
7-I t

F & ~1

FLIGHT TRANSPORTATION LABORATORY
REPORT R98-2

NETWORK VALUE CONCEPT IN AIRLINE
REVENUE MANAGEMENT

BY: STEPHANE BRATU



Network Value Concept in Airline Revenue Management

by

Stephane Bratu

B.S. Aeronautical Engineering
Ecole Nationale de l'Aviation Civile (1995)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
and

MASTER OF SCIENCE IN OPERATIONS RESEARCH
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

A uth o r.......................... .............................................
Department of Aeronautics and Astronautics

May 14, 1998

C ertified b y ............. ........ ............................................

Peter P. Belobaba
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor

Certified by........... ..............................................
Amedeo R. Odoni

T. Wilson Professor of Aeronautics and Astronautics and Civil Engineering

A c c ep ted b y ...................................................................................................
Professor Jaime Peraire

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Office



Acknowledgments

I am profoundly indebted to my advisor Dr. Peter P. Belobaba, whom I wish to thank for
offering me the chance to work with him on this project. His constant support, constructive
critique and vision have played a major part in the achievement of this work.

I would like to express my gratitude to Professor Amedeo Odoni for his reading of the thesis.
I would like to particularly thank Dr. Marcus Irniger and Dr. Karl Isler from Swissair. I
benefited from their technical inputs during the course of my work. I would particularly like
to thank Craig Hopperstad and Sharon Filipowski, from Boeing, for their constructive
comments.

I would like to thank all my friends from the Flight Transportation Laboratory at MIT. Julie
for her initial helps to understand the code, Aamer, Alex, Jeff for their friendship and
interesting discussions on the airline industry.

Finally, I would like to thank my parents for their love and constant support throughout my
life.

Swissair has funded this research. Their support is gratefully acknowledged.



Network Value Concept in Airline Revenue Management
by

Stephane Bratu

Submitted to the Department of Aeronautics and Astronautics
On May 20, 1992 in partial fulfillment of the requirements for the degrees of

Master of Science in Aeronautics and Astronautics
and Master of Science in Operations Research

Abstract

A connecting passenger occupies a seat on each of the flight leg of his itinerary. Moreover,
for a given fare class, the fare of a connecting passenger is lower than the sum of the fares of
the local passengers on the traversed legs. If the demand is high, giving availability to a
connecting passenger may displace local passengers and the airline would lose revenue. The
objective of this thesis is to evaluate methods that airlines can use to better estimate the
network revenue value of connecting passengers for the purpose of determining seat
availability.

In this thesis we analyze and compare two different ways of estimating the network revenue
value of the connecting passengers. The first approach consists of estimating the displacement
cost of the connecting passenger on all the traversed legs by the shadow prices associated with
the capacity constraints of a network linear program (LP). The second one is a prorated fare
convergence technique developed in this thesis. The fares of the connecting passengers are
prorated on each of the traversed legs using an estimation of the expected marginal revenue of
the last seat on the legs. The existence and uniqueness of the limit for each prorated fare
sequence are also proven.

We have compared the performance of different seat inventory control models that
incorporate these two network revenue estimation techniques. The optimization/booking
simulation uses demand forecasts from an airline's Yield Management historical database.
The seat inventory control methods that use the network revenue value concepts perform up
to 1.50% better than the existing fare class control approach at a high demand scenario (82%
average load factor). Moreover, the prorated fare convergence technique performs better than
the LP shadow price displacement cost approach especially if the demand is controlled by a
bid price mechanism. Indeed, for a high demand scenario and a relatively high number of re-
optimizations along the booking process, the prorated fare convergence method performs
0.12% better than the shadow price approach for a bid price control mechanism. Finally, the
revenue difference between the two methods is both significant and robust with respect to
demand variations.

Thesis Advisor: Professor Peter P. Belobaba
Associate Professor of Aeronautics and Astronautics
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Network Value Concept in Airline Revenue

Management

I Introduction

1.1 Thesis Objectives

In its 1987 annual report American Airlines described the objective of Revenue Management as

to sell "the right seats to the right customers at the right price." This statement, as simple as it

may seem, is not trivial to implement. Nonetheless, the airlines have a very effective way to

manage the passenger requests by controlling the number of seats available to each fare

product at any given time. This practice is called Seat Inventory Control. The main objective

is, therefore, to generate the maximum revenue by controlling the airline seat inventory. In

practice, this consists of designing decision-making models that help the airline to decide

whether to accept or reject a customer request in order to optimize the revenue generated over

the entire network along the entire booking process.

Most of the major U.S. airline networks are designed as a hub and spoke system. This system

enables airlines to realize economy of scale because, for a given demand, the airlines need to

operate fewer aircraft, reducing its operating costs. Nonetheless, this network design requires

that a significant number of passengers connect at the hub airport. These passengers are called



connecting passengers as opposed to the "local" passengers that fly only on one leg of the

network. Hence, the origin-destination and fare (ODF) products that are offered to the

potential passengers can be classified into two separate types, the connecting and the local

passengers.

A connecting passenger occupies a seat on each flight leg he traverses. Therefore, if the

demand is high, giving availability to a connecting passenger may displace several local

passengers. The airline could lose revenue taking this decision, as, for a given fare class, a

connecting fare is usually lower than the sum of the local fares from each segments of the

connecting passenger itinerary. Consequently, one major issue of Revenue Management is to

estimate the correct revenue contribution of the connecting passenger on each leg that he

traverses. In this thesis, two different ways of estimating the revenue contribution of a fare

product are analyzed.

The first approach consists of estimating the revenue loss, called displacement cost, from

selling a set of seats to a connecting passenger instead of several local passengers. The second

approach that is proposed in this thesis consists of prorating the total fare of the connecting

ODF on each leg they traverse. The model uses a prorated fare convergence process to

estimate the network revenue value of all the fare products on each leg.

The objective of this thesis is to propose and compare new models that estimate the network

revenue value of the different ODF offered on each leg of an airline network. Both concepts,

displacement cost estimate and prorated fare, are tested on a network of an operating

international airline, using two seat inventory control mechanisms, booking limit and bid price,

which are explained in Chapter 2.



1.2 Structure of the Thesis

Following the introductory chapter, the intention of the second chapter is to explain the seat

inventory control techniques commonly used in the industry. The Booking Limit and Bid Price

seat inventory control methodologies are described and compared. In the booking limit control

section, we present the EMSRb mathematical model.

In the third chapter, the Network Revenue Value (NRV) concept is explained. We propose

two different approaches to estimate the NRV of each ODF on a traversed leg. The first

technique consists of estimating the displacement cost of a connecting ODF. We analyze two

methods of estimating the displacement cost of a connecting ODF based on two different

mathematical optimization models, a deterministic linear program and the stochastic EMSRb

model. In Section 3, we introduce a new way of estimating the NRV by prorating the

connecting ODF along the legs they traverse. The prorated fares are the limit values of a

convergence process. We have analyzed the existence and the uniqueness of the limits of the

prorated fare sequences on both a small and a general network.

In Chapter 4, the network value concepts are implemented with the booking limit and bid price

control mechanisms introduced in Chapter 2, using actual data from a major airline.

Robustness of the different seat inventory control models is analyzed using sensitivity analysis

with respect to several parameters, such as the number of times the optimization model is

revised.

Finally, the fifth chapter summarizes the contribution of this research and proposes potential

research in Revenue Management.



2 Seat Inventory Control Models

2.1 Introduction

Seat inventory control is the process of determining the number of seats to allocate to each

offered ODF. Practically, the objective is to protect a number of seats for the high fare

business passengers who book close to departure time. If the airline decides to protect too

many seats, some seats that could have been sold stay empty.

Seat inventory control models have two distinct entities: a mathematical optimization model

and a control mechanism. In this chapter, two control mechanisms, Booking Limit and Bid

Price, are presented. The booking limit control mechanism is explained using the Expected

Marginal Seat Revenue (EMSRb) optimization model developed by Belobaba in 1992.

Moreover, two important concepts of the booking limit control mechanism, nesting and virtual

classes, are explored at a leg level. The Bid Price concept is then presented and analyzed.

Each booking control mechanism has been illustrated with a small example. The last section of

this chapter compares the two approaches in terms of revenue performance and

implementation.

2.2 Booking Limit Control Mechanism

2.2.1 Objective

The objective is to "determine the booking limit on each fare that will maximize total revenues



for a future scheduled flight departure."' This process is dynamic, as the number of available

seats and the cumulative forecasted demand have to be updated along the booking process.

2.2.2 Motivation

In order to prevent high fare business passengers from buying the low fare products, the

airlines have placed restrictions such as advance purchase or partial/non refundability that

penalizes the customers who do not show up for the flight. These restrictions have induced

that the discount fares book sooner than the full fare passengers do. Moreover, the business

passengers usually do not know their time schedule long in advance and consequently tend to

book closer to departure time compared to the leisure passengers. Therefore, taking into

account both the product restrictions and the demand behavior, the objective for the airlines is

to retain the correct number of seats for the potential customers who would be ready to pay

high fares, by not selling these seats to the low fare classes who request a seat earlier in the

booking process. In other words, the problem consists of finding the right number of seats to

protect for potential high fare passengers who may request for a seat close to departure time.

2.2.3 The EMSRb Model

2.2.3.1 The Model

The EMSRb model is widely used by airlines all over the world. The technique consists of

estimating the booking limit for each fare class on each leg of the network. The technique is

therefore, leg based and the objective is to generate joint protection levels for higher fare types

"Application of a Probabilistic Decision Model to Airline Seat Inventory Control," P.P. Belobaba, Operations

Research, Vol. 37, No.2, March-April 1989.



to lower fare types.

The expected marginal seat value of allocating S seats to fare type j is defined as,

EMSRj(S) = fi x jp j(r)dr = fj x P(S) (2.1)
S

The Expected Marginal Revenue of selling S seats to fare class j is the probability that the

demand for class j exceeds S, times the revenue value of a class j fare product. The EMSR

value operator of a fare type is decreasing with respect to S, the number of seats allocated to

the fare type. More generally, the EMSR curve obtained from the methodology explained

below is decreasing with respect to the number of seats. Moreover, the demand forecast

distribution is assumed to be gaussian in this thesis.

The EMSR model is an heuristic that consists of protecting enough seats for a high fare class

until the expected value that the next seat is below the revenue value of selling the seat to the

fare class that has the next lower revenue ranking. Then, the number of seats that are saved

for a specific fare type, called the protection level, is obtained. The booking limit

corresponding to a fare class is the number of seats that are not protected for the higher priced

fare classes. The booking limit of a fare class is always greater than the booking limits of

lower fare classes. This concept, called nesting, is discussed below but first, the EMSRb

methodology is described on a leg traversed by J+1 fare types.

We assume that we have a criterion for ranking the fare type that traverses the leg in terms of

desirability to the network. This network value concept is addressed in Chapter 3. We assume

for an illustrative purpose that the first fare class is the one that has the highest ranking

whereas the last one has the lowest ranking on the leg.



Methodology

We define the index j as the fare class ranked at the j position.

Step 1: First ranked fare class

The first step considers only one fare type corresponding to the first ranked fare class. H1 , the

protection level of to the first fare class is obtained by,

Max(HI) Hi E N (2.2)

Subject to: fi. Pr ob(DI H 1 ) f2

As seats are integer, the number of seats saved for the first fare class is found by iterating II

until its expected marginal seat revenue, fi. Pr ob(DI HI), is lower than the next fare class

value, f2.

Step 2: First and second ranked fare classes are combined

The second step consists in combining the first and second ranked fare classes. The EMSR

value corresponding to these two fare classes is defined as the weighted average fare value

time the probability that the aggregated demand is greater than the number of seats that are

protected for the set of fare classes,

EMSR(H1,2)=(f . Di+f 2 . -D2 x Prob(D +D 2  H1 ,2 ) (2.3)
DI +D2

The joint protection level, H1 ,2 , for the first and the second fare classes is found by,

Max(H1i, 2 )

subject to: EMSR(HI, 2 ) f3 with H1 ,2 c N (2.4)



Moreover,

H2 = rl 1,2 - 1i (2.5)

The protection level of the fare class 2 is determined incrementally by subtracting the

protection level of the fare class 1, already computed in step 1, from the protection level of

fare classes 1 and 2 combined.

The method is continued until the model performs J iterations.

Step J: The first J fare classes that traverse the leg are combined

This last step consists of finding the protection level, Hi,..,j , of the first J fare classes, which

traverse the leg. As above, the EMSR of the combined fare classes is,

J -

(Efi .D )
EMSR (Hi,.,J) = H x Pr ob(E D 2i Ji.') (2.6)j=1j=

j=1

And Hi,.., is found by solving

Max(H 1 )

subject to: EMSR(FI 1 ) fJ+1 with Hi,., e N (2.7)

The protection level of the second to last fare class, HI, is then obtained by,

J-1
H =f 1 ,..,; - E li (2.8)

i=1

Therefore, the number of seats to be protected for the first J classes has been found. The



booking limit for each fare class is then obtained by

(2.9)BL 1 = C

BLj = Max( 0 , C -li,.g)

The booking limit of the highest ranked fare class is set to be equal to the number of seats

available on the leg. Furthermore, the booking limit of a specific fare class is the number of

seats that are not protected for the higher-ranked fare classes provided that this number is

positive.

2.2.3.2 Nesting Concept

The equation (2.9) encompasses a very effective concept called nesting. Its advantages are

explained through a simplified example. An airline operates on Boston-Paris flight and

proposes four fare classes to its customers. Moreover 70 seats are available for this flight.

Information for each fare class, about forecasted mean demand, forecasted standard deviation

and fare, is summarized in Table 2-1 below.

BOS-PAR

Fare Class j fare ($)

Y 10 5 1000
B 15 7 700
M 20 9 500
Q 30 13 350

Table 2-1: Demand Information for each Fare Class on BOS-PAR.

The booking limits of the four different fare classes are found using the EMSRb seat allocation

model, explained above. Please see the Section A of the appendix for complete details about

the booking limit calculation for each fare class.

V j E= (1,..,J11



Fare Class ji BLj
Y 7 70
B 15 63
M 24 48

Q N.A 24

Table 2-2: Booking Limit for each Fare Class using EMSRb Technique.

Suppose that a big advertising company decides to organize a meeting in Paris inviting a lot of

business executives from Boston. The actual number of high-yield passenger requests, Dy and

Dm, is more than what was forecasted originally as can be observed in Table 2-3.

Fare Class D5 Dj Sold Spilled

Y 10 13 13 0
B 15 20 20 0
M 20 13 13 0
Q 30 31 24 7

Total 75 77 70 7

Table 2-3: Forecasted Demand, Actual Demand, and Number of Seats Sold and Spilled.

Assuming that the lower fare class requests book first and that no revision of the booking

limits is possible during the booking process, one can observe that the nested EMSRb model

spills only 7 Q class requests and happens to be the optimal strategy to adopt. As opposed to

the nesting approach, the partitioned approach consist of setting distinct seat allocations such

that the sum of the booking limits of all the fare classes on a leg is equal to the number of seats

available on the leg (BLy+BLm+BLB+BLQ=70 in the example). If the fare class inventory

structure were partitioned we would have expected some high fare potential customers to be

spilled, as the actual number of requests for the high fare is well above what was originally

forecasted.



Therefore, a nested fare class structure gives more flexibility with regard to the number of high

fare passenger requests. In other words, "the impact of errors in the demand forecasts of

higher valued class is reduced." 2 In practice, assuming a booking limit control, the nested

models perform much better than the partitioned models.

2.2.3.3 Virtual Class Concept

Airlines forecast the demand for a particular flight all along the booking process. Nonetheless,

the number of requests, for a given ODF, along the booking process is usually a very low

integer number. For example, for a given airline, the number of potential Y class passengers

on Boston-Paris connecting in New York JFK, 120 days prior to departure, is very small

Therefore, the forecast of passenger demand on an ODF by ODF basis carries a lot :f

uncertainty. To lower the risk of forecasting error, airlines have the possibility to aggregate

the fare types into virtual classes.

The aggregation technique used in this thesis is explained below through an example. Let

assume that the network consists of two legs, namely, BOS-ORD and ORD-LAX. Three

types of OD traverse the network. Two local ODs with respect to each leg (i.e., BOS-ORD

and ORD-LAX) and one connecting OD (BOS-ORD-LAX). For each OD, the airline offers

three fare types (Y, B and Q) to their customers.

We assume that the network revenue value (NRV) for each ODF has been estimated by, for

example, one of the techniques proposed in Chapter 3.

2 E.L Williamson[14]
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UA 593: BOS-ORD

Fare Class D - cy. NRV($)
J J

YBOS-LAX 13 4 900

YBOS-ORD 11 3 750

BBOS-LAX 14 4 620

BBOS-OR 12 4 500

MBOS-OR 25 5 200

MBOS-LAX 35 7 180

UA 189: ORD-LAX

Table 2-4: Network Revenue Value and Forecasted Demand Information for each ODF.

As one can observe, the connecting ODF for fare type B (BOS-ORD-LAX itinerary) has

different ranking on each leg as the marginal network value of seats on the two legs are

different.

Let assume arbitrarily that the ODF are bucketed into four different virtual classes, VCj, for

jE{ 1,2,3,4}. The virtual classes are constructed such that the mean demand forecast is, as

much as possible, evenly distributed among the virtual classes.

UA 593: BOS-ORD

VC Fare Type NRV($)

VI YBOS-LAX , YBOS-ORD 24 5 831

V2 BBOS-ORD , BBOS-LAX 26 5.7 565

V3 MBOS-ORD 25 5 200

V4 MBOS-LAX 35 7 180

UA 189: ORD-LAX

VC Fare Class i ( NRV($)

V1 YBOS-LAX, Y ORD-LAX 25 5.7 826

V2 BORD-LAX, M ORD-LAX 25 5 546

V3 BBOS-LAX 14 4 440

V4 MBOS-LAX 35 7 130

Table 2-5: Network Revenue Value and Forecasted Demand Information for each Virtual

Class.



The network value associated with each virtual class is the average of the network value of the

ODFs belonging to the virtual bucket weighted by the corresponding mean demand forecasts.

The network revenue value of Vj is therefore:

NRV(Vj) =

E[DODF x NRV(ODF)]
ODFeVj

Z.DODF
ODFeVj

j E (1,2,3,41

The forecasted mean demand and the forecasted standard deviation associated with each

virtual class, Vj, is defined as:

Dyj = E DODF j E (1,2,3,41 (2.11)
ODFEVj

and,
2

v = ODF
ODFeVj

j e ( 1,2,3,41

The booking limit of each virtual class, for each leg, has been found using the EMSRb method

explained above assuming that the number of available seats on BOS-ORD and ORD-LAX is,

respectively, 90 seats and 105 seats. Furthermore, the booking limit of each ODF belonging to

a virtual class has the same booking limit value on the leg. The booking limit of each virtual

class and the ODFs are summarized in Table 2-6 below.

UA 593: BOS-ORD

Virtual Class Fare Type BL(V)

VI YBOS-LAX , YBOS-ORD 90

V2 BBOS-oRD , BBOS-LAX 70

V3 MBOS-ORD 36

V4 MBOS-LAX 13

UA 189: ORD-LAX

Virtual Class Fare Class BL(V)

VI YBOS-LAX , Y ORD-LAX 105

V2 B ORD-LAX , M ORD-LAX 86
V3 BBOS-LAX 58

V4 MBOS-LAX 34

Table 2-6: Booking Limit of the Virtual Classes on both Legs.

(2.10)

(2.12)



The booking limit of the connecting ODFs is given by,

BL(ODF) = MIN[BL(ODF,LEG)] (2.13)
LEG

The booking limit of a connecting ODF is the smaller booking limit value over all the legs

traversed. Thus, a given connecting ODF must have strictly positive booking limits over all the

legs of its itinerary in order to be open to bookings.

Therefore, for the two-leg network the booking limits are summarized in Table 2-7.

Fare Class Local Local Connecting
BOS-ORD ORD-LAX BOS-ORD-LAX

Y 90 105 90
B 70 86 58
M 36 86 13

Table 2-7: ODF Booking Limit using EMSRb model.

Virtual bucketing brings an additional degree of freedom to the airline. The number of virtual

classes to be used depends on how reliable the demand forecasts are. In the example analyzed

above, it would have probably been better to use more virtual classes, especially to control the

local requests on ORD-LAX as a booking limit of 86 seats seem to be loose for the local M

class. The extreme case, where each fare value is a virtual class is called OD by OD booking

limit control method. Nonetheless, forecast errors may be amplified by a large number of

virtual classes. Therefore, the number of virtual classes to choose is a trade-off between

forecasting error robustness and accuracy of the control mechanism.



Conclusion

Nesting and virtual class are two important concepts used in leg based booking limit control

mechanisms. Nesting improves the robustness of the control mechanism with respect to

demand variations and performs significantly better than the partitioning technique3 . Virtual

classes give the opportunity to design the inventory structure by grouping the ODFs into

buckets and become more robust with regard to forecasting errors. In their thesis,

Williamson[14] and Wei[13] have analyzed in great details the nesting and virtual class

concepts.

2.3 Network Bid Price Control Mechanism

2.3.1 Definition

The network bid price value associated with and Origin-Destination (OD) itinerary is:

BP(n) = I ENRV(m) (2.14)
MELn

With ENRV(m), the Expected Network Revenue of the last available seat on leg m and Ln the

set of legs traversed by OD n. Different techniques to estimate ENRV are proposed in

Chapter 3. The objective of this section is to explain the bid price concept and to highlight its

advantages and shortcomings. In this section we assume the ENRV value for each leg to be

estimated using a mathematical technique explained in Chapter 3.

3 E.L Williamson[141



2.3.2 The Concept

The motivation behind the bid price concept is the following. The objective is to find an

estimate of the expected potential revenue that can be generated by an itinerary at a given time

of the booking process. As defined earlier the ENRV is the expected network revenue value

of the last seat on a leg. Therefore, if a customer is ready to pay more for an itinerary (OD)

than what the airline can expect to gain from the seats it will consume, then the request should

be accepted. Therefore, the bid price associated with an OD is the sum of the ENRV over its

itinerary. If an ODF has a fare greater than the bid price value corresponding to its itinerary

then all the bookings from this particular ODF are accepted until the bid prices are revised.

Conversely, if the fare is below the bid price value, then the requests are rejected. Therefore,

the bid price concept is a binary (rejection/acceptance) decision making process.

2.3.3 Sub-Optimality Discussion

The objective of this section is to explain, through an example, the risk of taking a wrong

decision by using a bid price control mechanism. The technique used to compute the bid price

values is the Network Deterministic Bid Price (NDBP) in which bid price values are estimated

using linear programming shadow prices. The technique is analyzed in Chapter 3.

Two fare classes, Y and B, are offered, on a two leg network, BOS-ORD and ORD-LAX,

with, respectively, 50 and 60 available seats. Moreover, we assume that no revisions of the

bid price values are possible until the departure time.

OD Fare Class D. Fare ($)

BOS-ORD Y 12 750
B 23 290

ORD-LAX Y 11 800
B 25 340

BOS-ORD-LAX Y 10 1000
B 18 540

Table 2-8: Fares and Forecasted Demand for each ODF.



The bid price values are found using NDBP,

OD BOS-ORD ORD-LAX BOS-ORD-LAX

BP ($) 290 260 550

Table 2-9: Bid Price value for each OD.

Of all the ODF, only the fare of the connecting B class

price value. Thus, this ODF is the only one spilled and all

connecting ODF. Let assume that the demand follows

probability mass function is used below to compute the

events.

ODF is below its corresponding bid

the ODF are open except the B class

a Poisson process4. Therefore, the

probability of occurrence of several

The probability that 5 seats stay empty on both legs is nearly 50% and the probability that 5

seats are left empty on leg 2 is greater than 90%. Moreover, the mean demand of denied B-

Class connecting requests is 18. As the probability that the spill of B-Class connecting fare

class is greater than five is very high it is very likely that allocating five seats to the B-Class

connecting fare class would generate more revenue than by implementing the bid price control

strategy. Moreover, this strategy would increase the load factor. It is clear in this example

that, if not revised, the bid price control mechanism is sub-optimal. Nonetheless, by revising

the bid prices more often along the booking process, the performance of the bid price control is

likely to improve. In fact, the bid price control mechanism is very sensitive to revisions. The

more often the model is revised the better it performs. In theory, the bid price values should be

re-optimized after each booking.

4 Prob(x=k) = , with p the mean, x the random variable and k an integer number.
k!
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2.4 Comparison Between Control Mechanisms

Booking limit and bid price are two mechanisms that control the acceptance or the rejection of

customer's requests. This section attempts to highlight the difference between the two

mechanisms. The bid price control tends to be easier to implement than the booking limit

control mechanism because each bid price has to be computed for each OD whereas the

booking limits have to be computed for each ODF. Therefore, bid price control mechanism

tend to require less operations than the booking limit control mechanism. Nonetheless, the bid

price control model is inclined to be more sensitive to revisions compared to the booking limit

control model. If the bid price values are overestimated, too many connecting passengers are

spilled resulting in revenue losses as explained above through an example. Moreover, bid price

control is an acceptance/rejection technique. Therefore, it losses a degree of freedom compare

to the booking limit control that can restrict the number of seats to be sold using an integer

number instead of an open/close criterion. Finally, booking control tends to be more robust to

forecasting errors. According to our simulation, the booking limit models perform slightly

better than the bid price control models for the same number of revisions.

2.5 Conclusion

Two techniques to control the passenger requests have been highlighted, namely, network bid

price and booking limit control mechanisms. As explained above, the booking limit mechanism,

using EMSRb model, is leg based. If the published fares are considered as input to this

booking control model, the connecting ODFs will have an advantage over the local ODFs.

The objective of the next chapter is to propose some techniques to estimate the network

revenue value of each ODF offered on a network. Two different optimization tools will be

used, a deterministic mathematical programming approach and the stochastic EMSRb model

analyzed in Chapter 2.



3 NETWORK REVENUE VALUE CONCEPT

3.1 Motivations

The EMSRb model is a leg based methodology and therefore fails to consider the set of legs

traversed by the connecting ODF. The motivation behind the network revenue value concept

is to take into account in the EMSRb model the fact that a connecting passenger occupies

several seats on the network. As mentioned before, the fares of the multi-leg long haul ODF

tend to be greater than the one of the local ODF, for the same fare class. Ranking the ODF

with respect to their actual fare favors the connecting ODF against the local ODF in the

booking control mechanism. Thus, connecting passengers may displace high fare local

passengers, especially if the demand is high. As explained in this chapter, ranking the ODF

according to their total fares would result in relatively high critical EMSR values. Therefore, If

the number of passenger requests is controlled by a bid price method, many requests would be

denied (especially the connecting ODF) and some seats are likely to stay empty although they

could have been sold to the denied passenger requests.

The objective of the network revenue concept is to improve the performance of the seat

inventory control models by estimating the network value of each ODF on the network. In

this thesis, two different ways of estimating the network revenue value of an ODF have been

considered. The first approach measures the cost of displacing a seat for a connecting ODF

whereas the second method consists of prorating the connecting ODF fares over their itinerary.

101101wn 10116, ''11114 1 11



3.2 Displacement Cost Estimation

The first way of analyzing the network revenue value consists of estimating the revenue loss,

called displacement cost, from selling a set of seats to a connecting passenger instead of

several other ODFs that would generate more revenue. The displacement cost can be seen as

an estimate of the opportunity cost or the revenue that the airline would lose by taking the

wrong decision to sell the seats to a connecting passenger. Formally, the displacement cost of

a connecting ODF j with the itinerary Lj on a leg k is defined as,

DC(j,k) = JENRV(m) (3.1)
MELj
myk

With, ENRV(m), the Expected Network Revenue Value of the last available seat on leg m.

Therefore, the network revenue value of ODF j on leg k is

NRV(j,k) = Max ( 0 , fj - DC(j,k) ) (3.2)

And NRV(j,k) = fj for all j such that Card(Lj)=1.

Card(Lj) corresponds to the number of legs traversed by ODF j. If the ODF traverses only one

leg (i.e., Card(Lj)=1) then the NRV for a local ODF is equal to its total fare as the

displacement cost of a local ODF is by definition null.

If the decision model overestimates the displacement cost, the connecting fare product has a

lower availability because their network revenue values are lower. Moreover, if the actual

demand happens to be low, this strategy will result in empty seats that could have been sold to



the denied connecting passenger requests. Therefore, overestimating the displacement cost

may entail a high revenue loss for the airline especially if the demand is low. Conversely, if the

model estimates too low a displacement cost, then the long haul connecting ODF will have a

higher ranking. If the demand is high, this strategy may displace some high fare local

passengers as priority is given to the connecting ODF.

Airline seats are perishable goods because when the booking process is closed, the empty seats

represent a revenue loss for the airline. Therefore, intuitively it seems to be wiser to

underestimate the displacement cost as in the worse case this strategy would displace local

high-fare passengers by giving priority to long haul connecting passengers. Moreover, if the

number of customer requests varies significantly from one leg to another ("bottle neck"

problem) then, underestimating the displacement cost is likely to work well as more seats are

sold on the legs that have a low demand. Nonetheless, if the demand is high, this strategy is

likely to deny high fare local requests and would result in a revenue loss for the airline.

Therefore, a good estimation of the displacement cost is important for the airline in order to

generate more revenue.

Two approaches to estimate the displacement cost of a connecting ODF are presented in this

section. The first one is based on a deterministic mathematical programming technique

whereas the second one is based on the EMSRb model.

3.2.1 Linear Programming Approach

In this section, we present a deterministic mathematical programming approach to estimate the

expected network revenue value of the last seat on a leg, called ENRV. A discussion of the

shadow price concept is conducted and several mathematical programming alternatives are

pointed out.

Is OW



Let consider the Linear Program

Max (c'x) (3.3)

Subject to Ax b
x > 0

Where the coefficients cj, bk and Aj,k are all positive ( with j e {1,..,J} and k E ( 1,..,KI).

According to the strong duality theorem',

c' x* = p*' b (3.4)

Where x* is the optimal solution of the primal LP and p* is the optimal solution of the dual LP.

The optimal solutions exist because the primal problem is feasible (the null vector is a feasible

solution) and the objective function is bounded from above over the feasible space. An upper

bound to the feasible objective values is:

MAX fj x Min bk with -aj,k : 0 (3.5)
i k aJ, k

Because b, c and the matrix A are all positive.

According to (3.4), the revenue of the optimal solution increases by pk* if bk is increased by

one unit. The idea is, therefore, to estimate the displacement cost on a leg by the optimal dual

value associated with the capacity constraint of the corresponding leg. The optimal dual value

associated with a capacity constraint is also called the shadow price of the leg. The definition

of the Linear Program (LP) is presented below.

"Introduction to Linear Optimization", D. Bertsimas, J. N. Tsitsiklis, Athena Scientific, 1997.



3.2.1.1 The Model

The LP consists of optimizing the revenue subject to the capacity constraints and the demand

constraints. In fact, the objective is to maximize the expected revenue as the right hand sides of

the demand constraints are the forecasted mean demand for each ODF.

The LP is formally expressed for J ODF and K legs as,

J
Max (fj -X (3.6)

j=1

Subject to

E X1-K) Capacity con)Vke{,
jEODF(k) jeODF~k) Ck)acikty{constraints

Lj X Dj Vjc- (1,-,J} Demand constraints

X >0 V j E (1,..,J}

The shadow price for a leg k, SP(k), is defined as the optimal solution to the dual problem

associated with the capacity constraint on leg k. As explained above, SP(k) corresponds to the

additional revenue generated if the k* capacity constraint is increased by one unit in the above

mathematical problem. In theory, SP(k) is the optimal network marginal revenue of an

additional seat on leg k provided that the actual demand is what has been forecasted originally.

Nonetheless, the optimal solution to the primal LP, as explained by Wei[13], is very often

degenerate on an airline network. Therefore, the dual problem is very likely to have many

solutions. As a consequence, the optimization algorithm4 gives one of the possible shadow

prices that depends on the methodology used to find the optimal solution (i.e., Simplex,

Interior point methods).

4 for the experimental part of this thesis, we have been using the Simplex model.
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What we have been looking for in practice is the expected revenue of the existing last seat on a

leg. Therefore, another option is to estimate the ENRV(k) by the difference of the optimal

objective value of (3.6) and the LP where C(k) is replaced by C(k-1), provided that at least one

seat is available on leg k. This technique is called "True SP(Cap-1)." This technique, although

simple to understand, requires that k+1 LPs be solved for each calculation of the shadow

prices and may be computationally expensive to implement for an airline.

Wei[13] has analyzed several options to estimate ENRV using a linear programming shadow

price approach. She found in practice that estimating the ENRV by the shadow prices from

(3.6) generates a revenue comparable to other LP estimation techniques (like the True

SP(Cap- 1)) if the demand is controlled by a booking limit mechanism.

In this thesis, the shadow prices are the optimal dual values of the LP defined in (3.6).

3.2.1.2 Demand Robustness Issues

A model is said to be robust if it performs well with relatively high demand variability. For

example, the nested control mechanisms are more robust than the partitioned ones, as

explained in Chapter 2. If the demands were known with certainty before the beginning of the

booking process, the linear program formulated in (3.6) would provide the optimal seat

allocation, which would be partitioned. However, actual demand is stochastic and the

partitioned deterministic LP model, where the booking limits are simply the solution of (3.6),

performs poorly as the demand variability increases (Williamson[14]). In other words, the

model, although capturing the network structure, is not robust with respect to demand

variations. Similar to Curry[7], a way to relax the demand constraint is to consider the

following LP



J
Max( XEMSRj(X )xXj) (3.7)

j=1

Subject to

E Xj C(k) V k E ( 1,..,K} Capacity constraintsjEODF(k)
Xi >0 V je {1,..,J}

Xj is the decision variable that represents the number of seats to allocate to fare class j.

EMSRj(Xj) is the expected marginal revenue of allocating Xj seats to fare class j. Therefore,

the objective value is the expected revenue if the allocation strategy {Xj}j=1,..,j is implemented.

The mathematical programming representation (3.7) is more complicated to solve than (3.6) as

EMSRj is a non-linear integral function of Xj. Solving such a problem would require some

approximation of the EMSR integral function and, moreover, the solution would still be

partitioned.

3.2.1.3 Conclusion

The shadow price associated with a leg on the deterministic LP, (3.6), has been considered as

an estimate of the expected marginal revenue of the last seat available on the leg. As explained

above, shadow prices are based on a deterministic model that fails to consider the stochastic

nature of the demand. A more stochastic approach, based on the EMSRb model explained in

Chapter 2, is proposed, next, to estimate the displacement cost of a connecting ODF on a leg.

3.2.2 EMSR Approach

As opposed to the LP model, the EMSRb model presented in Chapter 2 takes into

consideration the probability of the booking event to occur. The calculation of the

displacement cost using the EMSRb model is presented in this section. The method is then
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analyzed.

3.2.2.1 Definition

We define the Critical EMSR value, EMSRc, as the expected revenue value of the last seat

available on a leg obtained from the EMSRb model. The calculation of a critical EMSR value

on a leg is illustrated in Section A of the appendix of the thesis. The displacement cost of

connecting ODF j on leg k is, formally,

DC(j,k) = EMSRc(k) (3.8)

3.2.2.2 Process of the Method

The published fares of each ODF are used as input to compute the EMSR curve. Then, the

value of the last seat on each leg, EMSRc, is read on the curve. The NRV for each ODF on

each traversed leg is then computed according to (3.2). As explained in Chapter 2, the ODF

traversing a leg can be aggregated into virtual buckets. A dashed line in the figure below

features this option. The other technique that consists of taking the ODF individually is called

OD by OD. Both techniques are developed in Chapter 4. Figure 3-1 below summarizes the

process to obtain the EMSRc value on each leg.

-* Virtual Nesting

Published
Fares

EMSRb EMSRc
Model

Figure 3-1: EMSRc Displacement Cost Estimation Process.



3.2.3 Shortcomings of the Method

In this section, we have proposed to estimate the ENRV by the critical EMSR value on the leg.

Two arguments highlight the shortcomings of this approach. First, as mention in the

introduction of Chapter 3, EMSRb is a leg-based methodology and therefore does not take

into account the network path of each ODF. Moreover, the fares of the connecting ODF are

counted several times if we use the total itinerary fares of the ODF traversing a leg as input to

the EMSRb mathematical model. Assuming that a connecting ODF j traverses two legs, leg 1

and 2, the total fare fj is taken into account in the computation of both EMSRc(1) and

EMSRc(2). Therefore, fj is considered in estimation the displacement cost on both legs 1 and

2. Thus, the EMSRc values tend to overestimate the displacement cost of the connecting ODF

on a traversed leg and result in denying too many connecting ODF requests as their NRV are

low.

In this thesis, we do not analyze the performances of the method that consists in estimating the

displacement cost by the EMSRc value with the total fares as input to the EMSRb model.

Wei[13] has conducted a detailed analysis of the performances of the method. In the

experimental part of this thesis, we only consider the shadow price concept, presented in

Section 2.1 of this chapter, to estimate the displacement cost of a connecting ODF on a leg.

Furthermore, in Section 3.3, we propose a new technique that consists of prorating the

connecting fare over the legs traversed by the corresponding ODF.

3.2.4 Conclusion

Two ways of estimating the displacement cost of a connecting ODF have been presented in

this section. The first approach estimates the displacement cost using the shadow prices of a

deterministic LP where the right-hand sides of the demand constraints are the mean demand
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forecast.

As opposed to the deterministic mathematical programming representation, the second

approach encompasses the stochastic nature of the demand as it estimates the displacement

cost by the EMSRc from the EMSRb heuristic model. The method considers the full fare of

each connecting ODF on all the leg traversed and, therefore, tends to overestimate the

displacement cost, which result in spilling too many connecting ODFs.

In this thesis, we propose a new methodology that consists in prorating the connecting ODF

over their itinerary. This new technique is presented in the next section.

3.3 Prorated Fare Approach

3.3.1 Motivation

In this section, we propose a new technique that consists of prorating the fare of the

connecting ODFs along the legs they traverse. The revenue generated by a potential request

for a connecting ODF on a leg is the prorated fare of the ODF on the leg, as opposed to the

EMSRc displacement cost estimate which take into account the total fares of the ODFs as

input to the mathematical model. Moreover, the prorated concept takes into consideration the

structure of the network and the more legs an ODF traverses the lower its average prorated

fares tend to be. Furthermore, the new prorated fare methodology is a zero sum approach that

is more robust to demand variation as analyzed in Chapter 4, where the seat inventory control

models are tested on an actual airline network.



The objective is to find a way to prorate the fare of each connecting ODF over the legs they

traverse. Williamson[14] proposes to prorate the connecting ODF according to their leg

length. This technique does not take into consideration the demand on each traversed leg. For

example, let us consider the ODF that traverses two legs such that the first segment is a short

haul whereas the second is a long haul as happens frequently in a hub and spoke network

structure. Moreover, suppose that the demand on the first short haul flight is high whereas the

demand for the second long haul flight is low. The prorated fare of the connecting ODF would

be higher on the long haul flight than on the short haul flight using the distance prorated

technique. Therefore, the connecting ODF is likely to have a high priority on the second leg

where the demand is low and a low priority on the first leg where the demand is high.

Consequently, there is a high number of connecting ODF requests that would be denied as

their priority on the high demand leg is low. Thus, a significant number of seats on the low

demand leg, which could have been sold to the denied connecting ODF, stay unoccupied

resulting in a revenue loss for the airline. Therefore, the distance-prorated approach does not

perform well in such a case.

The proration technique has to encompass the stochastic nature of the demand. Coming back

to the above example, the objective is to find a technique such that the prorated fare of the

connecting passenger on the low demand long haul leg is lower than the prorated fare of the

same ODF on the high demand short haul leg. Therefore, the connecting ODF would have a

better protection level on the network. Assuming that the demand is low on all the traversed

legs, the technique should gives more or less equal weight to all the legs in order to reduce the

risk that some connecting ODF are spilled. In the next section we propose a new technique to

prorate the fare of the connecting ODF.
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3.3.2 Definition

3.3.2.1 Prorated Fare

In this thesis, we propose a new approach based on a prorated fare concept. The prorated fare

of a connecting ODF j on leg k is defined as

e If Z EMSRc(m) #0 then, PRF[j,k] = EMSRc(k) x f (3.9)
meL, EEMSRc(m)

meL,

" If Z EMSRc(m) =0 then, PRF[j,k] = f (3.10)
meLJ card(L j)

The prorated fare of a connecting ODF on a leg is the ratio of the critical EMSR value on the

leg and the sum of the critical EMSR values on all the traversed leg, times the total fare,

provided that the sum of the EMSRc over the traversed legs is strictly positive. If the sum of

the critical EMSR is null then the fare is evenly distributed over all the traversed legs, card(Lj)

corresponding to the cardinality of the set Lj or the number of legs traversed by ODF j. As the

critical EMSR values are by definition positive, this corresponds to the case where all the

EMSRc are zeros for all the traversed legs. In other words, the demand forecast is very likely

to be well below the capacity on all the legs belonging to Lj. Therefore, we decide to prorate

evenly the fare of the connecting ODF j as we forecast that some seats will be available at the

end of the booking process on all the legs belonging to Lj.

As in the displacement cost approach, the prorated fares of the local ODF are simply equal to

their total fare. Therefore,

If Lj = {k}, PRF[j,k]= fj (3.11)



3.3.2.2 Lagrangian Coefficients

The Lagrangian coefficient, 0, corresponding to the ODF j on leg k is

e If X EMSRc(m) # 0
meL

e If Z EMSRc(m)= 0
meL,

then, Oj, =

then, Oj,k =

PRF(j, k) =

fj

EMSRc(k)

Z EMSRc(m)
meL

card(L3)

Note that, Oj,k is no more than the percentage of the published fare of ODF j assigned to leg k

and therefore Oj,k E [0;1]. If ODF j is a local ODF on leg k, then, 6j,k = 1.

3.3.2.3 Properties

By definition of the prorated fares and the Lagrangian coefficients, for all j,

Y PRF(j, k) = fj

I 0 j,k =1
kELJ

Vj E (1,..,1J)

Vj e {1,..,J}

Moreover, for all connecting ODF j, the ratio of the prorated fare on two legs is equals to the

ratio of the critical EMSR values on these legs, provided that the EMSRc are not null.

PRF(j, m) EMSRc(m)

PRF(j, k) EMSRc(k)
V (m,k) e Lj.

(3.12)

(3.13)

(3.14)

(3.15)

,,,, III III -id 1111
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3.3.3 Convergence Model

The revenue inputs that are used initially in the EMSRb model to compute the critical EMSR

value on leg k are the total itinerary fares of the ODF traversing leg k. Therefore, the EMSR

values are overestimated as the total itinerary fares of the connecting ODF are taken into

account in the EMSRb model. A convergence model using the prorated fares as input to the

EMSRb model has been developed to address this problem and is presented in the section

below. First, the process of the method is explored and then the existence of the convergence

limit is discussed.

3.3.3.1 Process of the Method

Figure (3.2) summarizes the process of the prorated fare convergence method.

Set the PRF equal to

the Fare for all ODF.

Compute EMSRc values for

all legs from EMSRb model.

Prorate the fare according to (3.9), (3.10) and (3.11).

Is the convergence criterion satisfied? NO
YES

Use the converged PRF as inputs to the control mechanism

(Booking limit or bid price).

Figure 3-2: Prorated Fare Convergence Mechanism.

We have arbitrarily decided to set initially the prorated fares to their respective total fares for

each ODF. They are next used to compute the critical EMSR value on each leg using the

EMSRb mathematical model. The PRF for all ODF are then computed using (3.9), (3.10) and



MINI,

(3.11). Then, the PRF are compared with the previous one (the initial fares for the first

iteration). If the convergence criterion (explained in more details in the next section) is

satisfied the last computed PRF are used as inputs to the control mechanism, analyzed in

Chapter 2. Conversely, if the convergence criterion is not satisfied, the last computed PRF are

used as inputs to the EMSRb model. The new PRF are computed and the convergence

criterion is checked.

3.3.3.2 Convergence Criterion

An index, n, is added to the prorated fare definition in order to denote the iteration number of

the convergence process. Therefore, PRF(j,k,n) is the prorated fare associated with ODF j on

leg k after n iterations of the convergence process. The initial PRF, PRF(j,k,O), is arbitrarily

set to fj as explained in Figure 2 above. Similarly, the Lagrangian coefficient of the connecting

ODF j on leg k for the n iterations of the convergence process is 93,. Moreover, (j,k,)neN is

defined as the sequence of the Lagrangian coefficients for the connecting ODF j on leg k.

Equation (3.15) still holds for all iterations n,

Y O3,k,n = 1 V j {1,..,1J and Vn E N (3.17)
keL,

The convergence criterion that we have used in this thesis is

MAX I PRF[j,k,m]- PRF[j,k,m-1]|< $5 m e N*. (3.18)
j,k

The largest difference between two consecutive prorated fare iterations, for all ODF over all

the legs, has to be less than $5 in order to satisfy the convergence criterion. The first set of

PRF that satisfy the convergence criterion are used as inputs to the booking control

mechanisms (i.e., booking limits or bid prices).
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3.3.4 Convergence Analysis

The objective of this section is to analyze the existence of the convergence limit of the prorated

fare sequence, or similarly the Lagrangian sequence, corresponding to the connecting ODF

traversing a network. In the first place, the convergence is explored on a small two-leg

network traversed by three ODF. Then, we discuss the convergence existence on a more

general network.

3.3.4.1 Simple Case

The Network

The simple linear network, illustrated below, consists of three nodes A, B, C and two legs,

A-B and B-C. Three ODFs 1, 2 and 3 traverse the network. One connecting (ODF 3) and two

locals (ODF 1 and ODF 2). The connecting ODF traverses both legs whereas ODF 1 and 2

are offered respectively on only leg AB and BC.

B

A - - --- ODF 3----- C

A C

Figure 3-3: Two Legs, Three ODF Linear Network

The letters j, k and n denote respectively: the ODF, the leg number and the convergence

iteration. In this small example, j (1,2,3 ), k E{ 1,2), n E (0,..,+00 }.

Moreover, D is defined, as the mean demand forecast and fj is the published fare



corresponding to ODF j. The table below summarizes the mean demand forecast and the total

fare of the ODF traversing both legs.

Table 3-1: Forecasted Mean Demand for all ODF traversing both legs

Definition

e Probability

We define a, 0, and 5 as:

a = Prob (Di+D 3 > Avail[1])

0 = Prob (D2+D3 > Avail[2])

5 = Prob (D3 > Avail[1])

With Avail[k] (kE {1,2}), the number of seats available on leg k. Note that a, 0, and 5 are

constant all along the convergence process as the number of seats available and the demand

distribution are given. Moreover, no assumption has been made concerning the demand

probability density function. The demand can well be gaussian, gamma or anything else.

0 Prorated Fare and Lagrangian Coefficients

The prorated fare of a local ODF is equal to its corresponding published fare. Therefore, fi
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and f2 are the prorated fares of the local ODF on leg A-B and B-C respectively.

PRF(3,k,n) and 0 3,kn are defined, respectively, as the prorated fare and the Lagrangian

coefficient of the connecting ODF (i.e., ODF 3) on leg k for the n iteration of the convergence

process. As explained in (3.12), 03,k,n is the ratio of the prorated fare and the total fare of the

connecting ODF (i.e., 03,kn = PRF(3,k,n) / F3 ).

According to (3.17), the prorated fares and the Lagrangian coefficients satisfy the conditions

PRF(3,1,n) + PRF(3,2,n) = 1

03,1,n + 0 3,2,n = 1

(3.19)

(3.20)V ne{0,..,+ oo }

* Demand coefficients

y1, and Y3,1 are defined as the expected percentage of, respectively, local and connecting

requests on the first leg. Similarly, Y2,2 and y3,2 are, respectively, the percentage of local and

connecting forecasted requests on the second leg.

Y2,2 -

D2 + D3D1 +D3
Y32 D3

53,2
D2+ D3

(3.21)

Convergence Analysis

We are only interested in studying the convergence of the sequence (6 3,1,n)neN because the

convergence of this sequence determines, mutatis mutandi, the convergence of the other

sequence (O3,2,n)nrN as 03,1,n + 03,2,n = 1 VnEN.

On the simple network define above, two cases have to be considered. First, when the EMSRc
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value on a leg is, for all the iterations of the convergence process, on the piece of curve

generated by the compound of both the connecting (i.e., ODF 3) and the local ODF (i.e., ODF

1 or 2 depending on the leg). The second case corresponds to the situation when, for some

iterations of the convergence process, the EMSRc is obtained from the piece of curve

generated by the connecting ODF only.

We define IN(k,n), the set of ODF that defines the critical EMSR value of leg k for the n*

iteration. In other words, IN(k,n) is the set of ODFs that generate the point on the EMSR

curve that corresponds to the EMSRc value.

In the first case, explained above, for all iterations n, IN(1,n) = {ODF 1, ODF 3}. Therefore,

for all the iterations of the convergence process, the critical EMSR values are of Type 1

illustrated in Figure 3-4 below. Whereas in the second case, it exists an iteration n such that,

IN(1,n) = {ODF3}. For several iterations, the EMSRc is defined by ODF 3 only,

corresponding to Type 2 in the illustration below.

EMSR ($)

IODF I and

IODF 3

Avail[1]

TYPE 2: EMSRc from 3 only.

Figure 3-4: Two Types of EMSRc values.

EMSR ($) j

F3.1

I Avail[1J

TYPE 1: EMSRc from compound (1+3).

IODF and 3

A1,111110 -1111UHM111 , , , "i 11h1l, IM111IN 01h Mill,
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CASE 1: IN(1,n) = {ODF 1, ODF 3} and IN(2,n) = {ODF 2, ODF 3} VnEN.

For all the iterations of the convergence process, the set of ODFs that generates the point on

the EMSR curve corresponding to EMSRc, IN(1,n) and IN(2,n), is the compound of ODF 3

with, respectively, ODF 1 and 2. In other words, the critical EMSR value on both legs is

always of Type 1, as illustrated in Figure 3-4. Therefore, the EMSRc operator keeps the same

definition all along the convergence process on both legs.

The critical EMSR on both legs for the n iterations are:

EMSRc [1,n] = a [y1,1 fi + 73,1 PRF(3,1,n-1)] = a f3 [71,1 fi/f 3 + 73,1 03,1,n-1] (3.22)

EMSRc [2,n] = $ [72,2 f2 + 73,2 PRF(3,2,n-1)] = p f3 [72,2 f2/f3 + 73,2 (3,2,n-1] (3.23)

By definition of the prorated fare, we have:

03,1,n = EMSRc[1, n] (3.24)
(EMSRc[1, n] + EMSRc[2, n])

As explained in (3.13), if the sum, over both legs, of the critical EMSR values for the same

iteration n (i.e., EMSRc[1,n] + EMSRc[2,n]) is null then we have decided arbitrarily to prorate

equally the total itinerary fares of the connecting ODF over the traversed legs. In other words,

03,1,n = 03,2,n = 1/2. The intuitive reason is that if both critical EMSR values are equal to zero,

the demand is expected to be well below the capacity. In such case the objective is to give the

maximum chance for a connecting request to be accepted by equally prorating the connecting

fare on all the traversed legs.



After some simple algebra, and using equation (3.20), (3.22), (3.23) and (3.24), we find that

ab 3,1,n- 1  (3.25)
c3,1,n=I

C + d x 93,1,n-i

with

a = a y1,1 F1/F3

b=a 73,1

c = a y1.1 F1/F 3 + $ 72.2 F2/F3 + p 73,2

d = a 73,1 - 1 73,2

Similarly for leg 2, we would have obtained the parameters a, b, c, d by replacing 1 by 2 and a

by f in the above formulas. But, as we mention above, we are only interested in the

convergence of the prorated fare of the connecting ODF on leg 1 as this would induce the

convergence of the sequence of the prorated fares on the other leg (i.e., leg 2).

We next, prove that the sequence of the Lagrangian coefficients corresponding to the

connecting ODF on leg 1 converges.
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Theorem: The sequence (O3,1,n)neN converges.

Proof:

According to (3.35), all the elements of the sequence (9
3,1,n)ncN are on the curve: Y = F(X)

with

Y = F(X) = a+bxX
c+dxX

XE [0;1]

The sequence (63,1,n)jeN* is said to be homographic.

The first derivative of the function F is:

F'(X) bc - ad

(c + dX) 2

with

bc-ad = a 73,1 (a y1,i F1/F3 + p Y2,2 F2 /F3 + p Y3,2) - a y1,1 F1/F3 (a 73,1 - p 73,2)

' bc-ad = a p 73,1 73,2 + a p 73,1 72,2 F2/F 3 + a 0 7I, Y3,2 Fi/F3

C bc-ad 0 as all the coefficients of the sum are positive.

Therefore, V X E [0;1], F'(X) 0 and the function F is increasing.

Moreover, the second derivative is:

F"(X) = 2d(bc - ad)

(c + dX) 3

Let define X* the value, such that F(X*)=X*

(3.26)

(3.27)

(3.28)



Lemma 1: The first derivative of F in X* is less than one: F'(X*) < 1

Lemma 1 is proved for both cases: F is convex or concave.

e d 0 (i.e., C Y3, 1 ! P Y3,2)

If d s 0 according to (4) the function F is convex as F"(X) > 0. Moreover, as we have proved

before, F is increasing. The function F is illustrated on the figure below.

Y=X
I ----------------------- Y x

10
__. |

I.. |

X*

Figure 3-5: F Curve Supporting the Lagrangian Coefficient Sequence

By looking at the definition of a, b, c, d we have:

0 s F(0) = a <1 (3.29)
c

0 s F(1)= ab <1 (3.30)
c+d

As F is convex we have

V te[0;1], F'(X*) (t - X*) + F(X*) F(t)

The tangent line to the curve of F in X* is below the curve F.



If F'(X*) were greater than one we would have:

V t E=[0; 1], t - X* + F(X*) :! F(t)

Therefore, for t=1, 1 - X* + F(X*) F(1)

As F(X*) = X* , we would have that F(1) 1. But, this result is in contradiction with (3.30)

and therefore F'(X*) < 1.

e d > 0 (i.e., a Y3,1 > 0 Y3,2)

If d > 0 the function F is concave as F"(X) < 0. Therefore,

V tc[0;1], F'(X*) (t-X*) + F(X*) > F(t)

The tangent line to the curve of F in X* is above the curve of F.

For t = 0, F(0) < F'(X*) (-X*) + F(X*)

If F'(X*) 1 we would have

F(0) < F(X*) - X*

But by definition of the fixed point, F(X*) = X* and therefore, according to the above result

F(0) < 0. But, by definition of the prorated coefficients, F(0) 0. Therefore, we have found a

contradiction and have proved that when d > 0, F'(X*) < 1.

Consequently, independently of the sign of d, the derivative of the function F in X* is strictly

less than one (F'(X*) < 1).

The sequence (03,1,n)neN is bounded as all its elements belong to [0;1]. Moreover, the function

F is increasing implying that the sequence is increasing if the first element of the sequence is

below X* and decreasing if the first element is above X*. Therefore, after N iterations all the

elements of the sequence belong to the vicinity S of X*.



3N/V n>N, |F(93,1,) - F(X*) I F'(X*) x | (3,1,n - X* I

For all integer q we have, I F(3,1,N+q) - X* | F'(X*)q x I 9 3,1,N - X*

As q goes to infinity the sequence on the right hand side converges to zero because it is a

geometric sequence with r =F'(X*)<1. Therefore, the sequence (0 3,1,n)neN converges to the

fixed point X*.

Therefore, the sequence (0 3,1,n)jeN converges. We also know that 03,1,n + O3,2,n = 1 and

conclude that the sequence (9 3,2,n)jeN also converges.

Uniqueness of the limit

Suppose that there are two different real X and W such that the sequence (O3,1,n)jEN converges

to both X and W. We have IX-WI : IX - 03,1,n + 03,1,n -WI IX - 03,1,n I+ W - 03,1,n I

But, by definition of the convergence of a sequence the right hand side term converges to zero

and therefore, W and X are equal. Thus, the limit of the sequence is unique.

Conclusion

We have proven that the sequence [F(3, 1,n)] neN converges to a unique limit on a simple

network, under the assumption that for all the iterations of the convergence process, the set of

ODF that generates the point on the EMSR curve for both legs is the compound of the

connecting ODF and the local ODF.
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CASE H: The IN sets are not always IN(1,n)={ODF1,ODF3} and IN(2,n)={ODF2,ODF3}

along the convergence process.

We define the sets S and T such that

S = {n e N such that: IN(1,n)={ODF1,ODF3} and IN(2,n)={ODF2,ODF3}} and

T = {n e N such that: IN(1,n)w{ODF1,ODF3} and/or IN(2,n)w{ODF2,ODF3}}.

If T is finite and therefore S is infinite (as S u T = N), it exists an integer M such that: for all n

greater than M, the critical EMSR value is on the piece of curve generated by the compound of

both the connecting and the local ODF. In other words, when n is greater than an integer

value M, we know that we meet the assumption of case I. Therefore, the sequence, (0 3,1,n)nEN,

converges.

Nonetheless, the sequence may not converge when the sets, S and T, are both infinite as we

may have a cycling problem. The sub-sequences (Un)nEN and (Vn)nEN defined respectively as

(e 3 ,1,n)nes and (03,1,n)naT, do not convergence to the same fixed points.

Un =03,1,n (nES) > u (3.31)} where u v

In other words, the critical EMSR value is computed using two different sets of ODF and the

model never stops switching between the two sets of ODF. If the two sub-sequences, Un and

Vn, converge to two different fixed points, the model ends up cycling between these two

different values, u and v, and does not converge.

Moreover, if after a certain number of iterations, only the connecting ODF (or the local ODF)

are considered in the computation of the EMSR critical values, the convergence can be proved

aX
the same way as in case I. In this case, the function F has the form and we would

b + cX



show similarly the convergence of the sequence.

Conclusion:

As long as the EMSRc operator is defined by the same set of ODF for an infinite consecutive

number of iterations, the sequence (93,1,n)neN converges. The sequence may not converge if the

EMSR operator is defined by several different sets of ODF.

On leg 1, for example, we define the two sets Ni = {n such that IN(1,n) = {ODF1, ODF3}}

and N2 = {n such that IN(1,n) = {ODF3}}. If Ni and N2 have both an infinite cardinality then

the prorated fare of ODF 3 on leg 1 may not converge to a unique limit value as the two sub-

sequences (O3,1,n)nEN1 and (O3,1,n)neN2 may have different limits.

3.3.4.2 General Case

We have analyzed the simple case of a network with two flight legs and three ODF. In fact we

can generalize the results that we have proven on a simple network for any network as long as

a connecting OD traverses no more than two flight legs. If this is the case, the sequence 63,k,n

can be expressed as a continuous fraction of the form a + b x 6 jkn1 with a, b, c, and d
c +d x9Oj,k,nI

strictly positive real, specific to the connecting OD j on leg k. The prorated sequence,

(j,k,n)nEN, is homographic and we would prove the convergence of the sequence similarly as we

did above for the simple case. Therefore, if the connecting passengers traverse no more than

two flight legs, the prorated fare sequence converges.

When some connecting passengers traverse more than two legs, the problem becomes much

more complicated as the sequence (ej,kcn)nGN are dependent on each other. In this section we

prove the existence and the uniqueness of the convergence limit of each sequence (Oj,kn)nEN -
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Definitions:

Let assume that a connecting OD, arbitrarily called c, traverses the first 3 legs of the network

(i.e., leg 1, 2 and 3). We define CO(k) and LO(k) as respectively, the set of connecting OD

and local OD traversing leg k. TO(k) is defined as the set of OD traversing leg k and

therefore, TO(k) = LO(k) u CO(k).

Moreover, we define the set Lj as the set of legs traversed by OD j and therefore, Le {1,2,3}.

oc,k,n is defined as the n iteration of the prorated coefficient corresponding to the connecting

OD, c, on leg k.

Expression of the Lagrangian vector corresponding to OD c:

The vector of Lagrangian coefficients corresponding to OD c for iteration n is defined by the

equations below.

a, + E b;,1 xO)i,1,n-1
Oc,1,n iECO(i) b (3.32)

Z ak + Z E i,k X Oi,k,n-1
kELc kELc iECO(k)

al + E2 bi,2 Xoi,2,n- 1
o = ieCO(2)

(c,2,n 
EO2

Sa k + E Z bi k X 0 i,k,n-1
keLe keLe iECO(k)

a 3+ Z bi,3 x()i,3,n-1

)c,3,n =ieCO(3)
Zak + I Z bi,k XOi,k,n-1

keLc keLe ieCO(k)

And Z c,k,n =1 VnEN (3.33)
keLe

by definition of the Lagrangian coefficients.

Where we define



Prob( ZDi Ck)

a = i x F) x ieTO(k) (3.34)
iELO(k) ii

ieTO(k)

and

Prob( ZDi Ck)

- ~iETO(k)(35bj,k = 15, x F, x * (3.35)

ieTO(k)

- ak corresponds to the sum of the local fares weighted by the mean demand forecast, times

the probability that the total demand on leg k is greater than the number of seats available

on the leg divided by the sum of all the mean demand forecast of all the ODF traversing leg

k. Thus, ak is a constant as the fare of the local ODF are not affected by the prorated fare

technique.

= bj,k corresponds to the ratio of the mean demand forecast of connecting ODF j and the sum

over all the ODF traversing leg k times the total fare of the connecting ODF j and the

probability that the total demand on leg k is greater than the number of seats available on

the leg.

For all the Lagrangian coefficients corresponding to a connecting ODF, the denominator is the

same as one can observe in (3.32). It corresponds to the sum of the critical EMSR values for

the (n-1)"' iteration of the convergence process. But this value is dependent on all the PRF of

the connecting OD traversing one of the leg belonging to Lc. Therefore, the Lagrangian

coefficient of ODF c on leg k is dependent on the Lagrangian coefficients of all the ODF that

traverse one of the legs traversed by c (i.e., one of the leg belonging to L0).

The convergence of the sequence seems not trivial to prove, as the prorated sequences are

dependent on each other. We first prove the existence and then the uniqueness of the limit of

each sequence (Oj,,)nEN of Lagrangian coefficients.



Existence of the limits:

Bolzano-Weierstrass theorem states that every bounded sequence has a limit point. But for all

iterations n, Oj,kE[0; 1]. Therefore, the sequences (j,kn)nGN are bounded for all OD j and all

legs traversed k as all the iterations belong to the interval [0;1]. Therefore, there exists at least

one limit point for each sequence. Nonetheless, it is hard to prove that the limit point for each

sequence (j,kn)neN is unique. The theorem of Bolzano-Weierstrass proves the existence but

not the uniqueness of the limit point.

Uniqueness of the limits:

Let consider the operator G that transforms the matrix [xk i,,K where j is the OD index

and k the leg index, into [g(x'k ) 'Ik<;K with gj,k the function:

gj,k : [0;1] > [0;1]

ak ± E bi xxi,k

xj~ leCO(k) (.6
lam+ Z Z bi,mxxi,m

meLj meLj iECO(m)

G is the function that transform the (n-1)* into the n* iteration of the convergence process.

Therefore, the limit matrix X* is solution to the system of (JxK) equations:

X = G(X) (3.37)

If we prove that G is a contraction operator, for which the distance between images of any two

distinct points is less than the distance between the points, then the Banach theorem proves the

existence and the uniqueness of a fixed point and this point can be obtained by the method of

successive approximation for any initial point.



Lemma 2: MAX Vgeg (X*) <1.
c,k

The proof of this lemma is developed in Appendix Section C.

We can use the Banach theorem to prove the uniqueness of the limit points.

Banach2 theorem: If the contraction operator U maps a complete metric space X onto itself,

then we have a unique fixed point.

Conclusion: The operator G is a contraction and therefore the sequence (gj,kn)neN converge

toward a unique fixed point.

3.3.4.3 Virtual Class Versus OD by OD Convergence

The prorated fare convergence method distributes the fare of the connecting ODF over the legs

they traverse. Two different ways of computing the EMSRc values have been tested in the

experimental analysis of this thesis. As explained in Chapter 2, the airline has the possibility to

aggregate the ODF into virtual buckets with regard to the NRV of the ODF traversing the leg.

The fare associated with the virtual class is the sum of the fares of the ODF belonging to the

virtual class weighted by the mean demand forecast as explained in (2.10). Then, the EMSRc

values are computed using the virtual nesting EMSRb model. The prorated fare convergence

model that is based on the virtual class EMSRb model is called VC-convergence model. If the

EMSRb model considers all the ODF traversing a leg as individual entities the convergence

model is called OD by OD convergence model. Both methods are tested and analyzed in

Chapter 4.

2 S. Banach (1892-1945) one of the founder of functional analysis.
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3.3.4.4 Conclusion

As opposed to the displacement cost concept, the prorated convergence approach constrains

the sum of the NRV of a connecting ODF over all the traversed legs to be equal to the fare of

the connecting ODF. The NRV are the limit values of a prorated fare convergence process.

As discussed above, the existence of the limit depends on the stability of the EMSRc operator.

If the operator is defined by the same set of ODF after a certain number of iterations of the

convergence process, the model converges. Nonetheless, some cycling problems may occur

when the EMSRc operator is computed using different sets of ODF in successive iterations.

The quality of the convergence using actual data is discussed in Chapter 4.

3.4 Summary

A connecting ODF, which traverses several legs, is not taken in account into the leg based

EMSRb model. The objective of the network revenue value concept is to estimate the revenue

contribution of the connecting ODF on each leg they traverse. Two different techniques to

estimate the network revenue value (NRV) have been highlighted in this chapter.

The first concept, called displacement cost, consists of estimating the opportunity cost of

selling a seat to a connecting ODF as it may displace several ODF that would have generated

more revenue. Two approaches have been considered. The first approach is deterministic and

uses mathematical programming concepts. The displacement cost on a leg is estimated by the

shadow price associated with the corresponding leg. As opposed to the previous technique,

the second approach is stochastic and estimates the displacement cost of a leg by the critical

EMSR value on this leg. The latter technique has not been tested in this thesis as we have

highlighted several shortcomings. The most important problem is that the technique
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overestimates the displacement cost on a leg as it considers the total fare of a connecting ODF

on each traversed leg, resulting in spilling too many connecting passengers. The displacement

cost concept is not a zero sum technique as the sum of the NRV of each ODF over the

traversed legs is most of the times different from the total fare.

In this thesis, we propose a new way to estimate the NRV of a connecting ODF. The method

is based on a prorated fare convergence model. As opposed to the first technique, the sum of

the NRV of a connecting ODF over the traversed legs equals the total itinerary fare of the

ODF. The new technique takes into account both the structure and the demand pattern of the

network. If the demand forecast is high on a leg the prorated fare of the connecting ODF will

be high. Conversely, if the demand is low, less weight is assigned to the leg as the probability

that some seats are available on the flight is high. Therefore, the prorated fare model optimizes

the availability of a connecting ODF given that the sum of the prorated fare is the total fare.

We have proven the existence and the uniqueness of the limit on a small network and highlight

the potential cycling problems in the application using the EMSRb model. Moreover, we have

proven the existence and the uniqueness of the limit point for a general network under the

assumption that the EMSRc operator keeps a stable definition.

The NRV are then used as input to the control mechanism that uses the EMSRb model. Figure

3-6 below summarizes all the concepts described in Chapter 2 and 3.
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4 Case studies

The objective of Chapter 4 is to measure the performance of some seat inventory control

methods, using the network revenue value concept on a major airline network. The booking

process simulator is first described and the assumptions that it makes with regard to the

passenger behavior modeling are highlighted in Section 1. Next, we present the database that

has been used as input to the booking process simulation in our experimental work.

In Section 3 of this chapter, we present the different methods that combine the NRV

estimation techniques, described in Chapter 3, with the booking control mechanisms

introduced in Chapter 2. We define the base case model for all the performance analysis

conducted in Chapter 4. The performance of each model is analyzed when the seat inventory

control model is optimized only once (static optimization) and then, when it is optimized at

the beginning of each booking period (dynamic optimization).

In Section 4, we have analyzed the robustness of the different seat inventory control methods

developed in this thesis with respect to several parameters, like the number of booking periods

and the number of revision points. The performance of the seat inventory control methods are

then compared to the optimal strategy where the revenue is maximized by assuming that the

number of requests for each ODF was known before the beginning of the booking process.

Finally, an analysis of the convergence speed of the prorated fare convergence method is

conducted and we propose an algorithm to decrease the number of iterations before satisfying

the convergence criterion.
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4.1 Simulation Model

In "real life", the chance to observe the same passenger requests at the same time of the

booking process for each ODF over all the network under different seat inventory control

methods is non-existent. Simulation is a practical and powerful tool to compare the

performance of different methods under the exact same arrival process. Therefore, the seat

inventory control methods analyzed in this thesis have been tested on an integrated seat

inventory control simulator developed in the Flight Transportation Laboratory at MIT. In the

section, the structure of the simulation process is explained and the inputs of the methods are

highlighted.

4.1.1 Model Structure

The model, developed by Williamson[14], simulates the booking process for the same number

of departures on all the flights offered by the airline on a subset of its network. Moreover, the

simulation is a multi-stage process as airlines adjust their booking limits many times along the

booking process. The simulator model revises the booking limits corresponding to each ODF

at the beginning of each booking period, called revision point (RP). Figure 4-1 below

summarizes the time line of the booking process with W defined as the number of revision

points or booking periods during the booking process.

RPo RP1  RPw

CD (I. D"@ 001

Booking Booking
~~ Period 1------------------ Period W

Figure 4-1: Time Line of the Booking Process



In Section 3 of this chapter, we present the performance of the seat inventory control methods

for 18 booking periods and in Section 4 we conduct a sensitivity analysis of several seat

inventory control methods with respect to W.

The simulated demand follows a Poisson process where the arrival rate of the simulated

demand for each ODF equals the mean demand forecast of the corresponding ODF, obtained

from an airline's Yield Management historical database. Therefore, the random demand

generator only considers the ODF demand forecast to generate the number of requests per

booking period for each ODF. Nonetheless, we can estimate the standard deviation of each

ODF with respect to their mean demand forecast and then use them as input to the EMSRb

mathematical model. Therefore, we can control the variance of the demand forecasts in the

mathematical model using the Z-factor parameter, as we explain in Section 3 of this chapter.

These remarks are important and have to be kept in mind throughout the performance analysis

of the different seat inventory control methods.

In the data set used in the simulations, the low fare requests tend to arrive before the high fare

requests because of the fare restrictions imposed by the airline. This booking pattern

characteristic is observed on leg 10.

Demand (Pax) Higher Fare Class
60 -

50 -

40 -

30Lower 

Fare Class
20 -

10 -

0- Booking Periods
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 4-2: Accumulated Demand Curve for High and Low Fare Classes on Leg 1.



4.1.2 Model Assumptions

The objective of this research is to compare seat inventory control methods assuming that the

passenger requests follow a Poisson process with a rate equal to the mean demand forecast for

each offered ODF. As Rohrs pointed out, the goal is to "find the right model for the situation,

big enough to capture needed behavior, small enough to allow answers and understanding."I

Introducing new assumptions would increase the complexity of the analysis. Nonetheless, it

is worth highlighting the assumptions of the simulation process.

Some assumptions have been made in the simulation model. First we assume that the fare for

each ODF and the total capacity for each flight stay the same all along the booking process.

Nonetheless, if these inputs were not constant, they could easily be incorporated into the

simulation software. Moreover, the simulation does not consider competitor behaviors, as a

change in a competitor's seat allocations may affect the demand of the given airline in the real

world.

Some assumptions relative to the passenger demand have been made. First, the simulation

model assumes that the demand arrivals follow a Poisson process, as it is a natural model to

represent the customer arrival process. Alstrup et al. claim that airline ODF requests have a

Poisson distribution 2 . Therefore, we assume that the arrival process has IID3 and

exponentially distributed inter-arrival intervals. Furthermore, the simulated demand is

unbiased with regard to the demand forecasts as the rate of the Poisson process is the mean

demand forecast, for each ODF. In other words, over a large number of departures, the

' C. Rohrs, "Discrete Stochastic Processes," MIT course notes, unpublished, 1998.
2 Alstrup J., S. Boas, 0. Madsen and R. Vidal, "Booking Policy for Flight With Two Types of Passengers,"

European Journal Opnl. Res. 27, 274-288, 1986.
3 Independent and Identically Distributed.



average of the simulated demand for each ODF on each booking period has a mean equal to

the forecasted demand. In the next section, one can observe in Table 4-1 that for 20 simulated

departures the total simulated demand is very close to the total demand forecast.

If a request is rejected the simulation does not allow recapture, as sell up (the possibility that a

denied passenger decides to buy a higher fare) is not considered in the simulation. Therefore,

a denied request is a revenue loss for the airline. No cancellation of bookings is considered

and thus, no overbooking strategy has been taken into account in the experimental work

presented in this thesis.

4.2 Network Characteristics

In this section, we present quantitatively the supply and demand characteristics of an actual

large airline. We will use the presented network for all the experimental work addressed in

this thesis.

4.2.1 Supply

The network consists of 102 legs and 34 nodes. Three nodes generate more than four flight

legs and can be considered as hubs. Moreover, the airline offers to its customers 1066 OD

and 7 fare classes that are defined by fare types. Thus, 7,462 ODF are offered on the network.

On average, the highest fare is slightly more than four times the lowest fare of the

corresponding OD. Finally, each OD traverses at most 4 legs of the network. In this thesis,

we average the performance of each model over 20 simulated departures.



4.2.2 Demand

As expected, the mean of the total simulated demand over the 20 departures is very close to

the mean demand forecast as one can observe in Table 4-1. Three different demand scenarios

have been considered: a low, a moderate and a high demand scenario. For each scenario the

arrival rates have been multiplied by a demand factor of 0.80, 1.00, 1.20, for respectively, the

low, the moderate and the high demand scenarios. Please note that the moderate scenario

corresponds to the simulation based on the actual data supplied by the airline. As far as

local/connecting demand mix is concerned, the percentage of local requests is about 68% of

the simulated traffic.

Demand Scenario Low Moderate High

Demand Adjustment 0.80 1.00 1.20
e':'m'::':a:':n:: d

Connecting Demand 1,694 2,130 2,546
... .......... ..... ......... .. ....... ... .... .. ..... .................... ................. ... ........... ........ ..... ............... .................. * ------ * .. ... .... ............. .. ... ...... .. ..... I.- .................... *- .......... ... I ................. .......................................................................... ..... .4 - ............ .. .................... ........... ............ ............ ..... ot d 'D .:e' .... ihd

Total Demand Forecast 5,395 6,644 8,092
................................................ ............... I., ........... .......... .. ........................ ......... ............................................................................. ........... : .............................. . ................. ...... .. ...... ...... ......... .....--- .......................................................................................... .. .... ... .. ........ ...............................w ......................... I ............... ....... ..................................... ......... ............. ............................................ ................... ........ -............................I.- ... ................. .. ! I - - I.:::::::: :::::: 0 : -7........... ...................................... ............ .................. ............ .............ky er 8 ...........A ................ it .U a

Table 4-1: Simulated,, Forecasted Total Demand and Average Load Factor.

4 For 18 booking periods

5TIie average load factor is obtained using the Base Case model, EMSRb Leg Based Fare Class, presented in
section 4.3.3.
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In the next section we analyze the performance of the inventory control methods for 18

booking periods.

4.3 Performance Analysis

4.3.1 Introduction

The objective of this section is to analyze the performance of several seat inventory control

methods that take into account the network revenue values of each ODF. Under a booking

limit control mechanism, we have tested two mathematical methods to estimate the NRV of

the connecting ODF:

" Displacement cost of connecting ODF using the shadow price concept. For a

connecting ODF, the displacement cost on a leg is the sum of the shadow prices

over the other legs traversed. The NRV is the difference between the fare and the

displacement cost if the fare is greater than the displacement cost. Otherwise, the

NRV is set to zero.

" Convergence of the connecting ODF prorated fare. The NRV is the sum of the

EMSRc over the leg traversed.

Both methods have been described in detail in Chapter 3. When the passenger requests are

controlled by a bid price mechanism, we have tested two mathematical techniques to compute

the expected network revenue value of the last available seat on a leg (ENRV):

* Shadow price concept from deterministic LP.



* Critical EMSR values obtained from the prorated fare convergence method

described in Chapter 3. Two convergence techniques have been tested: OD by OD

and virtual classes (VC). (We remind our readers that the ODF are either

considered independently or aggregated into virtual classes (VC) in the EMSRb

model (OD) for the purpose of calculating the critical EMSR values).

The network bid price value is either the sum of the critical EMSR values, resulting from the

prorated fare convergence algorithm, or the shadow prices corresponding to the capacity

constraints in the deterministic LP.

The booking limit control methods have been tested running the network optimization model

only once (static optimization) and at the beginning of each booking period (dynamic

optimization). In all cases the booking limits are re-calculated at the beginning of each

booking period. First, we define an important parameter, called Z-factor, and then we present

the base case seat control model for all the performance analysis in this section.

4.3.2 EMSR Inputs

As analyzed in Chapter 2, the EMSRb mathematical model assumes that the demand is a

Gaussian random variable with its mean equals to the demand forecast. We define the

forecasted standard deviation as a function of the mean demand forecast:

a j =Z x (4.1)



With Z defined as the Z-factor parameter and a j and Dj the standard deviation and the mean

of the demand forecast of ODF j. It is worth mentioning that the standard deviation in our

simulation is important only as an input to the EMSR calculations. In all cases, the "actual,"

or simulated, demand variance is always equal to the mean as the passenger demand is

simulated using a Poisson process. Therefore, the Z parameter affects the EMSR model but

has no impact on the simulated demand. We have conducted sensitivity analysis with respect

to this parameter in Section 4 of this chapter.

The Z-factor can be interpreted as a risk factor. As shown in the practical analysis of the

EMSRb mathematical model in Section A of the appendix, if we increase the Z-factor, fewer

seats will be protected for the high ranked passengers (i.e., the ODF with high NRV).

In practice, the airlines are conservative in their seat protection because if they protect too

many seats for the high ranked ODF they risk denying too many requests. As a consequence,

some seats that could have been sold would stay empty. Even if the demand follows a

Poisson process in our simulation we use data from an actual demand Yield Management

database. Therefore, in accordance with the airline practice we have first considered a Z-

factor of 2 in the performance analysis of the different seat inventory control methods

proposed in this thesis. In summary, in this section all EMSR calculations have been

performed with a Z-factor of 2.

In Section 4 we analyze the sensitivity of the different seat inventory control methods if the Z-

factor is changed. Next, we present the seat inventory control model used as a base case for

performance comparisons.

, wd 111'a lililillhill Ill 1111 il ME ll I I., " 1111 WO Ol 1111l '41 dENROM M ill Allifillili ii, wilwifilL 1114 lil . , Ill ill Whilmill,11111111111111111l



4.3.3 Base Case

In the experimental work presented in this thesis, we use the EMSRb Leg Based Fare Class

(LBFC) model with Z equals two as a base case for comparison. First, we describe the model

and then, we present the network performance of the model in the simulation context.

LBFC consists of grouping the ODF into booking classes according to their fare type. As the

airline offered 7 fare types, the ODF are grouped into 7 booking classes. Then, the booking

limits according to each class are found using the EMSRb mathematical model presented in

Chapter 2. The booking limit of each ODF is then derived using (2.12). The performance of

LBFC is presented in Table 4-2.

Table 4-2: Performance of LBFC Model with Z=2, Base Case Model.

The LBFC control model has served as base case to compare the performance of the methods

that we propose in this section. Bear in mind that the base case model does not use any NRV

concept but takes the full fare of each ODF into account on a leg independent basis.

Demand Adjustment 0.80 1.00 1.20

Total Revenue 3,074,627 3,739,074 4,206,056

Local Passengers Spilled 4 103 443

Connecting Passengers Spilled 10 137 448

Avg. Leg Load Factor 63.08% 75.67% 82.77%

Avg. Rev. per Pax ($/Pax) 570.29 574.35 584.29

Avg. Rev. per Avail. Seat ($/Seat) 279.16 339.48 381.88



4.3.4 Simulated Methods

In this section, we describe explicitly the eight seat inventory control methods tested. But

first, we repeat that two types of convergence methods are considered in this thesis. The first

model is an OD by OD convergence model that considers each ODF as a separate entity in the

EMSRb mathematical model whereas in the second model, VC convergence model, the ODF

are grouped into virtual classes. The aggregation technique is explained in Section 2.3.3 of

Chapter 2. In the performance analysis, the ODF are aggregated into at most 16 virtual

classes. The reason it is "at most" is because if less than 16 ODF on a leg have non-zero

demand forecast than the number of virtual classes will be less than 16. Therefore, the idea is

to compute the critical EMSR values with different entities (ODF and virtual classes) as

inputs to the EMSRb mathematical model. We present below the seat inventory control

methods simulated in the thesis.

LPODBL LP Shadow Price Displacement Cost Estimation and OD by OD Booking Limit Control.

Shadow prices NRV OD by OD Booking Limit
Sl on each leg For each ODF EMSRb for each ODF

Model

Figure 4-3: Process of LPODBL.

LP16BL LP Shadow Price Displacement Cost Estimation and VC Booking Limit Control.

Aggregate the ODF VC EMSRb Booking Limit
Solve LP (3.6) 0 Shadow prices in- --- for each Virtual

on each leg For each ODF 16 Virtual Buckets modelet

Figure 4-4: Process of LP16BL.
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ODCODBL OD by OD Prorated Fare Convergence and OD by OD Booking Limit Control.

PRFj =fj Prorated Fare Converge ? YES OD by OD
V - --e according NRV EMSRb Booking Limit

to(3.18) For each ODF model for each ODF

NO

Figure 4-5: Process of ODCODBL.

ODC16BL OD by OD Prorated Fare Convergence and VC Booking Limit Control.

PRF, =f Prorated Fare Converge ? YES Aggregate VC EMSRb Booking Limit
-- Oo according -p NRV -0 -0

V ODF Model to (3.18) For each 0 the ODF in 16 model for each Virtual

Virtual Buckets Bucket
NO

Figure 4-6: Process of ODC16BL

VCC16BL VC Prorated Fare Convergence and VC Booking Limit Control.

PRFj =fj Aggregate Prorated Fare Converge ? YES Aggregate VC EMSRb
-0 -p according - o NRV

VODF the ODF in 16 Model to (3.18) fe D the ODF in 16 model
Virtual Buckets Virtual Buckets

NO

Booking Limit for

Figure 4-7: Process of VCC16BL. each Virtual Bucket.



LPBP LP Shadow Price Displacement Cost Estimation and Bid Price Control.

Shadow prices Bid Price for

on each leg each OD

Figure 4-8: Process of LPBP.

ODCBP OD by OD Prorated Fare Convergence and Bid Price Control.

PRFj -4, Prorated Fare Converge ? YES
P according o. EMSRc value Bid Price for

V ODF Model to (3.18) on each leg each OD

NO

Figure 4-9: Process of ODCBP.

VCCBP VC Prorated Fare Convergence and Bid Price Control.

PRFj =f Aggregate Prorated Fare Converge ? YES Bid Price for
the ODF + 16 --- * according EMSRcvalue .- c.

V ODF Model to (3.18) for each leg each OD.
Virtual Buckets e D

NO

Figure 4-10: Process of VCCBP.

Summary Table

Name Methodology Optimization Model Control Mechanism

1 LPODBL Displacement Cost LP-Simplex OD Booking Limit
2 LP16BL Displacement Cost LP-Simplex VC Booking Limit
3 ODCODBL Prorated Fare OD-CONV OD Booking Limit
4 ODC16BL Prorated Fare OD-CONV VC Booking Limit
5 VCC16BL Prorated Fare VC-CONV VC Booking Limit
6 LPBP Shadow Prices LP-Simplex Bid Price
7 ODCBP EMSRc OD-CONV Bid Price
8 VCCBP EMSRc VC-CONV Bid Price



4.3.5 Static Optimization

In this section, we analyze the static cases that consist of determining the NRV of all the ODF

only once at the beginning of the booking process. We present the revenue performance of

the methods that control the demand using a booking limit mechanism and then we highlight

some information concerning the different booking limit methods introduced in Section 4.3.4,

such as average load factor and number of refused requests along the booking process.

4.3.5.1 Expected Revenue

As far as expected revenue is concerned, all the methods using the network revenue value

concept perform significantly better than the base case for the moderate demand scenario

(demand generated using the actual demand forecasts) and for the high demand scenario

(demand adjusted by a 1.20 factor). Moreover, the prorated fare convergence methods (OD

by OD and VC) perform slightly better than the LP shadow price displacement cost approach

as one can observe in Table 4-3 below where

inventory control methods with respect to the base

the percentage revenue gain of the seat

case are summarized.

Table 4-3: Revenue Gain with respect to the Base Case, Static

Limit Control.

Optimization and Booking

We have conducted a statistical

methods using the prorated fare

analysis (paired sample t-test6 ) in order to determine if the

convergence model perform statistically better than the one

6 See DeGroot[8] p485 for a tecimical description of the t-test.

MODEL / Dadj 0.80 1.00 1.20
BASE CASE ($) 3,074,627 3,739,074 4,206,056

LPODBL 0.03% 0.27% 1.13%
LP16BL 0.03% 0.31% 1.17%

ODCODBL 0.02% 0.53% 1.20%
ODC16BL 0.03% 0.54% 1.21%

VCC16BL 0.03% 0.51% 1.26%



using the LP displacement cost approach. We have found that for the same control

mechanism (OD by OD and 16 VC booking limit), the prorated fare convergence approach

performs statistically better (over 20 simulated departures) than the LP displacement cost

approach for a demand adjustment of 1.00 (moderate demand scenario). For low and high

demand scenarios (demand adjustments of respectively 0.80 and 1.20) nothing can be said

about the relative revenue performance of the two approaches as the paired sample t-test

statistics are lower than the critical values (1.76) for 90% of confidence. Table 4-4

summarizes the paired sample t-test values.

Table 4-4: Paired Sample T-test Statistics, Static Optimization and Booking Limit Control.

4.3.5.2 Average Load Factor and Number of Passengers Spilled

As far as average load factor is concerned, the load factors observed for the seat inventory

control methods using NRV are lower than the load factors observed for the base case for all

demand scenarios. Among these methods, the prorated fare convergence methods generate a

slightly higher average load factor than the LP

observed in the table below.

displacement cost methods as one can

MODEL / Dadj 0.80 1.00 1.20

BASE CASE 63.08% 75.67% 82.77%

LPODBL 62.81% 74.39% 80.79%

LP16BL 62.80% 74.41% 80.91%

ODCODBL 62.84% 74.63% 81.32%

ODC16BL 62.85% 74.71% 81.35%

VCC16BL 62.85% 74.71% 81.37%

Table 4-5: Average Load Factor, Static Optimization and Booking Limit Control.
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Two remarks are worth mentioning looking in more detail at the number of passengers spilled

using the proposed methods. First, we find out that the base case model spills much fewer

connecting passengers than the methods that use the NRV concept. Moreover, at a high

demand level, the base case spills more local passengers compared to the NRV methods.

The first result makes sense as the seat inventory control methods using the NRV concept

give lower availability to the connecting passengers compared to the base case as the NRV are

by definition lower than the initial fares for the connecting ODF. The second observation can

be explained by the following argument. When the network demand is high (i.e., demand

adjusted by 1.20) less seats are protected for the local passengers if the demand is controlled

by the base case model because many seats have been already sold to the connecting ODF. In

other words if the airline gives high seat availability to the connecting passengers a higher

number of local passengers will be spilled when the demand is high. As one can observe

below in Table 4-6, for a high demand scenario, the base case spilled much more local

passengers compared to the NRV methods. Moreover, among the methods using the NRV

concept, the prorated fare convergence methods tend to spill less local passengers as one can

observe in Table 4-6 below.

LOCAL PASSENGERS CONNECTING PASSENGERS
MODEL / Dadj 0.80 1.00 1.20

BASE CASE 4 103 443

LPODBL 25 112 350

LP16BL 25 113 340

ODCODBL 15 90 301

ODC16BL 14 89 294

VCC16BL 14 91 300

MODEL/ Dadj 0.80 1.00 1.20

BASE CASE 10 137 448

LPODBL 8 182 570

LP16BL 8 180 569

ODCODBL 13 180 571

ODC16BL 13 176 572

VCC16BL 13 177 566

Table 4-6: Average Spilled Passengers over the 20 Departures, Static Optimization and

Booking Limit Control.



4.3.5.3 Average Revenue per Seat and per Passenger

In essence, the NRV methods protect fewer seats for the connecting passengers than the base

case method, which uses the full fare for each ODF. The NRV methods give lower rankings

to the connecting ODF and therefore more availability is assigned to the local ODF.

Therefore, the NRV methods tend to generate higher average revenues per available seat

because a connecting ODF generates less revenue than the sum of the local ODF on its

itinerary for the same fare class. Therefore, the NRV methods result in higher average

revenues per available seat than the base case model, as one can observe in Table 4-7 below.

Moreover, the NRV methods perform higher revenue per passenger than the base case as the

requests of the low fare connecting ODF are more likely to be denied if the network demand

is high.

Dadj 0.80 1.00 1.20

lor2 1 2 1 2 1 2

BASE CASE 279.16 570.29 339.48 574.35 381.88 584.29

LPODBL 279.25 572.46 340.41 580.65 386.20 593.35

LP16BL 279.25 572.51 340.53 580.71 386.36 592.64

ODCODBL 279.22 571.90 341.27 579.98 386.46 589.73

ODC16BL 279.23 571.77 341.32 579.61 386.50 589.28

VCC16BL 279.24 571.77 341.22 579.70 386.68 589.60

Table 4-7: Ave. Revenue per Available Seat (1) and Ave. Revenue per Passenger (2), Static

Optimization and Booking Limit Control.

4.3.5.4 Conclusion

The NRV methods give more availability to the local passengers and especially to the high

fare local ODF when the network demand is high. This remark explains the performance

characteristics of the NRV methods. First, the revenue per passenger is higher if a seat

allocation model uses the NRV concept to control the demand. Moreover, the average load

factor tends to be lower for the NRV methods because the connecting ODF have lower



availability, compared to the base case, resulting in a higher spill of connecting ODF. As

connecting passengers occupy many seats on the network, the average load factor tends to be

lower for the NRV methods.

According to the paired sample t-test, the NRV methods generate revenues that are higher

than the base case model for the moderate and the high demand scenarios (demand levels of

respectively 1.00 and 1.20). The paired sample t-test is not significant for the low demand

scenario (0.80 demand level) and therefore, nothing can be said.

If we compare the NRV methods among each other, using the same statistical test, the

prorated fare convergence approach performs better in terms of expected generated revenue

than the LP displacement cost approach for the moderate demand scenario. Nonetheless, the

revenue difference between the methods using the NRV concept (prorated fare convergence

versus LP displacement cost) is not statistically significant for the low and high demand

scenarios and therefore, the methods can be assumed to perform similarly at these demand

levels. Finally, the methods using LP displacement cost approach spill more local requests

and more or less the same number of connecting requests than the one using the prorated fare

convergence methods, resulting in lower average load factors. In the next section we analyze

the seat inventory control methods that revise the NRV of each ODF dynamically along the

booking process.

4.3.6 Dynamic Re-Optimization

In this section, we present the seat inventory control methods that re-optimize the NRV

corresponding to each ODF at the beginning of each of the 18 booking periods. The NRV are

computed using the number of seats available and the remaining ODF demand forecast

corresponding to the booking periods that are still to come before departure. First, we

compare the performance of the seat inventory control methods where the requests are

controlled using booking limits. Then, we analyze the performance of the methods with a bid

price control mechanism.



4.3.6.1 Booking Limit Control

The seat inventory control methods using the NRV concept perform significantly better than

the base case. As one can observe looking at Table 4-3 and 4-8, the revenue difference with

respect to the base case is greater if the seat inventory control methods are re-optimized at the

beginning of each booking period. The improvement is more significant for the prorated fare

convergence methods (+0.25% on average) than for the LP displacement cost methods

(+0.12% on average). As one can observe in Table 4-8, the prorated fare convergence

methods generate more revenue than the LP displacement cost methods for a booking control

mechanism.

MODEL / Dadj 0.80 1.00 1.20

BASE CASE 3,074,627 3,739,074 4,206,056

LPODBL 0.04% 0.51% 1.30%

LP16BL 0.03% 0.51% 1.24%

ODCODBL 0.04% 0.62% 1.49%

ODC16BL 0.05% 0.61% 1.44%

VCC16BL 0.05% 0.64% 1.48%

Table 4-8: Revenue Performance Compared to the Base Case, Dynamic Optimization and
Booking Limit Control.

We have conducted a paired-sample t-test in order to assert whether or not the revenue

difference between the prorated fare convergence methods and the LP displacement cost

methods is statistically significant.

Methods / Dadj 1.00 1.20

ODCODBL vs. LPODBL 3.56 4.67

VCC16BL vs. LP16BL 3.17 4.65

Table 4-9: Paired Sample T-test Statistics, Dynamic Optimization and Booking Limit Control.

As one can observe in Table 4-9, if the booking limits are found OD by OD, the paired-

sample t-test statistics is well above the critical value (1.76) for 90% of confidence and 19

degrees of freedom. It means that the revenue generated by ODCODBL model for 18
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booking periods is statistically larger than the revenue generated by the LPODBL model for a

demand adjustment of 1.00 and 1.20. Similarly, if the demand is controlled using virtual

classes, the paired-sample t-test statistics are still well above the critical value. Therefore, for

the moderate and the high demand scenarios, the prorated fare concept performs statistically

better than the LP displacement cost approach if the demand is controlled by a booking limit

mechanism.

We have conducted

the ODCODBL and

Revenue Difference ($)

an analysis of the revenue generated over the 20 simulated departures by

LPODBL methods.
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Figure 4-11: Revenue difference between ODCODBL and LPODBL with respect to the
simulated demand for each departure.
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As one can observe looking at the Figure 4-11 above, ODCODBL generates significantly

more revenue than LPODBL when the simulated demand is lower than the total mean demand

forecast (Si) and tend to generate similar revenues if the demand is greater than the total

demand forecast (S2). Therefore, when the demand is lower than expected the OD by OD

convergence model performs much better than the LP displacement cost model with a

booking limit control mechanism. We have computed the k-factor (i.e., the ratio of the

estimated standard deviation and the mean of the generated revenue over the 20 simulated

departures). For ODCODBL, the k-factor is 1.05% whereas it is 1.16% for the LPODBL.

Therefore, the prorated fare convergence model is somewhat more robust to demand

variations than the LP displacement cost model if the demand is controlled by a booking limit

mechanism.

The explanation of these interesting observations follows. The displacement cost concept,

analyzed in Section 2, is not a "zero sum approach" (as the sum of the NRV of a connecting

ODF over the traversed legs is in general not equal to its published fare). If the actual demand

happens to be lower than the initial forecast for most of the connecting ODF then, the shadow

prices are likely to be higher than what they should have been if the demand were known

beforehand. Therefore, the connecting ODF will have a lower availability. This strategy is

likely to result in spilling too many connecting passengers and, therefore, a relatively high

number of seats which could have been sold to the denied connecting passengers stay empty.

In summary, the displacement cost concept can lead to underestimating the NRV of the

connecting passengers on all the traversed legs if the network demand happens to be low

resulting in a revenue loss for the airline.

As opposed to the displacement cost concept, the prorated fare technique is a zero sum

concept. If the demand happens to be lower than what has been forecasted initially, the

technique does not discriminate against the connecting ODF because their ranking is not

directly dependent on the forecasted demand, as it is for the displacement cost concept, but on

the ratio of the forecasted demand. In other words, the ranking of the connecting ODF is



dependent on the ratio of the total demand forecast on the traversed legs rather than the total

demand considered for each leg individually. Therefore, the seat inventory control methods

based on the prorated fare convergence technique tend to spill less connecting passengers and

more local passengers compare to the methods using LP displacement cost concept.

Conversely, when the demand is higher than expected the prorated fare convergence model

tends to spill less local and more connecting passengers. This argument is sustained by the

following analysis.

The difference between ODCODBL and LPODBL in terms of spilled passengers for the two

departures is summarized in Table 4-10. Departure 8 corresponds to the departure with the

lowest simulated demand and departure 14 corresponds to the one with the highest demand

among the 20 simulated departures.

Departure Total Demand A Local Spill A Connecting Spill

S(Pax) (Pax) (Pax)

8 7948 16 -4

14 8299 -4 11

Table 4-10: Difference between ODCODBL and LPODBL in Terms of Number of

Passengers Spilled for Specific Departures.

In summary, when the demand is much lower then expected the prorated fare convergence

technique spills more local and less connecting requests then the LP displacement cost

concept. Conversely, when the demand is higher then expected, the prorated fare

convergence technique tends to spill less local and more connecting requests then the LP

displacement cost concept.

When the demand is low the airline should favor the connecting passengers as it is very

unlikely that they will displace local passengers on all the traversed legs. The prorated fare

convergence technique seems to implement the strategy stated above better than the LP



displacement cost technique. Therefore, this argument explains why ODCODBL performs

much better then LPODBL for low demand departures as observed in Figure 4-11. In other

words, the prorated fare convergence method seems to be more robust to demand variations

then the LP displacement cost approach.

Average Number of Passenger Spilled

Averaging over the 20 departures, we find out that the NRV methods spill more local

passengers and less connecting passengers when the methods are optimized dynamically

(Table 4-11 below) than when they are optimized only once at the beginning of the booking

process (Table 4-6). Moreover, as one can observe in Table 4-11 below, the prorated fare

convergence methods spill on average less local and less connecting passengers than the LP

displacement cost methods for the moderate and the high demand scenarios, when the NRV

are optimized dynamically.

LOCAL PASSENGERS

MODEL 0.80 1.00 1.20
BASE CASE 4 103 443

LPODBL 24 119 356
LP16BL 24 116 342

ODCODBL 18 106 332
ODC16BL 17 103 326
VCC16BL 11 97 332

CONNECTING PASSENGERS

MODEL 0.80 1.00 1.20
BASE CASE 10 137 448

LPODBL 8 165 548
LP16BL 10 168 555

ODCODBL 10 163 525
ODC16BL 10 162 525
VCC16BL 9 159 522

Table 4-11: Average Passenger Spill over the 20 Departures, Dynamic Optimization and

Booking Limit Control.

Average Load Factor

If the demand is controlled by a booking limit mechanism, the average load factors tend to be

higher if the NRV are revised at the beginning of each booking period than if they are

computed only once at the beginning of the booking process. This finding has been derived

by comparing Table 4-5 and Table 4-12, which is presented below. Moreover, the prorated
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fare convergence methods generate higher load factors than the LP displacement cost methods

but are lower than the base case load factors.

Methods / Dadj 0.80 1.00 1.20
BASE CASE 63.08% 75.67% 82.77%

LPODBL 62.81% 74.62% 81.12%
LP16BL 62.78% 74.58% 81.12%

ODCODBL 62.84% 74.78% 81.85%
ODC16BL 62.87% 74.83% 81.91%
VCC16BL 62.99% 74.99% 81.93%

Table 4-12: Average Load Factor, Dynamic Optimization and Booking Limit Control.

Average Revenue per Available Seat and Average Revenue per Passenger

The average revenue per available seat achieved by the prorated fare convergence method

tends to be higher if the NRV are optimized dynamically along the booking process, looking

at Table 4-6 and 4-13. The LP displacement cost methods tend to have higher revenue per

passenger then the prorated fare convergence methods as they give more seat availability to

the connecting passengers who, for a given fare class, have higher fares. Nonetheless, the

prorated fare convergence methods have higher average revenue per available seat than the

LP displacement cost methods as they tend to favor more high fare local passengers.

Dadj 0.80 1.00 1.20
lor2 1 2 1 2 1 2

BASE CASE 279.16 570.29 339.48 574.35 381.88 584.29
LPODBL 279.25 572.44 341.22 581.12 386.83 592.90
LP16BL 279.24 572.52 341.20 581.06 386.62 592.06

ODCODBL 279.27 572.11 341.60 580.49 387.58 590.23
ODC16BL 279.29 571.97 341.57 580.05 387.39 589.48
VCC16BL 279.30 571.15 341.66 579.43 387.52 589.84

Table 4-13: Av. Revenue per Available Seat (1) and Av. Revenue per Passenger (2), Dynamic

Optimization and Booking Limit Control.



4.3.6.2 Network Bid Price Control

In this section, we analyze the performance of bid price control methods. The bid price value

associated with each OD is the sum of the ENRV values over all the traversed legs. The bid

price value for an OD at a given time corresponds to the revenue that the airline expects to

gain from the last seat on each of the traversed legs. We remind the reader that ENRV of a

leg corresponds to the expected network revenue value of the last seat on the leg. For the

LPBP model, the ENRV value is the shadow price on a leg whereas it is the EMSRc value for

the ODCBP and the VCCBP methods. Moreover, we have used a Z-factor of two for both

prorated fare convergence methods (OD and VC).

As far as generated revenue is concerned, the prorated fare convergence methods perform

slightly better than the LPBP. Nonetheless, with 90% of confidence the paired-sample t-test

tells us that estimating the ENRV by the critical EMSR values obtained with the converge

prorated fare performs similarly as using the LP shadow prices at all demand levels.

MODEL / Dadj 0.80 1.00 1.20

BASE CASE 3,074,627 3,739,074 4,206,056

LPBP 0.03% 0.48% 1.05%

ODCBP 0.03% 0.48% 1.06%

VCCBP 0.04% 0.49% 1.08%

Table 4-14: Revenue gain with respect to the Base Case, 18 Booking Periods, Bid Price

Control Mechanism.

If the demand is controlled by a bid price mechanism, estimating the ENRV of each ODF on a

leg using the critical EMSR value from the prorated fare convergence model or the LP

shadow price seem to generate similar revenues for a Z-factor equal to two for 18 booking

periods and re-optimizations. We expect both methods to improve their performance for 36

re-optimizations. Nonetheless, as we will analyze in the next section, the performance of the

prorated fare convergence is improved if the Z-factor is chosen more carefully.



4.3.7 Summary

The revenue performance of the different seat inventory control methods for demand

adjustments of 1.00 and 1.20 are summarized in Figure 4-12 below.
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Figure 4-12: Revenue Gain of the Seat Inventory Control Methods, for 18 Booking Periods,

Dynamic Optimization.

As one can observe, the booking limit control mechanisms perform better than the bid price

control methods for 18 booking periods. The bid price control technique is an open/closed
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mechanism as opposed to the booking limits that set the maximum number of seats to be sold

to a specific ODF. In addition, the NRV are re-optimized only 18 times. As we will highlight

in the next section, the bid price control mechanism is very sensitive to the number of

revisions (in between two revision points, the longer the time interval, the more likely the bid

prices are to be incorrect after a certain number of booking requests).

The seat inventory control method generates more revenue if the NRV of each connecting

ODF is estimated using a prorated fare convergence technique than with an LP displacement

cost technique. Nonetheless, the revenue difference is significant only for the booking limit

control mechanism and for the moderate and the high demand scenarios. For the network

studied in this thesis the prorated fare concept performs approximately 0.20% better, for the

high demand scenario, than the LP displacement cost approach if the demand is controlled

with booking limits and is statistically the same if the demand is controlled using bid prices.

However, if we choose the Z-factor more carefully the performance of the prorated fare

method with a bid price control mechanism is improved significantly as emphasized in the

next section.

Moreover, if the demand is controlled by a booking limit mechanism the prorated fare method

tends to spill less connecting passengers than the LP displacement cost method when the

demand is lower than expected. Therefore, the prorated fare convergence method seems to be

more robust to demand variations than the LP displacement cost approach.

In the next section we analyze the robustness of the different seat inventory control methods

by conducting sensitivity studies of several parameters.



4.4 Robustness Analysis

We have made several assumptions in the performance analysis conducted in the previous

section. First, we have assumed a Z-factor of 2 used as input to the EMSRb calculations for

both the bid price and the booking limit control mechanisms. Moreover, we have assumed 18

periods along the booking process. We will in this section analyze how the methods perform

if we change the Z-factor and if we use 36 booking periods with 36 revision points.

Moreover, we have assumed that the simulated demand follows a Poisson process. Although

this discrete stochastic process is widely used to model the time at which arrivals enter a

system, it assumes that the variance of the simulated demand is equal to its estimated mean.

We may be interested to measure the relative performance of the different seat inventory

control methods when the variance of the simulated demand is greater than the mean.

Therefore, we have constructed an arrival process for which the variance of the simulated

demand is greater than its mean but where the simulated ODF demand is unbiased. In other

words, the average simulated demand over the 20 simulated departures is approximately equal

to the demand forecast for each ODF.

We start our analysis by looking at the sensitivity of the seat inventory control methods with

respect to the Z-factor used as input.

4.4.1 Z-Factor

We remind our reader that the Z-factor does not affect either the simulated demand or the LP

shadow prices but only affects the critical EMSR values obtained from the EMSRb

mathematical method. Therefore, the NRV that are estimated using LP shadow prices are

independent of the Z-factor. Moreover, the Z-factor analysis has been conducted for 18

booking periods.



4.4.1.1 Booking Limit Control Mechanism

We first study the sensitivity of the performance of ODCODBL (OD by OD prorated fare

convergence method with OD by OD booking limit control mechanism) and LPODBL (LP

displacement cost with OD by OD booking limit control mechanism) with respect to the Z-

factor. The NRV computed in the LPODBL method are independent of the Z-factor but the

booking limits that are calculated with the EMSRb method depend on the Z-factor values.

Four values of the Z-factor, used as input to the EMSR calculations, have been considered,

namely: 1.30, 1.50, 2.00 (Case analyzed in Section 2) and 2.50. The greater the Z-factor, the

flatter the EMSR curve as one can figure out by looking at the construction of the EMSR

curve in the Appendix (Section A). Therefore, the greater the Z-factor, the lower the number

of seats protected for the high ranked ODF on the leg. As one can observe below in Table 4-

15, the ODCODBL method is much less sensitive to changes in the Z-factor parameter than

the LPODBL.

METHOD Z-Factor 1.30 1.50 2.00 2.50

ODCODCBL

LPODCBL

DIFFERENCE
(ODCODCBL - LPODCBL)

Revenue ($) 4,269,687 4,269,826 4,268,857 4,266,698
Local Pax Spill 333 336 332 331
Connecting Pax Spill 525 522 525 526

Ave. Load Factor 81.85% 81.88% 81.85% 81.85%

Revenue ($) 4,265,858 4,263,779 4,260,525 4,255,599

Local Pax Spill 347 348 356 363
Connecting Pax Spill 530 537 548 562
Ave. Load Factor 81.61% 81.45% 81.12% 80.76%

A Revenue ($)
A Local Pax
A Connecting Pax
A Ave. Load Factor

3,829 6,047 8,332 11,099
-14
-5

0.24%

-12
-15

0.43%

-24
-23

0.73%

-33
-36

1.09%

Table 4-15: Sensitivity Study of ODCODBL and LPODBL
1.20 Demand Adjustment.

with respect to the Z-factor at
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As the Z-factor increases, the revenue difference between ODCODBL and LPODBL

increases. According to the paired sample T-test statistics, the ODCODBL method performs

statistically better, with 90% of confidence, than the LPCODBL for all analyzed Z-factor

levels. Moreover, the ODCODBL method spills more or less the same number of local and

connecting passengers for all the considered Z-factor values whereas, the LPODBL method

spills more and more local and connecting passengers as the Z-factor increases (resulting in a

decreasing average load factor). In summary, the ODCODBL method seems to be more

robust than the LPODBL method to variations of the Z-factor parameter. ODCODBL

considers the Z-factor value in the NRV estimation whereas the SP calculation in LPODBL is

independent of the Z-factor. Nonetheless, for both methods the booking limits are obtained

using the EMSRb mathematical method, which is dependent on the Z-factor. Therefore, as

the Z-factor gets larger ODCODBL adjusts the NRV estimates according to the Z-factor

whereas the SPs are not affected.

4.4.1.2 Bid Price Control Mechanism

We have analyzed the performance of ODCBP (bid price control method where the ENRV

are estimated by the critical EMSR values obtained from the prorated fare convergence

method) and of LPBP (ENRV are estimated by the LP shadow prices). As one can observe

in Table 4-16, ODCBP generates the best revenue for a Z-factor of 1.00.

Z-factor 0.70 1.00 1.50 2.00 2.50
ODCBP Revenue ($) 4,255,003 4,255,970 4,254,978 4,250,808 4,247,020

Local Pax Spill 335 333 335 335 335
Connecting Pax Spill 485 489 489 493 496

A Revenue($) 4,940 5,907 4,915 745 -3,043
A LocalPax 5 4 6 6 5

DIFFERENCE A Connecting Pax 10 13 13 18 20
(ODCBP - LPBP) A Ave. Load Factor -0.33% -0.36% -0.38% -0.46% -0.49%

A Ave. Rev. per Pax 1.89 2.19 2.21 2.00 1.65
A Ave. Rev. per Avail. Seat 0.45 0.53 0.44 0.07 -0.28

Table 4-16: Z-factor Sensitivity Study of ODCBP and LPBP for a Demand Level of 1.20.



Therefore, the expected revenue is maximized if the relationship between the variance and the

mean in the EMSRb method is the same as the one corresponding to the demand generator

(Poisson arrival process). This observation is important but not surprising given that the

actual simulated demand comes from a Poisson process and, therefore, the variance of all

ODF demand is equal to its expectation (i.e., the forecast).

In Section 4.4 we conduct a performance comparison of ODCBP and LPBP when the

variance of the simulated demand is greater than the mean.

According to the paired sample T-test statistics, the ODCBP method performs statistically

better than the LPBP, for a Z-factor of one, for the high demand scenario with 90% of

confidence. Before presenting in more detail the performance of the ODCBP method for a Z-

factor of one, we highlight some observations concerning the Expected Network Revenue

Value (ENRV).

4.4.1.3 ENRVAnalysis

We have collected all the SP and the EMSRc corresponding to each leg for the first simulated

departure at a 1.20 demand level. Figure 4-13 below illustrates the average ENRV over all

the legs on the network for the two estimation techniques (SP from LP and EMSRc prorated

fare convergence).

As one can observe, at the beginning of the booking process the average of the SP is lower

than the average of the EMSRc obtained from the prorated fare convergence method. But the

average EMSRc becomes lower than the SP from booking period 16 until the end of the

process.
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Figure 4-13: Average ENRV Value over the Legs of the Network for Dadj=1.20,

Bid Price Control Mechanism.

As the booking process goes on, the forecasted ODF requests still to come have higher fares.

If few seats are left open to passenger requests on leg k and the demand forecast for the ODF

traversing leg k is high, then the shadow price corresponding to leg k will be high. We

observe that at the last revision point (beginning of the 18 " booking period) the non-zero

shadow prices (corresponding to the binding constraints) are always higher than the EMSRc

values obtained with the prorated fare convergence method. Therefore, close to departure

time the LP approach is likely to deny more ODF requests than the convergence approach.

We have also compared, for each leg on the network, the average over the 18 booking periods

of the EMSRc from the OD by OD prorated fare convergence method and the LP shadow

prices (SP) using a network bid price control mechanism. As one can observe looking at

Section B of the appendix, at a high demand level (1.20 demand adjustment) when the load

factor on a given leg is relatively low (below 85%), the average EMSRc values tend to be

higher than the average SP. This observation can be explained by the fact that when the load



factor on a leg is low, the corresponding capacity constraint is likely to be not binded and

therefore, the SP is zero. The EMSRc value is less often equal to zero as it includes the

probability that the demand will be greater than the capacity. Therefore, when the ENRV are

averaged over the booking periods, the SP tend to be lower than the EMSRc for legs with a

relatively low demand.

4.4.1.4 Performance Analysis for Z=1

For 18 booking periods, the ODCBP method performs the best for a Z-factor of one. We

present, in this section, a comparative analysis of the performances of ODCBP and LPBP.

As far as generated revenue is concerned, the prorated fare convergence methods perform

better than the LPBP at all demand levels. Nonetheless, the paired-sample t-test tells us that

ODCBP performs better, with 90% of confidence, than LPBP at only 1.20 demand level. At

lower demand adjustments (i.e., 0.80 and 1.00) all the methods perform statistically the same

according to the paired-sample t-test.

METHOD / Dadj 0.80 1.00 1.20

BASE CASE 3,074,627 3,739,074 4,206,056

LPBP 0.03% 0.48% 1.05%

ODCBP 0.05% 0.55% 1.19%

VCCBP 0.04% 0.53% 1.21%

Table 4-17: Revenue gain with respect to the Base Case, Z=1, Bid Price Control.

The EMSRc prorated fare convergence methods tend to spill more local and connecting ODF

requests than the LP bid price method. As we have observed previously, at 1.20 demand

adjustment, the average over all the legs of the EMSRc values tend to be higher than the SP

for most of the booking periods (15 out of 18). Although this result has been observed for the
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first departure only, this argument may explain why the ODCBP method spills more

connecting passengers than the LPBP method as one can observe in Table 4-18.

LOCAL PASSENGERS

METHOD 0.80 1.00 1.20

LPBP 7 93 330

ODCBP 9 102 333

VCCBP 11 114 357

CONNECTING PASSENGERS

METHOD 0.80 1.00 1.20

LPBP 8 133 475

ODCBP 8 136 489

VCCBP 7 132 480

Table 4-18: Average Passenger Spill over 20 Departures, Z=I, Bid Price Control.

Moreover, the VCCBP spills significantly more local passengers than the two other methods

at a high demand level.

At a high demand level, the average load factor is higher for the LPBP method than for the

prorated fare convergence methods as the LPBP spills both less connecting and local ODF.

The table below quantitatively illustrates the previous statement.

METHOD / Dadj 0.80 1.00 1.20

BASE CASE 63.08% 75.67% 82.77%

LPBP 63.08% 75.65% 82.89%

ODCBP 63.06% 75.43% 82.53%

VCCBP 63.04% 75.42% 82.52%

Table 4-19: Average Load Factor, Z=1, Bid Price Control.

The average revenue per passenger and per available seat performed by the LPBP method

tend to the lower than the one performed by the convergence methods. Although LPBP spills

less connecting and local passengers than the two other methods, it has a lower revenue per

available seat than the prorated fare convergence methods at all demand levels as one can

observe in Table 4-20 below.



Dadj 0.80 1.00 1.20

lor2 1 2 1 2 1 2

LPBP 279.25 570.52 341.11 575.76 385.88 583.45

ODCBP 279.28 570.78 341.33 577.24 386.41 585.64

VCCBP 279.28 570.94 341.29 577.89 386.51 587.01

Table 4-20: Av. Revenue per Available Seat (1) and Av. Revenue per Passenger (2), Z=1, Bid

Price Control.

4.4.1.5 Conclusion

If the demand is controlled by a booking limit mechanism, we have observed that the

ODCODBL method is more robust to Z-factor variations than the LPODCBL method (LP

displacement cost approach). For all the Z-factors considered, ODCODBL method generates

statistically higher revenues than LPODCBL for the high demand scenario. Moreover,

ODCODBL spills more or less the same number of connecting and local requests regardless

of the Z-factor whereas the more we increase the Z-factor the more ODF requests, the

LPODCBL method spills. As far as the bid price control mechanism is concerned, the

ODCBP method generates, as expected, the most revenue for a Z-factor of one and generates

statistically a greater revenue than the LPBP bid price method for a 1.20 demand adjustment.

In the next section, we study the effect of re-optimizing more often the ENRV by increasing

the number of booking periods.



4.4.2 Number of Booking Periods

We have analyzed the performance of the different methods for 36 booking periods. The

objective is to compare the relative performances of the NRV methods if the number of

booking periods is doubled. Is it worth it for an airline to forecast its demand more often?

Which seat inventory control method works the best if the method is re-optimized more often

considering a Poisson arrival process? First, we explain how we went from 18 to 36 booking

periods and then we highlight the performance of the base case for 36 periods. We then,

present the performance of the different seat inventory control method for 36 booking periods.

As we have pointed out in Section 4-1, the arrival rate of each ODF for 18 booking periods is

the demand forecast. In order to generate the simulated demand for 36 booking periods, the

ODF arrival rate is divided by two and the demand is generated based on these new arrival

rates. Formally, the arrival rates for each ODF becomes ':

X'2xr-1= r E11,..,18) (4.2)
2

L'2xr= r rc{1,..,18) (4.3)
2

The simulated demand depends on the number of booking periods as it determines the arrival

rate vector. Therefore, one has to bear in mind that we can analyze the performance of the

seat inventory control methods only for the same number of booking periods. In Table 4-21

we present the simulated demand matrix for 36 booking periods.

Demand Adjustment 0.80 1.00 1.20

Local Demand 3,691 4,646 5,536

Connecting Demand 1,705 2,127 2,530

Total Simulated Demand 5,395 6,773 8,067

Table 4-21: Simulated Demand for 36 Booking Periods.



4.4.2.1 Base Case

As explained above, the performance of the base case method (LBFC) is different for 18

(defined in 4.3.3) and 36 booking periods. For a high demand scenario, the base case method

generates a lower revenue for 36 booking periods than for 18 booking periods because the

simulated demand is slightly lower as one can observe comparing Table 4-2 for 18 booking

periods and Table 4-22 for 36 booking periods. Table 4-22 summarizes the performance of

the base case method for 36 booking periods.

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3,084,473 3,758,991 4,204,280

Local Passengers Spilled 2 110 436
Connecting Passengers Spilled 6 127 436

Avg. Leg Load Factor 63.04% 75.98% 82.69%
Avg. Rev. per Pax ($/Pax) 572.59 575.16 584.31

Avg. Rev. per Avail. Seat ($/Seat) 280.05 341.29 381.72

Table 4-22: Performances of LBFC Method (Z=2), 36 Booking Periods, Base Case Method.

4.4.2.2 Performance Analysis

We first present in Table 4-23, the revenue performance of the different seat inventory control

methods where the demand is controlled using booking limits with a Z-factor of two. The Z-

factor, input to the EMSRb mathematical model, is equal to two for the reasons given in

Section 4.3.2 for 18 booking periods.

METHOD / Dadj 0.80 1.00 1.20

BASE CASE 3,084,473 3,758,991 4,204,280

LPODBL 0.03% 0.56% 1.51%

LP16BL 0.01% 0.48% 1.29%

ODCODBL 0.02% 0.55% 1.53%

ODC16BL 0.02% 0.55% 1.46%

VCC16BL 0.03% 0.55% 1.46%

Table 4-23: Revenue Gain for 36 Booking Periods, Booking Limit Control Method.
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As one can notice, the revenue performance of the seat inventory control methods have

improved as we re-optimize more often the NRV.

The performance of the bid price control methods is summarized in the table 4-24.

METHOD / Dadj Z-factor 0.80 1.00 1.20

BASE CASE 2 3,084,473 3,758,991 4,204,280

LPBP N.A 0.03% 0.47% 1.38%

ODCBP 1 0.04% 0.57% 1.50%

VCCBP 1 0.03% 0.55% 1.46%

ODCBP 2 0.04% 0.54% 1.36%

VCCBP 2 0.01% 0.51% 1.35%

Table 4-24: Revenue Gain for 36 Booking Periods, Bid Price Control Method.

If the demand is controlled using the bid price mechanism, ODCBP and VCCBP perform

better for a Z-factor of one. Therefore, the prorated fare convergence method with network

bid price control performs better for both 18 and 36 booking periods if the variance of the

demand forecast is estimated by the mean demand forecast in the EMSRb mathematical

method. As explained in Section 4.4.1.2 this result is not surprising as the demand follows a

Poisson process.

Moreover, according to Table 4-23 and 4-24, controlling the demand using booking limit or

bid price mechanisms generates very similar expected revenues if the prorated fare

convergence technique is used to estimate the ENRV. Thus, the prorated fare bid price

method is very sensitive to revisions. The more the method is revised, the more accurate the

bid price values and the greater the generated revenue. For 36 booking periods, ODCBP

(Z=1) performs as well as LPODBL. Similarly, VCCBP (Z=1) performs as well as

VCC16BL at all demand levels. Therefore, no matter what sorting method is used (i.e., OD

by OD or VC) in the prorated fare convergence method, the expected revenue obtained by
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controlling the demand with a bid price mechanism is more or less the same as the one

generated with a booking limit control mechanism for 36 re-optimizations of the ENRV.

The LP bid price method and the LP displacement cost with VC booking limit method do not

perform as well as the other methods. According to the paired sample t-test, the LPBP and

LP16BL perform statistically lower (with 90% of confidence) than all the booking limit

control prorated fare convergence methods at a 1.20 demand level. Moreover, as far as bid

price methods are concerned, ODCBP performs statistically better than LPBP at both 1.00 and

1.20 demand levels.

4.4.2.3 Conclusion

For 36 booking periods ODCBP and VCCBP perform better if the Z-factor is one. This result

confirms what we have found for 18 booking periods. Moreover, for 36 booking periods, the

bid price control mechanism performs as well as the booking limit control mechanism if the

NRV are estimated by the critical EMSR values obtained from the prorated fare convergence

method with a Z-factor of one. Furthermore, as far as bid price control is concerned, the

ODCBP method generates statistically more revenue than the LPBP method at both 1.00 and

1.20 demand levels. In the next section, we compare the expected revenue generated by some

NRV methods to the upper bound method that corresponds to the generated revenue if the

demand were deterministically known at the beginning of the booking process.

4.4.3 Upper Bound

4.4.3.1 Upper Bound Method

How fare are we from the optimal strategy? The optimal strategy would be easy to implement

if we knew, beforehand, the demand at the end of the booking process for each of the ODF on

the network. In other words, if we knew deterministically the exact number of passenger for

each ODF just before departure time, we would be able to optimize the revenue according to

101

NIN ''N , ". I I N W1101 116,, W111INNO 01114119111 1W 111011IN1111= 111M



the number of seats available on the network. Therefore, the Upper Bound method is

constructed as explained below in Figure 4-14.

Simulate ODF demand for
The entire booking process

Compute the total simulated demand for each
leg over the entire booking process

Solve LP (3.6) with actual cumulated ODF simulated
demand as inputs

Optimal objective value is the Upper Bound
revenue for the departure.

Figure 4-14: Upper Bound Method.

Note that we are able to relax the integrality constraints in LP (3.6) because the optimal

solution to the linear program is integer independently of the integrality constraints (the

optimal solution is at an extreme point of the feasible space).

4.4.3.2 Performance Analysis

As one can observe in Table 4-25, all the seat inventory control methods get closer to the

optimal strategy as the number of re-optimizations is increased from 18 to 36. Furthermore,

the best seat inventory control method, ODCODBL, is 1.39% from the optimal strategy for 36

booking periods.

Methods / Book. Periods 18 36
Upper Bound ($) 4,342,357 4,328,726

LBFC (Base Case) -3.14% -2.87%
LPODBL -1.89% -1.41%

ODCODBL -1.69% -1.39%
LPBP -2.13% -1.53%

ODCBP -1.99% -1.42%

Table 4-25: Revenue Performance Compared to the Upper Bound Strategy
for 18 and 36 Booking Periods.
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4.4.4 Variance of the Simulated Demand

4.4.4.1 Motivations

In this section, we analyze the robustness of the seat inventory control methods with respect

to demand variations. For simulation purposes, the Poisson arrival process is widely used

because of its attractive characteristics (memoryless property, independent increment

property). However, the Poisson process assumes that the variance of the counting process is

equal to its expected value. In the real world, this assumption is far from being always true.

The objective of this section is to test the seat allocation methods on a new arrival process

where the variance of the simulated demand is greater than the mean. The simulated demand

should be close enough to the initial demand forecast (unbiased property) as we expect the

forecast to be accurate over a large number of trials of the same departure. Therefore, we

have designed a demand generation process where the expected value is close to the initial

demand forecast but where the estimation of the variance can be increased.

4.4.4.2 Performance Analysis

We define ZT the Z-factor for the observed simulated demand by:

ZT (4.4)
DT

1 20

with DT =- i (Di :observed demand of departure i). (4.5)
20 i=1

2 1 20 2
nd 2 = (Di - DT)2 (4.6)

19 i=i

Note the difference between ZT and Z defined in (4.1). The former corresponds to the Z-

factor assumed to be the variance of the demand input for each ODF in the EMSRb
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mathematical model whereas the later is a measure of the simulated demand variation over the

20 departures. In other words, ZT is a measure of the variation of the observed demand

whereas Z is a parameter that affects the variance inputs of the ODF in the EMSRb

mathematical method. Therefore, Z affects the strategy of the EMSRb seat inventory control

method whereas ZT is just a measurement of the observed demand variations. In the

following analysis we assume that Z is always 1.0 as input to the EMSRb method.

ZT corresponds to the ratio of the unbiased estimation of the standard deviation and the total

mean demand over the 20 simulated departures. Note that for the Poisson process, ZT should

be close to one because the variance equals the mean for the Poisson probability distribution.

We observe that ZT = 1.05 for the Poisson simulation which confirms the theoretical result.

The figure below summarizes the performance for LPBP and ODCBP methods at a 1.20

demand level and for 18 booking periods.

r-> Poisson
Revenue ($) L._ .. __n .J
4,260,000

4,255,000 - O LPBP
M ODCBP

4,250,000

4,245,000

4,240,000

4,235,000 ---

4,230,000 --

4,225,000 ZT
1.05 2.33 3.06 3.97

Figure 4-15: Revenue Performance Sensitivity of LPBP and ODCBP with Respect to ZT

for the High Demand Scenario and 18 Booking Periods.
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For all ZT, the ODCBP method performs better than the LPBP method. Moreover, for a ZT of

nearly 4.0, the revenue difference between ODCBP and LPBP is twice as much as the revenue

difference observed for a ZT of around 1.0 (Poisson process).

The LPBP method, which only considers the mean demand forecast (see equation (3-6)),

provides estimations of the ENRV that become less reliable as the demand variability

increases. The LPBP method fails to consider the stochastic nature of the passenger arrival

process. Conversely, the ODCBP method incorporates the variance of the demand forecasts

in the EMSRb optimization method. In other words, the ODCBP method takes into

consideration the probability distribution of the demand forecast. In summary, the difference

between ODCBP and LPBP methods seems to be robust to demand variability. In the next

section we analyze the convergence speed of the prorated fare convergence method.

4.4.5 Convergence Speed

In this section, we have analyzed the convergence speed of the prorated fare convergence

methods on the network used for the performance analysis. We remind our reader that two

convergence methods have been proposed in this thesis: A virtual class (VC) and an OD by

OD prorated fare convergence method.

Performance Analysis

In Section 3 of Chapter 3 we have proved the convergence of the prorated fare sequences. In

this section, we give some quantitative results concerning the number of iterations required by

the prorated fare convergence method before satisfying the convergence criterion'.

The VC convergence method does not converge as well as the OD by OD convergence

methods. It is not unusual to reach 100 iterations, without meeting the $5 convergence

' See (3-18) for an explicit formulation of the convergence criterion.

105



criterion, under VC convergence. We believe that this problem is due to the fact that for the

VC convergence method, a fixed number of 16 virtual classes were considered (if an ODF has

a relatively high demand, it may encompass several virtual classes) whereas, for the OD by

OD convergence method, each ODF is, in a sense, taken as a virtual class, providing many

more points on the EMSR curve. Therefore, the VC-convergence method converges slower

and cycling is more likely as fewer points are considered in the EMSR curve computation. In

summary, the OD by OD convergence method converges much more quickly than the VC-

convergence method. We present below some quantitative information concerning the OD by

OD convergence method.

In practice, on a network of 102 flight legs and 1066 ODF, cycling of the OD by OD

convergence method is very rarely observed. We have run an OD by OD convergence

method where the requests are controlled using an OD by OD EMSRb bid price method with

a Z-factor of 2. Statistics about the number of iterations before meeting the convergence

criterion for 20 simulated departures and 18 booking periods, for each departure, are

summarized in Table 4-26 below.

Number of iterations
Mean 10

Standard Deviation 6
Maximum 48
Minimum 2

% above 20 8.9%
% less than 10 60.8%

Table 4-26: Statistics about the Number of Iterations of the OD by OD Prorated Fare

Convergence Model.

Only 8.9% of the time, the number of convergence iterations is greater than 20 whereas,

60.8% of the time, the number of iterations is less than 10. The convergence is relatively

monotonic. (The highest difference between two iterations decreases nearly monotonically).

In Chapter 5, we propose a method to speed up the convergence of the prorated fare, which is

based on the successive approximation technique.
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4.5 Summary

In this chapter, we have evaluated the performance of the different seat inventory control

methods that estimate the network revenue value of the connecting ODF. The six different

methods tested are based on two techniques to estimate the NRV: Displacement cost using

shadow prices from an LP and the prorated fare convergence model. Both concepts are

explained in Chapter 3. Two results obtained using the MIT integrated optimization/booking

simulator are worth highlighting.

First, if the demand is controlled by a bid price mechanism, the prorated fare convergence

method with a Z-factor of one performs statistically better than the LP shadow price method

for the high demand scenario. Figure 4-16 summarizes the performance of the bid price

methods.

Revenue Gain
wrt LBFC

1 40%-

1 20% -

100% - LPBP

0 80% OODCBP
x. (Z=1)

0 60%-

(Z=1)
040%

0 20%

0.00%
0.80 (63%) 1 0 (76%) 1 20 (82%)

Demand Adjustment (Average load factor)

Figure 4-16: Revenue Gain wrt the Base Case (LBFC) for Bid Price Controlled Methods, 18

Booking Periods.
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The second important result is that under each of the network seat inventory control

mechanisms tested in this thesis, the prorated fare convergence approach has always

generated higher network revenues than a deterministic LP approach. For example with 36

booking periods (and re-optimizations), if the demand is controlled using booking limits and

the OD by OD nesting strategy, the prorated fare convergence approach performs better than

the LP displacement cost approach. Using the same booking control mechanism but with a

virtual class nesting strategy, the prorated fare convergence method performs 0.17% better

than the LP displacement cost approach. If the demand is controlled using bid prices, the OD

by OD prorated fare convergence approach performs 0.12% better than the LP shadow price

approach. Using the same booking control mechanism but with a virtual class nesting

strategy as input to the EMSRb model, the prorated fare convergence method performs also

better than the LP shadow price approach. In Figure 4-17 below we present the revenue

performance of the seat inventory control methods for 36 booking periods and for the high

demand scenario (82% average leg load factor).

1.55%

1.50%

1.45% -
U

1.35% -- - - - - - - -- -

SOD by OD Booking Limit

----- 0 VC Booking Limit

0 Bid Price
1.25% -- - - - - - - -- - - --

1.20%

1.15% .

LPODBL ODCODBL LP16BL ODC16BL VCC16BL LPBP ODCBP VCCBP

Figure 4-17: Revenue Gain wrt the Base Case (LBFC) for 36 Booking Periods.
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In summary, when the NRV are re-optimized 18 or 36 times along the booking process, the

prorated fare convergence techniques perform always better than the LP shadow price

methods. Indeed, if the demand is controlled by network bid price mechanism, the prorated

fare convergence method performs up to 0.16% better than the LP shadow price approach for

18 booking periods and up to 0.12% for 36 booking periods. Moreover, as far as booking

limit control mechanism is concerned, estimating the ENRV by the EMSRc from the prorated

fare convergence method generates up to 0.24% additional revenue compare to the LP

shadow price approach for 18 booking periods and up to 0.17% for 36 booking periods.
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5 Conclusion

In this chapter, we first summarize the research contributions by highlighting the main results

found in this thesis and then, we propose several directions for future research.

5.4 Research Contribution

The objective of this thesis is to develop and test different techniques to estimate the network

revenue values (NRV) of the origin destination and fare itineraries offered by an airline, on

each traversed leg. The major contribution of this thesis is to propose techniques to estimate

the NRV that consider the stochastic nature of the passenger demand and that satisfy the seat

inventory nesting property. This technique prorates the fares of the connecting ODF

according to the critical EMSRc operator on the legs traversed. The method is a convergence

method as the prorated fares are used as inputs to the EMSRb mathematical model until the

convergence criterion is satisfied. We have proved the existence and the uniqueness of the

convergence limit of the prorated fare sequence under the assumption that the operator is

obtained by the same set of ODF over a large consecutive number of iterations. In practice,

the convergence on a network of an actual airline is reasonably quick (on average no more

than ten iterations are necessary).

In order to evaluate the performance of the new method, we have conducted an empirical

analysis on an actual airline network where the passenger arrivals constitute a Poisson

process. We have found that the method performs always better than the LP shadow price

approach for both the booking limit and the bid price control mechanisms. Moreover, if the

number of booking periods is relatively high (36 revision points along the booking process)

the NRV methods perform approximately 1.50% better than the base case method (Leg Base

Fare Class, commonly used in the industry) for a high but realistic demand scenario (the

average leg load factor is 82%),.
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Furthermore, the prorated fare convergence method tends to be more robust to demand

variations than the LP simplex approach. The former method encompasses the stochastic

information of the demand by incorporating the variance whereas the latter considers only the

mean demand forecast. Therefore, if the demand is controlled using booking limits, the NRV

obtained from the displacement cost approach tend to spill too many connecting passengers

when the observed demand is lower than expected (underestimated the demand forecasts) as it

tends to overestimate the displacement costs (underestimate the NRV of the connecting ODF).

Conversely, the prorated fare convergence method estimates the NRV of each connecting

ODF such that the sum of the NRV over the traversed legs is equal to the total fare. In

summary, prorating the connecting fare reduces the risk to underestimate systematically the

NRV of the ODF.

5.5 Further Research Directions

5.5.1 Tests on Different Airline Networks

In Chapter 4 of this thesis, the different seat inventory control methods have been tested on an

actual airline network. This computational experiment gives us some information about the

performance of the methods. Nonetheless, it would be interesting to compare the

performance of the proposed seat inventory control methods on different airline network. We

would be able to test the robustness of the results with respect to the airline environments

(network type and demand pattern). In other words, do the seat inventory control methods

using the prorated fare convergence algorithms developed in this thesis perform better than

the methods using the LP displacement cost approach on different networks? Is the

performance of the prorated fare convergence algorithm correlated with some features of the

network offered by the airline, like the percentage of connecting ODF?



5.5.2 Optimality Analysis

The prorated fare convergence method with an OD by OD sorting strategy performs

approximately 1.40% lower than the upper bound (the actual demand is known with certainty

at the start of the booking process) in terms of expected revenue. This result has been

obtained from the experimental analysis conducted on a given network and with a Poisson

process. No theoretical result has been derived about the optimality of the prorated fare

technique. In other words, is the critical EMSR operator the optimal measure to prorate the

fare of the connecting ODF along their itineraries?

5.5.3 Convergence Speed Improvement

A sub gradient technique can be implemented to speed up the convergence. The method

estimates dynamically the derivative of the curve g (see general case analysis). If the absolute

value of the derivative is less then one, we consider the new function G such that:

G(x) = g(x) - g' ( X x We expect the number of iterations of the convergence method to
1- g'(x)

decrease if the above technique is implemented.

5.5.4 Stochastic Programming

The main drawback of the deterministic LP approach is that it does not encompass the

stochastic nature of the passenger demand. The objective is therefore, to consider several

demand scenarios in the estimation of ENRV for each leg of the network. The Average Plan

method' can be used to approximate the shadow prices associated with the capacity

1F. Jauffred, "Stochastic Optimization for Robust Planning in Transportation," MIT, 1997.
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constraints. The technique considers different demand scenarios with an associated

probability of occurrence. A large area of research is still to be explored in stochastic

programming applied to the seat allocation problem. Nonetheless, the mathematical

programming techniques fail to incorporate the nesting properties that are most desirable for

airline seat inventory control. A question that remains unanswered and open to further

research is whether a non-nested stochastic programming technique can perform better and be

more robust to demand variations than the nested prorated fare convergence method

developed in this thesis?
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APPENDIX

SECTION A: THE EMSRb CURVE AND THE BOOKING LIMITS

The objective of this part is to illustrate, through a simple example, the construction of

the EMSRb curve and the calculation of the booking limits associated with each ODF

using the EMSRb method.

We assume that the demand for each fare is normally distributed (Dj ~ N(Dj,aj,)) and

that the number of seats available on the flight, at the time of the booking limit

calculation, is 70 seats. The forecasting information and the fare of each ODF are

summarized in the table below.

BOS-PAR

Fare Class D j fare ($)

Y 10 5 1000
B 15 7 700
M 20 9 500
Q 30 13 350

Table A-1: Forecasted Demand and Standard Deviation, Fare for each Fare Class.

I Protection for Y fare class

According to the first step of the EMSRb algorithm, formally explained in the second

section of chapter 2, the number of seat to protect for the Y fare class is found solving,

Max fly

Subject to fy x P(Hy ) fB (Al)

This corresponds to find the largest integer value, H1*, such that:

7
1000 x P(fly) 700 -> P(H y) 1 - (A2)

10
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But,

P(Hy)=P(Dy fy)= P(Dy -Dy Hy -Dy) P(Dy -10 >Hy -10
ay ay 5 5

The random variable Z, equals to Dy -10
5

(M3)

, is normally distributed with a 0 mean and

unit variance. Therefore, using the table of the Standard Normal Distribution Function,

it comes that,

P(Z 7 =-10 0.72 for Hy=7, and P(Z 2 8-10= 0.66 for Hy=8 .
5 5

largest number fly that meets constraint (Al) is 7.

Therefore, the

Consequently, 7 seats have to be

protected for Y class, according to the EMSRb model.

2 Protection for Y and B fare classes

The fare, the forecasted demand and the forecasted standard deviation of the Y and B

classes combined are:

Dy XfY+DB XfB -

Dy +DB

10 x 1000 +15 x 700 -$820
10+15

DY,B =Dy +DB =10+15=25

aYy,B 2 + 2 B = -25 + 49 = 8.60

HY,B, the number of seats to protect for the compound Y and B classes is found by

solving

Max HY,B

Subject to fY,B x P(1 y,B) > fM

(A4)

(A5)

(A6)

(A7)

Therefore,
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( Y,B) M! = Y,B)
fY,B

5 > P(Z > r Y,B - D ) 2 0.61
820 aY,B

HyB -25->P( ' B 5)0.61
8.6

Using the same method as in the first step, the number of seats to protect for the

combined Y and B class is 22 seats.

3 Protection for Y, B and M fare classes

The fare, the forecasted demand and the forecasted standard deviation of Y, B, and M

classes combined are:

Dy xfy +DB xfB +DM xfM
fY,BM = +DM

' Dy +D +DM

10 x 1000 +15 x 700 + 20 x 500 _1$678
10 +15+±20

(A8)

(A9)

(AlO)

HY,B,M, is by definition the number of seats to protect for the combined Y, B, and M

classes. HY,B,M is found by solving

Max HY,B,M

Subject to fY,B,M X P(Y,B,M) fQ (Al l)

Therefore,

P(r Y,B,M)> fYB, -I( Y,BM) 300 -> P(Z U Y,B,M - Y,B,M ) 0.44
fY,B,M (aY,B,M

-Y B M - 45
> P( YB - 45) 0.44

12.45
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According to the standard normal distribution table, we find that the number of seats to

protect for the combined Y B and M class is 46 seats.

4 Booking Limits

The following protection levels have been calculated:

fly = 7 seats

HY,B = 22 seats

HY,B,M = 46 seats

The booking limit of each fare class is therefore:

BL(Y) = C = 70 seats

BL(B) = C - fly = 70 - 7 = 63 seats

BL(M) = C - LY,B = 70 - 22 = 48 seats

BL(Q) = C - HY,B,M = 70 - 46 = 24 seats

The booking limits of the different ODF proposed on BOS-PAR are summarized in the

figure below.

Capacity

Booking Limit (Seats)

Figure A-1: Booking Limit for each Fare Class on BOS-PAR.
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5 EMSR curve

The objective of this section is to explain how the EMSR curve is drawn based on the

EMSRb algorithm. According to the optimal booking limit strategy explained by Curry',

the Expected Marginal Seat Revenue curve is decreasing and convex with respect to the

seat allocation. The objective is to force the EMSR curve from the EMSRb heuristic, to

be both decreasing with respect to the seat allocation.

EMSR($)

-0. EMSRc

Seats

Figure A-2: EMSR curve using EMSRb model for BOS-PAR.

The EMSR curve is cut by the lowest fare of the active combined fare class set.

Therefore, as one can observe in figure 2, above, the EMSR curve is cut by the fares

corresponding to B and M classes. Therefore, using this heuristic, the EMSR curve is
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decreasing with respect to the allocated seats. Nonetheless, the EMSR curve is not

convex with respect to the allocated seats.

6 Critical EMSR Value

We define the critical EMSR value, EMSRc, as the EMSR value of the number of seats

available on the leg. In our example, 70 seats are available on BOS-PAR flight. As one

can observe in Figure 2, above, the compound of all the ODF generates the EMSR piece

of curve that defines the critical EMSR value.

Therefore, on BOS-PAR, the critical EMSR value is

EMSRc(BOS-PAR) = fY,B,M,Q x Pr ob(DY,B,M,Q > 70) (A12)

With

Dy xfy +DB xfB +DM xfM +DQ xfQ
fY,B,M = DY+DBDM+DYBM Uy + UB + UM + UQ
_ 10 x 1000 +15 x 700 +20 x 500 +30 x 350 = $546.7

10+15 +20 +30

DY,B,M -Dy +DB =10+15+20+30= 75

TY,B,M = 2 y+2B + 2M + 02Q = 425 + 49 +81+169 =18

Using (A12), it comes that

EMSRc(BOS-PAR) = $333.5

The EMSRc value for the flight is represented in Figure 2 above.
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SECTION B: OD-CONV EMSRc AND LP SHADOW PRICES

(MEAN OVER THE 18 BOOKING PERIODS OF THE FIRST

DEPARTURE, DADJ=1.20)

. eg . #.. .......
ma. ...
2. .... ...
3 .....

.. ....4 .. ...

.. 5.. ..

.. .....
7 .....
8.. ..... ....

9.. ..... . ...
10......

1......
. 1 2............

13. .. -
14........ ....
1 5.......- ....
16.......
1 7........ ...
18....
19...... ..
2 0........
21.........
22....... .
23.......
24......

25v ::::
26......

.. 2 7..... ..
28... ....

..... 9

SP
0.00

0.00

661.72

24.11

615.00

0.00

704.11

479.50

434.28

219.72

0.00

0.22

349.67

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

157.39

0.00

0.00

118.56

88.22

0.00

0.00

9.56

163.44

EMSRc Av. L.F
0.00 52.0%

20.75 89.5%

654.95 96.5%

248.40 94.0%

720.62 96.0%

80.15 80.0%

532.15 100.0%

463.62 97.0%

425.32 98.5%

244.37 95.5%

149.97 92.0%

153.65 93.5%

343.68 97.0%

0.29 62.0%

8.21 77.5%

0.00 47.0%

53.85 82.0%

1.40 63.0%

0.00 39.0%

95.10 93.0%

0.00 22.5%

150.53 97.0%

1.64 65.0%

0.01 58.5%

117.22 95.0%

86.08 99.0%

0.00 34.0%

0.08 31.0%

106.85 92.5%

L eg..... I #......
31 ..

m:<2U:K

34..........

.. .. 3 5.........
3 6.........

::::...37
38......

39 ......
4 0.....I....-
41 ......

4 2............
4 3...........
44......
4.. 5.. :: 6 '*:;:

46 ....
4 7............
4.$.. .. ..
4.. 9..........

... 5 0.........
.51 .. ..

.... 5 2........
5.. 3... ......

.. ....4 ... ..
5 5........ ...

a 56......
...........

. 5.$..........

.. 5.. . . .. . . . . .

SP

0.00

0.00

0.00

2.89

72.28

0.00

0.00

0.00

143.94

37.89

0.00

0.00

47.06

0.00

40.06

0.00

0.00

3.56

121.78

0.00

144.78

0.00

0.00

31.94

0.00

156.72

225.61

149.67

41.39

EMSRc

11.06

20.62

13.36

59.83

91.14

0.24

0.12

2.58

135.15

72.12

0.04

7.95

76.18

0.20

72.79

27.62

31.32

27.21

128.85

11.25

149.31

0.00

0.27

46.69

0.00

143.80

139.09

103.65

142.62

Av.L.F

77.5%

78.5%

75.5%

81.5%

90.5%

58.5%

56.5%

62.5%

90.0%

88.0%

50.5%

74.5%

85.0%

56.5%

94.0%

87.0%

88.0%

92.5%

90.0%

90.0%

92.5%

40.0%

63.5%

87.5%

28.0%

95.0%

92.5%

94.5%

97.5%
93.0%192.24



60 49.11 66.93 93.5% 97 418.94 405.86 98.0%

61 6.67 51.83 93.5% 0.00 38.58 76.0%

2 15.61 149.06 93.0% 9 0.00 0.03 51.0%

63 0.00 8.95 87.5% 10 0.00 47.60 90.0%

64 337.44 300.18 98.0% 11 0.00 43.11 80.0%

65 0.00 5.45 72.0% 10 170.50 167.10 98.0%

66 0.00 7.67 69.5%

67 0.00 35.76 82.0%

68 0.00 72.10 87.0%

6698 0.00 65.06 93.0%

70 33.44 79.25 96.5%

n71 201.94 177.89 95.5%

72 0.00 0.01 48.5%

73 0.00 4.39 75.5%

74 190.61 158.59 97.5%

75 0.00 2.79 66.0%

76 67.33 270.75 92.0%

77 405.00 386.79 98.5%

78 207.33 207.03 97.0%

79 0.00 17.24 77.5%

80 0.00 63.28 90.0%

SI 38.50 114.36 83.0%

82 0.00 43.59 79.0%

83 172.61 258.08 97.0%

84 203.28 168.10 95.5%

856 0.00 3.28 67.0%

86 491.89 452.52 96.5%

87 2.56 19.35 86.5%

88 424.00 397.53 99.0%

89 1097.94 1037.43 96.5%

90 258.50 289.84 97.0%

91 600.28 557.43 97.5%

92 713.50 609.89 96.5%

93 168.72 139.23 96.5%

94 141.67 165.62 97.5%

95 0.00 53.26 70.5%

96 0.00 2.02 71.0%
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SECTION C: PROOF OF LEMMA 2

Lemma 2: MAX Vge,k (X*) <1 with distance of vector V defines as JV = MAX(Ivi ).
c,k

For a given OD c on a traversed leg k we have

dgc~k
Vg c,k (X*) -E E d ~

lELe IECO(l) dx;,,

two cases have to be considered:

- l=k

In that case,

a

With
lam

meLj

dg,k _ bi,k x D -bi,k xN

dxi,k D2

bik XXi,kkC+ Zk
iECO(k)

+ bi'm xxim
meL j ieCO(m)

Therefore,

dgc,,k

dxi,k

But,

bi,k x D x (1 - N/D)

D 2

= gc,k (X*) = X*c,k

Thus,

dge~k b;,k x D x (1 - x*ck)

dxi,k D

bik
D <1
D

m Iwk

We show similarly that
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dge~k bi x x c,k
<1

dx D

Conclusion: c and k, Vgc k (X*) <1

as x ,,k <1
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