersections. For

example, when intersections 10, 11, 12, 13 and 14 are used in the inbound direction

(towards the terminal area), usually after arrivals in runway 27, the crossing times seem

to be much smaller compared to those of departing aircraft which use the same

intersections but in the opposite direction (outbound), and often have to form a queue

while waiting to depart from runway 9 and thus cross these intersections very slowly.

Similarly in intersection 6 the inbound direction of crossing is much quicker (aircraft

landing on runway 4R) that the outbound one (aircraft waiting to depart from 22L and

22R).

Comparing the crossing times of the two different segments of each intersection

(time 1 and time 2), we observe that usually when an intersection is used in the inbound

direction time 2 is larger than time 1 and when it used in the outbound time 1 is larger.

This could be possibly due to the fact that when a pilot is on his way to the gate, after

crossing the intersection it has to slow down since the connecting taxiway segments

A75-A83, A51-A86, A47-A70 etc. are short as they intersect with the circuferential outer

taxi lane which is often congested. On the other hand, in the outbound direction usually

time 2 is smaller than time 1 probably because the connecting taxiways that lead away

from the terminal area are longer and therefore the pilot accelerates faster.

Figures --- through --- show the average crossing times per aircraft class (size) for

intersections where ten or more aircraft crossed them. Larger aircraft are heavier and

logically should have longer crossing times but the graphs show this is the case only in

few blocks of data (block 1).
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Figure 3.5.1.5
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Average Intrsection Crossing Times Block 7

Figure 3.5.1.9
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Figure 3.5.1.17
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3.5.2 Intersection Use

The following table provides information about the number of aircraft that used

each intersection. Figures 3.5.2.1 through 3.5.2.4 show the intersection use under the four

most popular runway configurations at Logan airport. As we can see, the use of a specific

exit is closely related to the operating runway configuration.

Number of Aircraft Using Each Intersection

Intersection Block Block Block Block Block Block Block Block Block Block

1 2 3 4 5 6 7 8 9 10
1 0 2 0 0 6 0 0 0 1 0

2 0 15 0 0 23 0 0 0 0 0

3 0 5 0 4 21 0 -7 0 0 0

4 0 2 0 12 1 0 9 0 0 0

5 0 13 3 0 1 0 0 1 0 4

6 13 4 25 2 7 26 0 36 6 45

7 0 18 0 7 16 1 6 1 1 1

8 11 6 3 5 20 3 11 3 11 4

9 8 30 0 11 50 0 11 2 6 3

10 0 9 2 0 1 0 0 3 0 1

11 0 3 2 0 0 0 1 4 0 5

12 11 0 6 25 0 9 7 8 9 3

13 4 0 1 4 1 3 2 7 1 6

14 11 1 1 11 0 10 3 5 8 0

Table 3.5.2

103



Figure 3.5.2.1
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3.6 Taxiway Analysis

3.6.1 Taxiway Average Velocity

The average velocity of an aircraft moving on an airport taxiway system depends

on many factors. Before the analysis of the collected data, we expected that the distance

of the taxiing segment would be a significant determinant of this velocity. Usually when

pilots are moving on a short segment, prefer to taxi slowly since they expect soon to

arrive at an intersection and might be instructed by the controller to stop for crossing

traffic. On the other hand when a pilot sees that he has a long stretch in front of him with

no imminent intersection, he taxies at higher speeds.

The location of the taxiway segment should also play an important role. Taxiways

far away from the terminal area are more likely to exhibit higher average velocities since

they tend to be less congested and their surrounding areas are usually free of obstacles.

Other variables that affect the taxiway velocities, are the complexity of the taxiway

system at the particular airport and the level of familiarity that each pilot, who operates

there, has with the system. The first variable usually remains constant while the second

one can vary, and cannot be very easily quantified.

Trying to test if the taxiway length and location relates to the average taxiway

velocity, we categorized each taxiway link that did not belong to a runway or was not an

exit link, into two groups. Those links that were shorter than 500 meters were assigned a

letter S and those that were longer a letter L. Each taxiway was also assigned either a

letter C (close) if it was located inside the outer taxilane, or a letter F (far) otherwise.
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Figure 3.6.1.1 shows the average velocity of all taxiways for each data block

independent of segment length or location. The velocities range between 7 and 16 knots.

However, standard deviations vary from 6 to 22 knots. Data block 3 exhibits the lowest

average velocity for its taxiways (7 knots), possibly due to the heavy traffic of that time

period. To traffic congestion can be also attributed the low velocities that we observe in

data block 4. Bad weather conditions (thunderstorms and fog) are the probable reasons

for low velocities in blocks 1 and 9.

Average Velocity in Taxiways

35

30. Mean
25

Stdev.
20

1 2 3 4 5 6 7 8 9 10

Data Block

Figure 3.6.1.1

The results of the previous taxiway categorization can be seen in figures 3.6.1.2

and 3.6.1.3. Longer segments almost always display higher average velocities than the

shorter ones. We must note though that in periods of heavy traffic the differences in speed

between longer and shorter taxiways become smaller. As figure 3.6.1.3 shows, taxiways

that are located far from the terminal area, in data blocks 1, 6, 9, 4 and 7, have higher

average velocities while in the other blocks lower. It is interesting to note that blocks that

have higher velocities, the runway configuration is the same (block 1, 6, 9 arrivals in 4R

107

Id 1,14 , , j 1 '1411 11, 1, 111" '1



departures from 9). The same pattern (same configuration for all blocks that exhibit

similar velocity characteristics) occurs in the other blocks of data, where the combination

(higher velocity - taxiway location) is opposite.

I Average Velocity in Taxiways Length : Short I Long

I II

I I I

* Mean Short

o Sd Short

Mean Long

Sd Long

N en~ IT in vC r- 00 o 0

Data Block

Figure 3.6.1.2

Figure 3.6.1.4 shows two groups of taxiways. In the first group, belong taxiways

that are located close to the terminal area and are short in length, while in the second one

the taxiways that are located further away and are longer. Here, the differences in

velocities between the far and long and the close and short becomes even larger in favor

of the longer and further away ones compared to the previous two figures. However,

these differences, in the blocks where close and short taxiways have higher velocities,

become smaller.

Overall, we can conclude that there exist a close relationship between the length

of the taxiway and the taxiing velocity. The location of the taxiway segment seems to be

also critical. We must also note that traffic congestion has a more deleterious effect on the

average taxiing velocity than bad weather conditions.
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3.6.2 Taxiway Use

Figure 3.6.2.1 through 3.6.2.10 present the use of the taxiway segments that

constitute the inner and outer taxilanes. All data blocks show an almost identical taxiway

use no matter what is the runway configuration. The most often used taxiway links are

B03-B04 and B04-B05 of the inner taxilane. Only block 3 demonstrates a higher

percentage wise use of the outer taxilane, probably due to the heavy surface traffic of that

day.

In figure 3.6.2.11 through 3.6.2.20 the use of the supporting taxiways is presented.

As supporting taxiways are classified all the taxiway links that do not belong to either a

runway or the inner and outer taxilanes, but feed traffic to the terminal and runway areas.

A very strong relationship between the use of the these taxiway links and the particular

runway configuration seem to exist, as figures of data blocks with the same configuration

seem identical.
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Chapter 4

Conclusions

4.1 Introduction

In this chapter the major observations of the previous analyses are discussed and

final conclusions are drawn. These conclusions are divided into three sections; runways,

intersections and taxiways. Finally, the last part provides some directions for future

research.
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4.2 Runways

The runway analysis showed some interesting results. The occupancy time on

landing does vary, as expected, with aircraft size but this variation is mainly due to the

fact that heavier aircraft tend to exit further down the runway, resulting in higher

occupancy times. However, aircraft using a given exit have similar occupancy time,

independently of aircraft size. The particular angle of the exit used also plays a very

significant role. Aircraft that use obtuse angled exits, usually exit at higher speeds, and

therefore maintain a higher average landing velocity resulting in similar occupancy times

compared to exits that are located much closer to the runway threshold. The standard

deviation of the occupancy time is usually smaller for aircraft using the first exits, than

those exiting further down the runway. Visibility also affected the occupancy time,

mainly due to the increased use of exits located further down the runway. In similar

weather conditions, aircraft using exit 6 (high speed) of runway 27, in day light had

average occupancy times of 35 seconds (lowest overall), while at night, in similar

weather conditions, most aircraft used exit 8 (low speed) and their occupancy times were

significantly increased (53 seconds).

In the analysis of exit usage, as mentioned above, heavier aircraft tend to use exits

located further away from the threshold, while smaller sized ones require shorter landing

distances and exit earlier. The specific turning angle of the exit was also a determinant

factor of its use. As a result, independently of runway, most aircraft tended to prefer the

use of obtuse angled (high speed) exits.

Exit velocities, as expected, were closely related to the angle of the exit, and

whenever aircraft where using obtuse angled exits they exited at significantly higher

speeds. However, this was only true, for high speed exits that were accompanied with
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long exit segments and allowed the pilot enough distance to brake. The exit velocity did

not vary uniformly between aircraft classes and it seemed that exit velocity does not

depend on aircraft size.

The landing velocity profiles showed a close relationship between the amount of

deceleration and the type of exit (high or low speed) used after landing. In the final

approach, we observed a slight deceleration as the aircraft were approaching the

threshold. Data from runway 27, illustrated the importance of visibility, as in day light,

this deceleration was quite significant whereas during night operations we saw a much

smoother final approach profile. In runway 15R, under different weather conditions,

aircraft seem to even accelerate before the threshold.

4.3 Intersections

There is a significant difference in average crossing time depending in the runway

configuration and thus in the direction of use of some intersections. For example, when

intersections 10, 11, 12, 13 and 14 are used in the inbound direction (towards the terminal

area), usually after arrivals in runway 27, the crossing times seem to be much smaller

compared to those of departing aircraft which use the same intersections but in the

opposite direction (outbound), and often have to form a queue while waiting to depart

from runway 9 and thus cross these intersections very slowly.

Comparing the crossing times of the two different segments of each intersection

(time 1 and time 2), we observe that usually when an intersection is used in the inbound

direction time 2 is larger than time 1 and when it used in the outbound time 1 is larger.

This could be due to the fact that often pilots slow down and approach the terminal area
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cautiously, while on their way to the departing runway, they accelerate faster out of an

intersection since the taxiways that lead away from the terminal are usually longer.

Aircraft size did not seem to be a determinant of crossing times as larger size aircraft had

longer crossing times only in few blocks. Exit usage was closely tied to the operating

runway configuration.

4.4 Taxiways

In the taxiway analysis we saw that there exists a close relationship between the

length of the taxiway and its velocity. Taxiways far away from the terminal almost

always exhibit higher average velocities since they tend to be less congested and free of

surrounding obstacles. We must note though, that in periods of heavy traffic the

differences in speed between longer and shorter taxiways become smaller. The use of the

inner and outer taxilanes under different configurations is almost identical. However, a

very strong relationship between the use of the supporting taxiways around the terminal

area, and the particular runway configuration seems to exist.

4.5 Directions for Future Research

Although after the analysis of the data many questions regarding the motion

characteristics of aircraft moving on the surface of Logan airport have been answered,

many more have been raised. More research should be done on the factors that affect

airport surface traffic in order to successfully develop and implement future surface
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traffic automation systems. This study was limited to only Logan airport but a future one

should include and compare data from a wide variety of airports.

Such a study could include analysis of other variables that affect surface traffic

such as congestion and examine in further detail their potential effects. Most importantly,

a much larger size of data must be gathered. This requires some form of radar

surveillance at the airport. In our case, even though almost 12 hours of airport operation

data were made available for this study, after the breakdown of all aircraft by aircraft

type, runway and exit used we were left with very small sample for each variable that we

wanted to measure, limiting the accuracy of our results. There is much more data

available for Logan if further confidence in the measurements is required.

Hopefully, the content of this thesis will act a catalyst in attracting interest and

consequently, more studies will be under taken in the future, for a more complete

understanding of the surface traffic variables and a more efficient use of the airport

surface.
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