

Mlesd	Readings	16.888 ESD.77				
Panos Y. Papalambros and Douglass J. Wilde, " <u>Principles of Optimal</u> <u>Design</u> – Modeling and Computation", 2nd edition, ISBN 0 521 62727 3, (paperback), Cambridge University Press, 2000 - Recommended						
Garret N. Vanderplaats, " <u>Numerical Optimization Techniques for</u> <u>Engineering Design</u> ", ISBN 0-944956-01-7, Third Edition, Vanderplaats Research & Development Inc., 2001- Recommended (out of print?)						
R. E. Steuer." <u>Multiple Criteria Optimization: Theory, Computation and Application</u> . Wiley, New York, 1986 Reserve						
David E. Goldberg, " <u>Genetic Algorithms – in Search, Optimization &</u> <u>Machine Learning</u> ", Addison –Wesley, ISBN 0 201 15767-5, 1989 - Reserve						
20	will assign at the end of eac	h lecture				
=-	Massachusetts Institute of Technology - Prof. de Weck and	nd Prof. Willcox				

Mlesd		Simple ex	Simple example (II)			
	Agricultural Model:					
		Area:	$A = 2LR + \pi R^2$	[m²]		
	Fe	nce Perimeter:	$F = 2L + 2\pi R$	[m]		
	Milk Produ	ction per Cow:	$M = 100 \cdot \sqrt{A / N}$	[liters]		
Economic Model:						
		Cost:	$C = f \cdot F + n \cdot N$	[\$]		
		Income:	$I = N \cdot M \cdot m$	[\$]		
		Profit:	P = I - C	[\$]		
35	Parameters: Constraint:	f=100\$/m n C<= 100,000 \$ Massachusetts Institut	=2000\$/cow m=2\$/liter	ically ? of. Willcox		

