FLIGHT TRANSPORTATION LABORATORY
REPORT R 90-3

PRESENTATIONS FROM THE
MIT/INDUSTRY COOPERATIVE RESEARCH
PROGRAM
ANNUAL MEETING 1990

Peter P. Belobaba
Catherine H. Bohutinsky
Anthony O. Lee
Elizabeth L. Williamson
Amedeo R. Odoni, Stephan Kolitz and Mostafa Terrab
John Pararas
Robert W. Simpson
Tom Svrcek and Peter P. Belobaba

JUNE 1990
PRESENTATIONS FROM THE
MIT/INDUSTRY COOPERATIVE RESEARCH PROGRAM
ANNUAL MEETING
1990

Peter P. Belobaba
Catherine H. Bohutinsky
Anthony O. Lee
Elizabeth L. Williamson
Amedeo R. Odoni, Stephan Kolitz and Mostafa Terrab
John Pararas
Robert W. Simpson
Tom Svrcek and Peter P. Belobaba

JUNE 1990
PRESENTATIONS FROM THE MIT/INDUSTRY COOPERATIVE RESEARCH PROGRAM ANNUAL MEETING 1990

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRLINE REVENUE MANAGEMENT: RESEARCH OVERVIEW</td>
<td>3</td>
</tr>
<tr>
<td>Dr. Peter P. Belobaba</td>
<td></td>
</tr>
<tr>
<td>ANALYSIS OF AIRLINE DEMAND "SELL UP" POTENTIAL</td>
<td>19</td>
</tr>
<tr>
<td>Catherine H. Bohutinsky</td>
<td></td>
</tr>
<tr>
<td>PROBABILISTIC MODELS OF THE AIRLINE RESERVATIONS</td>
<td>44</td>
</tr>
<tr>
<td>PROCESS FOR SEAT INVENTORY CONTROL</td>
<td></td>
</tr>
<tr>
<td>Anthony O. Lee</td>
<td></td>
</tr>
<tr>
<td>DYNAMIC SIMULATION OF ORIGIN-DESTINATION SEAT INVENTORY CONTROL</td>
<td>62</td>
</tr>
<tr>
<td>Elizabeth L. Williamson</td>
<td></td>
</tr>
<tr>
<td>GROUND HOLDING STRATEGIES FOR AIR TRAFFIC CONTROL</td>
<td>85</td>
</tr>
<tr>
<td>Prof. Amedeo R. Odoni, Stephan Kolitz and Mostafa Terrab</td>
<td></td>
</tr>
<tr>
<td>AN INTEGRATED ENVIRONMENT FOR PLANNING PASSENGER TERMINALS</td>
<td>108</td>
</tr>
<tr>
<td>Dr. John Pararas</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION TO AIR TRAFFIC CONTROL ENGINEERING</td>
<td>130</td>
</tr>
<tr>
<td>Prof. Robert W. Simpson</td>
<td></td>
</tr>
<tr>
<td>NEW YORK AIRPORTS TRAFFIC FLOW ANALYSIS</td>
<td>146</td>
</tr>
<tr>
<td>Tom Svrcek and Dr. Peter P. Belobaba</td>
<td></td>
</tr>
</tbody>
</table>
AIRLINE YIELD MANAGEMENT

RESEARCH OVERVIEW

Dr. Peter P. Belobaba
MIT Flight Transportation Laboratory

Presentation to Annual Meeting
MIT/Industry Cooperative Research Program
May 31, 1990
OVERVIEW

- Simulation of airline yield management strategies

- Single flight leg with a set of nested inventory classes.

- Simulation results address the following questions:

1. What is the most appropriate OPTIMIZATION ALGORITHM?

2. How important is more accurate DEMAND FORECASTING?

3. What additional revenue can be realized from DYNAMIC REVISION of booking limits?
TERMINOLOGY AND DEFINITIONS

AIRLINE YIELD MANAGEMENT:

- Limiting the availability of seats in different booking classes

BOOKING CLASS (also FARE CLASS):

- Each fare type is associated with a booking class. A single flight leg departure can have 5 to 14 booking classes.

BOOKING LIMIT:

- Maximum number of reservations that may be accepted in a booking class.

FLIGHT LEG CONTROL:

- Booking limits are applied to booking classes for each flight leg, independent of other legs.
BOOKING CLASS STRUCTURE

EXAMPLE: 100 seats, 5 nested booking classes with Y-class having highest fare

BOOKING LIMITS: Y100 B85 M65 Q40 V10

- 15 seats are protected for exclusive use of Y-class bookings, but Y-class can book up to 100 (capacity).
OPTIMIZATION ALGORITHMS

1. DETERMINISTIC PROTECTION

EXAMPLE: 5 Fare Classes, 195 Seats

<table>
<thead>
<tr>
<th>CLASS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>28</td>
<td>43</td>
<td>54</td>
<td>49</td>
<td>46</td>
</tr>
<tr>
<td>Std. Error</td>
<td>9.8</td>
<td>15.1</td>
<td>18.9</td>
<td>17.2</td>
<td>16.1</td>
</tr>
<tr>
<td>Fare</td>
<td>$289</td>
<td>236</td>
<td>205</td>
<td>141</td>
<td>127</td>
</tr>
</tbody>
</table>

Deterministic Protection | 28 | 43 | 54 | 49 | 21 |

2. EMSR ALGORITHM (Belobaba 1987)

EXAMPLE: 5 Fare Classes, 195 Seats

<table>
<thead>
<tr>
<th>CLASS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMSR Nested Protection</td>
<td>19</td>
<td>31</td>
<td>64</td>
<td>34</td>
<td>47</td>
</tr>
</tbody>
</table>
STATIC SIMULATION OF EXPECTED REVENUES

INPUTS:

- 5 booking classes on single flight leg
- Probabilistic demand distribution, total demand of 220
- Varying capacities, from 100 to 300
- 2 demand scenarios:
 (A) High high-fare demand
 (B) High low-fare demand

SIMULATION:

- Demands drawn at a single point in time
- Lowest class books first; highest last
- Independent class demands; no "sell-up"
- No revisions of booking limits
- 1,000 flight sample
NESTED FARE CLASSES

Scenario A: High High-Fare Demand

Scenario B: High Low-Fare Demand

Figure 1
FIGURE 2
RESERVATIONS FORECASTING

- Accurate flight-specific and class-specific forecasts of demand (bookings) at specific times before flight departure.

Common forecasting methods:

- Seasonally adjusted moving average models
- Regression models
- Combined causal and time series models.

Airlines are able to reduce forecast standard errors for each flight departure and fare class to 30-50% of the mean forecast.

- More precise forecasts lead to improved allocations of seats to fare classes and higher revenues.
SIMULATION OF THE VALUE OF FORECASTING

Four fare classes Y, B, M and Q with relative revenues of 100, 70, 50 and 30.

Four demand scenarios:

- Low (30% of capacity)
- Medium (60% of capacity)
- High (90% of capacity)
- Very high (120% of capacity)

Simulation of forecast fare class demands that differ from actual demands.

- Forecast mean and standard error used to calculate EMSR booking limits, where

\[\text{FORECAST} = \text{FACTOR} \times \text{ACTUAL DEMAND} \]

and FACTOR ranges from 0.25 to 3.0.

- Demand drawn from a normal density of the actual mean and standard deviation of demand.

- Simulation of 2000 flights
<table>
<thead>
<tr>
<th>FORECAST ACCURACY</th>
<th>FORECAST PERCENTAGE CHANGE IN AVERAGE REVENUE FROM THE BASE CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% OF BASE CASE</td>
<td>0% 0% -3.6% -9.2%</td>
</tr>
<tr>
<td>75% OF BASE CASE</td>
<td>0% 0% -1.4% -3.1%</td>
</tr>
<tr>
<td>90% OF BASE CASE</td>
<td>0% 0% -0.3% -0.6%</td>
</tr>
<tr>
<td>95% OF BASE CASE</td>
<td>0% 0% -0.1% 0.2%</td>
</tr>
<tr>
<td>BASE CASE (PERFECT FORECAST)</td>
<td>---- ---- ---- ----</td>
</tr>
<tr>
<td>105% OF BASE CASE</td>
<td>0% 0% -0.1% 0.1%</td>
</tr>
<tr>
<td>110% OF BASE CASE</td>
<td>0% 0% -0.4% -0.5%</td>
</tr>
<tr>
<td>125% OF BASE CASE</td>
<td>0% 0% -2.1% -2.9%</td>
</tr>
<tr>
<td>150% OF BASE CASE</td>
<td>0% -0.5% -7.9% -9.9%</td>
</tr>
<tr>
<td>200% OF BASE CASE</td>
<td>0% -4.2% -22.6% -17.6%</td>
</tr>
</tbody>
</table>
AVERAGE PERCENTAGE IMPROVEMENT OVER
THE BASE CASE -- CAPACITY OF 200

FIGURE 3
DYNAMIC BOOKING LIMIT REVISION

Airlines are able to revise the fare class booking limits for a future flight as departure day nears.

A revised set of fare class booking limits can be found based on:

- a revised forecast of demand still to come
- number of available seats remaining

Examined the revenue impact of setting booking limits at 5 points in time prior to departure, compared to a single set of booking limits.
SUMMARY OF RESULTS

- Probabilistic optimization algorithm can increase expected revenues from 1 to 3 percent on high demand flights, compared to a deterministic approach.

- Each 10 percent improvement in the accuracy of forecasts can lead to revenue increases of 1 to 4 percent.

- Dynamic revision of booking limits can lead to expected revenue increase of up to 4 percent.

Further simulation analysis now under way to assess interaction of these three elements.
ANALYSIS OF AIRLINE DEMAND
"SELL UP" POTENTIAL

Catherine H. Bohutinsky

Flight Transportation Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

Presented to
MIT-Industry Cooperative Research Program

May 31, 1990
OUTLINE

• Basic Definitions

• Example of a Sell Up Strategy

• Revenue Impact Measurements

• Sell Up Test Description

• Sell Up Test Results

• Conclusions
The purpose of this study was to address the issue of passenger choice shifts during the booking process.

The unavailability of a desired flight and fare class to a consumer can lead to:

- A shift to a higher fare class on the same flight (vertical shift)
- A shift to a different flight on the same airline (horizontal shift)
- A booking loss to the airline

Sell Up refers to the vertical shift portion and occurs when a passenger purchases a ticket at a higher fare class on the same travel itinerary originally requested.
Passenger Choice Options
• Benefits:
 • Airline gains higher revenue from the passenger
 • Costs of carrying this passenger remain the same
 • Thus, the airline increases profits by the difference of the two fare classes.

• Questions to be Answered:
 • How prevalent is sell up?
 • Does it occur in every market?
 • If not, which markets have a high occurrence of sell up and why?

• Identifying Flights with Sell Up Potential:
 1. The flight should experience historically high demand levels.
 2. A larger proportion of business travelers increases the probability of sell up.
 3. A large amount of competition from other carriers serves to decrease sell up potential.
EXAMPLE OF A SELL UP STRATEGY

- A sell up test can be performed on select flights to test for the existence (or nonexistence) of sell up.

- This test will compare the overall flight revenues of two types of flights in the same market.

1. Sell up flight(s): The flight in which a sell up strategy will be implemented.

2. Control flight(s): To be managed using usual seat inventory control measures. This flight will be used as a comparison measure.
SIMPLE EXAMPLE:

- Fare class structure (in descending order): Y; B; M; H; Q; K; L

- Sell Up Strategy: Close Class M seven days prior to the sell up flight's departure.

- Seat inventory management on the control flight will be performed as usual with no premature class closings.

Potential Impact:

- Passengers requesting reservations in Class M from Day 7 to Day 0 would be denied the option.

- These passengers would have the opportunity to sell up to Class B or Class Y.

- Lower fare classes are assumed to be closed to the passengers due to advanced purchase restrictions and nested fare class structure.
REVENUE IMPACT MEASUREMENTS

The revenue impact difference, ΔR, between the sell up flight and the control flight is expressed as:

$$
\Delta R = f_Y \sum_{j=7}^{0} (b_{Y_j}^s - b_{Y_j}^c) +
$$

$$
f_B \sum_{j=7}^{0} (b_{B_j}^s - b_{B_j}^c) +
$$

$$
f_M \sum_{j=7}^{0} (b_{M_j}^s - b_{M_j}^c)
$$

where
- s = sell up flight
- c = control flight
- f_Y = fare value in class Y
- $b_{Y_j}^s$ = bookings accepted in class Y day j prior to departure for the sell up flight
- Day 7 = first day that the sell up policy was implemented
- Day 0 = the day of the flights' departure
This incremental revenue test allows one to compare flight revenues during the period the sell up policy was implemented, screening out differences in booking levels not due to sell up.

The difference in bookings after the sell up policies are implemented is the basis of this test.

Revenue impact is thus the sum of the revenue impact differences for Classes Y, B, and M, which are the classes affected by the sell up strategy. Differences in flight revenues are only measured from Day 7 to Day 0.

The revenue impact difference for any given sell up policy can be generalized as:

$$\Delta R = \sum_{m=v}^{M} \sum_{j=t}^{0} (f_m (b_{mj} - b_{mj}))$$

where
- \(v \) = the lowest fare class that is affected by the sell up policy
- \(t \) = first day that the sell up policy is implemented
SELL UP TEST DESCRIPTION

- Under a research agreement with Delta Air Lines, a sell up strategy was developed and tested.

- Eleven markets were selected on the basis of having historically high demand levels.

- Two flights a day, two days a week, for a two week period were chosen for each of these markets to be a part of the analysis, for a total of eighty-eight flights to be included in the test.

- Actions to be taken were as follows:

 AUTOMATED CONTROL - No modifications were to be made on recommended booking limits.
 SINGLE POINT SELL UP - Application of sell up strategies was done on an individual flight basis, taking into account each markets' historical booking patterns.

- These actions were distributed evenly across flight numbers, days of week, and across the two week period.
MARKET | **FLIGHT** | **WEEK** | **DAY OF WEEK** | **ACTION TAKEN**
--- | --- | --- | --- | ---
ATLBOS | A | 1 | Tuesday | AUTOMATED CONTROL
 | | 1 | Wednesday | SINGLE POINT SELL UP
 | | 2 | Tuesday | SINGLE POINT SELL UP
 | | 2 | Wednesday | AUTOMATED CONTROL

B | 1 | Tuesday | SINGLE POINT SELL UP
 | | 1 | Wednesday | AUTOMATED CONTROL
 | | 2 | Tuesday | AUTOMATED CONTROL
 | | 2 | Wednesday | SINGLE POINT SELL UP

Example of Actions to be Taken, Two Week Study

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MARKET</th>
<th>SELL UP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FARE CLASS</td>
<td>DAY CLOSED</td>
</tr>
<tr>
<td>I</td>
<td>ATLBOS</td>
<td>K,L</td>
<td>42</td>
</tr>
<tr>
<td>BOSATL</td>
<td>H</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

II	ATLLAX	K,L	21
LGAATL	H	14	
ATLDCA	B	7	
DFWATL			
ATLGSP			
GSPATL			

III	LGAFLL	K,L	21
ATLMLB	H	7	
MLBATL			

Sell Up Policies Developed on an Individual Market Basis
SELL UP TEST RESULTS

Total Revenues:

- % Difference Same Week - Compares the coach class revenue value of the sell up flight with the control flight of the same week.

- % Difference Across Weeks - Compares the revenue values of the single point sell up flight with the automated control flight across different weeks.

Relatively few flight pairs exhibit positive percentage differences, when compared in the same week or across weeks.

- 14 out of 44 percentage difference values for the % Difference Same Week comparison are positive

- 12 out of 44 percentage difference values for the % Difference Across Week comparison are positive.
Market Flight Week Action Taken

<table>
<thead>
<tr>
<th>CITY PAIR</th>
<th>ACTION TAKEN</th>
<th>SAME WEEK</th>
<th>ACROSS WEEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLGSX</td>
<td>AUTOMATED CONTROL</td>
<td>-18.28%</td>
<td>18.42%</td>
</tr>
<tr>
<td>BOSATL</td>
<td>AUTOMATED CONTROL</td>
<td>-17.78%</td>
<td>15.80%</td>
</tr>
<tr>
<td>GSPATL</td>
<td>SINGLE POINT SELLP</td>
<td>-9.14%</td>
<td>33.66%</td>
</tr>
<tr>
<td>ATLMLB</td>
<td>AUTOMATED CONTROL</td>
<td>-25.00%</td>
<td>38.00%</td>
</tr>
<tr>
<td>BOSATL</td>
<td>SINGLE POINT SELLP</td>
<td>-24.94%</td>
<td>24.94%</td>
</tr>
<tr>
<td>GSPATL</td>
<td>SINGLE POINT SELLP</td>
<td>-24.94%</td>
<td>24.94%</td>
</tr>
</tbody>
</table>

Total Revenue Results

<table>
<thead>
<tr>
<th>CITY PAIR</th>
<th>ACTION TAKEN</th>
<th>SAME WEEK</th>
<th>ACROSS WEEKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLGSX</td>
<td>AUTOMATED CONTROL</td>
<td>-18.28%</td>
<td>18.42%</td>
</tr>
<tr>
<td>BOSATL</td>
<td>AUTOMATED CONTROL</td>
<td>-17.78%</td>
<td>15.80%</td>
</tr>
<tr>
<td>GSPATL</td>
<td>SINGLE POINT SELLP</td>
<td>-9.14%</td>
<td>33.66%</td>
</tr>
<tr>
<td>ATLMLB</td>
<td>AUTOMATED CONTROL</td>
<td>-25.00%</td>
<td>38.00%</td>
</tr>
<tr>
<td>BOSATL</td>
<td>SINGLE POINT SELLP</td>
<td>-24.94%</td>
<td>24.94%</td>
</tr>
<tr>
<td>GSPATL</td>
<td>SINGLE POINT SELLP</td>
<td>-24.94%</td>
<td>24.94%</td>
</tr>
</tbody>
</table>

TOTAL REVENUE RESULTS
Revenue Impact Results:

- Revenue impact tests were performed on a flight by flight basis to further assess sell up impact.

- The net Change in Bookings was determined on an individual class level, depending upon when the class was affected by the sell up actions.

- Revenue Impact for a specific class is the Change in Bookings multiplied by the average posted fare value for the class.

- Total Revenue Impact for a specific class is the sum of the revenue impact of the two sell up flights minus the sum of the revenue impact of the two control flights. If this value is positively valued, then sell up has had a positive impact in the specific class. In contrast, if this revenue value is negative, sell up has had a negative impact on the class.
• The revenue impact of a specific sell up strategy can be measured using Total Revenue Impact values. For example, the impact of closing B-class in the ATLBOS market at Day 7 can be calculated by adding up the Total Revenue Impact of Y and B-classes.

• Total Revenue Impact of All Classes is the sum of the revenue impact differences in classes Y through L.

• This value was positive for only 2 out of the 22 flights numbers surveyed.
Incremental Revenue Impact Results

<table>
<thead>
<tr>
<th>MARKET</th>
<th>FLIGHT NUMBER</th>
<th>WEEK OF DEPARTURE</th>
<th>ACTION TAKEN</th>
<th>CHANGE IN Y</th>
<th>CHANGE IN D</th>
<th>CHANGE IN H</th>
<th>CHANGE IN Q</th>
<th>CHANGE IN K</th>
<th>CHANGE IN L</th>
<th>Y</th>
<th>B</th>
<th>REVENUE IMPACT</th>
<th>TOTAL REVENUE IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>H</td>
</tr>
<tr>
<td>ATLBS</td>
<td>B</td>
<td>1</td>
<td>SELL UP</td>
<td>51</td>
<td>-9</td>
<td>-5</td>
<td>-1</td>
<td>16</td>
<td>-2</td>
<td>-7</td>
<td></td>
<td>$15,453</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTROL</td>
<td>39</td>
<td>-8</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>22</td>
<td>14</td>
<td></td>
<td>$11,817</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTROL</td>
<td>32</td>
<td>-16</td>
<td>2</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td></td>
<td>$9,696</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SELL UP</td>
<td>30</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>22</td>
<td>-6</td>
<td>-1</td>
<td></td>
<td>$9,090</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>$3,030</td>
<td>$0</td>
<td>($925)</td>
<td>($3,255)</td>
</tr>
<tr>
<td>DFWATL</td>
<td>A</td>
<td>1</td>
<td>SELL UP</td>
<td>40</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>3</td>
<td>-6</td>
<td>-1</td>
<td></td>
<td>$10,880</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTROL</td>
<td>39</td>
<td>-1</td>
<td>0</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>10</td>
<td></td>
<td>$10,608</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTROL</td>
<td>34</td>
<td>2</td>
<td>0</td>
<td>20</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td></td>
<td>$9,248</td>
<td>$468</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SELL UP</td>
<td>38</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td>-7</td>
<td>-6</td>
<td></td>
<td>$10,536</td>
<td>$422</td>
</tr>
<tr>
<td></td>
<td>$1,560</td>
<td>($469)</td>
<td>$422</td>
<td>($4,896)</td>
</tr>
<tr>
<td>LGAFLL</td>
<td>B</td>
<td>1</td>
<td>SELL UP</td>
<td>--</td>
<td>--</td>
<td>14</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>-17</td>
<td></td>
<td>$2,408</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTROL</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>-5</td>
<td>-1</td>
<td></td>
<td>$344</td>
<td>$1,640</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTROL</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>8</td>
<td>39</td>
<td>5</td>
<td>8</td>
<td></td>
<td>$172</td>
<td>$1,312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SELL UP</td>
<td>--</td>
<td>--</td>
<td>12</td>
<td>-3</td>
<td>23</td>
<td>-10</td>
<td>-3</td>
<td></td>
<td>$2,064</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>$3,956</td>
<td>($2,952)</td>
<td>($2,952)</td>
<td>($9640)</td>
</tr>
</tbody>
</table>
• In general, sell up appeared to be most successful from Class B to Class Y.

• Revenue impact was positive for 10 out of the 22 flights when Classes Y and B are considered alone.

• Sell up was less successful in the lower fare classes (Class H to Class M as well as Class L and K to Class Q).

• When considering the revenue impact of Classes H and M alone, 2 out of the 22 flights had a positive revenue impact.

• None of the flights surveyed had a positive revenue impact with respect to Classes L, K and Q only.
Revenue Impact Measurements for Y and B Fare Classes

<table>
<thead>
<tr>
<th>MARKET</th>
<th>FLIGHT</th>
<th>Y CLASS</th>
<th>B CLASS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>REVENUE IMPACT</td>
<td>REVENUE IMPACT</td>
<td></td>
</tr>
<tr>
<td>ATLBOS</td>
<td>A</td>
<td>($4,545)</td>
<td>($234)</td>
<td>($4,779)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$3,030</td>
<td>$80</td>
<td>$3,030</td>
</tr>
<tr>
<td>ATLLAX</td>
<td>A</td>
<td>$2,352</td>
<td>($3,641)</td>
<td>($1,289)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>($4,704)</td>
<td>$0</td>
<td>($4,704)</td>
</tr>
<tr>
<td>LGAATL</td>
<td>A</td>
<td>$16,038</td>
<td>($723)</td>
<td>$15,315</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>($4,752)</td>
<td>$0</td>
<td>($4,752)</td>
</tr>
<tr>
<td>MLBATL</td>
<td>A</td>
<td>$1,442</td>
<td>($3,800)</td>
<td>($2,358)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$0</td>
<td>($608)</td>
<td>($608)</td>
</tr>
<tr>
<td>DFWATL</td>
<td>A</td>
<td>$1,360</td>
<td>($468)</td>
<td>$892</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>($2,176)</td>
<td>($1,170)</td>
<td>($3,346)</td>
</tr>
<tr>
<td>LGAFLL</td>
<td>A</td>
<td>$2,064</td>
<td>($3,444)</td>
<td>($1,380)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$3,956</td>
<td>($2,952)</td>
<td>$1,004</td>
</tr>
<tr>
<td>ATLGSP</td>
<td>A</td>
<td>$0</td>
<td>($1,200)</td>
<td>($1,200)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$6,291</td>
<td>($1,680)</td>
<td>$4,611</td>
</tr>
<tr>
<td>BOSATL</td>
<td>A</td>
<td>$302</td>
<td>$0</td>
<td>$302</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$5,322</td>
<td>($2,270)</td>
<td>$3,052</td>
</tr>
<tr>
<td>ATLMLB</td>
<td>A</td>
<td>$1,188</td>
<td>($3,634)</td>
<td>($2,446)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$396</td>
<td>($2,212)</td>
<td>($1,816)</td>
</tr>
<tr>
<td>GSPATL</td>
<td>A</td>
<td>$10,992</td>
<td>$233</td>
<td>$11,225</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>($3,893)</td>
<td>($1,864)</td>
<td>($5,757)</td>
</tr>
<tr>
<td>ATLDCA</td>
<td>A</td>
<td>$5,264</td>
<td>$0</td>
<td>$5,264</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$5,508</td>
<td>($1,120)</td>
<td>$4,388</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- Sell up is flight specific. It is possible for one flight to exhibit sell up behavior and another flight in the same market to show no indication of sell up.

- The sell up strategies tested in this study had an overall negative revenue impact (revenue gained through sell up was less than revenue lost by prematurely closing out specific fare classes).

- Comparisons of flights within the same week and across weeks yielded relatively the same negative sell up impacts.

- Some positive indication of sell up was shown from Class B to Class Y. In general, lower fare classes showed little or no positive sell up impact.
OVERALL CONCLUSIONS

The following criteria should be met in the development of a successful sell up strategy:

1. The policy should be developed on a flight by flight basis, taking into account that sell up is flight specific.

2. Booking limits should be restricted in upper fare classes only, in order to impose sell up in the higher fare classes.

3. Booking limit restrictions should not be made in lower fare classes, due to the lack of sell up behavior in these classes.
APPENDIX

BOOKING INFORMATION

Sell Up vs. Control Flights
BOOKING INFORMATION

ATL-GSP FLIGHT #B, Y CLASS

ATL-GSP FLIGHT #B, B CLASS

ATLGP "Y", "B" Classes, Flight B
BOOKING INFORMATION

GSP-ATL FLIGHT #A, Y CLASS

GSP-ATL FLIGHT #B, Y CLASS

GSPATL "Y" Class, Flights A, B
BOOKING INFORMATION

ATL-DCA FLIGHT #B, M CLASS

ATL-DCA FLIGHT #B, H CLASS

ATLDCA "M", "H" Classes, Flight B
BOOKING INFORMATION

BOS-ATL FLIGHT #A, Q CLASS

DAYS OUT

□ C.1 + SU.1 ○ SU.2 △ C.2

BOS-ATL FLIGHT #A, K CLASS

DAYS OUT

□ C.1 + SU.1 ○ SU.2 △ C.2

BOSATL “Q”, “K” Classes, Flight A
PROBABILISTIC MODELS
OF THE
AIRLINE RESERVATIONS PROCESS
FOR
SEAT INVENTORY CONTROL

by

Anthony Lee
Flight Transportation Laboratory
and
Center for Transportation Studies
May 31, 1990
OUTLINE OF PRESENTATION

• PROBLEM DESCRIPTION

• AIRLINE DEMAND ASSUMPTIONS

• PROBABILISTIC FRAMEWORK

• APPLICABILITY OF PROBABILISTIC MODELS

• EXTENSIONS AND CONCLUSIONS
GOAL OF THIS RESEARCH

- DEVELOP A FRAMEWORK FOR ACCURATE FLIGHT-SPECIFIC, CLASS-SPECIFIC FORECASTS OF TOTAL BOOKINGS AT SPECIFIC TIMES BEFORE A FLIGHT DEPARTS.

- Example: Today, we want to forecast how many more Y Class passengers will book on Flight 123 departing on June 30, 1990.
SCHEME OF THE PROBABILISTIC PROCESS

Bookings = Total Reservations - Total Cancellations
= number of reservations currently remaining in the system
AIRLINE DEMAND ASSUMPTIONS

- AIRLINE BOOKINGS ARE ASSUMED TO BE:
 - STATIONARY -- stable once cyclical and seasonal components are eliminated.
 - DISTINCT -- ability to isolate and distinguish demand for each fare class.
 - INDEPENDENT -- no (or very little) correlation between fare classes ⇒ fare classes are only related through the booking limits.
INTRODUCTION TO PROBABILISTIC FRAMEWORK

• Booking Process as a *Stochastic Process*

• **Random Variable** -- bookings in the res. system for each fare class at any time.

• **State Space** -- set of all possible values of the number of bookings in the res. system.

• Booking Limits censor the state space.

• **Time Element** -- time is measured from 0 (the start of bookings) to T (flight time).
• **Discrete State, Continuous Time Stochastic Process**

• **Immigration and Death Process**

 • Each request is a potential immigrant. Note that requests do *not* depend on the current size of the population.

 • Requests are accepted if there is space left in the fare class.

 • Each cancellation is a death of an existing member of the population. Note that the number of cancellations per period depend on the size of the population.
PROBABILISTIC APPROACH

MODEL 1: SINGLE FARE CLASS, INFINITE CAPACITY

Assumptions:

1. Requests arrive in a Poisson manner with time-dependent rate \(\lambda(t) \).

2. Given \(n \) bookings, cancellations occur in a Poisson manner with rate of \(n\mu(t) \) per unit time.

3. Initially, there are no bookings in the system.

In a small period of time \(\Delta t \), we write the following conditional probabilties:

\[
\begin{align*}
P[B(t+\Delta t) = n+1 | B(t) = n] &= \lambda(t) \Delta t + o(\Delta t) \\
P[B(t+\Delta t) = n-1 | B(t) = n] &= n\mu(t)\Delta t + o(\Delta t) \\
P[B(t+\Delta t) = n | B(t) = n] &= 1 - \lambda(t) \Delta t - n\mu(t)\Delta t + o(\Delta t) \\
P[B(t+\Delta t) = k | B(t) = n] &= o(\Delta t) \text{ for } |k-n| > 1
\end{align*}
\]
Given the previous equations, assuming Δt is small, and using the notation $P_n(t) = P(B(t) = n)$, we have:

$$P_n(t + \Delta t) = P_{n+1}(t) n \mu(t) \Delta t + P_n(t) [1 - \lambda(t) \Delta t - n \mu(t) \Delta t]$$

$$+ P_{n-1} \lambda(t) \Delta t$$

ignoring the higher order terms $o(\Delta t)$.

Rearranging terms and letting $\Delta t \to 0$, we get the following differential equation:

$$P'_n(t) = - (\lambda(t) + n \mu(t)) P_n(t) + (n+1) \mu(t) P_{n+1}(t)$$

$$+ \lambda(t) P_{n-1}(t)$$

with initial condition

$$P_0(0) = 1.$$
The solution to the differential equations is the following:

\[P_n(t) = \frac{\exp\left(-\int_0^t \lambda(s) e^{-\rho(s,t)} \, ds\right) \left[\int_0^t \lambda(s) e^{-\rho(s,t)} \, ds\right]^n}{n!} \]

where \(\rho(s,t) = \int_s^t \mu(\tau) \, d\tau \)

This is a Poisson distribution.

OBSERVATIONS:

1. The expected number of bookings at time \(t \) is

\[E[B(t)] = \int_0^t \lambda(s) e^{-\rho(s,t)} \, ds \]

2. If \(\lambda(t) = \lambda \) and \(\mu(t) = \mu \), then

\[P_n(t) = \frac{\exp\left[-\frac{\lambda}{\mu} (1-e^{-\mu t})\right] \left[\frac{\lambda}{\mu} (1-e^{-\mu t})\right]^n}{n!} \]

\[E[B(t)] = \frac{\lambda}{\mu} (1-e^{-\mu t}) \]
MODEL 2: SINGLE FARE CLASS, FINITE CAPACITY

Assumptions:

1. Requests are Poisson with rate $\lambda(t)$.
2. A request is accepted if there is space available on the flight (bookings are less than capacity). Otherwise, the request is denied.
3. Cancellations are Poisson with rate $\mu(t)$.
4. Initially, there are no bookings in the system.

Following the same logic as before, we can write the following differential equations:

$$P'_n(t) = - (\lambda(t) + n\mu(t)) P_n(t) + (n+1)\mu(t) P_{n+1}(t)$$

$$+ \lambda(t) P_{n-1}(t), \text{ for } n = 0, 1, 2, \ldots, \text{CAP-1}$$

$$P'_{\text{CAP}}(t) = \lambda(t) P_{\text{CAP}-1}(t) - (\text{CAP})\mu(t) P_{\text{CAP}}(t)$$
Cannot find solution for general time-dependent parameters.

However, if $\lambda(t) = \lambda$ and $\mu(t) = \mu$, then the solution is the following:

\[
\Pr_n(t) = \frac{\left(\frac{\lambda}{\mu}\right)^n}{n!} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \frac{(\lambda^j)}{(\mu^j)} + \frac{(\lambda^j)}{(\mu^j)} \sum_{r=0}^{\infty} \frac{D_n(r)}{r!} D_\cap(r) D_\cap(r+1) e^{\mu t}
\]

where r is summed over the c roots of $D_e(s+1) = 0$ and

\[
D_n(r) = \sum_{k=0}^{n} \binom{n}{k} r^{-k} r(r+1)\cdots(r+k-1)
\]

The truncated Poisson distribution seems to agree with past empirical distributional studies.
APPLICABILITY OF PROBABILISTIC MODELS

Crucial Observations

- What we observe in the booking process is the model with finite capacity. That is, demand is censored at the booking limit.

- What we want is the expected demand from the infinite capacity model. To optimize seat allocations correctly, an airline wants to know the true, unconstrained demand.

(What if we had an elastic aircraft???)
Algorithm for Predicting Demand

Two-Step Process

1. Estimate the parameters λ and μ from the finite capacity model.

2. Obtain a forecast of expected bookings for a future flight by substituting the estimated parameters into the infinite capacity model. In particular, the forecast is obtained from the expected bookings to come expression.
Mathematical Tractability

- If we make one simple approximation, then the probability expressions for both models become much more satisfying.

- We make the Poisson approximation to the Binomial distribution.
 - The infinite capacity model probability statement becomes Poisson.
 - The finite capacity model probability statement becomes censored Poisson.

- Estimates of the parameters λ and μ can be obtained via a straightforward application of maximum likelihood estimation.
Data Requirements

- Booking Curves from previous weeks of the same flight number.

- Separate data on requests and cancellations could be helpful, but not necessary.

- Seasonal Index by date and fare class.
EXTENSIONS

- Tour Groups -- Bulk arrivals and cancellations
- Multivariate Process -- Same aircraft, requests for different fare classes
- Waitlisting -- Queueing problem
- Horizontal and Vertical Spill -- Retrial
- Cancellations -- age-dependent
- Nested inventory -- shared state space
CONCLUSIONS

- "Intuitive" Model of the Booking Process

- Dynamic over Time

- Mathematically Complex on a Large-Scale Basis, but straightforward ML estimation

- Starting Point for a Probabilistic View of the Booking Process
DYNAMIC SIMULATION
OF
ORIGIN-DESTINATION SEAT INVENTORY
CONTROL

By

Elizabeth L. Williamson
Flight Transportation Laboratory
May 31, 1990
DETERMINISTIC LP FORMULATION

Maximize total flight revenues

\[R = \sum_{OD} \sum_{i} \text{FARE}_{i,OD} \times \text{SEATS}_{i,OD} \]

subject to:

\[\sum_{OD} \sum_{i} \text{SEATS}_{i,OD} \leq \text{CAP}_j \]

for all O-D itineraries and i fare classes on each flight leg \(j \)

\[\text{SEATS}_{i,OD} \leq \text{MEAN DEMAND}_{i,OD} \]

for all O-D itineraries and i fare classes
Maximize total flight revenues

$$R = \sum_{OD} \sum_{i} \sum_{s=1}^{\text{CAP}_j} \text{FARE}_{i,OD} \times \text{PROB}(S)_{i, OD} \times X_{s,i,OD}$$

subject to:

$$\sum_{OD} \sum_{i} \sum_{s=1}^{\text{CAP}_j} X_{s,i,OD} \leq \text{CAP}_j$$

for all O-D itineraries and i classes on each flight leg j

$$X_{s,i,OD} = 0 \text{ or } 1$$

for all O-D itineraries, i classes, and s = 1, 2, ..., \text{CAP}_j for each j
Means, Standard Deviations, Fares

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>M</th>
<th>B</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>25.21</td>
<td>2.66</td>
<td>6.78</td>
<td>25.67</td>
</tr>
<tr>
<td></td>
<td>7.26</td>
<td>4.94</td>
<td>14.02</td>
<td>11.37</td>
</tr>
<tr>
<td></td>
<td>216.00</td>
<td>203.00</td>
<td>194.00</td>
<td>152.00</td>
</tr>
<tr>
<td>AC</td>
<td>2.15</td>
<td>1.45</td>
<td>4.16</td>
<td>14.44</td>
</tr>
<tr>
<td></td>
<td>2.67</td>
<td>5.84</td>
<td>3.42</td>
<td>10.45</td>
</tr>
<tr>
<td></td>
<td>519.00</td>
<td>344.00</td>
<td>262.00</td>
<td>231.00</td>
</tr>
<tr>
<td>AD</td>
<td>2.61</td>
<td>1.27</td>
<td>3.68</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>3.25</td>
<td>1.56</td>
<td>6.62</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>582.00</td>
<td>379.00</td>
<td>302.00</td>
<td>269.00</td>
</tr>
<tr>
<td>BC</td>
<td>9.64</td>
<td>22.48</td>
<td>11.55</td>
<td>32.50</td>
</tr>
<tr>
<td></td>
<td>5.08</td>
<td>18.99</td>
<td>9.55</td>
<td>16.37</td>
</tr>
<tr>
<td></td>
<td>404.00</td>
<td>315.00</td>
<td>223.00</td>
<td>197.00</td>
</tr>
<tr>
<td>BD</td>
<td>5.78</td>
<td>4.49</td>
<td>4.50</td>
<td>5.81</td>
</tr>
<tr>
<td></td>
<td>4.77</td>
<td>5.78</td>
<td>5.53</td>
<td>5.52</td>
</tr>
<tr>
<td></td>
<td>440.00</td>
<td>307.00</td>
<td>221.00</td>
<td>199.00</td>
</tr>
<tr>
<td>CD</td>
<td>19.42</td>
<td>55.70</td>
<td>7.43</td>
<td>5.63</td>
</tr>
<tr>
<td></td>
<td>10.78</td>
<td>31.63</td>
<td>13.34</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td>251.00</td>
<td>169.00</td>
<td>174.00</td>
<td>134.00</td>
</tr>
<tr>
<td></td>
<td>Deterministic</td>
<td>Network</td>
<td>Solution</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>M</td>
<td>B</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>25</td>
<td>3</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>AD</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>10</td>
<td>22</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>BD</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CD</td>
<td>19</td>
<td>54</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Probabilistic Network Solution

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>M</th>
<th>B</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>30</td>
<td>6</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>AC</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AD</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>13</td>
<td>26</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>BD</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CD</td>
<td>23</td>
<td>49</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Revenue Impacts of Distinct Bucket Control

<table>
<thead>
<tr>
<th>Demand/Capacity</th>
<th>Deterministic</th>
<th>Probabilistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>-12.2%</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Medium</td>
<td>-6.3%</td>
<td>-2.6%</td>
</tr>
<tr>
<td>High</td>
<td>+43.2%</td>
<td>+47.9%</td>
</tr>
</tbody>
</table>

Percent Difference From No Seat Inventory Control
Nested Deterministic by Fare Class

Leg B-C

<table>
<thead>
<tr>
<th>O-D/Fare Class</th>
<th>Seats Allocated</th>
<th>Booking Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACY</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>ADY</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>BCY</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>BDY</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>ACM</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td>ADM</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td>BCM</td>
<td>22</td>
<td>69</td>
</tr>
<tr>
<td>BDM</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>ACB</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>ADB</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>BCB</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>BDB</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>ACQ</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>ADQ</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>BCQ</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>BDQ</td>
<td>0</td>
<td>29</td>
</tr>
</tbody>
</table>
Nested Deterministic By Fares

Leg B-C

<table>
<thead>
<tr>
<th>O-D/Fare Class Seats Allocated Booking Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADY 3</td>
</tr>
<tr>
<td>ACY 2</td>
</tr>
<tr>
<td>BCY 10</td>
</tr>
<tr>
<td>BDY 6</td>
</tr>
<tr>
<td>ADM 1</td>
</tr>
<tr>
<td>ACM 1</td>
</tr>
<tr>
<td>BCM 22</td>
</tr>
<tr>
<td>BDM 0</td>
</tr>
<tr>
<td>ADB 0</td>
</tr>
<tr>
<td>ADQ 0</td>
</tr>
<tr>
<td>ACB 4</td>
</tr>
<tr>
<td>ACQ 14</td>
</tr>
<tr>
<td>BCB 12</td>
</tr>
<tr>
<td>BDB 0</td>
</tr>
<tr>
<td>BDQ 0</td>
</tr>
<tr>
<td>BCQ 15</td>
</tr>
</tbody>
</table>
Nested Deterministic by Shadow Prices
Leg B-C

<table>
<thead>
<tr>
<th>O-D/Fare</th>
<th>Class</th>
<th>Seats Allocated</th>
<th>Booking Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACY</td>
<td>2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>BCY</td>
<td>10</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>ADY</td>
<td>3</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>ACM</td>
<td>1</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>BCM</td>
<td>22</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>BDY</td>
<td>6</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>ACB</td>
<td>4</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>ACQ</td>
<td>14</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>BCB</td>
<td>12</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>ADM</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>BCQ</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>BDM</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ADB</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ADQ</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BDB</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BDQ</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
STATIC BOOKING SIMULATION

- Optimal seat allocations for each O-D/fare class are determined from a deterministic or probabilistic network formulation.

- Booking limits for each O-D/fare class on each flight leg are determined from one of the O-D seat inventory control methods.

- Booking demands are randomly drawn for each O-D/fare class; the bookings are made if space is available, otherwise rejected.

- Lowest classes book first and there is no "sell-up".

- Single point in time; therefore there are no revisions of booking limits during reservations process.

- 1000 repetitions of booking process.
O-D CONTROL OPTIONS TESTED

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMSR</td>
<td>EMSR Leg-Based Control of Nested Fare Classes (Base Level)</td>
</tr>
<tr>
<td>DD</td>
<td>Distinct Deterministic Seat Allocations Used as O-D/Fare Class Limits</td>
</tr>
<tr>
<td>ND-FC</td>
<td>Nested Deterministic on Fare Classes</td>
</tr>
<tr>
<td>ND-F</td>
<td>Nested Deterministic on Fares</td>
</tr>
<tr>
<td>ND-SP</td>
<td>Nested Deterministic on Shadow Prices</td>
</tr>
<tr>
<td>DP</td>
<td>Distinct Probabilistic Seat Allocations Used as O-D/Fare Class Limits</td>
</tr>
<tr>
<td>NP-FC</td>
<td>Nested Probabilistic on Fare Classes</td>
</tr>
<tr>
<td>NP-F</td>
<td>Nested Probabilistic on Fares</td>
</tr>
<tr>
<td>NP-SP</td>
<td>Nested Probabilistic on Shadow Prices</td>
</tr>
</tbody>
</table>
Base Case

% Difference From Leg-Based EMSR Method

<table>
<thead>
<tr>
<th>O-D Method</th>
<th>DD</th>
<th>ND-FC</th>
<th>ND-F</th>
<th>ND-SP</th>
<th>DP</th>
<th>NP-FC</th>
<th>NP-F</th>
<th>NP-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>-7.00%</td>
<td>-6.00%</td>
<td>-5.00%</td>
<td>-4.00%</td>
<td>-3.00%</td>
<td>-2.00%</td>
<td>-1.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>ND-FC</td>
<td>-7.00%</td>
<td>-6.00%</td>
<td>-5.00%</td>
<td>-4.00%</td>
<td>-3.00%</td>
<td>-2.00%</td>
<td>-1.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>ND-F</td>
<td>-7.00%</td>
<td>-6.00%</td>
<td>-5.00%</td>
<td>-4.00%</td>
<td>-3.00%</td>
<td>-2.00%</td>
<td>-1.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>ND-SP</td>
<td>-7.00%</td>
<td>-6.00%</td>
<td>-5.00%</td>
<td>-4.00%</td>
<td>-3.00%</td>
<td>-2.00%</td>
<td>-1.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>DP</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>NP-FC</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>NP-F</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>NP-SP</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
DEMAND SCENARIOS TESTED

- BASE CASE (AS IN FIGURE)
- HIGH DEMAND ON 1-LEG O-D ITINERARIES
- HIGH DEMAND ON 2-LEG O-D ITINERARIES
- HIGH DEMAND ON 3-LEG O-D ITINERARIES
- HIGH DEMAND IN TOP FARE CLASS (Y)
- HIGH DEMAND IN MIDDLE FARE CLASSES (M, B)
- HIGH DEMAND IN LOW FARE CLASS (Q)
SUMMARY OF SIMULATION RESULTS

PERCENT REVENUE DIFFERENCE FROM EMSR
SEVEN DEMAND SCENARIOS

DISTINCT DETERMINISTIC

- Nested by Fare Class
- Nested by Fares
- Nested by Shadow Prices

-4.87 %

DISTINCT PROBABILISTIC

- Nested by Fare Class
- Nested by Fares
- Nested by Shadow Price

-1.24 %
DYNAMIC BOOKING SIMULATION

- Actual booking data for each O-D/fare class is used to generate distributions of demand within each of 15 booking periods prior to departure.

- Initially, booking limits are determined for aggregate demand for each O-D/fare class.

- Bookings are simulated for the first booking period only. Booking limits are then re-optimized based on aggregate demand in remaining booking periods and remaining empty seats.

- Revision process is repeated 15 times for each departure.

- One simulation run involves 100 departures.
Comparison on Network Methods

No Revision

Difference from EMSR

Methods

DD

NDFC

NDF

NDSP

DP
Expected Revenue vs No. of Revisions
O–D Control Methods

Dynamic Simulation

Percent Difference from EMSR

Capacity

- NDGC NDG NSP NPFC NPF NPSP

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

-0.01

-0.02

90

102

125
SUMMARY OF FINDINGS

- Use of "distinct" network solutions for O-D control can result in negative revenue impacts.

- Nesting of O-D/fare class limits is essential to overcome problems of distinct seat allocations.

- Our simulations show that nesting of network solutions by shadow price is most promising.

- Accurate estimates of revenue impacts require that a dynamic booking simulation be used.

- Effective O-D control can increase flight revenues by 2 to 4 percent on high demand flights.
Ground Holding Strategies for ATC

Amedeo Odoni, MIT
Stephan Kolitz, CSDL
Mostafa Terrab, MIT
Background

- Flow Control Problem in ATC
 - information-intensive
 - uncertainty
 - need for DSS
 - extremely important in ATC

- Co-operative MIT/Draper work since early 1988

- Major technical report just issued on ground-holding strategies in connection with congested airports
Approaches to the Airport Capacity Problem

- **Long term**
 - more runways
 - improved ATC technology

- **Medium term**
 - economic and administrative measures to influence airline scheduling practices and demand patterns at major airports

- **Short term**
 - adjust flow rate of aircraft on a **real-time** basis to make it compatible with available capacity
Strategic vs. Tactical Flow Control

- The **strategic** flow control problem is concerned with the question of when to "release" aircraft into the ATC system, (i.e., by assigning ground-holding times to aircraft, when necessary, at the airport of departure).
 - **motivation:** If an aircraft is to suffer a long delay anyway, it is better that as much of this delay as possible be taken on the ground before takeoff.

- The **tactical** flow control problem is concerned with post-takeoff routing, en route/terminal area holding and sequencing, speed control, etc.
 - **work has been done on route/trajectory optimization with weather and air traffic constraints**

- The two problems should be addressed interactively.
Simplified Version of the Problem

- Trade-off between ground holding delays and airborne delays
- Goal: develop a ground holding strategy to minimize total delay costs
General Problem Formulation

minimize

total expected cost

subject to

- every flight is assigned to one time period to land
- capacity constraints are not violated
Anticipated airborne delays are taken on the ground.
Challenges in Problem

- Uncertainty regarding airport capacity (AAR) at time of arrival at destination, especially for long-range flights
 - Range of possible AAR values can be large
 - At critical times considerable uncertainty about AAR may persist even for a time-horizon of one or two hours
- Information-rich environment
- Must be able to revise ground holding strategies quickly in response to changes (dynamic environment).
- Trade-offs
 "Type 1 error" : AAR turns out to be lower than anticipated and aircraft suffer long airborne delays
 "Type 2 error" : AAR turns out to be higher than anticipated and aircraft are delayed on the ground (prior to take-off) unnecessarily
Probabilistic Model is Needed

- Insufficient capacity at Logan Airport is not uncommon

% of time with very low capacity
For each flight $F_i (i = 1, \ldots, N)$ we have cost functions

- $C_{gi}(t) =$ cost of delaying F_i on ground at time t
- $C_{ai}(t) =$ cost of delaying F_i in air at time t

For each time period $T_j (j = 1, \ldots, P)$ the airport has a capacity K_j, which may be a random variable. A period can be of any desired length (e.g. 10 minutes, 15 minutes, 30 minutes).

We wish to develop a ground holding strategy (i.e., decide how long to keep each flight on ground beyond its scheduled take-off time) to minimize total delay costs.
Notation of Mathematical Formulation

Notation:

- T_j time period
- K_j capacity during T_j
- F_i flight
- N number of flights
- P number of periods
- X_i ground hold of flight F_i
Deterministic Excess Demand Causes Delays

If everything is deterministic, then delays should be taken on the ground.

- Demand
- Excess demand
- Capacity

Graph showing landings per hour vs. time (PM) with a peak in demand at 5 PM and excess demand indicated at that time.

MIT
If Capacities are Deterministic, Can Use Min-Cost Flow

- Each flight is represented by a node, with arcs representing all possible time period assignments of the flights.
- Well known low-order polynomial algorithms can solve for general cost function.

Flights

- Upper bound on flow: u
- Lower bound on flow: l

Cost Functions

- $C_{g_i}(x)$: Cost of delaying F_i on the ground for x time periods.
- $C_{a_i}(x,y)$: Cost of delaying F_i in the air for y time periods if it has already been delayed x time periods on the ground.
Model stochastic capacities through "scenarios"

This example: a bad weather front is expected to come through; uncertainty in timing.

In general, there are not many candidate capacity scenarios for a given day.
An Example of Deterministic Demand/Capacity

Arrivals / hour

Capacity

Demand

Time

7 AM 9 11 1 PM 3 5 7 9 11
The MMR Algorithm for the Stochastic Case

- A fast algorithm to solve the stochastic capacity case
- Basic principle: Maximum Marginal Return (MMR)
- Works with general cost functions
- Uses the following important property:
 - the expected delay cost for flight F_i depends only on the ground hold imposed on F_i and on the status of the flights with priority higher than F_i

- It determines ground delays by finding those that minimize the expected delay cost for flights in decreasing order of priority
 - start with highest priority flight; find lowest cost ground hold
 - go to second highest priority flight; find lowest cost ground hold, given the highest priority flight solution
 - go the third highest priority flight; find lowest cost ground hold, given the two highest two priority flights solution
 - and so on ...
Cost Savings from Ground Hold Policy (Deterministic)

<table>
<thead>
<tr>
<th>Average delay per flight (minutes)</th>
<th>Plane type</th>
<th>Hourly Ground-hold Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Come First Served</td>
<td>General Aviation and Commuters</td>
<td>$ 400</td>
</tr>
<tr>
<td>17.5</td>
<td>Standard Jets</td>
<td>$ 1200</td>
</tr>
<tr>
<td>16.4</td>
<td>Wide-body Jets</td>
<td>$ 2000</td>
</tr>
<tr>
<td>17.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td>$191,500</td>
<td>$127,100</td>
</tr>
</tbody>
</table>

- Data from simulated typical day at Logan Airport
MMR Algorithm with FCFS at Landing

<table>
<thead>
<tr>
<th>Ground Costs</th>
<th>Total Costs (ground + airborne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMR</td>
<td>$ 61,900</td>
</tr>
<tr>
<td>FCFS</td>
<td>$ 243,300</td>
</tr>
<tr>
<td>TRESH</td>
<td>$ 226,700</td>
</tr>
<tr>
<td>No Holds</td>
<td>$ 0</td>
</tr>
</tbody>
</table>

- Data from simulated typical day at Logan Airport
- Airborne costs assumed to be twice ground hold costs
- Hourly ground hold costs same as in deterministic case
Benefits Increase With Congestion

Total expected costs ($000's)

Utilization level (%)
MMR Algorithm with Optimal Tactics at Landing

<table>
<thead>
<tr>
<th></th>
<th>Ground Costs</th>
<th>Total Costs (ground + airborne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMR</td>
<td>$ 61,900</td>
<td>$ 152,300</td>
</tr>
<tr>
<td>FCFS</td>
<td>$ 243,300</td>
<td>$ 309,220</td>
</tr>
<tr>
<td>TRESH</td>
<td>$ 226,700</td>
<td>$ 300,660</td>
</tr>
<tr>
<td>No Holds</td>
<td>$ 0</td>
<td>$ 203,520</td>
</tr>
</tbody>
</table>

- Data from simulated typical day at Logan Airport
- Airborne costs assumed to be twice ground hold costs
- Hourly ground hold costs same as in deterministic case
If there are delays in the system due to capacity problems, then there is a large payoff from using intelligent scheduling policies that take uncertainty into consideration.

Models and associated algorithmic solutions have been developed:

- Deterministic capacity case
 - assignment problem $O(N^{2.5})$ ($N = \# \text{ of flights}$)
 - "Fast Algorithm" $O(PN \ln N)$ ($P = \# \text{ of time periods}$)

- Stochastic capacity case
 - dynamic programming $O((P + 1)^2((N/P) + 1)^P)$
 - "MMR Algorithm" $O(N(P + 1)^2)$

Models and algorithms support real-time adaptive use of methodology.
Further Work

- Higher fidelity model
- Cost functions
- Dynamic aspects of the problem
- The problem of "downstream" effects (some work already)
- Integration of tactical and strategic problems
- Realistic testbed
- Implementation issues
Summary

- There can be significant pay-offs from successful Decision Support Systems (DSS) for CFCF.

- Models and associated algorithmic solutions which support real-time adaptive solutions have been developed.

- The combination of Draper and MIT provides a full range of capabilities: from pure research to implementation of real-time integrated systems.
An Integrated Environment for Planning Passenger Terminals

John D. Pararas
May 31, 1990
SUMMARY

- Passenger Terminal Planning Process
- Modelling Techniques and Existing Planning Systems
- Modern Software and Hardware Technology
- A General Framework for Passenger Terminal Planning
Passenger Terminal Planning Process

- **Long-term (10-20 years)**
 - Master plans, detailed designs for new airports or new buildings.
 - Extremely uncertain data

- **Medium-term (5 years)**
 - Significant additions to existing terminals
 - More reliable data, fewer alternatives.
Passenger Terminal Planning Process
(Continued)

- Short-term (6 months-1 year)
 - Manpower planning,
 - Schedule evaluation,
 - Procedural alternatives (e.g. checkin allocation schemes),
 - Gate assignment planning

- Operational Management
 - Manpower allocation
 - Gate Assignment
 - Coping with Delayed Aircraft
Modelling Techniques

- Space Programming
 Approach:
 - Rules of thumb,
 - Graphs and Charts,
 - distilled knowledge from research, surveys, etc.

Problems:
 - Not always applicable to situation at hand
 - Assumptions not always clear or understood
Modelling Techniques (Continued)

- Queuing Systems Theory

Approach:

- Steady state analysis,
- Time dependent analysis,
- Approximations

Problems:

- Computationally expensive,
- Need substantial amounts of data,
- Steady state assumption suspect,
- “Single Commodity Flow”
Modelling Techniques (Continued)

- Simulation

 - Flow Models:
 * Simulations of Discrete Markov Process.
 * Fixed time slice,
 * State transitions occur by random sampling from transition probabilities
 * Passenger based statistics are a problem.
Modelling Techniques (Continued)

- Simulation (continued)

 - Discrete Event Simulations:
 * Detailed modelling of individual passenger actions,
 * Can produce accurate statistic on all aspects of the terminal operation.
 * Prone to the GIGO effect.
 * Prone to “wishful modelling”.
Problems with Existing Models

- Isolated implementations rather than an integrated planning environment

- Large data requirements, No defaulting capability.

- "Shallow" knowledge representation. Makes translation from reality to model and back hazardous.

- Distinction between "system" and control logic is blurred.
Problems with Existing Models (Continued)

- Fine tuning and control is impossible without reprogramming

- Batch oriented systems.

- Limited reporting, graphics and animation capabilities
Hardware Technology

Computer prices over the last 30 years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>US$ 1,000,000</td>
</tr>
<tr>
<td>1970</td>
<td>US$ 250,000</td>
</tr>
<tr>
<td>1980</td>
<td>US$ 25,000</td>
</tr>
<tr>
<td>1990</td>
<td>US$ 500</td>
</tr>
</tbody>
</table>
Software Technology

- Object Oriented Programming
- Expert Systems Programming (Logic Programming)
- Fourth Generation Languages (Code Generators)
- Graphical Interfaces

Generalizations and abstractions of what the software engineer does.
A Framework for Passenger Terminal Planning.
System Engines

• Implement the *mechanics* of the models

• Logic and choice decisions are deferred to the appropriate subsystems.

• Simulations
 – Queuing system implementation
 – Statistics gathering,
 – Passenger path following
 – Random sampling,
System Engines (Continued)

- Analytical Models
 - System state equations
 - Convolution

- Object-Oriented approach is uniquely suited for system engine development (particularly for simulations).
Choice Models

- Implement the logic to effect choice and procedural control

- Need to provide “entry points” for retrieval of information from system engines at runtime.
 - route selection
 - facility selection
 - delay (for flights)
 - Gate selection
 - Baggage claim selection
 - Spare time utilization.
Choice Models (Continues)

- Expert Systems may be best for choice models

- Automatic code generation would allow the user to create and tailor them to suit particular needs.
System Editor

- Allows creation of new objects and editing of existing ones at all levels of detail.

- Coordinates changes to maintain a consistent dataset.

- Allows creation and editing of choice models.

- Makes extensive use of GUI's (menus, CVV windows, etc.).

- Object-oriented Design almost a necessity for this subsystem.
System Browser

- Allows interactive presentation of the results of a run.

- Allows creation of reports for printing, etc.

- Multiple views of system performance
 - Facility based (average waiting times, average queue lengths)
 - Passenger based, (delays per passenger type, etc.)
 - Histograms (occupancy vs. time of day, etc)
 - Probability distribution functions
System Browser (Continued)

- Sensitivity analysis results appropriate to various scenarios.
 - Overall statistics vs. % transfers,
 - Passenger waiting time vs. facility allocation schemes,
Scenario Generator

- Mapping of problems into models.
- Help user select appropriate representation
- Query for undefined information (via the editor)
- Implements a data specification hierarchy
- Implements models and methods for generating data appropriate for the selected model.
- Interprets and aggregates results for presentation
SCHEDULE DATA DEFAULT HIERARCHY EXAMPLE

Random Selection

Peak Day Demand

Airline Mix Data Base

Airport Mix Data Base

Yearly Demand

Time Dependent Demand Profile for Peak Day

Industry Average

Flight Load Factor

Market Load Factor

Schedule Generation

Full Database Specification

Flight#, Gate, Baggage Checkin, Schedule, Arrival/Departure time, etc
INTRODUCTION TO AIR TRAFFIC CONTROL ENGINEERING

Robert W. Simpson

FLIGHT TRANSPORTATION LABORATORY
M.I.T., CAMBRIDGE MA. 02139
(617)-253-3756

Draft of 5/19/90
Planned CHAPTERS

Preface - The Engineering of ATC Systems
(not written yet)

1. Introduction to Air Traffic Control Operations
 (finished?)

2. An Analytical Framework for ATC Processes
 (finished?)

3. Encounter Models - Random AirTraffic Flow
 (finished?)

4. Capacity and Delay - Controlled Air Traffic Flow
 (in writing)

5. Aircraft Operations and Performance
 (to be written)

6. ATC Communications Technology
 (to be word processed)

7. Aircraft Navigation and Guidance Technology
 (to be word processed)

8. ATC Surveillance and Tracking Technology
 (to be word processed)

9. Automation of ATC Processes
 (in writing)

10. Human Factors in ATC Operations
 (to be written)
1.3 The Cost of ATC Service

The cost of operating the current US ATC system can be estimated in various ways. Table 1.4 lists only those portions of the FAA expenses for 1988 which are directly attributable to the operation of the ATC system, and there are yet other costs of an overhead nature. Their sum for 1988 is $2.5 billion out of total FAA expenses of $3.2 billion. (There was another $2.8 billion expended by the FAA in the form of Grants-in-Aid to US airport agencies, and another $1.1 billion of capital investment in ATC Facilities and Equipment).

TABLE 1.4 - FAA ANNUAL ATC OPERATING COSTS

<table>
<thead>
<tr>
<th>TOTAL ANNUAL SYSTEM OPERATING COSTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATION OF THE ATC SYSTEM---------------</td>
<td>1,433,000,000</td>
</tr>
<tr>
<td>MAINTENANCE OF THE ATC SYSTEM-------------</td>
<td>628,000,000</td>
</tr>
<tr>
<td>LEASED TELECOMMUNICATIONS----------------</td>
<td>225,000,000</td>
</tr>
<tr>
<td>NAS LOGISTICS SUPPORT---------------------</td>
<td>193,000,000</td>
</tr>
<tr>
<td>TOTAL--------------------------------------</td>
<td>$2,469,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT OPERATING COSTS - 1988</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COST PER AIRCRAFT</td>
<td>$9876</td>
</tr>
<tr>
<td>COST PER PILOT</td>
<td>$4598</td>
</tr>
<tr>
<td>COST PER AC HANDLED BY ARTCCs</td>
<td>$ 68</td>
</tr>
<tr>
<td>COST PER TOWER OPERATION</td>
<td>$ 40</td>
</tr>
<tr>
<td>COST PER AIRCRAFT HOURS FLOWN</td>
<td>$ 50</td>
</tr>
<tr>
<td>COST PER PASSENGER ENPLANEMENT</td>
<td>$ 5.50</td>
</tr>
</tbody>
</table>

SOURCE: FAA ADMINISTRATOR FACT BOOK

Table 1.4 also shows unit operating costs in a very gross way by dividing the annual operating cost of $2.5 billion by the various measures of activity given in Table 1.3. It can be seen that the annual operating costs alone in 1988 amounted to almost 10,000 $/aircraft, or 5000 $/pilot, or 70 $/operation, or 40 $/takeoff or landing, or 50 $/flying hour. These are gross numbers, and are not additive. A better analysis of how these annual costs are incurred would provide the true marginal costs for each type of activity, but it should be clear that the current operation of the US ATC system is very expensive. In doing a proper job of engineering a new ATC system, it is important to understand these costs and how they are incurred, and to try to find cheaper modes of operation. Since most of these operating costs are salaries, the answers lie with automation and increased productivity of ATC controllers.

Note that we can also find the unit cost per passenger enplanement for operating the US ATC system. Table 1.4 shows this to be only 5.50 $/enplanement. US airline passengers currently are required to pay an 8% tax on their ticket price into an Airways and Airports Trust Fund which contributes towards the operating costs and capital investment in the US ATC system. In 1988 this ticket tax collected $3.2 billion against a sum of operating costs and capital investment of $6.1 billion.
A Brief Sketch of the Work of an ATC Controller

THE SEVEN BASIC FUNCTIONS

1. Receive and comprehend flight plans and other requests by pilots.

2. Generate conflict-free intended paths, or clearances for each aircraft.

3. Transmit (& confirm receipt) clearances to each pilot.

4. Monitor the "traffic situation" to maintain a mental awareness of:
 a) Current set of aircraft-identity and type;
 b) their positions, speeds, altitudes, altitude changes;
 c) their current clearance limits and final destination;
 d) their pending requests for information or changes.

5. Monitor conformance of each aircraft to intended path.

6. Detect and resolve hazards arising from unexpected events (eg. unknown aircraft, severe weather, equipment failure)

7. Manage traffic congestion by generating spacing, metering, scheduling corrections to intended paths which matches actual traffic flow rates with desired flow rates.
CHAPTER 2

An Analytical Framework for ATC Processes

2.1 Definition of ATC Variables

2.2 A General Block Diagram for an ATC Sector

2.3 Sector Clearance Generation Processes

2.4 Aircraft Decision Processes

2.5 Summary
ANALYTICAL DESCRIPTION OF ATC SYSTEMS

DEFINITION OF ATC VARIABLES - AIRCRAFT PATH

AIRCRAFT PATH - $P_i(t)$

- Define $P_i(t)$ as a vector quantity describing the past history of the position of aircraft i as a function of time, t.

- It has components:

 $r(t) = \text{range from a reference origin, such as aircraft, radar, waypoint, etc}$

 $\Theta(t) = \text{bearing from a reference direction, such as magnetic north, aircraft heading, etc}$

 $h_p(t) = \text{pressure height from a reference datum such as standard mean sea level pressure}$

AIRCRAFT VELOCITY - $\dot{P}_i(t)$

- Define $\dot{P}_i(t)$ as a velocity vector quantity describing the past history of position rate for aircraft i as a function of time.

- It has components:

 $\gamma(t) = \text{ground speed along track}$

 $\phi(t) = \text{track direction relative to mag. north}$

 $\dot{h}_p(t) = \text{rate of climb in pressure height /time}$
ANALYTICAL DESCRIPTION OF ATC SYSTEMS

DEFINITION OF ATC VARIABLES - AIRCRAFT INTENDED PATH

FLIGHT PLAN CLEARANCE - $\vec{F}_i(t)$
- Define $\vec{F}_i(t)$ as a vector quantity which describes the future intended path, or flight plan to be followed by aircraft i, at time t.

PLANNING HORIZON - T_h
- There is a finite planning horizon, T_h, for defining the future extent of the flight plan. If it is small, the system is called "tactical"; if it is large, it is called "strategic".

FLIGHT PLAN VELOCITY - $\dot{\vec{F}}_i(t)$
Define $\dot{\vec{F}}_i(t)$ as the future intended velocity planned for aircraft i. It may be used to specify the future track, or it is implicit in the specification of $\vec{F}_i(t)$.

ANALYTICAL DESCRIPTION OF ATC SYSTEMS

DEFINITION OF ATC VARIABLES - TRAFFIC SEPARATION

FLIGHT PLAN DEVIATION - $\triangle F_P(t)$

- DEFINE $\triangle F_P(t)$ AS THE ACTUAL DEVIATION FROM FLIGHT PLAN TRACK OBSERVED AT TIME t.

$$\triangle F_P(t) = F_i(t) - P_i(t)$$

- THIS QUANTITY IS USED BY THE CONTROLLER TO MONITOR THE CONFORMANCE OF AIRCRAFT i TO THE ASSIGNED TRACK OR ALTITUDE. THERE IS A CONFORMANCE LIMIT, C.

FLIGHT PLAN SEPARATION - $\triangle F_{ij}(t)$

- DEFINE $\triangle F_{ij}(t)$ AS THE PLANNED SEPARATION BETWEEN THE FLIGHT PLANS FOR AIRCRAFT i AND AIRCRAFT j AT SOME FUTURE TIME t.

- THIS QUANTITY IS USED BY THE CONTROLLER TO ENSURE THAT THERE IS NO CONFLICT BETWEEN FLIGHT PLANS. THERE ARE SEPARATION CRITERIA, S.

AIRCRAFT SEPARATION - $\triangle P_{ij}(t)$

- DEFINE $\triangle P_{ij}(t)$ AS THE ACTUAL SEPARATION OBSERVED BETWEEN AIRCRAFT i AND AIRCRAFT j AT TIME, t.

- THIS QUANTITY IS USED BY THE CONTROLLER TO MONITOR THE ACTUAL SEPARATION BETWEEN AIRCRAFT. THERE ARE HAZARD CRITERIA, H, WHICH ARE MUCH SMALLER THAN C.

-137-
DEFINITION OF ATC VARIABLES - INFORMATIONAL QUANTITIES

- In a complex, multisensor ATC system, it is necessary to distinguish between the true values of quantities and the estimated information about those quantities known by various elements of the system at different times. A circumflex, $^\wedge$, will be used to denote the fact that it is estimated information, and a superscript to denote the element where the information is known.

- As an example of why it is necessary to make this distinction consider the problem of monitoring hazards. Suppose a true hazard alarm exists from time T_1 to time T_2. Since there can be errors in the actual separation information known to a monitoring sector, there can be periods of time when a "false alarm" exists in the sector. To minimize the occurrence of such periods, a buffer can be used on the values of H, but this will necessarily result in increasing the periods of time when a "missed" alarm exists.

- Also, there will be periods of time when information does not exist yet in certain elements of the system, or has yet to be updated.
FIGURE 2.1 - DEFINITIONS FOR ATC POSITIONAL INFORMATION

PAST INTENDED TRACK, $F_i(t)$

LAST WAYPOINT

PRESENT POSITION OF AIRCRAFT i, P_i

PRESENT SPEED AND DIRECTION, V_g

DEVIATION FROM FLIGHT PLAN, $\Delta FP_i(t)$

PAST ACTUAL TRACK $P_i(t)$

NEXT WAYPOINT

FUTURE INTENDED TRACK, $F_i(t)$
2.3 Sector Clearance Generation Processes

The functionality of the ATC Sector Clearance Generation Process can now be examined in further detail. There are numerous inputs:

- Aircraft Position and Separation;
- Aircraft Flight Plans and Flight Plan Requests;
- Wind and weather information;
- Aircraft performance;
- ATC procedures, and sector flow capacities;
- ATC conflict criteria.

The process involves human controllers, electronic displays, computer systems, and, in the future, automated decision support systems. Clearance Generation can be organized into five basic modules:

- Conformance Management
- Separation Management
- Congestion Management
- Flight Plan Generation
- Flight Plan Data Management

Each of these modules contains various other sub-processes which may be nested hierarchically. Later, the sector block diagram will be shown (see Figure 2.4) which shows the information flows between these modules which are necessary to produce the ATC clearances for all aircraft i in sector s. First, these basic functional modules and their nested sub-processes will be described in more detail. These decision processes are currently executed by the human controller given current ATC displays and procedures, but are future candidates for real-time, automated decision-support. It is important that rigorous definitions of these decision processes be created to allow the construction of these automated decision support tools in a coherent manner. To date, attempts to describe these functional processes of ATC have been quite incoherent.
2.3.1 Conformance Management Process

The purpose of the Conformance Management process is to detect and resolve flight plan deviations which exceed a Conformance Limit C. The deviation can be lateral (across-track), vertical, or longitudinal (i.e., along-track, where it is usually expressed as a time deviation). Conformance Management can be 1, 2, or 3 dimensional.

There are two sub-processes of Conformance Management: a) Monitoring; b) Resolution

a) Conformance Monitoring (Sub-process)

The first sub-process is a continuous, or recurrent periodic function concerned with detection or prediction of deviations by any aircraft in the sector. (The word monitoring will be associated with such continuous or recurrent processes). Its output is a Conformance Alert which declares and describes the deviation situation. The Conformance Limit C is expressed in its simplest terms as a maximum allowable deviation which can be observed without causing an Alert (e.g., a deviation of 300 feet from an assigned altitude). It can also be expressed as a maximum predicted deviation given current position and position rate if conformance is time-critical (e.g., monitoring the conformance on parallel approaches to landing operations where both the cross-track deviation and cross track velocity is monitored).

The Conformance Limit C can be a single value which applies everywhere, or in an automated system, it can be applied differently in various areas of the airspace, or as a function of the traffic situation. It can be varied over time as a function of traffic density, or as a function of the actual proximity of other traffic. The update rate of recurrent Conformance Monitoring can be reduced if traffic density is low, and then increased whenever certain traffic requires closer monitoring. The human controller already uses these spatial and time variations in performing Conformance Monitoring.
2.3.2 Separation Assurance Process

The purpose of the Separation Assurance Process is to ensure safe separation between aircraft, terrain, and restricted airspace. Separation Criteria can be expressed in terms of distance, altitude, and time, and their rates of change. There are two types of Separation Assurance, depending on whether P_i or F_i information is used:

1) **Conflict Management**, which imposes Conflict Criteria S on F_i;
2) **Hazard Management**, which imposes Hazard Criteria H on P_i.

As with Conformance Management, there are two sub-processes for both types of Separation Assurance.
2.3.3 Congestion Management Process

The purpose of the Congestion Management process is to avoid congestion, i.e., avoid crowding too many aircraft into a given airspace. Although there may be no conflicts or hazards, congestion may jeopardize safety by creating short-term overload work rates for ATC controllers in handling the traffic. There are many ways to perform Congestion Management and a sequential and hierarchical relationship exists amongst its sub-processes, as shown below:

Congestion Management processes always exercise control over the arrival times for aircraft, either at a particular waypoint, or at a set of entry points into an airspace area or sector. A timed waypoint will be called a timepoint. A set of timepoints may be established for traffic at any waypoint \(x \) (e.g., \(t_{x_1}, t_{x_2}, \ldots, t_{x_l} \)) for successive aircraft \((i, j, k, l) \) passing over that point. Timepoints can be defined in either the \(P_i \) or \(F_i \) information. Congestion Management processes are solely concerned with creating or modifying timepoints for aircraft, - not for the purposes of Separation Assurance, but to smooth peaks in the flow of traffic. Unlike the other processes, Congestion Management usually transcend the bounds of any one sector of the ATC system.
FIGURE 2.4 - SECTOR CLEARANCE GENERATION - INFORMATION FLOW

[Diagram showing flow of information and processes related to sector clearance generation, including interactions between pilot requests, wind, ATC conflict criteria, aircraft performance, procedures, sector capacity, and other sectors. Key components include Flight Plan Generation, Conflict Management, Congestion Management, Traffic Management Loop, Sector Hazard Control Loop, Conformance Control Loop, and Conformance Criteria.]
FIGURE 2.3 - GENERAL ATC SECTOR BLOCK DIAGRAM

- Aircraft i Guidance Loop
- Aircraft j Hazard Control Loop
- Aircraft j Guidance Loop
- Aircraft System j
- Aircraft System i
- Sector Conformance Control Loop
- Sector Hazard Control Loop
- ATC Sector Clearance Generation Processor
- ATC Communication & Surveillance Systems
NEW YORK AIRPORTS

TRAFFIC FLOW ANALYSIS

OBJECTIVE

- Identify and evaluate trends/changes in scheduled passenger traffic flows through all 3 New York area airports over past 5 years.

HISTORICAL DATA

- DOT T9 reports from carrier Form 41 filings provide domestic airline departure information by quarter from 1984-1 to 1989-1.

- Ten percent ticket coupon sample provides passenger itinerary information by quarter from 1984-1 to 1989-3.

- Database Products Inc. database used to extract data, provided by Port Authority of NY and NJ.
DOMESTIC TRAFFIC FLOW ANALYSIS

SUPPLY MEASURES

• Domestic departures by carrier from each airport
• Total seats departed by carrier from each airport

DEMAND MEASURES

• Total on-board domestic passengers departing, by carrier from each airport
• Local originating vs. connecting passengers (domestic only)
 "Local originating" includes domestic connections to/from international flights

AIR CARRIERS

• "Major" U.S. carriers offering service to domestic destinations, defined to include smaller airlines with large market presences.
Total Departures for Majors (All NYC)

Quarter

1084 2 3 4 1085 2 3 4 1086 2 3 4 1087 2 3 4 1088 2 3 4 1089

Departures (Thousands)

Total Seats Departed for Majors

Quarter

1084 2 3 4 1085 2 3 4 1086 2 3 4 1087 2 3 4 1088 2 3 4 1089

Seats (Millions)
Average Aircraft Capacity (NYC Totals)

Determined by Data from Majors

Figure 1.3
Total Seats Departed for Majors (T9)

Newark International

Total Seats Departing

Newark International
Average Aircraft Capacity for Majors

Newark International

Figure 1.10
Total Departures for Majors (T9)

Total Seats Departed for Majors (T9)
Total Departures for Majors (T9)

LaGuardia International

Quarter

Total Seats Departed for Majors (T9)

LaGuardia International

Quarter
Average Aircraft Capacity for Majors

LaGuardia International

Quarter

Average Aircraft Capacity

LaGuardia International

Quarter

Symbols:
□ NW + PA
◊ PI
△ TW
Total Onboard Pax for Majors

All New York City Area Airports

Quarter

Load Factor

Determined by Data from Majors

Average Load Factor (NYC Totals)

Determined by Data from Majors

Quarter
Total Onboard Pax for Majors

Newark International

Total Onboard Pax

Newark International
Average Load Factor for Majors

Newark International

Figure 2.7
Total Local Originating Pax
(Ten percent sample)
All NYC Airports

Total Connecting Pax
(Ten percent sample)
All NYC Airports
Total Percent Connecting Pax

All NYC Airports

Quarter

Percent Connecting Traffic

1Q84 1Q85 1Q86 1Q87 1Q88 1Q89
Total Local Originating Pax (EWR)

(Ten Percent Sample)

Total Connecting Pax (EWR)

(Ten Percent Sample)
Total Connecting Pax (EWR)

(Ten Percent Sample)

Quarter

$\text{Total Percent of Connecting Pax}$

Newark International

<table>
<thead>
<tr>
<th>Quarter</th>
<th>1Q84</th>
<th>1Q85</th>
<th>1Q86</th>
<th>1Q87</th>
<th>1Q88</th>
<th>1Q89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>0.0%</td>
<td>1.0%</td>
<td>2.0%</td>
<td>3.0%</td>
<td>4.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

\square CO $+$ PE
Market Share of Originating Pax

Newark International

Figure 3.15
Total Percent of Connecting Pax

Market Share of Originating Pax
Total Local Originating Pax (LGA)

(Ten Percent Sample)

Total Connecting Pax (LGA)

(Ten Percent Sample)
Total Percent of Connecting Pax

La Guardia International

Figure 3.31
SUMMARY OF FINDINGS

AGGREGATE - 3 AIRPORTS

- Upward trend in domestic departures, with stability in total seats, indicating reduced aircraft sizes.

- Seasonal variations in total passengers, with no significant trend after peak in 1986-3.

- Local originating passenger counts plunged after PE's buyout, and have recovered only to pre-PE levels.

- Total domestic connecting passengers decreased throughout the analysis period, rebounding somewhat in 1989.

NEWARK AIRPORT (EWR)

- Stable departure levels since PE withdrawal, but fewer seats and much reduced aircraft sizes.

- Major drop in on-board passengers after 1986-3; downward trend continues through 1989-1 for virtually all carriers.

- Local originating passengers cut by half when PE failed; levels have barely returned to pre-1984 levels.

- Domestic connecting passengers were similarly affected by PE withdrawal from EWR.
KENNEDY AIRPORT (JFK)

• Highly seasonal but relatively stable departure levels, but more seats and larger aircraft.

• Highly seasonal on-board passenger counts, but no discernable overall trend.

• Upward trend in local originating passengers, reaching peak in 1989-2.

• Downward slide in domestic connecting passengers from 1984 to 1988, reversed somewhat in 1989.

LAGUARDIA AIRPORT (LGA)

• Growth in departures through 1986, relatively stable since; but slight downward trend in seats and average aircraft size.

• Strong growth in on-board passenger counts flattens out and possibly reverses after 1986.

• Upward trend in local originating passengers continues through 1987 and 1988.

• Domestic connecting passengers, however, dropped by more than half 1984 to 1988, but also rebounded a little in 1989.
CONCLUSIONS

- Removal of PeoplExpress from the New York area market has had the most significant negative impact on traffic flows.

- Newark traffic levels continue to drop, in contrast to JFK and LaGuardia, where local originating traffic remains strong.

- Domestic connecting passengers have dropped in both absolute and percentage terms at all 3 airports, suggesting a shift by carriers away from using New York airports as domestic hubs.