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ABSTRACT 
 
The rapid growth of aviation is critical to the world and US economy, and it faces several 
important challenges among which lie the environmental impacts of aviation on noise, climate 
and air quality. The first objective of this thesis addresses the requirements of section 753 of the 
US Energy Policy Act, and entails the quantification of present and future-year regional air 
quality impacts of US Landing and Take-Off (LTO) aviation emissions. In addition, this thesis 
characterizes the sensitivity of these impacts to variations in the projection of non-aviation 
anthropogenic emissions (referred to as background emissions). Finally, the implication of a 
future-year background emissions scenario on the current policy analysis tool, the response 
surface model (RSMv2), is discussed. 
 
Aviation emissions for 2006 are generated using the Aviation Environmental Design Tool 
(AEDT), while future-year aviation emissions are developed for 2020 and 2030 using the Federal 
Aviation Administration (FAA) Terminal Area Forecast (TAF) and the International Civil 
Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP/8) NOx 
Stringency scenario #6. Background emissions for the year 2005 and 2025 are generated from 
the US Environmental Protection Agency (EPA) National Emissions Inventory (NEI), and two 
additional sensitivity scenarios are derived from the emissions forecasts. Uncertainties in present 
and forecast aviation and background emissions are also characterized. 
 
The Community Multiscale Air Quality (CMAQ) model is evaluated to quantify its performance 
in predicting ambient PM2.5 and ozone concentrations, and it is used to estimate aviation air 
quality impacts of aviation. Future-year aviation particulate matter (PM2.5) concentrations are 
found to increase by a factor of 2 and 2.4 by 2020 and 2030, and are dominated by nitrate and 
ammonium PM. Aviation 8-hour daily maximum ozone is seen to grow by a factor of 1.9 and 2.2 
by 2020 and 2030, with non-homogeneous spatial impacts. Aviation PM2.5 varies by ±25% with 
a ±50% variation of the forecast change in background emissions, while changes in ozone 
impacts are less symmetric at +34%/-21%. The RSMv2 is shown to under-predict future-year 
aviation nitrate and ammonium PM2.5. Finally, the implications of these results on the aviation 
industry and on aviation policy are discussed.  
 
Thesis Supervisor: Ian A. Waitz 
Title: Dean of Engineering, Jerome C. Hunsaker Professor of Aeronautics and Astronautics 
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Chapter 1 Introduction 

The aviation industry has experienced an average annual growth rate of approximately 4.4% over 

the past three decades [1], and demand for air travel is expected to expand in the future [2]. This 

growth in  aviation activity is critical for the economic welfare of both the global as well as the 

domestic US markets ([3], [4]). The rapid growth in air transportation, however, faces several 

challenges such as air traffic management in over-crowded airspaces, airport capacity constraints 

and those related to advancements in airframe and engine technology. The environmental 

impacts of aviation present some of the most important challenges and are paramount in many 

policy decisions undertaken to manage the anticipated expansion of aviation [5]. 

1.1 The Air Quality Impacts of Aviation 

Aviation impacts the environment through noise, climate and air quality, giving rise to 

environmental and societal damages on different spatial and temporal scales. Aircraft noise 

typically affects the local community, while climate impacts are expected to be felt tens to 

hundreds of years into the future and occur on a global scale. Air quality impacts occur not only 

in near-airport locales but also on regional and global scales. The work presented in this thesis 

focuses on the regional air quality impacts of aviation on an annual time-scale. 

The primary air quality concern is the contribution of aviation emissions to ambient particulate 

matter smaller than 2.5 µm in aerodynamic diameter (PM2.5) and ambient ozone levels, owing to 

the adverse health effects that arise as a result of exposure to elevated concentrations [6]. Aircraft 

emissions consist of several chemical compounds that form as a result of the fuels and 

combustion process in aircraft engines; while a proportion of these emissions comprise PM2.5 

(known as primary PM2.5), the majority of PM is formed through the physical and chemical 

processes that gaseous precursor emissions of NOx, SOx and unburnt hydrocarbons (UHC) are 

subject to in the atmosphere. Aviation contribution to ozone may be positive or negative (as 

noted in Ratliff et al. [7]), due to the chemistry between NOx emissions, volatile organic 

compounds (VOCs) and ozone. 

Chemical Transport Models (CTMs) such as the Community Multiscale Air Quality (CMAQ) 

and GEOS-Chem models are often employed to capture the aforementioned natural processes in 
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the atmosphere, and take as inputs emissions and meteorology and output concentrations of 

various species in the atmosphere. There have been several prior studies that have used CMAQ 

to quantify the regional air quality impacts of aviation within the US. Ratliff et al. [7] used 

CMAQ to calculate regional impacts of aviation Landing and Take-Off cycle (LTO, defined as 

operations at or below 3000ft) emissions within the US, and estimated an increase in national 

annual-average aviation-attributable hydrated PM2.5 of 0.01 µg m�⁄  in the year 2001. A more 

recent study by Woody et al. [8] estimated US aviation contributions to current (2005) and future 

(2025) dry PM to be 0.0032 µg m�⁄  and 0.011 µg m�⁄ , respectively. Kuhn [9] employed CMAQ 

in a regulatory context to assess the air quality impacts from aviation LTO emissions of 

implementing Ultra-Low Sulfur (ULS) jet fuel, reporting that a ULS policy leads to a 28% 

decrease in ambient PM2.5 concentrations within the US.  

Masek [10] used statistical regression methods to construct a Response Surface Model (RSM) 

for LTO aviation-attributable annual PM2.5 within the US, based on CMAQ outputs. The RSM 

was further updated by Brunelle-Yeung [11] to the RSMv2, which output speciated PM2.5. The 

RSMv2 was used by Brunelle-Yeung to quantify the impact of LTO aviation in 2005, yielding an 

increase in domain-averaged annual PM2.5 of 0.00105 µg m�⁄  due to aviation. Mahashabde et al. 

[12] used the RSMv2 in a regulatory framework to quantify the current and future-year air 

quality and health benefits of implementing several NOx stringency policies in a full cost-benefit 

analysis (CBA) of the International Civil Aviation Organization Committee on Aviation 

Environmental Protection (ICAO CAEP/8) NOx Stringency. 

This thesis builds on these methods in the assessment of aviation air quality impacts. However, 

regulatory modeling of these impacts in future years has yet to be conducted, as will be discussed 

in the following section, and this forms the basis for the research conducted in this thesis. 

1.2 Motivation for Thesis – Future-year Impacts Assessment 

The motivation for this thesis stems from section 753 of the US Energy Policy Act (EPAct) of 

2005, which requires the Environmental Protection Agency (EPA) and the Federal Aviation 

Administration (FAA) to perform an analysis to identify the impacts of aviation emissions on air 

quality in nonattainment areas. The analysis is restricted to aviation activity within the LTO 

regime, as emissions from the LTO cycle are regulated by ICAO [13] and considered in air 

quality assessments by the EPA and FAA [14]. The growing importance of aviation activity in 
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the future warrants the quantification of the air quality impacts in the future years in addition to 

the present-day conditions. Aviation policies typically span 20-30 years into the future [15], and 

therefore aviation impacts must be evaluated over this time period. The Energy Policy Act study 

by Ratliff et al. [7] was aimed at addressing the aviation air quality issues set forth by the Energy 

Policy Act, and although they quantified aviation air quality impacts for the present-day (2001) 

conditions they did not consider future-year impacts. Of the previous air quality studies 

presented in Section 1.1, Mahashabde et al. and Woody et al. have estimated the future air 

quality impacts of aviation, though these studies have limitations as well. 

The study by Woody et al. utilized emission forecasts for 2025 aviation emissions as well as 

those from other anthropogenic sectors, in addition to base year 2005 scenarios. However, the 

flight activity information used in the study was limited to data from 99 major airports in the US 

and employed scaling factors to convert a seed day of activity into an annual inventory [8]. This 

could potentially lead to an under-representation of aviation air quality impacts in certain areas. 

The study also considered aviation activity up to 10,000ft, thereby including aviation emissions 

outside of the currently-regulated LTO regime. Therefore, these results might not appropriately 

represent the air quality impact of aviation on non-attainment areas from a regulatory 

perspective.  

The study by Woody et al. did, however, highlight a significant parameter that influences 

aviation’s air quality impacts – non-aviation anthropogenic emissions, which are termed as 

“background emissions”. Background emissions are responsible for establishing the majority of 

the atmospheric species concentrations with which aviation emissions react to form PM and 

ozone. It is therefore necessary to take into account not only the anticipated growth in aviation 

emissions but also the anticipated changes in future-year background emissions when assessing 

the future aviation impacts on air quality. 

The work by Mahashabde et al. considered future growth in aviation in the assessment of ICAO 

CAEP/8 NOx Stringency; however, the policy analysis tool (the RSMv2) that was employed in 

the CBA does not account for changing future-year background emissions scenarios, and 

therefore the study may not adequately represent the aviation air quality impacts in the future 

years as well.  
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1.3 Focus and Outline of Analysis 

In light of the requirements of the US Energy Policy Act, and the limitations of prior studies in 

estimating future-year air quality impacts of aviation, this thesis aims to address the following 

three key issues:  

A Quantify the future-year impacts of LTO aviation emissions on regional air quality in the 

US – this is done through the base-year implementation and future-year projection of 

aviation activity and emissions, and the simulation of the atmospheric response to these 

emissions amid a present-day and future-year background emissions scenario 

 

B Estimate the sensitivity of the air quality impacts of LTO aviation emissions to the 

background emissions forecasts – a sensitivity study is performed, perturbing the 

background emissions to ascertain their influence on the resulting aviation-attributable 

PM2.5 and ozone concentrations 

 

C Identify the implications of a changing background emissions scenario on the current 

policy analysis methodology – the current aviation air quality policy analysis tool, the 

RSMv2, is used to calculate future-year aviation PM2.5 concentrations, and subsequently 

compared against the outputs from the CMAQ model 

The set up of the modeling platforms and performance evaluation that was conducted to validate 

the model are outlined in Chapter 2. Chapter 3 discusses the present and future year aviation 

scenarios, and Chapter 4 provides more detail on the background emissions and its forecasts. The 

future-year air quality impacts of aviation are illustrated in Chapter 5, including their sensitivity 

to background emissions. Chapter 6 discusses the results and their implications for the aviation 

industry and aviation policy. The final chapter concludes the thesis with a summary and suggests 

future avenues of research.  
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Chapter 2 Model Setup and Configuration 

Air quality models are used to study the fate of pollutants within the atmosphere by simulating 

the natural processes that occur in the atmosphere. The spatial extent of coverage varies: global 

CTMs such as GEOS-Chem model most of the Earth’s atmosphere, incorporating long-range 

mixing and chemistry. Models such as AERMOD and CALPUFF simulate plume-scale 

dispersion (with limited chemistry) over tens of kilometers. The aim of the present work is to 

study air quality over the Contiguous United States (CONUS), and therefore a regional-scale 

model is used in this thesis. The Community Multiscale Air Quality (CMAQ) modeling system 

is chosen for the study, given its applicability and widespread usage in modeling regional air 

quality. CMAQ is employed to address issues (A), (B), and (C) that were posed in Section 1.3.  

The RSMv2, originally built by Masek (2008) and later updated by Brunelle-Yeung (2009), is a 

reduced-order response surface model that estimates annual surface-level particulate matter 

concentrations due to aviation LTO emissions. The model exists as part of the FAA’s Aviation 

environmental Portfolio Management Tool (APMT) [12], and is used to perform cost-benefit 

analyses of aviation policy scenarios. The current RSM does not account for changes in 

background emissions; its performance in calculating the future-year impacts of aviation is 

therefore compared with the results from the CMAQ application, in order to identify the effects 

that a changing background emissions scenario has on the tool.  

Both modeling systems comprise multiple components including meteorology, initial and 

boundary conditions, and emissions. Details of these components as well as the model 

configuration and simulation scenarios are presented in the sections below. Section 2.5 of this 

chapter describes the performance evaluation of the CMAQ model.  

2.1 Modeling Scenarios 

Modeling scenarios are chosen in order to address the research questions set forth in Chapter 1. 

Table 1 outlines the simulations that were conducted, and identifies their objectives pertinent to 

this thesis. Simulations for objectives (A) and (B) will be performed using the CMAQ model, 

while scenario (C) will involve an RSM simulation. 
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Table 1: CMAQ aviation/anthropogenic emission combinations and RSM input inventory 

Sim. # Description 

Year of Non-

aviation Emissions 

Aviation LTO 

Emission Year 

Objective of 

Simulation(s) 

1 2005 Control  2005 -- 

(A) 

2 2005 Base year scenario 2005 2006 

3 2025 Control  2025 -- 

4 Future year (2020) scenario 2025 2020 

5 Future year (2030) scenario 2025 2030 

6 0.5xDelta Control 0.5xDelta -- 

(B) 

7 0.5xDelta (2020) scenario 0.5xDelta 2020 

8 0.5xDelta (2030) scenario 0.5xDelta 2030 

9 1.5xDelta Control 1.5xDelta -- 

10 1.5xDelta (2020) scenario 1.5xDelta 2020 

11 1.5xDelta (2030) scenario 1.5xDelta 2030 

12 RSMv2  -- 2006-2020-2030 (C) 

*Note: “Delta” refers to the change in background emissions from 2005 to 2025. 

A control simulation without aviation emissions is conducted for each unique background 

emissions dataset (as seen in Simulations #1, 3, 6 and 9), and the aviation impact on air quality is 

estimated by taking the difference between the CMAQ model outputs of each of the modeling 

scenario and their appropriate control cases; that is, 2006 aviation impacts are estimated by 

taking the difference between Simulation #2 and Simulation #1, 2020 impacts between 

Simulation #4 and Simulation #3 and 2030 impacts between Simulations #5 and #3. 

Objective (A) is achieved by simulating the base year 2006 and future years 2020 and 2030 

aviation scenarios. These simulations were conducted as part of the EPAct Follow-On study, 

aimed at addressing one of the main requirements of the Energy Policy Act to identify the impact 

of aviation emissions in air quality nonattainment areas in the USA. The aviation emissions are 

considered only within the LTO cycle, and will be elaborated upon in Chapter 3. Ideally, the 

non-aviation emission inventory would be derived to match these modeling years. For the base 

year simulation, the year 2005 emissions dataset is used since it is the closest to the analysis 

year. For the future years, only the 2025 dataset was available in a CMAQ-ready format at the 

time of the study, and as such it was used as a proxy for both 2020 and 2030 anthropogenic 

emissions. This is not expected to introduce additional uncertainty as projections of future 

aviation and background emissions are already uncertain by at least an amount equivalent to 5 
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years (see Section 3.6). The source and methodologies of the background emissions data are 

described in greater detail in Chapter 4. 

To understand the sensitivity of aviation-attributable PM to background emissions variations, 

each future aviation case (2020 and 2030) is paired with two additional background emissions 

scenarios: one representing a less-than-predicted change in background emissions (50% of the 

change) between 2005 and 2025, and second describing a greater-than-predicted change in 

background emissions (150% of the change). The methodology behind these modified 

background emissions scenarios is given in Chapter 4.  

Finally, the implication of changing background emissions scenario on the current policy 

analysis tool, the RSMv2, is identified with the aid of simulation #12. There is no background 

emissions input to the RSMv2, since the model approximates PM due to aviation through a 

regression model which is a function of aviation LTO emissions assuming a fixed background 

emissions level. Aviation emissions for the three forecast years are input to the model, and a 

comparison between the resulting RSM outputs and those of the CMAQ simulations is 

performed in Section 6.3. 

2.2 Modeling Domain 

The CMAQ modeling domain is centered about the CONUS, with parts of Canada and Mexico 

included within the domain, as shown in Figure 2-1. The grid boundaries are located away from 

the CONUS region of interest, to reduce the influence of boundary conditions on species 

concentrations over the region of interest. 
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Figure 2-1: The CMAQ 36 km modeling domain 

The regular horizontal grid comprises 112 rows by 148 columns, the size of each grid cell being 

36 km square. The domain lies in a plane defined by a Lambert Conformal Conic Projection of 

the Earth; the projection is centered at (40°N , 97°W) with reference parallels at 33°N and 45°N. 

The origin of the grid (specified as the lower left-hand corner) is located <-2664km, -2016km> 

from the center of the domain. 

The vertical domain is discretized into 34 layers up to an altitude of approximately 52,000ft 

(16km) above mean sea level (AMSL). The layers are defined by a sigma-pressure coordinate 

system which conforms to changes in terrain elevation. Sigma coordinates are defined relative to 

the ambient pressure at the surface of the Earth (denoted p0), as per Equation (2.1).  

��	
 � 1 
 	 
 	�	��� 
 	�  (2.1)  

where ptop is the pressure at the top of the domain of 100 millibars (~52,000ft AMSL). 

36km Domain 
Lower left corner: (-2664km, -2016km) 
Dimensions: 112 Rows, 148 Columns 
Lambert Conformal Projection: 
Standard Parallels at 33°,45° 
Reference Meridian at -97° 
Reference Latitude  at 40° 
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The coordinate begins at 1 on the surface of the Earth (where p=p0), and decreases to 0 as the 

pressure p drops to 100 millibars at the top of the domain. The pressures at the bottom face of the 

grid cells within the first model layer (also known as the ground-layer) may not be uniform, 

owing to the fact that the vertical grid is terrain-following. Both the grid box heights as well as 

their altitude above ground are therefore not uniform between neighboring vertical columns. It is 

important to note also that the vertical grid is not fixed in space temporally, since the surface 

pressure levels on which it is based fluctuates as a function of meteorological phenomena. 

The sigma coordinates are defined in order to provide high resolution near the surface of the 

Earth. Figure 2-2 shows a typical vertical grid structure, while the sigma coordinates and 

corresponding pressure and altitudes are tabulated in Appendix A. The first few layers are 30-60 

meters in height, with the first 14 layers under 1 km. The requirement for higher resolution in 

this region is two-fold: first, the objective of the modeling is to calculate surface-level PM2.5 and 

ozone concentrations, since population exposure to PM and ozone leads to adverse health effects. 

A finer vertical grid improves the estimate of pollutant concentration in the ground-layer cells, 

leading to more accurate air quality impacts. Second, the atmosphere near the surface of the 

Earth is turbulent and forms the planetary boundary layer (PBL). Although the thickness of the 

layer is dependent on the stability of the atmosphere as well as the land use and related surface 

roughness, an average PBL height of 1km exists over the CONUS [16]. A fine grid is required to 

resolve the vertical mixing processes occurring within the PBL, necessitating that more than a 

third of the vertical layers are located within 1km. 
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Figure 2-2: Vertical layers in the CMAQ domain over a typical grid-cell 

The temporal domain of modeling is one calendar year, from January 1 to December 31. This is 

done in order to capture both seasonal exposure to ozone during the ozone season of May 

through September as well as long-term (annual) exposure to PM2.5. Prior studies ([10], [17]) 

have attempted to capture the annual variability in ambient PM and ozone concentrations by 

performing simulations for four months, one during each season: January (winter), April 

(spring), June (summer) and August (fall). However, in order to better capture the annual mean 

in the species concentrations a full year of simulations is preformed in this thesis. The CMAQ 

simulations include a spin-up period of 11 days, to mitigate the effects of the initial conditions 

used to start the calculations and reach a quasi-steady state, a duration that is consistent with 

prior studies ([18], [19]). 

The RSM domain is similar to the one presented in Figure 2-1, with the exception of a shift of 

the origin of the grid by two grid-cells in each horizontal direction to <-2736km,-2088km>. 

Since the RSMv2 is constructed to predict annual surface-level PM concentrations, there are no 

temporal or vertical dimensions to the model. 
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2.3 The CMAQ Model 

CMAQ is a three-dimensional Eulerian photochemical air quality model that simulates the 

chemistry and transport of many species of air quality concern in the troposphere, producing 

hourly gridded concentrations of speciated particulate matter and ozone (amongst other species). 

CMAQ is used by the EPA for various policy and regulatory impact analyses ([20], [21], [22]) 

within the United States, and its fidelity and suitability in modeling regional air quality have 

been demonstrated. The CMAQ model is open source and freely available to the air quality 

modeling community, building upon the array of scientific knowledge and modeling techniques 

that exist within the community. CMAQ model version 4.7.1 [23] is utilized for the simulations, 

since it contains updates that represent state-of-the-science modeling techniques in aqueous and 

photo-chemistry, aerosol treatment, and numerical solution methods. Further details about the 

CMAQ model and its underlying components can be found in Byun et al. [24]. Several choices 

exist for the physics and chemistry modules built into the CTM; these model build parameters, 

including compiler details and computational architecture are listed in Appendix B.  

Most of the model options are kept to their default settings, with the exception of the chemical 

mechanism and the aerosol module. The Carbon Bond 05 (CB05cltx) chemical mechanism 

(described in detail in Yarwood et al. [25]) and the AERO5_txhg aerosol module were used in 

the CMAQ simulations. CB05 represents atmospheric oxidant chemistry, providing a set of 

reactions and chemical mechanisms that form the basis for the study of air quality issues such as 

those involving ambient ozone and PM2.5. Notable updates from the older Carbon Bond IV 

(CBIV) mechanism include several updates to chemical kinetics and photolysis rates, chlorine 

chemistry and explicit treatment of toxic volatile organic compounds (air toxics). The AERO5 

mechanism includes enhanced treatment for secondary organic aerosol (SOA) formation and 

several other updates for aerosol treatment. The explicit air toxics option was used in the CMAQ 

build, and as such the relevant toxics modules (‘tx’) were enabled to track the air toxics species. 

2.4 Inputs to CMAQ 

The following section describes the inputs to CMAQ in greater detail. The three main 

components involved in modeling air quality are meteorological parameters, emissions of 

pollutants and initial and boundary conditions (IC/BC). These components are brought together 

in the CTM within CMAQ, which is responsible for the computations of advective transport, 
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photochemistry and dry/wet deposition of species. The meteorology, IC/BC and base and future-

year background emissions that are used in the CMAQ simulations in this thesis were the same 

ones used in Woody et al. [8]; a brief description of these inputs is provided in this section, while 

the reader is referred to [8] for additional details pertaining to the processing and generation of 

these datasets. The generation of the base year aviation emissions as well as the projection of 

aviation activity into the future years, along with the associated uncertainties, is discussed in 

depth in Chapter 3. Background emissions trends, forecasts and uncertainties are discussed in 

Chapter 4. A summary of the CMAQ inputs is given in Appendix C. 

2.4.1 Meteorology 

The CMAQ simulations in this thesis utilize year 2005 meteorological conditions. The gridded 

meteorology was generated by the Meteorology-Chemistry Interface Processor (MCIP) v3.3 

[26], which uses outputs from the Pennsylvania State University/National Center for 

Atmospheric Research Mesoscale Model (PSU/NCAR MM5) v3.7.1 [27]. Meteorological 

conditions are held fixed across all CMAQ simulations; doing so eliminates the additional 

variability in the CMAQ outputs due to changing meteorological conditions, and isolates the air 

quality impacts of aviation activity due to changes in aviation and background emissions 

scenarios alone. Since meteorology is prescribed, climate-air quality feedbacks from aviation, for 

example due to aerosol radiative forcing or induced precipitation [28], are not modeled. 

2.4.2 Initial and Boundary Conditions 

Initial and boundary conditions for the CMAQ simulations are obtained from atmospheric 

simulations performed using the GEOS-Chem global model [29]. Concentrations of chemical 

species from the global domain were interpolated onto the CMAQ computational domain 

boundaries for each day of the simulation period [30]. Initial and boundary conditions from the 

GEOS-Chem year 2000 simulations are used for the CMAQ year 2005 simulations. In the 

absence of 2025 specific GEOS-Chem simulations, IC/BCs from 2000 and 2050 simulations 

based on the Intergovernmental Panel on Climate Change’s A1B emissions scenario are 

temporally interpolated to obtain 2025 IC/BC concentrations [31]. Anthropogenic emissions for 

GEOS-Chem simulations were derived from a variety of sources, drawing from global sources 

such as Emissions Database for Global Atmospheric Research (EDGAR) as well as regional 

sources such as European Monitoring and Evaluation Programme (EMEP) and US EPA. The 
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GEOS-Chem simulations include aviation emissions since global aviation emissions (including 

cruise emissions) play a role in setting the overall oxidative capacity of the atmosphere. These 

aviation emissions are different from the ones modeled in this thesis; monthly mean gridded 

inventories of aircraft NOx (developed for the year 1992, reported in Wang et al. [32]) and 

aircraft SO2 (also developed for the year 1992, presented in Park et al. [33]) were used in the 

global GEOS-Chem simulation.  

2.4.3 Gridded Emissions 

The third major component in the inputs to CMAQ is the emissions of pollutants. Aviation 

emissions are distinguished from other anthropogenic emissions, in order to obtain the changes 

in particulate matter and ozone concentration caused by aviation activity. As will be explained in 

Chapter 3, the aviation emissions inventory used for this analysis is processed from detailed 

datasets, promoting a deeper and fuller understanding of aviation emissions and their projections 

into the future. The understanding becomes especially useful in interpreting the aviation signal 

from the air quality model outputs. The non-aviation, background, emissions are processed from 

the US EPA’s National Emissions Inventory (NEI), which not only catalogs emissions within 

North America (US, Canada and Mexico) every three years but also projects emissions into the 

future years. Further details on the background emissions processing are given in Chapter 4. 

Emissions are input in units of moles/sec for gaseous species and grams/sec for primary aerosol 

emissions, and are gridded to the CMAQ modeling domain both spatially (148x112x34 grid-

cells) and temporally (hourly emissions). The choice of chemical mechanism, CB05 in this case, 

dictates the types of chemical species accepted into the CTM. An important characteristic of the 

CB05 mechanism is that real organic compounds are not emitted as individual species but 

instead as “lumped” model species (such as PAR, OLE, ALD). Organic compounds are grouped 

based on the number and type of internal carbon bonds within a molecule that lead to differing 

rates of reactivity; for example, propylene (C3H6) comprises one fast reacting carbon double-

bond and one carbon single bond, and as such one mole of propylene yields one mole of OLE 

(carbon fast double-bond) and one mole of PAR (carbon single-bond) [34]. This facilitates some 

of the generalized chemistry and surrogate reactions that are modeled in the CB05 reaction set, 

and leads to enhanced computational efficiency of the CTM ([25], [35]). 
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2.4.4 Other Inputs 

For completeness, several other ancillary yet important inputs to CMAQ are presented here.  

Photolysis lookup tables contain information on incoming solar radiation and photolysis rates, 

which drive the photochemistry within the CTM. The photolysis rates are generated specific to 

the CB05 mechanism, and the values are a function of solar angle, latitude and altitude. These 

rates are for clear-sky conditions, and are corrected through parameterizations for cloud cover 

[36]. The photolysis rates are generated using the default profile published with CMAQ4.7.1.  

Sea-salt emissions are calculated based on wind speed and relative humidity, and are split up into 

chloride, sodium and sulfate ions. An OCEAN file, containing the fraction of each grid cell 

covered by open ocean, is used in these calculations. The OCEAN file was processed by UNC, 

using the SSMASK tool1.  

2.5 CMAQ Performance Evaluation 

2.5.1 Need for Performance Evaluation 

The usage of the CMAQ model in any analysis requires a comprehensive model performance 

evaluation in order to establish model credibility and improve the reporting of results. CMAQ 

performance evaluation validates the base year (2005) model outputs against ambient 

measurement data, and quantifies the model characteristics and biases before it is applied 

towards predicting aviation impacts. 

The Atmospheric Model Evaluation Tool version 1.1 (AMET v1.1) is used alongside custom 

MATLAB scripts to perform the CMAQ model evaluation. AMET is a collection of utility 

scripts and analysis tools that have been developed to compare model predictions of meteorology 

and air quality with observed quantities [37], and its usage in performance analyses is illustrated 

in the US EPA’s modeling guidance for air quality attainment analyses [38]. 

2.5.2 Observational Data and Monitors 

Air quality monitoring stations have been set up across the country to collect measurements of 

ambient PM2.5, its species, ozone and other toxic and Hazardous Air Pollutants (HAPs). These 

                                                 
1 SSMASK tool available through instructions at 
http://www.cmascenter.org/help/model_docs/cmaq/4.5/AEROSOL_NOTES.txt 
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monitors are part of distinct monitoring networks, and therefore have discrete sampling and 

operating procedures that vary both in terms of temporal frequency as well as species that are 

monitored. Table 2 lists the monitoring networks that are used in this study, as well as the 

species that are compared and the frequency of measurement.  

Table 2: Monitor networks, species that are measured and the temporal frequency of 

measurement 

Network Species monitored Temporal frequency 

IMPROVE PM2.5, NO3, SO4, EC, OC 1-in-3 day average 

STN PM2.5, NH4, NO3, SO4, EC, OC 1-in-3 day average 

CASTnet NH4, NO3, SO4 Weekly average 

AQS O3 Hourly, 1hr max, 8hr max 

 

Interagency Monitoring of Protected Visual Environments (IMPROVE) [39]: IMPROVE sites 

were first set up in 1985 to study the effects of ambient particles on visibility and to characterize 

trends in visibility both spatially and temporally [40]. Most of the sites are located in the Western 

US, and the monitors at these sites report 24-hour integrated samples. The model performance 

evaluation uses measurement data from 168 sites and 115 days (due to the 1-in-3 day monitoring 

frequency), for the year 2005. 

Speciation Trends Network (STN): The STN is a part of the Chemical Speciation Network 

(CSN) and comprises roughly 200 monitors primarily located in urban areas [41]. The network 

was established in 2000 to support epidemiological studies, assessing control and mitigation 

strategies and capturing trends in PM2.5 and its species. Monitors at STN sites attempt to split 

total carbon (TC) that is measured into its organic and elemental constituents. This is done 

through the National Institute of Occupational Safety and Health (NIOSH) method 5040 [42]. A 

total of 219 sites are used in the evaluation of CMAQ. 

The PM2.5 mass that is measured at many of these 219 sites is obtained by using the Federal 

Reference Method for PM2.5 (FRM PM2.5) [43]. The FRM method is prescribed by the EPA to be 

used in the determination of National Ambient Air Quality Standards (NAAQS) attainment 

status. The FRM specifies conditions for sample measurement and filter handling – filters should 

be temperature-controlled and cold-filter shipped, and PM2.5 mass should be gravimetrically 

measured by the difference in pre- and post-sampling measurement filters that have been 
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equilibrated for at least 24 hours at 20-23°C and 30-40% relative humidity. It is noted in Frank 

(2006) [44] that FRM PM2.5 exhibits losses in semi-volatile organic compounds and ammonium 

nitrate. Particle-bound water is also included in the PM2.5 mass, in contrast with the “dry” PM 

that is predicted by the CMAQ model. 

Clean Air Status and Trends Network [45]: The CASTnet network was borne out of the National 

Dry Deposition Network (NDDN), with the goal of determining trends in atmospheric nitrogen, 

sulfur and ozone concentrations and dry deposition in order to assess the impacts of regional and 

national air quality control programs [45]. The evaluation uses 86 CASTnet regional monitor 

sites nationwide, which are located primarily in rural areas (thereby complementing the 

predominantly urban STN network). CASTnet filters are exposed to ambient conditions over a 1-

week period – this exacerbates volatility issues related to measured nitrate and semi-volatile 

organic carbon concentrations [46].  

Air Quality System [47]: The US EPA AQS is a data repository of hourly aerometric 

concentrations, centralizing data from other networks such as IMPROVE and STN as well as 

Federal, State and Local agencies. Hourly ozone concentrations from over 1000 monitors for the 

year 2005 are obtained from the AQS, and subsequently post-processed into 1-hour and 8-hour 

daily maximum concentrations. Ozone performance evaluation is done during the ozone season, 

from 1 May to 30 September for the base year 2005, when ozone reaches sustained elevated 

concentrations; the model has to be able to capture these periods of high ozone in order to 

accurately represent the health impacts due to population exposure. 

2.5.3 Metrics of Comparison 

CMAQ model data and observation data are paired in space (by monitor location) and time 

(hourly, daily maximum, daily average). Visual methods such as timeseries, boxplots and 

scatterplots are used to gauge trends in a qualitative manner, and statistical tools are employed in 

order to perform quantitative, objective comparisons between the performance of the 

CMAQ4.7.1 model in this thesis and that of other studies. The following section outlines the 

comparison methods and statistical parameters that are used in this thesis. 
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A number of statistical parameters are calculated when performing the model evaluation, and 

two of these are presented in greater detail in this thesis. The equations for the two statistical 

indicators of Normalized Mean Bias (NMB) and Normalized Mean Error (NME) are given in 

Equations (2.2) and (2.3). 

NMB � ∑�Model 
 Obs
∑ Obs  �  100% 

 

(2.2) 

 

NME � ∑ |Model 
 Obs|∑ Obs  �  100% 

 

(2.3) 

 

NMB is a measure of the average performance and overall bias of the modeling system. 

Normalizing the biases by the mean of the observations allows relative comparisons regardless 

of actual magnitudes of observations. NMB is a useful indicator since it avoids over-inflating 

performance at low values (compared with mean normalized bias, for example, where the biases 

are normalized before taking the average) [38]. 

NME is similar to NMB, except that the error is measured as the absolute value of the difference 

between model and observations. In this way over-predictions and under-estimations do not 

cancel each other out. Normalizing by the mean observation allows for relative comparisons 

without regard for the actual magnitudes of measurements. 

Median statistics are often used in place of the averages (summations) in Equations (2.2) - (2.3), 

yielding Normalized Median Bias (NMdnB) and Normalized Median Error (NMdnE). Median 

values are useful in skewed datasets, or when outlying data points might cause a significant 

deviation in the mean value. In particular, hourly measurements of ozone and PM2.5 might yield 

observations near zero as well as instantaneous peaks, yielding exceptionally high biases and 

errors. Taking the median instead of the mean places less emphasis on these outliers and focuses 

the analysis on the bulk of the data. The time averaging that is performed in computing annual 

PM2.5 and seasonal 8-hour daily maximum ozone, however, smoothes the biases and errors 

thereby making the mean and median values comparable; therefore, only the mean values are 

considered in this thesis. 
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Statistical measures are compared against several prior modeling efforts by the US EPA. This 

provides a basis with which to compare model biases and errors and quantitatively judge the 

model’s performance. 

In addition to looking at statistical measures, timeseries, boxplots and scatterplots are also 

utilized to understand the model behavior. Time-series show the model output as a function of 

time (hourly, daily or monthly) and illustrate the model’s ability to capture pollution episodes or 

temporal variations in concentrations. In addition, they are well-suited to assess performance 

over specific monitor sites. Boxplots are useful for assessing the performance over multiple sites, 

where the spread of observations within each period is represented as interquartile ranges. 

Scatterplots provide information on model performance at specific ranges of observations (for 

example, model performance at high ozone observations), and are generated by plotting model 

predictions against all available observation data. 

2.5.4 PM2.5 and Ozone Evaluation 

Table 3 provides the magnitudes of NMB and NME for the 2005 control case (Simulation #1).  

Table 3: CMAQ NMB and NME for the 2005 background scenario 

NMB (%) NME (%)  

STN PM2.5  3.0 42.9 

IMPROVE PM2.5  10.3 57.8 

AQS 8hr maximum O3 5.8 18.5 

 

Model PM2.5 outputs at STN and IMPROVE monitors have relatively low NMBs but high 

NMEs, indicating that the model performs better at capturing annual-averaged mean 

concentrations than temporal fluctuations. It is observed that IMPROVE sites have higher NMBs 

and NMEs compared with STN sites, attributable to different spatial coverage of the two 

networks as well as differences in filtering and processing methodologies [48]. Ozone NMB is 

lower than NME, similar to PM2.5, indicating that seasonal averages are represented better than 

peak values. The ozone NME is comparatively lower with respect to PM2.5, partly due to the 

computation of 8-hour daily maximum ozone which smoothes hourly fluctuations.  
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The statistics are compared with prior modeling performance evaluations in order to gauge the 

relative performance of the current CMAQ4.7.1 modeling platform. Foley et al. [49] evaluated 

CMAQv4.7 for a 12 km nested Eastern US grid for two months in 2005, using Weather Research 

and Forecasting (WRF)-derived meteorological inputs. The EPA’s Light-Duty Vehicle 

Greenhouse Gas Emissions Final Rule (LDV-GHG) Regulatory Impact Analysis [22] evaluated 

CMAQ4.7.1 for their application using 12km Eastern and Western US grids for a base year of 

2006. The statistics from these evaluations are shown in Table 4 and Table 5. Note that Foley et 

al. used median statistics instead of mean values for all species, and the LDV-GHG evaluation 

applied a 40 ppb threshold on seasonal average 8-hour daily maximum ozone to restrict the 

assessment of model performance to days with relatively high observed ozone levels. 

Table 4: Statistics from the CMAQ model evaluation performed by Foley et al. [49] 

Foley et al. 

 
NMdnB (%) NMdnE (%) 

STN PM
2.5

 
January 19.1 39.1 

August -6.4 29.1 

IMPROVE PM
2.5

 
January 9.5 39.7 

August -28.4 37 

AQS 8hr maximum O3 

January 3.9 13.2 
August 6.9 14.5 

 

Table 5: Statistics from the CMAQ model evaluation performed in the EPA's LDV-GHG 

Final Rule Regulatory Impact Analysis [22] 

 
STN PM

2.5
 IMPROVE PM

2.5
 AQS 8hr maximum O3 

(40ppb threshold) 

EPA LDV-GHG NMB (%) NME (%) NMB (%) NME (%) NMB (%) NME (%) 

Northeast  16.6 38.1 9.1 39.4 2.4 12.6 

Midwest  19.5 45.6 21.5 52.9 -0.9 11.1 

Southeast  -7.2 34.1 -10.5 37.2 2.3 12.3 

Central  0.6 41.7 -5.5 42.4 -4.8 13.2 

West  -10.9 46.1 -13.3 45 -0.2 13.5 
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CMAQ performance for PM2.5 is comparable with the Foley et al. and EPA LDV-GHG 

simulations. The NMB falls within the range of seasonal and spatial values provided by Foley 

and EPA’s LDV-GHG assessments respectively for both STN and IMPROVE sites. CMAQ 

NME for PM2.5 lies towards the upper range of the values reported in the two tables. For ozone, 

the CMAQ NMB of 5.8% falls within the range of Foley et al. and is marginally higher than the 

spatial range of statistics in the LDV-GHG comparison. CMAQ NME’s for ozone are higher 

than both comparisons. These errors could arise due to the differing grid resolution (36 km as 

opposed to 12 km), or, in the case of LDV-GHG ozone, the application of a 40ppb minimum 

threshold which filters out poorer performance of CMAQ at low ozone concentrations.  

Scatterplots for annual PM2.5 from both networks and seasonal ozone are shown in Figure 2-3 

(a)-(c). PM2.5 is spread about the 1-to-1 line in comparison with STN monitors, giving rise to the 

low mean bias observed in Table 3. For IMPROVE sites the positive bias is seen in the cluster of 

points near the 2-to-1(upper) line, where CMAQ tends to over-predict low and high observation 

values. For 8hr daily maximum ozone, low values are over-predicted while high values are 

under-predicted, which is a known source of error within the CMAQ model [49]. 

Figure 2-3 (d)-(e) shows annual box-plots for FRM (STN) PM2.5 and a seasonal box-plot for 

AQS 8-hour daily maximum ozone respectively. CMAQ-predicted PM2.5 follows the overall 

seasonal trends in FRM PM2.5, with over-predictions in the winter and under-predictions in the 

summer. This is similar to the biases observed by Foley et al. (statistics reproduced in Table 4). 

Ozone performance shows a small but consistent over-prediction throughout the ozone season, 

which is expected given the positive bias of 5.8% as shown in Table 3.  
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(a) STN PM2.5 scatterplot 

 

 

(b) IMPROVE PM2.5 scatterplot 

 

(c) AQS 8hr maximum ozone scatteplot 

   

(d) FRM (STN) PM2.5 boxplot (e) AQS 8hr maximum ozone boxplot (f) AQS 8hr maximum ozone timeseries 

 

Figure 2-3: CMAQ performance evaluation plots 
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Time-series plots are analyzed to determine model performance at specific monitor sites. An 

example of a time-series plot of 8-hour daily maximum ozone (during the ozone season) is 

illustrated in Figure 2-3 (f) for a site in Allegheny County, Pennsylvania. CMAQ captures the 

mean trends during the season, but misses several peak values, a behavior characteristic of the 

model as explained by the scatterplot. 

Overall the CMAQ model performs within expectations and the performance statistics are 

similar to those reported in the two other studies, bearing in mind differences in grid resolution, 

range of domain and model inputs. While the quantification of the model biases on the aviation 

signal may not be straightforward, it is assumed that the biases do not significantly impact the 

model’s ability to capture the aviation-attributable air quality impacts. 

2.6 The Response Surface Model 

2.6.1 Model Description 

The RSM [10] is a reduced order air quality model designed as part of the FAA’s Aviation 

Environmental Portfolio Management Tool (APMT) [50] to model the impact pathway from 

aviation emissions to air quality and (ultimately) human health impacts. Its high computational 

speed and reduced-form structure make it a suitable tool for multi-scenario policy analyses with 

quantification of uncertainty ranges and probabilistic analyses. 

The APMT RSM model consists of modules which translate aviation emissions into monetary 

damages. This process is described by the flowchart in Figure 2-4. Airport-level LTO emissions 

are derived from aviation operation scenarios, often times generated by external programs/agents 

such as the FAA’s Aviation Environmental Design Tool (AEDT) managed by Department of 

Transportation Volpe Center, or consulting agencies such as CSSI and Metron. These emissions 

are then input into an air quality module, which forms the core component of the RSM that 

computes the marginal change in ambient PM2.5 concentrations (speciated PM in RSMv2) 

attributable to aviation emissions. 
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Figure 2-4: APMT-Impacts Response Surface Model (RSM) process flow 

Concentration-response functions (CRFs) relate changes in ambient PM exposure to several 

health endpoints or incidences (further details are included in Brunelle-Yeung’s thesis [11]). The 

health endpoints are monetized in the final step, the largest cost typically arising from premature 

adult mortalities. For scenarios extending into the future, future costs are discounted according to 

a 2%, 3%, or 5% discount rate [50]. 

The strength of the RSM lies in its speed in estimating PM concentrations due to aviation 

emissions. Firstly, the expeditious nature of the code allows uncertainty propagation through the 

model. Many sources of uncertainty exist within the model: input emissions variability in fuel 

sulfur content (FSC), uncertainties in health impact CRFs, distribution of monetary valuations, 

are a few examples of potential sources of variability. These uncertainties are described in terms 

of probability distributions that are sampled via a Monte-Carlo simulation within the RSM. 

Whereas an annual CMAQ simulation (with a deterministic set of emissions) has a runtime on 

the order of days to weeks, a probabilistic RSM run with 10,000 random draws requires on the 

order of hours to finish. A second advantage of a fast model is the ability to simulate multiple 

“what-if” scenarios, as required by many policy analyses [15]. The ability to assess a policy with 

multiple scenarios, and estimate the range of effectiveness of the policy through uncertainty 

propagation, are key characteristics of the RSM that make it a well-suited policy decision-

making and analysis tool. The efficiency of the RSM is achieved through the design of the core 

module, which approximates the CMAQ CTM by generating a response surface through linear 

regressions. The regression model is described in further detail in the following section. 
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2.6.2 Response Surface Regression Model 

The core of the RSM lies in the air quality model – translating aviation LTO emissions into 

changes in ambient concentrations of the PM species. This is done through a response surface, 

which comprises a linear regression of the PM2.5 concentrations (and, in version 2 of the RSM, 

the five major PM species impacted by aviation: Nitrates (NO�"), sulfates (SO$%), ammonium 

(NH$'), elemental carbon (EC) and organic carbon (OC)) against four emission species: fuel burn 

(FB), NOx, SOx, and black carbon (BC). Equations (2.4) through (2.8) illustrate the form of the 

regression: 

()*$'+      � ,-�./ 
 0 ,1�234
 0 ,��)34 
 0 ,$�/5 
 (2.4) 

(65+         � ,7�./ 
 0 ,8�234
 0 ,9�)34 
 0 ,:�/5 
 (2.5) 

(23$%+       � ,;�./ 
 0 ,-��234
 0 ,--�)34 
 0 ,-1�/5 
 (2.6) 

()3�"+      � ,-��./ 
 0 ,-$�234
 0 ,-7�)34 
 0 ,-8�/5 
 (2.7) 

(35+         � ,-9�./ 
 0 ,-:�234
 0 ,-;�)34 
 0 ,1��/5 
 (2.8) 

 

An ensemble of CMAQ simulations is used to derive the β coefficients in the equations. The four 

aviation emissions inputs are perturbed by scaling factors that are carefully chosen to span the 

RSM design space. The design space, given in Table 6, is defined to incorporate not only 

present-day aviation scenarios, but also future year scenarios and the potential policy measures 

that might be implemented. A set of 27 sample points (with each sample point consisting of one 

scaling factor for each of the four inputs) is selected through a low-discrepancy Halton sampling 

sequence that efficiently samples the 4-dimensional design space. The combination of scaling 

factors in each sample point is applied to the aviation emissions, and a CMAQ simulation is 

conducted to isolate the impact of aviation on PM2.5 (through the difference of annual-averaged 

surface-level PM concentrations, similar to the methods described in this thesis). The 27 data 

points are then regressed against the corresponding input scale factors to obtain the coefficients 

in the equations. The regression is performed for each grid-cell in the CMAQ modeling domain. 
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Table 6: RSM design space ranges (taken from Masek [10]) 

Variable Min Max 

Fuel burn multiplier 0 2.5 

Fuel sulfur content multiplier 0.025 5 

Inventory NOx EI multiplier 0.7 1.1 

Inventory nvPM EI multiplier 0.25 3.6 

 

The CMAQ simulations were performed using 2001 meteorology, IC/BCs and background 

emissions scenario. Due to the long runtime of CMAQ (on the order of days to weeks), the four 

months of February, April, July and October were modeled. LTO aviation emissions from 325 

airports in the US were used in the baseline case, with vertical profiles applied to distribute 

emissions vertically. The RSM domain is similar to the one used in the current CMAQ model in 

this thesis, differing only in grid origin and vertical layer coordinates.  
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Chapter 3 Aviation Scenarios 

This chapter describes the methodologies behind current and future aviation activity and 

emissions generation. National emissions totals are presented for each of the three years: base 

year 2006, and future years 2020 and 2030 A characterization of the uncertainties in the base 

year and future year emissions is presented at the end of the chapter, to illustrate the possible 

ranges of values which the emissions could take on. 

3.1 Base year 2006 LTO Aviation Activity 

3.1.1 Landing and Take-Off (LTO) Cycles 

The LTO cycle consists of several modes of flight: Ground idle, ground taxi, takeoff, climb-out 

and descent, and is defined as operations at or below 3000ft. Traditionally aviation emissions 

have been regulated only within the LTO phases of flight [51] with the reasoning that local air 

quality is affected by aviation primarily due to emissions within the atmospheric mixing layer (or 

planetary boundary layer). This is because the mixing layer contains turbulent eddies and vertical 

motion of the air [16], transporting emissions and particulate matter to the surface layer and 

impacting local air quality. A recent study by Barrett et al. [52] demonstrated that the inclusion 

of full-flight emissions could lead to up to 5 times the health impacts globally, as a result of 

long-range atmospheric transport at cruise altitudes and large-scale motions of the atmosphere 

(such as the Hadley and Ferrell cells). Consistent with the existing aviation regulatory impact 

analysis practice, this thesis assesses current and future air quality impacts of aviation  LTO 

activity only. 

The definition of LTO cutoff height requires further explanation. The FAA defines a categorical 

exclusion for all flights over 3000ft above ground level (AGL) in modeling local air quality 

impacts [14]. The International Civil Aviation Organization (ICAO) defines LTO as being at or 

below 3000ft above the field elevation of the airport (AFE). In an environment without 

geographic features such as mountains or valleys these definitions are interchangeable; however, 

in the presence of a cliff, for example, emissions may be underestimated if a cutoff with respect 

to ground level is used instead of an airport reference. This happens as since the aircraft’s 

altitude AGL would jump once the aircraft passes over the cliff and the aircraft thus spends less 
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time below 3000ft AGL than 3000ft AFE. Similarly, for the case when an airport is close to a 

mountain, using a cutoff of 3000ft AFE would lead to lower emissions than if AGL were used. 

This concept is illustrated in Figure 3-1: 

 

Figure 3-1: Illustration of altitude above ground level (AGL) and above field level (AFE) 

The emissions processing methods used in this thesis employ the AFE definition to filter flight 

activity. Note that, even though FAA defines LTO as 3000ft AGL, this methodology is 

consistent with the implementation in the FAA’s Emissions Dispersion and Modeling System 

[53], which is required by the FAA in regulatory air quality modeling. In some sense, the airport 

elevation is used as an approximation of the ground level elevation surrounding the airport 

(encompassing the range within which aircraft climb or descend to 3000ft). The use of AFE also 

provides a conservative estimate of LTO emissions, and amounts to approximately 3% greater 

LTO totals than AGL; the cause for the differences in emissions likely arises from more airports 

being located next to valleys and cliffs rather than elevated obstacles such as mountains.  

3.1.2 Aviation Activity Data 

Base year aviation activity is computed by the US Department of Transportation (USDOT) John 

A. Volpe National Transportation Center using data from Enhanced Traffic Management System 

(ETMS) [54], Enhanced Tactical Flow Management System (ETFMS) [55] and Official Airline 

Guide (OAG) [56]. ETMS is a compilation of radar tracks and flight plans for flights under the 

FAA’s radar system and includes commercial aviation, scheduled cargo, general aviation and 
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charter flights within all of North America and parts of Western Europe, serving as the FAA’s 

repository for electronic flight position recording and flight plan information for use in air traffic 

management [57]. ETMS data is combined with data from the ETFMS from EUROCONTROL 

to include coverage of the European airspace. An estimated 50-60% of worldwide commercial 

aviation activity is thus captured via radar coverage. Gaps in radar coverage are filled through 

consultation of schedules listed in the Official Airline Guide (OAG), and other unscheduled 

flights are accounted for by scaling known flights [55].  

 

Figure 3-2: Global flights modeled in AEDT (Fuel burn in kg plotted on a log scale) 

Flight radar tracks and trajectories are discretized into segments both temporally and spatially. 

The length of each chord varies, depending on the rate of change of the physical state parameters 

such as flight speed, altitude or horizontal deviation [55]. The discrete spatial steps are refined 

within the LTO phase, given the relatively high rate of change of the state of the aircraft (i.e., 

maneuvering, climb restrictions, etc.) compared with other flight phases. Short flight segments 

within the LTO regime also enable accurate spatial allocation of flight emissions into the CMAQ 

grid, especially since the vertical grid structure is dense within the PBL. 

3.1.3 Flight Selection 

The global flight activity data is filtered to exclude certain flights. First, military, helicopter and 

piston-engine aircraft are excluded. Military flights rarely operate on regular schedules, and their 

flight tracks are not made public, and as a result both current and future activity cannot be 

estimated. Piston-engine aircraft and rotorcraft are not subject to similar certification standards 
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as general aviation or commercial aviation, and emissions characterization for these aircraft are 

difficult due to lack of emissions models and emissions measurement data for validation. A list 

of the aircraft types that were filtered out is provided in Appendix D.  

Due to the regional nature of the air quality study performed in this thesis, global flight activity 

data is filtered to include US flights only. International flights arriving at or departing from a US 

airport are included in the LTO inventory, since emissions from these flights will have an impact 

on the regional air quality. It is important to note that even through the CMAQ domain includes 

several major airports in Canada and Mexico, aviation activity at these airports is not included in 

the aviation inventory. While this may lead to localized under-representation of air quality over 

the US (for example, downwind of major Canadian airports such as Vancouver and Toronto), its 

effects on the domain-averaged impacts are assumed to be small. Flights into and out of Alaska 

and Hawaii are treated in a similar fashion as international flights, given that these states are 

located outside the modeling domain. A list of excluded airports in Alaska and Hawaii is 

presented in Appendix E . 

3.2 Emissions Methodology 

The FAA’s Aviation Environmental Design Tool (AEDT) was utilized to compute aircraft 

emissions from the base year flight activity data. The overall methodology in converting aviation 

activity into emissions is as follows: flight track segments are combined with actual/estimated 

aircraft takeoff gross weight and aircraft performance characteristics such as thrust-specific fuel 

consumption (TSFC) and drag. AEDT then dynamically models aircraft performance in space 

and time and computes fuel burn estimates for each flight segment. Fuel burn forms the basis for 

modeling other emission species for the flight segment, through multiplicative factors known as 

Emissions Indices (EIs) and correlations that rely upon the rate of fuel burn. 

3.2.1 CO, HC and NOx 

The Boeing Fuel Flow Method version 2 (BFFM2, [58]) is used to compute CO, HC and NOx 

emissions. This method has been reviewed by the ICAO WG3 and deemed to be an acceptable 

modeling method of CO, HC and NOx, and as such forms the “de-facto standard” [57] in aviation 

emissions characterization. BFFM2 computes CO, HC and NOx EIs as a function of ICAO 

databank fuel flows, including various correction factors for installation effects and atmospheric 

adjustments. The correlations are either log-linear (for NOx EI) or log-bilinear (for CO and HC 
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EI), as depicted in Figure 3-3 (taken from Kim et al. [57]). Low fuel-flow corresponds to lower 

combustion temperatures, resulting in lower amounts of nitrogen in the air being thermally 

dissociated and oxidized to form NOx, and vice-versa for high fuel-flow rates. The converse 

relationship is true for CO and HC: at low fuel-flow settings combustion is less efficient, leading 

to higher CO and HC emissions.  

 

Figure 3-3: Boeing fuel-flow method version 2 NOx EI and CO/HC EI as a function of fuel 

flow (figure taken from [57]) 

Aircraft fuel-flow rates, taken from EUROCONTROL’s Base of Aircraft Data (BADA) during 

the aircraft performance modeling, are used look up EIs from these charts. The final emission 

values are computed by multiplying the EIs with fuel burn during that segment, as shown in 

equation (3.1): 

6<=> � 6?@ABC D ./ � 6?@ABC D EE D FG � 6?@ABC�EE
 D EE D FG (3.1) 

where “emis” represents the distinct emissions species NOx, CO and HC, and ff represents the 

fuel flow rate.  

3.2.2 Primary PM2.5 

Primary PM2.5 are aerosols that are emitted by aircraft engines, in contrast with secondary PM2.5 

which are formed in the atmosphere via the reactions of gaseous precursor emissions of NOx, 

SO2 and some unburned hydrocarbons with ambient oxidants and compounds such as ammonia. 

Primary PM2.5 emissions estimates are made using the First Order Approximation v3a (FOA3a) 

methodology. The PM composition includes: 
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Primary sulfate and organic carbon (OC) aerosols are not present directly at a jet engine’s 

exhaust nozzle because the high temperature of the exhaust plume prevents formation of these 

kinds of particles; only non-volatile PM exists at the engine exit plane. However, FOA3a is 

intended to estimate PM from aircraft jet engines as observed in near-field aircraft plumes; thus, 

the methodology considers some amount of sulfate and organic PM to be “primary” PM. FOA3a 

estimates PM from aircraft jet engines only, and therefore PM from turboprop engines was not 

computed for this study. The FOA3a methodology is a conservative extension of the FOA3 

methodology that is based on work done by Wayson et al. [59]. Therefore, many of the steps that 

are taken in computing FOA3a PM2.5 estimates are similar to that prescribed by FOA3. 

Additional details of the modifications to the FOA3 methodology can be found in the Partnership 

for AiR Transportation Noise and Emissions Reduction project 15 (PARTNER-15) report [7]. 

PMnvols represents black carbon PM (BC), or soot that is emitted from the engine. Soot forms as 

a result of incomplete combustion, and is highly dependent on the geometry and characteristics 

of the combustion process within the engine. The methodology that is used for non-volatile PM 

is the same as that prescribed by FOA3. FOA3 uses correlations between measured mass data 

and engine smoke number (SN, an engine certification parameter originally developed to address 

concerns over visible smoke from aircraft jet engines) in the ICAO engine emissions databank 

[60] to compute the soot concentration index (CI). The CI is multiplied with core exhaust flow 

volume (computed based on modal air-to-fuel mass ratio (AFR)) and fuel burn to calculate non-

volatile PM (PMnvols) emissions. A correction factor of (1+bypass ratio)  is applied to the core 

exhaust flow volume for SNs that are measured from internally mixed2 exhaust flows [59]. It 

should be noted, though, that there have been new measurement data which suggest that errors in 

                                                 
2 The Energy Policy Act Study by Ratliff et al. utilized the FOA3a version of this methodology, which applied the 
bypass ratio correction factor to all engines regardless of measurement flow conditions. The BC methodology used 
in AEDT (and therefore, used in this thesis) implements .FOA3 (where the correction factor is applied to internally-
mixed flows only). 
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non-volatile PM estimates could be as high as an order of magnitude [61]. As such, the FOA3a 

BC correlation coefficients may have to be revised in light of these new findings. 

Primary OC aerosols, are formed as unburnt hydrocarbons condense onto non-volatile 

particulates in the exhaust of the engine [62]. In FOA3a, primary OC is estimated using aerosol 

measurement data from APEX-1 [63] for the CFM56-2-C5 engine which are weighted by ICAO 

LTO time-in-mode statistics [64] (listed in Table 7), and the hydrocarbon emissions index (HC 

EI) for the flight segment. FOA3a estimates roughly 10 times more primary organic PM than 

FOA3, as a result of the conservative assumptions used in generating the emissions indices. As 

with PMnvols, the derivations for primary OC need to be updated to reflect new measurement 

data from recent campaigns [61].  

PM from lubrication oil arises due to losses due to engine wear and tear, which occur 

predominantly when the engine is operated at high power settings [7]. Therefore primary organic 

aerosols from engine lubrication oil are added at a fixed rate of 1.4g per takeoff operation. It is 

assumed that no lube oil is converted into PM during aircraft approach and idle/taxi modes.  

Table 7: ICAO Times-In-Mode (TIM) and proportion of LTO duration 

Phase Time (s) Proportion of LTO duration 

Takeoff 42 2% 

Climb-out 132 7% 

Taxi (Split equally between taxi-out and taxi-in) 1560 79% 

Approach 240 12% 

 

Primary sulfates are computed as a function of fuel sulfur content (FSC), sulfur oxidation 

efficiency (S(IV) to S(VI)) and fuel burn. The amount of sulfur in the fuel governs the amount of 

SO2 emitted, since that is the only major source of sulfur in the combustion process (atmospheric 

sulfur is not as abundant, compared to nitrogen, for example). The value for FSC is chosen to be 

600ppm, which is a nominal value for jet fuel FSC within the US [65]. SO2 emissions are 

oxidized into sulfuric acid downstream of the engine exit plane, which is then neutralized by 

atmospheric constituents to form sulfate PM. The degree to which SO2 gets oxidized into sulfates 

is represented by the oxidation efficiency parameter, chosen to be 5% for this study. The 
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conversion efficiency is at the upper bound of measured values [66], which adds to the 

conservative nature of this inventory. Primary sulfate aerosols are assumed to be non-hydrated. 

3.2.3 Speciation of NOx and HC 

The NOx emissions calculated from BFFM2 are an aggregation of nitric oxide (NO) and nitrogen 

dioxide (NO2) reported on an NO2-mass basis. In order to appropriately treat the chemistry that 

each of these three compounds participates in, they need to be speciated into their individual 

constituents before being input to CMAQ. There have been several studies which have attempted 

to speciate NOx by flight mode and/or altitude ([67], [68]). Measurement campaigns ([67], [69]) 

have indicated that engines produce relatively high NO2 at low thrust settings, while NO 

dominates at high thrust settings, with a small fraction (~1%) of HONO present. The focus on 

LTO emissions allows the simplification from a modal speciation to a general split fraction 

apportionment: 23% NO2, 76% NO and 1% HONO [68]. The NO, NO2 and HONO values 

derived from this speciation scheme is approximately equal to the apportionment calculated by 

Wood et al. [67], based on the ICAO standard LTO cycle. 

Similar to NOx, unburnt hydrocarbon (HC) emissions are an aggregate of several organic 

gaseous compounds and need to be speciated for the chemistry. HCs are first converted into 

Total Organic Gases (TOG) using a conversion factor of 1.16, then speciated into their chemical 

constituents and aggregated into lumped species used by the CMAQ CB05 chemical mechanism. 

The FAA-EPA May 2009 Total Organic Gas (TOG) Speciation profile (shown in Appendix F) is 

employed to speciate the hydrocarbons into their chemical constituents. Aviation emissions are 

mapped to several extra toxic species in addition to the standard CB05 lumped species, since 

CMAQ is built with the explicit air toxics module enabled. The final list of conversion factors 

that map HC emissions (in g) into the lumped species (mol) is shown in Appendix G. 

3.3 Future-Year Aviation Activity Forecast 

The base year 2006 LTO inventory is projected via scaling factors to model the aviation activity 

in 2020 and 2030. Aviation activity and emissions scaling factors are derived from the year 2009 

FAA Terminal Area Forecast (TAF) projections as well as ICAO NOx stringency controls. 

Explicit changes in fleet mix and route structure are not implemented in the activity forecasts (as 

will be explained in the following section, however, some of these effects are implicitly included 
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in the TAF projections). This section describes the flight activity data projection and 

characteristics as predicted by the TAF. 

3.3.1 FAA TAF Methodologies 

The FAA’s TAF system serves as the official outlook for aviation activity at FAA facilities [70], 

designed to meet budget and planning needs of the FAA, the industry, state and local agencies 

and the public. It contains aircraft activity and passenger enplanement forecasts for currently 

active airports as identified in the National Plan of Integrated Airport Systems (NPIAS) [71]. 

FAA forecasts are required by mandate to be representative of local conditions at airports, based 

on the latest available data, and provide justification for airport planning and development [72], 

and this is reflected in their forecasting methodologies. 

Aviation activity forecasts are developed based on historical trends of aviation activity (which 

include data on passenger enplanements, operational factors such as average seats per aircraft 

and load factors, peak hour activity and based aircraft) with respect to national and local 

conditions (such as national socioeconomic data, FAA’s Aviation System Performance Metrics 

(ASPM) data for specific large airports and OPSNET) that affect aviation activity. Data for these 

regression analyses come from a variety of sources, as described in the FAA TAF report [70]. 

The TAF assumes that the demand for aviation will not be subject to new constraints in the 

future; it is developed independent of an airport’s current ability to handle increased demands. 

While the TAF is updated infrequently to include significant shifts due to major airline decisions 

(i.e. a merger or dissolution), the activity projection does not explicitly include the incorporation 

of new aircraft into the fleet nor any effects of changing network structure. Constraints and long-

term fleet and network evolution effects are represented only to the extent they exist in historical 

trends.  

3.3.2 FAA TAF Activity Data 

Itinerant and local operations contained within the 2009 TAF dataset were processed by Eastern 

Research Group (ERG)3 to calculate the LTO activity at each airport in the aviation inventory, 

for the base year 2006 as well as future years 2020 and 2030. Aviation activity is categorized 

into four TAF bins: general aviation (GA), air taxi (AT), air carrier (AC) and military. Military 

                                                 
3
 ERG processed the FAA TAF as part of the EPAct Follow-on project aviation inventory modeling activities. 
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operations were removed (since they are not in the scope of aviation activity modeling as 

described in Section 3.1.3), and airport aviation activity scaling factors for each TAF bin, relative 

to base year LTO operations, were calculated for each of the two future years. Table 8 shows the 

total growth in aviation activity at all airports in the inventory, as projected by the 2009 TAF. 

Growth is reported in the table as percentages relative to 2006 levels, rounded to two significant 

digits. In general, air carrier activity is expected to grow by approximately 24% by 2020 and by 

55% by 2030 relative to base year levels. Air taxi and general aviation operations are expected to 

first decrease by 2020, and then increase by 2030. 

Table 8: Aggregate TAF growth for all airports in the aviation inventory 

Arrival Airports TAF LTO Activity 
(Number of LTOs)   

Departure Airports TAF LTO Activity 
(Number of LTOs) 

Air Carrier 

Baseline 2006 2020 2030   Baseline 2006 2020 2030 

6,387,751 7,884,670 9,898,474   6,373,391 7,884,670 9,898,474 

growth (w.r.t 2006) à  23% 55%   growth (w.r.t 2006) à  24% 55% 

Air Taxi 

Baseline 2006 2020 2030   Baseline 2006 2020 2030 

6,640,197 6,253,281 7,164,746   6,610,209 6,176,969 7,088,434 

growth (w.r.t 2006) à  -5.8% 7.9%   growth (w.r.t 2006) à  -6.6% 7.2% 

General Aviation 

Baseline 2006 2020 2030   Baseline 2006 2020 2030 

37,468,092 37,056,657 40,158,907   37,497,261 37,093,462 40,198,852 

growth (w.r.t 2006) à  -1.1% 7.2%   growth (w.r.t 2006) à  -1.1% 7.2% 

Total 

50,496,039 51,194,607 57,222,127   50,480,861 51,155,100 57,185,760 

growth (w.r.t 2006) à  1.4% 13%   growth (w.r.t 2006) à  1.3% 13% 

 

Note that even though the TAF comprises LTO operations (and hence does not make a 

distinction between flight legs), there is a slight difference between arrival and departure airport 

activity; this occurs since in the base year inventory, the number of airports for each flight leg is 

slightly different (3566 arrival airports vs. 3540 departure airports). 
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3.4 Future year Emissions Projection 

Base year emissions are scaled up to future-year levels by incorporating airport activity growth 

information from the TAF. It should be noted that, apart from NOx stringency reductions in NOx 

emissions, no other changes in engine technology, alternative fuels or implementation of new 

aviation policy measures are considered when generating future year emissions.  

The TAF scaling of the base year 2006 LTO inventory is performed on an aircraft-airport basis; 

that is, the TAF bin of each aircraft at a given airport is used to identify the scaling of emissions 

for that flight, instead of applying an average scale factor for all aircraft at each airport. Doing so 

weights the scale factor in each TAF bin based on the amount of emissions in that bin. NOx 

stringency scenario 6 is applied to NOx emissions forecasts in 2020 and 2030 to account for the 

implementation of NOx stringency measures proposed by ICAO CAEP/8. 

3.4.1 CAEP/8 NOx Stringency 

The changes in NOx emissions due to the implementation of an ICAO CAEP/8 NOx stringency 

policy are implemented in the future emissions forecasts. The ICAO CAEP/8 NOx stringency 

rules, as well as policy scenarios specifically considered by CAEP/8, are listed in Mahashabde et 

al. [12]. NOx stringency Scenario 6 was selected by CAEP/8 during the committee meeting in 

February 2010 [73]; this stringency is therefore applied to future aviation inventories.. The 

CAEP/8 NOx stringency emissions inventory is provided by Volpe Center and includes NOx 

emissions for each airport - flight leg combination, for various stringency levels, modeling the 

years 2006, 2016, 2026 and 2036. 

Table 9: ICAO CAEP/8 NOx Stringency #6 vs. Stringency #0 NOx emissions 

  NOx Emissions (short tons/year)  Change in NOx (%) 

Year Stringency 0 Stringency 6 ( Str6 – Str0 ) / Str0 

2016 9.52x104 9.37x104 -1.6% 

2020 1.08x10
5
 1.05x10

5
 -3.0% 

2026 1.28x105 1.21x105 -5.1% 

2030 1.46x10
5
 1.37x10

5
 -6.0% 

2036 1.75x105 1.62x105 -7.3% 
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Table 9 lists the aggregate (arrival + departure, summed over all airports) emissions from the 

CAEP/8 NOx stringency dataset. If an airport exists in the base year 2006 inventory, but not in 

the CAEP/8 inventory, an average factor is assumed depending on the flight leg. All other 

emissions species are assumed to be unchanged. Emissions from the CAEP inventory are linearly 

interpolated in time to obtain NOx emissions estimates for the target modeling years of 2020 and 

2030 (shown in bold font in Table 9). Stringency 0 represents the baseline emissions levels (i.e. 

without any NOx stringency policies enacted). The ratios of NOx levels between Stringency 6 

and Stringency 0 are computed on an airport-flight leg level and applied to the NOx emissions 

calculated from TAF growth alone. 

3.5 Aviation Emissions Totals 

Table 10 provides a national inventory summary of the base year 2006 LTO emissions inventory, 

as well as the projected future year inventories. Aggregate aircraft operations are also given. Net 

growth percentages are given in Table 11. The base year inventory presented here is a product of 

the aforementioned filtering and elimination procedures, and the future year inventories are a 

result of the scaling factors discussed above. For the 60 busiest airports (ranked by amount of 

fuel burn), airport-level emission totals as well as TAF scaling factors and NOx stringency 

reduction ratios for each airport are given in Appendix H. 

The emission growths align well with the projected air carrier activity growths of 23-24% by 

2020, 55% by 2030 as shown in Table 8; the notable exception to this trend is HC emissions (and 

as a consequence, primary OC emissions). This suggests that air carriers are responsible for a 

comparatively smaller percentage of HC emissions relative to AT/GA aircraft, in comparison 

with other emission species such as CO or SO2; thus the net change in HC emissions is weighted 

more towards AT/GA activity.  
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Table 10: Base year 2006 and future years 2020 and 2030 aviation LTO inventory 

 Baseline 2006  Future 2020  Future 2030 

Short Tons / 

Year  Arrival Departure Total  Arrival Departure Total  Arrival Departure Total 

Fuel Burn 2.61x106 4.78x106 7.40x106  3.26x106 6.03x106 9.28x106  4.05x106 7.54x106 1.16x107 

CO 4.52x104 7.24x104 1.18x105   5.41x104 8.85x104 1.43x105   6.63x104 1.10x105 1.76x105 

NOx (as NO2) 1.66x104 6.22x104 7.88x104   1.99x104 7.56x104 9.55x104   2.43x104 9.21x104 1.16x105 

SO2 2.98x103 5.45x103 8.43x103   3.71x103 6.87x103 1.06x100   4.62x103 8.59x103 1.32x104 

HC 8.57x103 1.31x104 2.17x104   9.41x103 1.48x104 2.43x104   1.12x104 1.80x104 2.92x104 

BC 8.02x101 2.62x102 3.42x102   1.08x102 3.56x102 4.64x102   1.33x102 4.38x102 5.71x102 

Primary sulfates 2.40x102 4.40x102 6.80x102   2.99x102 5.54x102 8.53x102   3.72x102 6.92x102 1.06x103 

Primary OC 4.95x102 1.19x103 1.68x103   5.44x102 1.35x103 1.89x103   6.49x102 1.63x103 2.28x103 

Operations 13,060,683 13,067,060 26,127,743   15,469,931 15,468,817 30,938,748   18,725,815 18,721,358 37,447,172 

 

Table 11: Net growth of future year aviation emissions 

Growth w.r.t base 2006 Future 2020 

 

Future 2030 

 Arrival Departure Total Arrival Departure Total 

Fuel Burn 25%  26% 26%  55% 58% 57% 

CO 20% 22% 21%   47% 51% 50% 

NOx (as NO2) 20% 22% 21%   47% 48% 48% 

SO2 25% 26% 26%   55% 58% 57% 

HC 10% 13% 12%   31% 37% 35% 

BC 35% 36% 36%   65% 67% 67% 

Primary sulfates 25% 26% 26%   55% 58% 57% 

Primary OC 10% 14% 12%   31% 37% 36% 

Operations 18% 18% 18%  43% 43% 43% 
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3.6 Uncertainty in Aviation Emissions 

3.6.1 Base Year Uncertainty 

The methods used to develop the base year aviation inventory represent current, widely used and 

well-accepted emissions modeling techniques, incorporating actual air traffic information, 

realistic aircraft performance modules and emissions characterization methodologies such as 

FOA3a and BFFM2, as described in Section 3.2. These methods, however, have several sources 

of uncertainty inherent in them, which are important to quantify using error bounds.  

Uncertainty estimates in the base year 2006 aviation emissions are derived from the uncertainty 

quantification performed by Stettler et al. [61] for UK airports. Stettler performs a Monte-Carlo 

simulation using 1000-member ensembles, with probability distributions on emissions 

characterization parameters such as aircraft LTO Time-In-Mode, fuel flow and thrust settings, in 

addition to the emissions parameters (EIs, NO2/NOx ratio, FSC, …). The probability distribution 

ranges are obtained through reviews of existing literature and new experimental data. It is 

important to note that the probability distributions not only capture the lack of knowledge (for 

example, uncertainty in hydrocarbon emissions at low power settings) but also characterize the 

natural variability or spread in the parameter (such as variable thrust setting, or spread in FSC).  

These distributions are propagated through an emissions model, which uses methods similar to 

that of AEDT to compute emissions species. Specifically, the model utilizes the BFFM2 for 

NOx, CO and HC emissions, FSC and sulfur conversion efficiency to compute SO2 and primary 

sulfate aerosol emissions, and FOA3 to compute POA and PEC (note that PEC is computed 

using re-estimated modal coefficients for the FOA3 functional). Although the nominal values 

that are assumed in the paper are different from those used in this study, the output of interest is 

the relative range between the 5th and 95th percentile. 

The error ranges from Stettler et al. are presented below, as applied to the base year 2006 

aviation inventory. The ranges are reported as percentages relative to the median value of each 

emissions species. The exceptionally high 95th percentile value for hydrocarbon emissions is a 

result of highly uncertain aircraft taxi thrust setting and EI(HC), as demonstrated by the 

sensitivity analysis conducted in the paper.  
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Table 12: Uncertainty bounds on emissions species (adapted from Stettler et al. [61]) 

Emissions Species  
(short tons per year) Lower (5%ile) range Total LTO Emissions  Upper (95%ile) range 

CO ( -47% ) 6.25x104 1.18x105 2.21x105 ( 87% ) 

NOx (as NO2) ( -26% ) 5.83x104 7.88x104 1.07x105 ( 36% ) 

SO2 ( -29% ) 5.99x103 8.43x103 1.12x104 ( 33% ) 

HC ( -66% ) 7.38x103 2.17x104 5.92x104 ( 173% ) 

BC ( -49% ) 1.74x102 3.42x102 5.99x102 ( 75% ) 

Primary sulfates ( -56% ) 2.99x102 6.80x102 1.29x103 ( 89% ) 

Primary OC ( -66% ) 5.71x102 1.68x103 2.89x103 ( 72% ) 

 

For all of the emissions species, the upper threshold of uncertainty in the base year 2006 

emissions is in fact greater than the projected increase in emissions in the future year 2020, and 

for some species, even greater than the projected growth in 2030. The uncertainties in the base 

year aviation emissions were not propagated through CMAQ to quantify the variability in air 

quality impacts due to the infeasible computational resource requirements that would be involved 

in conducting a full Monte-Carlo simulation using CMAQ. 

3.6.2 Projection Uncertainty 

The aviation emissions projections are dependent on several forecast datasets including the FAA 

TAF and improvements in technology such as NOx emissions reductions. It is thus difficult to 

generate specific bounds on emissions forecasts for each species. It is possible, however, to 

consider the variability in the various components that feed into the projection, as well as prior 

projections that have been performed, to obtain an idea of the range of projections. 

The FAA NPIAS states that airport forecasts generated by airport planners and sponsors will be 

accepted if it is within 10% of the TAF forecast for that airport over the next 5, 10 and 15 years. 

The metrics for evaluation include activity data such as total airport operations, total commercial 

operations and number of passenger enplanements [72]. This suggests that there could be at least 

a 10% variability in the airport-level activity data contained in the TAF. 

There are a few airport forecasting studies which include probabilistic assessments of airport 

activity forecasts. A study done for the San Diego International Airport [74] considers a high and 

a low scenario, with discrete values of real personal income growth, income elasticity, and 
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business travel substitutions. Total passenger airline aircraft operations forecast for KSAN in 

2030 range from a low estimate of 272,890 to a high estimate of 326,970 (an increase of roughly 

20%). In an airport forecast performed for Portland International Airport [75], high, median and 

low estimates for aircraft operations forecasts are 438,200, 275,000 and 172,400, representing a 

[-37% , 60%] bound. While these ranges reflect airport-specific uncertainties, it becomes clear 

that other major airports will have similar or higher variability (especially at international 

airports, where aviation activity is further dependent on the highly uncertain global economy and 

demand for air travel). 

At an aggregate level, the national emissions forecast totals are compared with those used in 

other studies. The FAA Aerospace Forecast 2011 [76] predicts an increase in total US aviation 

fuel burn from a 2006 value of 21,241 million gallons to 24,606 in 2020 (increase of 16% w.r.t 

2006 levels) and 29,876 in 2030 (increase of 41% w.r.t 2006 levels). These growths are 

markedly lower than the forecasts performed in this thesis, due to anticipated enhancements in 

aircraft and engine technology that are incorporated into the Aerospace Forecast.  

Woody et al. [8] utilized a growth scenario developed for the Interagency Portfolio and Systems 

Analysis Division of NextGen’s Joint Planning and Development Office (JPDO) based on the 

methodologies of Gawdiak et al. [77]. The aviation inventory included emissions below 10,000ft 

from 99 airports in the US. In that study, net aviation activity is projected to increase by 117% 

from their base year of 2004 to their future projection year of 2025, a growth that is reflected in 

the future-year emissions as described by Table 13.  

Table 13: Future aviation emissions forecasts as compared with Woody et al. [8] 

Percent Increase CO HC NOx (as NO2) SOx BC Fuel burn 

Woody et al., 2004-2025 103% 79% 119% 112% 77% 112% 

Thesis, 2006-2020 21% 12% 21% 26% 36% 26% 

Thesis, 2006-2030 50% 35% 48% 57% 67% 57% 

 

As such there exists significant variability in future aviation activity and emissions forecasts; 

however, as with base year emissions, these uncertainty ranges are not propagated through the air 

quality model to generate a range of air quality impacts.  
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Chapter 4 Background Emissions Scenarios 

Background emissions complement the aviation emissions dataset as inputs to the CMAQ 

modeling system, and provide a complete scenario of the ambient conditions into which aviation 

emissions are emitted. Background emissions are essential to quantifying the air quality impacts 

of aviation, since they provide the necessary compounds (such as ammonia) and oxidative 

capacity of the atmosphere (ozone, OH radical) with which aviation precursor gaseous emission 

react to form secondary PM.  

Background emissions contain both anthropogenic emissions, from industrial and other man-

made activities, as well as biogenic emissions from natural processes occurring in vegetation 

(primarily VOCs) and soils (NO and CO emissions). The focus of the discussions in this chapter, 

however, is centered upon the data assimilation and trends of anthropogenic sources only, given 

the anticipated change in these emissions over the next two decades and their effect on aviation 

air quality impacts. As such, in this thesis, background emissions are meant to refer to non-

aviation anthropogenic emissions only. Further information on biogenic emissions processing 

can be found at the US EPA’s BEIS website4. 

The development of background emissions datasets is discussed in the next section, following 

which past and projected trends in background emissions are studied. Finally, the uncertainties in 

these emissions are characterized, and a sensitivity study to understand the effects of uncertain 

background emissions is proposed. 

4.1 US EPA NEI Data Gathering Methodologies 

Anthropogenic emissions are obtained from the US EPA National Emissions Inventory (NEI). 

The NEI is a comprehensive emissions inventory that reports emissions of all Criteria Air 

Pollutants (CAPs) and several Hazardous Air Pollutants (HAPs) within the US as well as parts of 

Canada and Mexico, and is compiled in a three-year cycle (the latest NEI being 2005, at the time 

of this writing). Data from the NEI is developed for use in air quality modeling for State 

Implementation Plans (SIPs), regulatory compliance assessments and emissions trading and 

modeling activities [78].  

                                                 
4
 More information found at: epa.gov/AMD/biogen.html 



55 
 

The NEI is created as part of a mandate pursuant to the Clean Air Act (CAA) of 1970 (amended 

in 1990) [79] which requires the EPA to report estimates for CAP and HAP emissions such that 

permit requirements may be set by regulatory agencies. Emissions are reported by source sectors, 

depending on the nature of the emissions and are classified as point sources, non-point 

(stationary area) sources, non-road mobile, on-road mobile and fire sources. EPA relies upon 

data gathered and reported by the numerous state, local and tribal agencies to compile the NEI. 

Models are used to derive some of the emissions based on other measured quantities such as 

electricity usage and road activity, and these are discussed below. 

The EPA uses the Integrated Planning Model (IPM) to obtain emissions from Electricity 

Generating Units (EGUs) and other sources in the electric power sector. The IPM is a dynamic 

power sector model which incorporates demand for electricity, dispatch strategies and emissions 

control options in the form of technological changes or market-based measures, to model 

emissions from power generation facilities [80]. Utility data from the National Electric Energy 

Database System (NEEDS) is fed into the IPM along with model power-plant characteristics to 

obtain CAP emissions at the location of each existing plant.  

Emissions from mobile sources are split into three sectors: onroad, nonroad and aircraft, 

locomotive and marine (alm). Mobile source emissions are derived using the EPA’s National 

Mobile Inventory Model (NMIM), which runs the MOBILE6 program for onroad emissions, and 

the NONROAD2005 model for nonroad emissions. MOBILE6 utilizes annual vehicle miles 

travelled (VMT) and uses scaling factors based on VMT to calculate vehicular emissions. 

NONROAD2005 models evaporative, refueling and exhaust emissions from nonroad vehicles 

excluding marine, aircraft and locomotive sources, based on equipment populations, emission 

factors and activity levels [81].  

Aviation emissions within the ALM category are excluded from the base year and future year 

emissions inventories. These emissions are replaced with the more detailed AEDT emissions as 

described in Chapter 3. 

As set forth in the 2006 PM NAAQS study, emissions in the future can change due to a number 

of reasons including economic and activity growth, a mix in production activities between 

sectors, technological innovation and emissions controls [82]. These effects are incorporated in 
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the NEI through a variety of projection and growth factors, and implementation of current and 

anticipated emissions control measures [83]. The IPM is run with forecasts of energy demand 

(for example, from the Energy Information Administration Annual Energy Outlook (EIA AEO)) 

[84], proposed power plant establishments and power plant characteristics that incorporate future 

designs, technologies and controls to estimate changes in IPM-point sources. Estimated livestock 

growth rates are applied for area source ammonia emissions. Projections for VMT, activity data, 

fuel properties and emissions factors are input to the NMIM for future-year projections of mobile 

source emissions.  

The 2005 base year emissions platform utilizes the 2005v2 NEI [78], while the 2025 future 

scenario is based on an interpolation between the 2020 and 2030 emissions from the 2002v3 

CAPHAP platform projections [83]. The background inventory contains the following CAPS: 

CO, fine and coarse PM, NOx, SO2 and VOCs and ammonia [78]. Approximately 43 HAPs are 

considered, including HCl, Hg, benzene, acetaldehyde, formaldehyde, methanol, acrolein, 1,3-

butadiene, naphthalene, toluenes and xylenes [85]. VOCs are speciated according to the EPA’s 

SPECIATE database, which includes VOC speciation profiles based on source classification 

codes (SCCs). 

NEI emissions are published as raw text files containing emissions by SCC. This allows for 

tracking of data by its origin (for example, emission from wood burning in residential fireplaces 

has a unique SCC of 2104008001). The application of speciation profiles (in the case of VOCs), 

and diurnal or seasonal temporal profiles (since most datasets are annual or monthly totals) is 

facilitated through SCCs as the profiles are likely similar for all sources sharing an SCC. These 

steps are accomplished through the Sparse Matrix Operator Kernel Emissions (SMOKE) 

program5, which comprises a set of scripts and tools that are used to read, manipulate and 

aggregate the raw text files to produce a set of spatially and temporally allocated model-ready 

emission files. 

The CMAQ-ready emissions files for the base and future year background scenarios are the same 

as the ones used in Woody et al. [8]. 

                                                 
5 SMOKE program available online at: http://www.smoke-model.org/index.cfm 
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4.2 Historical Trends and Future Projections of Anthropogenic Emissions 

Anthropogenic emissions have been recorded by the EPA since its inception in 1970. Figure 4-1 

shows the trends6 of the CAPs in the NEI since this time, as well as projected future year 

emission inventory forecasts until the year 2030. The projected emissions are obtained using the 

2002v3 CAPHAP modeling platform for the years 2009, 2014, 2020 and 2030.  

The time history of CAP emissions shows that there has been a general decline in the national 

emission levels over the past 30 years. This decrease in emissions is brought about by the 

implementation of various local, state and national emissions control strategies and programs, 

mandated by environmental laws the most notable of which the Clean Air Act (CAA). The CAA 

is aimed at cleaning up commonly-found pollutants in the air (CAPs and ozone), lowering the 

emissions of HAPs which have serious health impacts and phasing out the production and use of 

chemicals that destroy stratospheric ozone. 

 

Figure 4-1: Past trends and future projections in the National Emissions Inventory (NEI) 

                                                 
6  Based on National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data, available online at: 
http://www.epa.gov/ttn/chief/trends/trends06/nationaltier1upto2008basedon2005v2.xls, June 2011 
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The EPA sets limits on ambient concentrations of pollutants, known as National Ambient Air 

Quality Standards (NAAQS). Locations where ambient levels are above the threshold are 

identified as non-attainment areas, and State/Tribal implementation plans (SIPs) aimed at 

reducing pollutant concentrations to acceptable levels are developed in consultation with local 

and state agencies. Emissions goals are achieved through market-based measures, permits, and 

technological solutions that control emissions from industrial sources such as power plants and 

factories. The CAA mandates air quality control strategies on a national level in addition to SIPs: 

The production and use of cleaner-burning engines to reduce emissions, the development and 

implementation of cleaner alternative fuels, the enforcement of passenger vehicle inspection and 

maintenance programs and the implementation of transport policies that regulate highway and 

transit rail line construction, are a few such examples. 

The NEI forecasts a continuing decline of emissions out to 2014, 2020 and 2030, with the trend 

becoming approximately stagnant between 2020 and 2030. Marginal increments in certain 

emissions species (CO, VOC and SO2, for example) are caused by the growth in vehicular 

activity (and therefore, an increase in mobile source emissions). Apart from the mobile sector 

(which includes onroad and nonroad emissions), other sectors use emissions from the year 2020 

as a proxy for the year 2030. Specifically, the IPM model was run only till the future year 2020, 

and as such the EGU emissions for 2020 are used in the 2030 scenario. Resource limitations and 

uncertainty in the projection methodologies and capabilities are the main reasons7 for employing 

2020 emissions in the 2030 scenario. The latest compliance dates for currently proposed 

emissions control programs fall by 2015, and therefore no further controls beyond this date are 

applied to the 2020 and 2030 inventories. These factors explain the apparent stagnation in 

background emissions between 2020 and 2030. . 

Background emissions for CMAQ modeling activities are developed for the years 2005 and 

2025. The 2005 emissions are based on the 2005 NEI Data, while the 2025 scenario is linearly 

interpolated between the NEI forecasts for 2020 and 2030. The 2025 emissions dataset was 

selected to be used in place of the 2020 and 2030 emissions scenarios since it was readily 

available (and in the appropriate format) at the time of this study. This approximation is justified, 

                                                 
7
 Based on email communication with Marc Houyoux, Group Leader, Emission Inventory and Analysis Group, 

Office of Air Quality Planning and Standards US EPA, March 4 2011. 
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however, since the best estimate for future-year background emissions (the US EPA NEI) is 

forecast to remain approximately constant over 2020-2030 timeframe. 

4.3 Uncertainties in Emissions (Present-day and Future) 

The quantification of uncertainty in background emissions is not a new field of research - there 

have been numerous attempts in the past to quantify the errors and variability in present-day 

emissions ([86], [87]). Hourly NOx emissions from coal-fired power-plants have been 

characterized by Abdel Aziz and Frey [88] to have an uncertainty range of -15% to 20% for daily 

emissions, and a 20 to 40% uncertainty for hourly emissions depending on the hour of the day. 

Frey et al. [89] analyzed highway (onroad) emissions of CO, HC and NOx from the EPA’s 

MOBILE6 tool, accounting for variability in drive cycles, ambient conditions such as 

temperature and fuel Reid vapor pressure. The uncertainties in average emissions ranged from 

±35% for HC, ±46% for CO, and ±38% for NOx. Wisner et al. [90] considered the uncertainty in 

NOx emissions from EGUs, comparing the US EPA’s Compilation of Air Pollutant Emission 

Factors AP-42 with measurement data from Continuous Emissions Monitors (CEMs) for specific 

SCCs. The study found that 13 out of the 21 SCCs that were considered had an uncertainty range 

greater than 25%, and six of the SCCs had variability greater than 50%. Emissions factors are 

utilized in the modeling of EGU emissions, and tend to have high variability due to the limited 

number of sample points per SCC over which the factors are averaged. Further examples of 

uncertainties in emissions are given in chapter 8 of NARSTO [87]. It becomes clear, though, that 

although there are studies aimed at characterizing uncertainty in specific source sectors, there has 

not been much research in aggregating these uncertainties for the background scenario as a 

whole. 

Emissions forecasts further compound the uncertainties. Bollman et al. [91] analyzed AEO 

natural gas consumption forecasts in the Lake Michigan Air Director’s Consortium (LADCO) 

region relative to actual consumption records, and found an over-estimate of the annual growth 

rate between 1996 and 2004 of 3.25%. AEO projections of natural gas consumption in 2004 

(based on 1999 values) differed by 28% in comparison with actual usage in the region. The use 

of these energy forecasts in estimating future emissions, along with equally or even more 

uncertain economic and demand estimates, lead to a high degree of uncertainty in the forecast 

emissions outputs.  



60 
 

Examples of the levels of uncertainty in the NEI can be found within the future-year forecast 

estimates of the US EPA’s prior regulatory analyses. Table 14 shows relative differences in 

future-year CAP emissions forecasts between four EPA Regulatory Impact Analyses (RIAs) and 

the 2002v3 CAPHAP platform. Even though some of the analyses may include emissions 

projections for several future years, only the two target years of 2020 and 2030 were selected for 

the comparison. The first RIA was prepared in 1999 for the final rule of the Tier 2 Motor Vehicle 

Emissions Standards and Gasoline Sulfur Control Requirements [20], and estimated future year 

emissions for 2030. The second RIA was performed for the Clean Air Nonroad Diesel Final Rule 

of 2004 [92], and includes emissions estimates for the year 2020 and 2030. The national 

emissions estimates from this RIA are computed based on the fractions of the national inventory 

that mobile emissions contribute to, as reported in Tables 3.2-1 through 3.2-6 of the Final Rule 

report [92] . The third analysis was performed for the Clean Air Interstate Rule (CAIR) of 2005 

[93], which calculated national emissions out till 2020. The CAIR inventories are based on the 

2001/2002v1 NEI modeling platform. The final inventory used for comparison is the Light-Duty 

Vehicle Greenhouse Gas Emissions (LDV-GHG) Standards [48] Proposed Rule of 2010. The 

LDV-GHG study estimates the national inventory for the year 2030. This inventory is projected 

from the 2005v4 NEI modeling platform. 

Forecasts differ on a species-to-species basis, with projections being both higher and lower than 

those predicted by the 2002v3 emissions modeling platform. As the datasets are developed later 

in time, the estimates have lower variability since more is known about the effects of a proposed 

rule and socioeconomic forecasts are updated. Though the CAIR and LDV-GHG emissions 

inventories are based on 2002v1 and 2005v4 NEIs, emissions forecasts are also tailored to the 

specific study they are employed within, potentially contributing to the variability seen here. 

These changes and modifications are described in the respective emissions modeling Technical 

Support Documents (TSDs).  
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Table 14: Background (non-aviation anthropogenic) emissions forecasts from previous 

EPA Regulatory Impact Analyses 

(tons/ year) 2002v3 

CAPHAP 

2010 

LDV-

GHG 

2006 

CAIR 

2004 

NONROAD 

DIESEL 

1999 Tier2 

Motor 

2020    

CO 64,912,870 

- 

28% 49% 

- 

NH3 4,241,636 -3% - 

NOX 10,930,663 31% 38% 

PM10 12,671,074 16% - 

PM2.5 4,768,531 13% -56% 

SO2 8,171,411 77% 81% 

VOC 13,220,304 -1% 5% 

2030    

CO 69,431,177 -22% 

- 

58% - 

NH3 4,297,455 -1% - - 

NOX 10,452,858 10% 46% 86% 

PM10 12,680,651 0% - 162% 

PM2.5 4,764,633 -15% -53% 93% 

SO2 8,295,030 11% 87% 108% 

VOC 13,138,328 -8% 22% 40% 

 

It would be a challenge to fully characterize the uncertainty in the ambient concentration outputs 

of the model due to the uncertainty in background emissions. First, the development of a 

probability density function for each emissions species would require a far greater number of 

future-year predictions, and a complete understanding of all the uncertainties inherent in the 

inputs not only to base year emissions models but the forecast models as well. Assuming the 

distributions are available, such an assessment might involve a Monte-Carlo simulation approach 

(as suggested by Frey [86]), wherein the emission species distributions are sampled and the 

CMAQ model run for each set of inputs. As with the uncertainties in aviation emissions, the long 

runtime of CMAQ renders this infeasible. 

In order to achieve an understanding of the sensitivity of aviation impacts to an uncertain 

background, a sensitivity study is conducted. The study is only aimed at estimating the 

variability in the outputs for a given (deterministic) change in the inputs; it is not used to provide 

confidence intervals or obtain probabilistic distributions of the CMAQ model outputs. Two new 
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background scenarios are developed for this purpose: 0.5xDelta and 1.5xDelta, to represent 50% 

of the change and 150% of the change between the 2005 and 2025 background scenarios 

respectively. These two scenarios describe situations where (1) the NEI forecasts are aggressive 

and the actual changes in emissions are lower in magnitude (0.5xdelta), and (2) the NEI forecasts 

are conservative, and the changes in emissions are greater than that predicted by the NEI 

(1.5xDelta). The difference in emissions (the “Delta”) is calculated on an hourly, grid-cell basis. 

The “Delta” is multiplied by 0.5 and 1.5, and added to the base year 2005 inventory to obtain the 

sensitivity background scenarios. This is shown in Equations (4.1) and (4.2) below. 

g0.54i_LGdjB,l,m,� � g2005jB,l,m,� 0 1 2⁄ D og2025jB,l,m,� 
 g2005jB,l,m,�p (4.1) 

g1.54i_LGdjB,l,m,� � g2005jB,l,m,� 0 3 2⁄ D og2025jB,l,m,� 
 g2005jB,l,m,�p (4.2) 

where the indices i, j and k refer to spatial grid cells, t refers to the time dimension (hourly time 

steps), and {2005} refers to all emissions species in the year 2005. 

In the 1.5xDelta inventory, values which become negative are floored to 0, and as such the net 

change in emissions totals in some cases is not symmetric with the 0.5xDelta scenario. Emission 

totals are reported in Table 15. These aggregates represent domain totals and therefore include 

background emissions from Mexico and Canada as they are included within the modeling 

domain. It is also noted that the changes in emissions relative to the 2025 scenario are not 

homogenous across emissions species, as seen from the changes expressed as percentages 

relative to the nominal 2025 totals. 

Table 15: Sensitivity study background emissions domain totals and relative changes 

Species        
(short tons/year) 2005 0.5xDelta 

(% w.r.t. 

2025) 2025 

(% w.r.t. 

2025) 1.5xDelta 

CO 104,980,184 93,366,976 (14%) 81,753,760 (-14%) 70,521,992 

NOx 23,256,954 19,179,110 (27%) 15,101,264 (-23%) 11,605,371 

BC 423,480 345,569 (29%) 267,658 (-25%) 200,789 

SO2 17,871,268 14,648,293 (28%) 11,425,319 (-11%) 10,155,329 

NH3 4,825,689 5,009,940 (-4%) 5,194,189 (4%) 5,384,823 
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Performing the scaling on a grid-cell basis takes into account the changes in magnitude of 

emissions (which can be brought about by changes in demand, technology or emissions controls) 

as well as any spatial changes that may occur. This can happen when, for example, a power-plant 

closes at one location and a new plant with more efficient technology and stringent controls 

opens in another. In this case specifically, the 0.5xDelta scenario would represent a situation 

where both power-plants operate at half their regular capacities and the load is proportionally 

shared between them. 

As described in Table 1 in Chapter 2, the two future-year aviation scenarios of 2020 and 2030 

will be paired with each of the two background sensitivity scenarios. Initial and boundary 

conditions are set to 2025 conditions since the sensitivity study is performed for future-year 

scenarios, necessitating that the global concentrations reflect future conditions. Other model 

parameters are set to their default settings as defined in Chapter 2.  
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Chapter 5 CMAQ Simulation Results 

This section of the thesis presents the results of the CMAQ simulations performed to (A) 

quantify the impact of aviation in future emissions scenarios and (B) ascertain the sensitivity of 

aviation impacts to the variations in the background emissions scenario. The post-processing 

steps are first outlined, following which aviation PM2.5 and ozone future-year impacts are 

presented. The effect of the US EPA’s Speciated Model Attainment Test (SMAT) on the PM and 

ozone concentrations is shown. Finally, the results of the sensitivity study are presented. 

5.1 Post-processing of Model Outputs 

The impacts of aviation on ground-level, annual concentrations of PM2.5 and ground-level 

seasonal concentrations of ozone are assessed, since long-term exposure to these pollutants are 

strongly linked to adverse health risks and mortalities [6]. The CMAQ model (as configured for 

this study) outputs the concentration of 192 chemical species, reporting both end-of-the-hour 

instantaneous values as well as hourly-averaged concentrations. The raw CMAQ model outputs 

contain ionic concentrations of inorganic PM2.5 species (sulfates, nitrates, and ammonium) as 

well as several lumped organic aerosol compounds and EC. The organic aerosol groups are 

aggregated to form total Organic Carbon (OC) PM. CMAQ outputs PM2.5 as three distinct 

modes of aerosol formation: Aitken (I), Accumulation (J) and Coarse (K), and PM2.5 is taken as 

the sum of ‘I’ and ‘J’ modes. The CMAQ species and the formulae that are used to compute total 

PM2.5 and ozone are listed in Appendix I. 

For each modeled scenario, hourly PM2.5 values from the full year of simulation are averaged, on 

a grid-cell basis, to obtain an annually-averaged quantity. For the ozone season starting May 1 

through September 30, 8-hour daily maximum ozone is computed using standard EPA 

methodologies8 , which involves taking running 8-hour averages of ozone and selecting the 

highest such quantity as the maximum value for any particular day [94] . Seasonal average 8-

hour daily maximum ozone is computed by averaging the 153 daily maxima for each grid cell. 

The annual (or seasonal) aviation contribution at each grid cell is isolated by taking the 

difference of the aviation scenario and the corresponding non-aviation (background-only) 

simulation. 

                                                 
8 Ozone post-processing routines were obtained from EPA and implemented for the CMAQ simulation outputs. 
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relatively high compared to the other species, its contribution to total PM2.5 is negligible and 

therefore its growth does not have a significant impact on total PM2.5 concentrations in future 

years.  

Table 16: Growth of PM2.5 species relative to 2006 and 2020 concentrations 

Sulfates Nitrates Ammonium EC OC Crustal Total PM 

% increase 

 w.r.t. 2006    
 

2020 40% 169% 148% 37% 7% 83% 99% 

2030 74% 224% 202% 68% 29% 122% 141% 

% increase  

w.r.t. 2020 

2030 24% 21% 22% 23% 21% 21% 22% 

 

In going from the base year to the 2020 scenario, it is important to note that there are two factors 

involved: a change in aviation emissions as well as a change in background emissions scenario 

from 2005 to 2025. The background scenario is kept fixed at 2025 conditions for both the 2020 

and 2030 simulations, and therefore the change in aviation-attributable PM2.5 concentrations 

between 2020 and 2030 is due solely to aviation emissions. This is reflected in the bottom row of 

Table 16, which demonstrates that the growth in total PM (and its constituent species) is closer to 

the growth in aviation fuel burn between 2020 and 2030 of 25%.  

There exists a disproportionate increase in aviation-attributable PM2.5 relative to growth in 

aviation activity between 2006 and 2020. From Figure 5-1 and Table 16, it is clear that the 

growth in future-year PM is dominated by inorganic PM2.5 species (ammonium, nitrate and 

sulfate ions). The reason for this growth lies in the interaction of background emissions with the 

PM formation pathway for aviation emissions. The pathway from SO2 and NOx emissions to 

PM2.5 has two major phases: (a) the oxidation from SO2 (NOx) to H2SO4 (HNO3) and (b) the 

neutralization of H2SO4 (HNO3) by ammonia to form ammoniated sulfate (ammonium nitrate) 

particulate matter. The background emissions scenario impacts each of these two processes, the 

combined effect of which leads to the disproportionate increase in aviation-attributable PM. 
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First, the effect of the background emissions on the oxidative capacity of the atmosphere is 

discussed. Background emissions levels are forecast to decrease, as shown in Figure 4-1; the 

reasons for this decrease are discussed in Chapter 4. The decreased rate of emission leads to 

higher ambient levels of oxidants in the atmosphere; this could occur since emissions that would 

otherwise have reacted with these oxidants are no longer present. Higher levels of oxidants, in 

turn, mean that more of the aviation emissions are oxidized into their acidic forms. This 

hypothesis is proven by considering the removal rates of aviation-attributable SO2 and SO4. 

The annual-averaged dominant removal processes for SO2 (dry deposition) and SO4 (wet 

deposition) are shown in Table 17 for the three aviation scenarios. Note that the rates represent 

annual domain-averaged aviation deltas (that is, the change in deposition as a result of aviation 

emissions). The table also contains the relative growth of deposition rates with respect to 2006 

and 2020. Between 2006 and 2020, deposition rates of SO2 and SO4 increase by 23% and 36% 

respectively relative to 2006, despite an increase in aviation fuel burn of 26% that occurs during 

this time. Between 2020 and 2030, however, the increase in both dry and wet deposition rates 

(relative to 2020) are very close to the projected increase in aviation fuel burn of 25%, 

illustrating the sole effect of added aviation emissions on the deposition rates since the 

background emissions scenario is held fixed in the two simulations. The fact that, in 2020 the 

increase in SO4 wet deposition is higher than 26%, and the increase in SO2 dry deposition is 

lower than 26%, suggests that a greater fraction of aviation SO2 has been oxidized into SO4, thus 

implying that the atmosphere into which 2020 aviation emissions are emitted has a higher 

oxidative potential. 

Table 17: Aviation-attributable SO2 and SO4 annual-averaged deposition rates 

 Annual aviation delta % increase w.r.t 2006 % increase w.r.t 2020 

 SO2 Dry Dep. 

(kg/hectare) 

SO4 Wet Dep. 

(kg/hectare) 

SO2 Dry 

Dep. 

SO4 Wet 

Dep. 

SO2 Dry 

Dep. 

SO4 Wet 

Dep. 

2006 1.85 x10-6 1.80 x10-6 - - - - 

2020 2.26 x10-6 2.43 x10-6 23% 36% - - 

2030 2.82 x10-6 3.05 x10-6 53% 70% 25% 25% 
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Spatial maps of ozone and the hydroxyl radical (OH) further support this argument. Ozone is an 

important species in setting the oxidative potential of the atmosphere. It is the main precursor for 

the hydroxyl radical which is one of the most potent oxidizers in the atmosphere which reacts 

with a large number of compounds and has a short chemical lifetime [95]. Figure 5-2 shows the 

difference in annual-averaged ambient ozone concentrations between the 2005 and 2025 

background scenario simulations (Sims. #1 and #3). Over most of the urban areas, ozone levels 

are higher in 2025 than 2005. This is due to the fact that urban areas are predominantly VOC-

limited, and thus a decrease in the amount of NOx background emissions leads to an increase in 

ozone concentrations [96]. The higher ozone concentrations yield more OH, through 

photodissociation and reaction with water vapor; this is illustrated in Figure 5-3, which plots the 

difference in OH concentrations between 2005 and 2025. Note that, even though OH decreases 

on a domain-average basis, OH peaks exist at many urban locations. The majority of large 

airports are co-located near these urban areas, and as a result much of the aviation LTO 

emissions occur amidst elevated levels of ambient OH, allowing a greater fraction to be oxidized. 

 

Figure 5-2: Background Delta (2025-2005) 

surface-level annual O3 

  

Figure 5-3: Background Delta (2025-2005) 

surface-level annual OH 
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left-over ammonia once background nitrates and sulfates have been neutralized. Figure 5-4 

shows the spatial plot of FA in 2005 and 2025.  

Table 18: Aviation-attributable domain-averaged annual PM2.5 composition 

Sulfates Nitrates Ammonium EC OC Crustal 

2006 22% 38% 16% 3% 22% -1% 

2020 16% 52% 20% 2% 12% -1% 

2030 16% 52% 20% 2% 12% -1% 
 

  

Figure 5-4: Spatial plots of annual free ammonia in 2005 and 2025 
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21-24% in all PM2.5 species. These changes are proportional, in general, to the increase in 

aviation emissions. 

As seen in Table 18, the proportion of organic PM is relatively large in the base year 2006 

(contributing to 22% of total PM2.5) compared with prior air quality analyses of aviation impacts 

([97], [12]). This arises from the FOA3a methodology that is used to compute aviation emissions 

of primary organic PM. As noted in Section 3.6, FOA3a estimates primary organics to be an 

order of magnitude larger than the conventional FOA3 method. It is re-iterated that these 

methodologies need to be updated to reflect the latest findings and measurement information 

available [61]. 

The spatial concentration plots of total PM2.5 are given in Figure 5-5, Figure 5-6 and Figure 5-7 

for the years 2006, 2020 and 2030, respectively. Aviation LTO impacts in 2006 are observed 

locally within the airport grid-cells, evidenced by peaks in aviation PM2.5 located near cities and 

airports. Aviation impacts are also prevalent over large areas of the Midwest and the Eastern 

seaboard regions of the country, as well as California. These areas generally correspond to areas 

with high free ammonia, as shown previously in Figure 5-4. Aviation LTO emissions, which 

mostly occur within the surrounding grid cells of its arrival or departure airport, are oxidized and 

advected into these regions through strong mixing within the PBL, where they react with 

ammonia to form PM.  

Looking into the future years of 2020 and 2030, airport grid-cells become more prominent 

hotspots due to highly localized effects from growth in aviation as well as increased oxidation 

brought about by the declining emissions from non-aviation sources. The additional availability 

of FA in 2020 and 2030 over Appalachia and the Southeastern US enables aviation emissions to 

form PM2.5 over these areas. The maximum PM2.5 concentration occurs in the Los Angeles area 

in 2006; however in 2020, the New York Metroplex area contains the highest concentration. 

While the magnitude of PM increases from 2020 to 2030, the spatial distribution of PM2.5 

changes very little. 
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Figure 5-5: Baseline 2006 LTO aviation annual PM2.5 spatial plot 
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Figure 5-6: Future 2020 LTO aviation annual PM2.5 spatial plot 
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Figure 5-7: Future 2030 LTO aviation annual PM2.5 spatial plot 
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5.2.2 Ozone 

On a domain-averaged basis there is an increase in surface-level seasonal 8-hour daily maximum 

ozone levels caused by aviation, as illustrated by the bar chart in Figure 5-8. Aviation-

attributable ozone increases by 1.9 times from 2006 to 2020, and 2.2 times from 2006 to 2030. 

 

Figure 5-8: Domain-average seasonal ozone concentrations from LTO aviation in 2006, 

2020 and 2030 

The behavior of aviation-attributable ozone is not, however, homogeneous throughout the 

domain. The spatial plot in Figure 5-9 shows baseline 2006 LTO aviation activity causes a 

decrease in seasonal 8-hour ozone concentrations at airports and surrounding regions in the 

upper latitudes. At lower latitudes, the decrease in ozone (if any) is confined to the airport grid 

cell, with the surrounding regional impacts (often occurring over rural areas) yielding a net 

increase in ozone.  

The localized decrease in ozone concentration is attributed to NOx-VOC-O3 photochemistry 

which is summarized in an ozone isopleth (an example of which can be found in Sienfeld and 
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the rate of ozone formation9. On the other hand, rural areas, being relatively unpolluted, have 

comparatively lower NOx mixing ratios; in this regime, incremental addition of aviation NOx 

increases ozone.  

Future year aviation impacts on ozone retain similar trends in the spatial distribution as 

compared to the base year impacts in the upper latitudes, with the magnitude of impacts 

becoming larger and more spread out. This is seen in Figure 5-10 and Figure 5-11. Towards the 

southern regions, the ozone deltas become predominantly positive even within the airport grid 

cell. It is noteworthy that much of the regional impacts are located downwind of the airports, as 

observed in the California area and the Northeast and Southern US. The effects of atmospheric 

advection and chemical transport are evident here, since aviation LTO emissions only occur 

within the 2-3 grid-cells surrounding the airport and yet its impacts are felt much farther out to 

hundreds of kilometers. It is observed again that aviation impacts change most significantly 

between the base year and the future year 2020 compared with the changes from 2020 to 2030, 

due to simultaneous variation of both aviation and background emissions. 

 

                                                 
9  The reverse phenomenon is observed with changes in background emissions, wherein a reduction in NOx 
emissions from 2005 to 2025 leads to an increase in O3 as seen in Figure 5-2. 
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Figure 5-9: Baseline 2006 LTO aviation seasonal ozone spatial plot 
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Figure 5-10: Future 2020 LTO aviation seasonal ozone spatial plot 
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Figure 5-11: Future 2030 LTO aviation seasonal ozone spatial plot 
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5.3 SMAT Process 

The EPA’s Speciated Modeled Attainment Test (SMAT [38]) procedure is applied to the CMAQ 

outputs to reconcile model outputs to PM and ozone measurement monitors located throughout 

the country. The overall methodology is similar for PM2.5 and ozone, however key differences in 

the implementation exist, which will be highlighted. The Modeled Attainment Test Software 

(MATS, [98]) is used to perform the SMAT process. 

The methodology behind SMAT lies on the argument that atmospheric photochemical models 

such as CMAQ possess inherent biases which do not allow them to accurately predict absolute 

ambient concentrations, but they are well-suited for predicting relative changes as a result of a 

policy or control measure [99]. The relative changes from the model are applied to baseline 

measurements of current conditions from air quality monitoring networks to project the changes 

into ambient concentrations. 

Ambient concentration measurements from monitors are converted into Monitor Design Values 

(DVs) through an averaging process. Ozone design values are calculated as the 3-year average of 

the fourth highest monitored 8-hour daily maximum value at each monitor location. The annual 

average PM2.5 DV is taken as the 3-year average of the annual mean PM observed at the monitor 

[38]. The baseline DV that is used in the MATS software is computed by taking a further 

average of the DVs computed for each analysis period; that is, for a baseline year of 2005, the 

baseline DV is obtained by averaging each of the three DVs computed for the 2003-2005, 2004-

2006 and 2005-2007 periods. Doing so weights the DV towards the middle (analysis) year of 

2005, while incorporating meteorological and emissions variability that occur during the 2003-

2007 period. Additional details for the DV calculation are found in 40CFR Part 50 [43].  

 The SMAT process makes use of the model results to calculate the relative changes through a 

ratio known as the Relative Response Factor (RRF). The RRF is a ratio between a future (or 

scenario) case and the base (or control) case. In this thesis, the base year is chosen to be the 2005 

background simulation (Sim #1 in Table 1), and RRFs for all other scenarios are computed 

relative to this simulation. Note that the term ‘future case’ does not necessarily imply temporal 

differentiation, and even though Sims #2-5 are in fact future years compared to 2005, RRFs are 

also calculated for the 2006 base year aviation case (Sim #2). Baseline DV’s from 2005 is used 

to multiply with the respective RRFs to obtain post-SMAT absolute concentrations for each 
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scenario. Aviation impacts are estimated, as before, by taking the difference of the post-SMAT 

scenario and control case.  

MATS computes RRFs from quarterly-averaged PM2.5 on a grid-cell basis, thereby producing a 

gridded field of future PM design values. Official FRM PM2.5 Design Values at each monitor for 

the year 2005 are used to estimate PM2.5 concentrations, which are interpolated to the gridded 

field using a Voronoi Neighbor Averaging (VNA) interpolation scheme that uses a weighted 

averaging method to obtain gridded FRM concentrations. Unofficial speciation data from the 

STN monitor network are also used to compute RRFs for each species. Further details on 

speciation and the caveats that accompany these methods are discussed in the MATS manual 

[98]. The discussion of post-SMAT results in this thesis will be limited to the official FRM PM2.5 

outputs. Ozone is input to MATS as seasonal averaged 8-hour daily maximum values for each 

grid-cell.  

Data from off-domain PM2.5 monitors (such as Hawaii, Alaska and Puerto Rico) was removed to 

prevent erroneous interpolation artifacts; all other program options were set to their default 

values (see Appendix J for a list of MATS options). MATS settings for ozone are also tabulated 

in the appendix. A custom monitor dataset10 which contains seasonal average DVs for each 

monitor is used instead of the daily 8-hour daily maximum DVs that are packaged with a default 

copy of MATS. The precision level of MATS was increased to 7 decimal places for both PM2.5 

and ozone calculations, since the objective is to analyze small changes in concentrations that 

arise from the aviation cases. Gradient-adjusted MATS outputs were used for annual PM2.5, as 

they were generally smoother in nature than those without gradient adjustment. 

5.4 Post-SMAT Aviation Air Quality Impacts 

Figure 5-12 provides a comparison of the pre- and post-SMAT aviation-attributable ambient 

PM2.5, averaged over the modeling domain. 

 

                                                 
10 Custom seasonal average DV dataset provided by Brian Timin of US EPA 
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Figure 5-12: Pre-SMAT and post-SMAT annual 

domain-averaged aviation PM2.5 

Figure 5-13: Pre-SMAT and post-SMAT 

seasonal domain-averaged aviation ozone 

The SMAT process increases domain-averaged concentrations in 2006 by 11%, and decreases 

future-year concentrations by 14%. Spatial maps of total post-SMAT PM2.5 are shown in Figure 

5-14, Figure 5-15 and Figure 5-16. Reductions in PM2.5 are seen in the Northeastern and 

Midwestern rural regions, while PM2.5 concentrations at the airport hotspots (and surrounding 

urban areas) are seen to increase. Regional impacts in California are seen to grow as well. These 

changes also exist in the future years, although the magnitude of reductions is higher than the 

increments in PM, on average.  

Post-SMAT domain-averaged concentrations of seasonal 8-hour maximum ozone are shown in 

Figure 5-13. Post-SMAT ozone is decreased by 18% in 2006, and by 8% in 2020 and 2030. The 

spatial distribution of ozone, shown in Figure 5-17 - Figure 5-19, is not changed significantly 

compared with pre-SMAT seasonal ozone. Marginal reductions in magnitude are seen, though, 

towards the Northeast and Southern regions of the US, leading to the decrease in average ozone 

impacts that is observed. 
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Figure 5-14: Baseline 2006 LTO aviation post-SMAT annual PM2.5 spatial plot 
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Figure 5-15: Future 2020 LTO aviation post-SMAT annual PM2.5 spatial plot 
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Figure 5-16: Future 2030 LTO aviation post-SMAT annual PM2.5 spatial plot 
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Figure 5-17: Baseline 2006 LTO aviation post-SMAT seasonal ozone spatial plot 
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Figure 5-18: Future 2020 LTO aviation post-SMAT seasonal ozone spatial plot 
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Figure 5-19: Future 2030 LTO aviation post-SMAT seasonal ozone spatial plot 
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5.5 Sensitivity Study 

5.5.1 PM2.5 Sensitivity 

The future-year background emissions are varied to represent a less-than-predicted change 

(0.5xDelta case) and a greater-than predicted change (1.5xDelta case) in forecast background 

emissions as described in Section 4.3. The magnitude of emissions in each background scenario 

is given in Table 15 in Section 4.3, with the 1.5xDelta (0.5xDelta) scenario containing lower 

(higher) aggregate emissions than the 2025 case. The aviation-attributable domain-averaged 

annual PM2.5 concentrations from simulations #6-#11 are shown in Figure 5-20. The solid line 

corresponds to the simulation with the nominal 2025 background scenarios (from simulations 3-

5), while the upper and lower dashed lines represent the greater-than-expected (1.5xDelta) and 

less-than-expected (0.5xdelta) change in background emissions from 2005 to 2025.  

  

Figure 5-20: Future-year aviation annual PM2.5 sensitivity to background emissions 

Considering the magnitude of changes (expressed as percentages relative to the nominal 

concentrations for each of the two future year aviation scenarios), it is evident that the aviation 

impacts change by approximately ±25% in both future years. The changes are close to symmetric 

with the change in background emissions: an increase or decrease in the background emissions 

yields similar magnitude of change in the aviation impacts, with the only difference being the 

direction of change. While changes in aviation impacts appear to be linear with changes in 

background emissions, it should be noted that all background emissions species are changing 
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concurrently and the amount by which each species changes is not uniform (ranging from -4% to 

29%); the apparently linear relationship holds only for the specific cases modeled herein.  

Table 19 shows the relative composition of aviation PM2.5, expressed as percentages of total 

PM2.5 for each of the three background scenarios for both 2020 and 2030 aviation cases. The 

relative compositions of PM2.5 are similar between the 2020 and 2030 aviation cases, exhibiting 

nitrate dominance of PM2.5 in all background scenarios. Nitrates become more dominant with 

decreased background emissions (45% in the 0.5xDelta case rising to 55% in the 1.5xDelta 

case), lowering the proportion of sulfates in the process. 

Also given in Table 19 are the PM2.5 species concentrations for the 2020 and 2030 aviation 

scenario for all three background scenarios considered in this sensitivity study. Examining the 

sensitivity of each aviation case, it is seen that the inorganic secondary PM species 

concentrations (sulfates, nitrates and ammonium) increase in magnitude as the aggregate 

background emissions decreases (“High” to “Low”). This behavior is consistent with that 

observed between the 2006 and 2020 nominal case that is analyzed in Section 5.2.1, extending 

the scenario to a situation where the aviation emissions stay constant and only the background 

emissions vary. It is therefore not surprising that the 1.5xDelta background scenario (with 

relatively lower aggregate emissions) yields more aviation-attributable PM2.5 than the nominal 

case, while the 0.5xDelta background emissions scenario yields relatively lower concentrations. 

Spatial variability is examined by considering a histogram of relative change per grid cell 

(expressed as a percentage of the nominal 2020 aviation scenario) for the 2020 annual-averaged 

aviation-attributable PM2.5 (the 2030 aviation case is not shown, given its similarity to the 2020 

aviation case). Figure 5-21(a) shows the relative frequency of percent change in grid-cell values 

in the 0.5xDelta case, while Figure 5-21(b) shows the same for the 1.5xDelta scenario. The 

average percentage change amongst the grid cells in the 0.5xDelta case is -17% and +18% in the 

1.5xDelta case. This is expected since the domain-averaged aviation PM2.5 is reduced in the 

0.5xDelta background case and increased in the 1.5xDelta case.  
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Table 19: Future-year annual aviation PM2.5 sensitivity to background emissions 

 (Relative) Background 

Emissions Sulfates Nitrates Ammonium EC OC Crustal 

2020 Aviation PM2.5 (r[ <�⁄ ) 

(High) 0.5xDelta 6.93 x10
-4 

(20%) 1.58 x10
-3 (45%) 6.24 x10

-4 (18%) 1.08 x10
-4 (3%) 5.59 x10

-4 (16%) -4.18 x10
-5 (-1%) 

(Mid) Nominal 7.24 x10
-4 (16%) 2.42 x10

-3 (52%) 9.16 x10
-4 (20%) 1.09 x10

-4 (2%) 5.40 x10
-4 (12%) -4.89 x10

-5 (-1%) 

(low) 1.5xDelta 8.46 x10
-4 (14%) 3.21 x10

-3 (55%) 1.23 x10
-3 (21%) 1.10 x10

-4 (2%) 5.02 x10
-4 (9%) -3.92 x10

-5 (-1%) 

2030 Aviation PM2.5 (r[ <�⁄ ) 
          

(High) 0.5xDelta 2030 8.62 x10
-4 (20%) 1.87 x10

-3 (44%) 7.50 x10
-4 (18%) 1.33 x10

-4 (3%) 6.75 x10
-4 (16%) -4.85 x10

-5 (-1%) 

(Mid) Nominal 2030 9.01 x10
-4 (16%) 2.92 x10

-3 (52%) 1.11 x10
-3 (20%) 1.33 x10

-4 (2%) 6.52 x10
-4 (12%) -5.94 x10

-5 (-1%) 

(low) 1.5xDelta 2030 1.05 x10
-3 (15%) 3.90 x10

-3 (55%) 1.50 x10
-3 (21%) 1.35 x10

-4 (2%) 6.06 x10
-4 (8%) -4.82 x10

-5 (-1%) 
 

  

(a) 0.5xDelta ÷ nominal 2020 aviation (b) 1.5xDelta ÷ nominal 2020 aviation 

Figure 5-21: Grid cell changes (percentages) of 2020 aviation PM2.5 between the nominal background and (a) 0.5xDelta 

background and (b) 1.5xDelta background 
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There exists a high degree of variability in the grid-cell changes, as evidenced by the high 

coefficients of variation (CV 11 ) of 1.06 and 1.39 for the 0.5xDelta and 1.5xDelta cases 

respectively. Specifically for the 0.5xDelta case, this suggests that there exist a significant 

number of grid cells (in a normally-distributed statistical sense, about 32 percent) which 

experience either a growth in PM2.5 or a greater than 35% reduction (this interpretation can be 

extended vice versa to the 1.5xDelta case). The spread in the magnitude of relative change is 

higher in the 1.5xDelta case compared with the 0.5xDelta case (25% vs. 18% standard 

deviation), and is evident visually from the histograms as well. It is noted that the spread in 

relative changes could arise from the inhomogeneous (spatial) changes in background emissions, 

as well as nonlinear chemistry between the background and aviation emissions. 

5.5.2 Ozone Sensitivity 

The sensitivity of aviation-attributable seasonal-average 8-hour daily maximum ozone to 

background is shown in Figure 5-22. The trends are similar to that of PM2.5, with aviation 

contribution to ozone decreasing amid the 0.5xDelta background scenario and increasing in the 

1.5xDelta background case. It is notable that, unlike the PM2.5 concentrations, the magnitude of 

change is not symmetric between the two background scenarios; ozone decreases in the 

0.5xDelta background by 21%, while it experiences a growth of 34% in the 1.5xDelta 

background.  

The spatial distributions of change in aviation ozone concentrations exhibit some variability in 

the magnitude of changes that occur, characterized by a standard deviation of 9 and 20 percent 

for 2020 aviation amidst 0.5xDelta and 1.5xDelta background emissions respectively. This is 

demonstrated in Figure 5-23(a) and Figure 5-23(b), which show the relative frequency of grid-

cell change in ozone for 2020 aviation expressed as a percentage relative to the nominal 2020 

aviation case (the similarity of the 2030 aviation case to the 2020 aviation case is noted, as 

before, and therefore not shown). The variability of grid-cell level change is attributed to the 

inhomogeneous spatial changes in background emissions and non-linear NOx-VOC-O3 chemistry 

(as explained in Section 5.2.2). 

                                                 
11

 Coefficients of Variation (CV) are defined as the standard deviation divided by the absolute value of the mean. 
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Changes in ozone concentrations exhibit more consistency compared with the change in PM2.5. 

The CV for both cases are less than 1 (0.5 for the 0.5xDelta case and 0.67 for the 1.5xDelta 

case), indicating that the majority of grid-cells experience unidirectional changes in magnitude; 

that is, for the 0.5xDelta background scenario, most positive grid-cells become less positive and 

most negative grid-cells become less negative. A similar outcome is seen for the aviation 

perturbation in the 1.5xDelta background scenario, although the larger CV results in greater 

variation in magnitude of changes that occur. 
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Figure 5-22: Future-year aviation seasonal ozone sensitivity to background emissions 

  

(a) 0.5xDelta ÷ nominal 2020 aviation (b) 1.5xDelta ÷ nominal 2020 aviation 

Figure 5-23: Grid cell changes (percentages) of 2020 aviation O3 between the nominal 

background and (a) 0.5xDelta background and (b) 1.5xDelta background 
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Chapter 6 Discussion of Results 

The following section discusses some of the conclusions that can be drawn from the modeling 

results and analyses in the previous sections. Specifically the discussion will be focused on 

addressing the three objectives of the thesis, as set forth in Section 1.3:  

A Quantify the future-year impacts of LTO aviation emissions on regional air quality in the 

US – this is done through the base-year implementation and future-year projection of 

aviation activity and emissions, and the simulation of the atmospheric response to these 

emissions amid a present-day and future-year background emissions scenario 

B Estimate the sensitivity of the air quality impact of LTO aviation emissions to the 

background emissions forecasts – a sensitivity study is performed, perturbing the 

background emissions to ascertain their influence on the resulting aviation-attributable 

PM2.5 and ozone concentrations 

C Identify the implications of a changing background emissions scenario on the current 

policy analysis methodology – the current aviation air quality policy analysis tool, the 

RSMv2, is used to calculate future-year aviation PM2.5 concentrations, and subsequently 

compared against the outputs from the CMAQ model 

6.1 Future-year Impacts 

Figure 5-5 - Figure 5-7 and Figure 5-9 - Figure 5-11 in Chapter 5 provide clear evidence that, at 

a national level, the future-year air quality impacts of aviation LTO emissions are expected to 

increase in magnitude: PM2.5 concentrations grow to by factor of 2 and 2.4 relative to base year 

2006 levels by 2020 and 2030, while ozone concentrations grow by 90% and 120% in 2020 and 

2030 respectively. Through the analysis in Chapter 5, it is shown that the increase in impacts is 

brought about not only due to growth in aviation activity, but also as a result of changes in 

background (non-aviation anthropogenic) emissions. The spatial distributions of the impacts are 

not uniform: most of the future growth in PM arising in regions with positive free ammonia, 

while ozone levels may actually decrease due to aviation emissions locally while becoming 

elevated regionally. 
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Mitigation strategies will be required to address the rising impacts of aviation in the future. At 

the most fundamental level, net aviation emissions need to be reduced in order to control the 

present-day and future contribution of aviation to ambient levels of PM and ozone. A key aspect 

that is not accounted for in this study is the application of improved future technologies. 

Improvements in engine efficiency and advancements in airframe design can lead to lower 

amount of fuel being required for a given mission, thereby lowering emissions from each aircraft 

engine. System-level enhancements in air traffic management (for example, allowing for more 

direct routings and continuous descent approaches (CDAs) [100]) and surface operations 

(reducing engine idling and taxi times) [101] also lead to savings in fuel burn, and therefore a 

reduction in emissions. Alternative fuels which reduce EIs for emissions species (soot, fuel 

organics and NOx for instance [65]), and Ultra-Low Sulfur (ULS) jet fuel [97] are another 

promising avenue for mitigation of specific pollutants. 

Examining the trends in PM species, it becomes clear that particle nitrates form the majority of 

PM in the base year simulation and drive the growth in future-year PM concentrations. Nitrate 

PM, as explained in Section 5.2, form as a result of aviation NOx emissions being oxidized and 

subsequently neutralized by ammonia to form ammonium nitrates. Therefore, in addition to 

reducing overall emissions from aircraft, special attention must be given to NOx emissions and 

ways to reduce them. A potential approach to combat aviation NOx is through NOx Stringency 

measures. In this analysis, a NOx stringency policy, Scenario #6 from ICAO CAEP/8 which aims 

to reduce NOx emissions from large engines by 15% [15], is implemented in the emissions 

inventories. As shown in Table 9, though, this policy results in only a 3-6% reduction in fleet-

wide NOx emissions – reasons for this include the fleet inertia of the national aviation fleet and 

other barriers to implementation (discussed in Mahashabde et al. [12]) which reduce the 

effectiveness of the policy. This might imply the need for stricter stringency goals that are set 

early enough, such that airframe and engine manufacturers are able to roll out new technologies 

in time to meet the goals more effectively. Penalties could also be imposed for non-compliance 

of in-service aircraft to incentivize the change. 

Modifications/implementation of new technology or policies aimed at reducing a specific 

emissions species might have undesired side-effects on other emissions species or on the overall 

environmental impact of aviation. Specific examples include tradeoffs between NOx and 
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CO/unburnt HC emissions (as seen in Section 3.2.1), the implementation of ULS jet fuel 

decreasing sulfate PM but giving rise to more nitrate PM in certain regions as a result of bounce-

back effects [97], or the possibility of raising ozone concentrations by lowering NOx emissions 

due to nonlinear NOx-VOC-O3 interactions. In addition, policies aimed at reducing air quality 

impacts could have a negative impact on noise or climate. A clear example of this is seen in 

Mahashabde et al. [12], wherein the implementation of a NOx stringency policy provides air 

quality benefits but is found to cause increased climate and noise damages. Thus, care must be 

taken to evaluate each proposed emissions reduction policy using well-accepted modeling 

methods and under an integrated environmental impacts framework (such as APMT-Impacts), 

considering both aggregate as well as local impacts in order to fully characterize the effects of 

the policy. 

The growth of aviation emissions in future years is well-aligned with projected increases in 

commercial (air carrier) aircraft activity, suggesting that emissions from commercial aviation are 

responsible for the majority of aviation emissions. While the local air quality impacts of aviation 

may be more dependent on aircraft activity in all categories (as might be the case for primary 

nonvolatile PM emissions), gaseous emissions of NOx and SOx that act as precursors for the 

dominant secondary PM are driven by changes in air carrier activity. As such, in order to 

effectively manage aviation impacts, any proposed improvements (be it technological, system-

level or fuel-oriented) should be geared towards commercial aviation. This is indeed the case 

with the majority of the current aviation environmental research, and the findings presented 

herein lend further support to this argument.  

6.2 Sensitivity of Aviation Impacts to Background Emissions Scenarios 

The analysis presented in Section 5.2 shows that aviation impacts are sensitive to background 

emissions by demonstrating the effect that a change in background emissions from 2005 to 2025 

has on aviation PM2.5 and ozone formation. The sensitivity of future-year aviation impacts to 

over/under predictions of background emissions forecasts is shown by the sensitivity study, 

where aviation impacts on particulate matter concentrations vary by approximately ±25% and 

impacts on ozone change by +34% & -21% amid a ±50% variation in the predicted change in 

background emissions between 2005 and 2025. A high degree of variability, characterized by a 

coefficient of variation greater than unity, is seen in the relative grid cell changes for PM2.5 as 
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shown in Figure 5-21 for both the less-than-predicted change (0.5xDelta case) and the greater-

than-predicted change (1.5xDelta case), while a lower (but still significant) spread is observed 

for seasonal 8-hour maximum ozone. These results hold three key implications from an aviation 

air quality policy analysis perspective, which will be described below. 

First, the efficacies of aviation air quality policy measures could potentially be over-estimated or 

under-represented if future-year background emissions are not accounted for in the air quality 

analysis. This occurs since the future-year background emissions cause a change in aviation 

impacts that are disproportionate to the predicted change in aviation emissions alone. For 

instance, the effects of a reduction in aviation NOx emissions on aviation-attributable PM2.5 

might be under-represented amid a background scenario that gives rise to lower baseline aviation 

nitrate concentrations due to a lack of free ammonia and reduced oxidative capacity. In a cost-

benefit analysis policy decision-making framework such as APMT-Impacts where a break-even 

(costs=benefits) solution is often assessed, the changes induced by the background emissions 

might yield a new optimum. Therefore, a complete and accurate characterization of future-year 

aviation impacts needs to take into account the effects of future-year background emissions 

scenarios. 

Second, aviation policies need to be developed in conjunction with the proposed plans and 

policies of other anthropogenic emissions sectors. As seen in the sensitivity study performed in 

this thesis, variation in the background emissions scenario leads to significant changes in the 

magnitude, spatial distribution and relative composition of chemical species of aviation air 

quality impacts (as shown in Table 19, Figure 5-21 and Figure 5-23). These changes could 

potentially alter the direction of aviation emissions policies to focus on different mitigation 

strategies. For example, more aggressive SOx emission reductions from the IPM sector could 

cause create “hotspots” that encourage PM formation (such as regions of elevated FA around 

airports) and might necessitate the need for terminal-area mitigation strategies (such as derated-

thrust takeoffs [102] and CDAs) in addition to system-wide (fleet-level) policies such as ULS or 

NOx stringency. The dependency of aviation impacts on background emissions therefore 

necessitates that policies designed to reduce aviation impacts be developed (and analyzed) 

alongside those of other sectors. 
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Finally, future-year anthropogenic emissions projections are updated/modified over time (as 

evidenced by Table 14) with the addition and implementation of new emissions control policies 

as well due to inherent variations in projection methodologies such as socioeconomic and 

activity forecasts. The sensitivity of aviation impacts to background emissions suggests that the 

uncertainties in background emissions projections need to be incorporated into the aviation air 

quality analysis in order to quantify the potential range of outcomes that might occur. A 

sensitivity study (much like the one performed in this thesis) may capture the uncertainty bounds 

through a low, mid and high estimate of future-year background emissions. Alternative methods 

including surrogate adjoint models that could be used to obtain the sensitivity of aviation 

emissions amid a range of varying background scenarios. 

6.3 Implications for Future-year Aviation Policy Analysis 

This aim of this section is to assess the performance of the current aviation policy analysis 

methodology in APMT-Impacts (codified in the RSMv2) in predicting future-year aviation 

PM2.5. As described in Section 2.6, the RSMv2 regression coefficients are derived based on 

CMAQ simulations that used a fixed background emissions scenario (for the year 2001), and as 

such the RSMv2 estimates future-year impacts in isolation to changes in emissions from other 

sectors. The performance of the RSMv2 is compared with the CMAQ simulations performed in 

this thesis, to illustrate the differences that exist if changes in background emissions are taken 

into account.  

The PM outputs from both models are normalized with their respective base year concentrations; 

this is done to narrow the focus of the analysis to changes relative to the base year predicted 

concentrations of each model, given that there are a large number of differences between the two 

modeling platforms (tabulated in Table 20) that make a one-to-one comparison of concentrations 

challenging. 

The base and future-year aviation emissions that are used in the CMAQ simulations are 

aggregated into annual airport-level totals (similar to the numbers presented in Appendix H) and 

input to the RSM, noting that only the four inputs of fuel-burn, NOx, SO2 and BC are used. A 

mid-range lens is selected, along with default distributions on emissions and regression 

parameter uncertainties. Pre-SMAT results from the RSM and CMAQ are used in the 

comparison. 
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Table 20: Differences between thesis and RSMv2 CMAQ modeling platforms 

  Thesis CMAQ configuration RSM-Build CMAQ configuration 

Model CMAQ v4.7.1 CMAQ v4.5 

Aviation 

Emissions 
2006, 2020 and 2030 LTO Design space sampling  

Background 

Emissions 

Base year 2005 NEI and future 
year 2025 NEI 

2001 NEI 

Meteorology 2005  2001  

Simulation 

time period 
One year Four representative months 

Grid 36km x 36km CONUS 36km x 36km CONUS 

 

Figure 6-1 shows the domain-averaged PM2.5 concentration outputs for the three aviation 

emissions scenarios of 2006, 2020 and 2030. Total PM2.5 domain averaged concentrations are 

predicted to increase in the future years by the RSM, though not at the same rate as the CMAQ 

outputs. Examining the growth in individual PM species it is observed that, while the EC growth 

rate is similar, there are differences in the growth rates for other PM species. The larger growth 

rate of OC in the RSMv2 is attributed to high regression error in the response surface for OC (an 

R2 of 0.750 for OC) which is documented in Brunelle-Yeung’s thesis [11]. The increments in 

sulfates and large growth in nitrate and ammonium PM in the CMAQ results are explained by 

increased oxidation and higher amounts of free ammonia due to the future-year background 

scenario, as illustrated by the analysis in Section 5.2. The RSMv2, having been developed based 

on a static 2001 background scenario, is not able to capture the changes in sulfate, nitrate and 

ammonium PM2.5 concentrations (and therefore, changes in total PM2.5) that are induced by the 

changing future-year background. 

The RSMv2, therefore, has to be upgraded to (a) reflect the advancements in the science of 

modeling air quality, overcoming the differences listed in Table 20 and (b) incorporate the 

effects of changing background scenario on aviation PM2.5 to effectively estimate future-year 

aviation air quality impacts and, subsequently, aviation policy efficacies. The characteristics of 

speed, accuracy and functionality still need to be preserved, however, in order for the upgraded 

module to be successfully incorporated into the APMT-Impacts framework. 



 

Figure 6-1: PM2.5 relative growth rates comparison between
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Chapter 7 Conclusion 

7.1 Summary 

In summary, the CMAQ model was validated against measurements to establish model biases 

before being employed to estimate current and future-year aviation air quality impacts on 

surface-level annual PM2.5 and 8-hour daily maximum ozone and the sensitivity of future-year 

impacts to variations in background emissions forecasts. Aviation activity and emissions were 

computed for the base year as well as future years, and annual aviation fuel burn was forecast to 

grow by 26% and 57% by 2020 and 2030 respectively. Uncertainties in the current and future 

aviation emissions were also characterized. Background (non-aviation anthropogenic) emissions 

were forecast to decline in the future, and background emissions scenarios were developed to 

assess the sensitivity of aviation air quality impacts to changes in background emissions 

forecasts. 

The three aims of the thesis that were presented in Section 1.3 were achieved via the analyses 

presented in the Chapters 5 and 6. Specifically, the air quality impacts of aviation were shown to 

grow in the future years. Domain-averaged surface-level annual aviation PM2.5 concentrations 

were shown to grow by approximately 100% in 2020 and 140% by 2030 relative to the base year 

2006 levels, and reasons for this growth (driven by ammonium nitrate PM) were found in the 

enhanced oxidative capacity of the future-year atmosphere as well as increased free ammonia. 

Domain-averaged 8-hour daily maximum seasonal ozone impacts were demonstrated to grow by 

approximately 90% in 2020 and 120% in 2030 relative to 2006 concentrations, noting the 

inhomogeneous spatial impacts that occur within the domain, and the behavior of ozone was 

explained by NOx-VOC-O3 chemistry. 

Aviation PM2.5 varied by approximately ±25% with a greater-than-predicted and less-than-

predicted change in background emissions between 2005 and 2025 respectively, while ozone 

response was similar in direction but asymmetric in magnitude at +34%/-21% change in 

concentrations. Spatial variability was seen in the way aviation impacts were affected by the 

perturbations in background emissions, with a larger spread of grid cell changes in PM2.5 than 

ozone. 
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Finally, the effect of the future-year background scenario on the aviation policy analysis tool, the 

RSMv2, was shown by comparing growth in future-year aviation-attributable PM2.5 

concentrations predicted by the RSMv2 and CMAQ for all three years of aviation emissions. A 

much larger growth rate in nitrate and ammonium PM2.5 is observed in the CMAQ outputs 

compared with the RSMv2 outputs, due to the changing background emissions scenario from 

2005 to 2025 in the CMAQ simulations. The need for the development of an updated RSM, 

which accounts for the changing future-year background scenario, was underscored. 

A discussion of the results highlighted the need for aviation air quality impacts mitigation 

efforts, with increased emphasis on NOx Stringency policies given that the growth in future-year 

aviation PM is driven by increases in nitrate PM. The sensitivity of aviation air quality impacts 

to changes in background emissions implies that aviation policies should be constructed and 

evaluated together with plans and proposals from the other anthropogenic sectors, using well-

accepted modeling methodologies and an integrated environmental impacts assessment 

framework, failing which aviation policy impacts could be overestimated or underrepresented. 

Finally, the need to account for the various uncertainties in background and aviation emissions in 

the modeling methodologies was emphasized. 

7.2 Limitations and Future Work 

One limitation of this study is that it does not consider aviation cruise emissions (i.e. emissions 

above the LTO cutoff of 3000ft). LTO emissions were selected in accordance with regulatory 

impacts analyses methodologies that currently exist, but as shown by Barrett et al. [52], cruise 

emissions could result in up to 5 times as many premature adult mortalities. The global nature of 

aviation and its air quality impacts also suggests that a global simulation (one that includes 

future-year forecasts of aviation and anthropogenic emissions worldwide) may be required to 

fully capture the air quality impacts felt within the US. 

Aviation primary PM emissions methodologies need to be updated to reflect data from new 

measurement campaigns. Stettler et al. [61] propose a new method of estimating BC from 

regressions of measured data against engine pressure ratio, smoke number and CO and NOx EIs; 

they also suggest a modified method of estimating primary OC emissions based on incomplete 

combustion and lubrication oil.  
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Aviation emissions forecasts could be further refined to include the advancements in aircraft and 

engine technology, and the improvements in airspace and airport management that are expected 

to be achieved in the future years. In addition to modeling expected changes in technology, 

further studies could attempt to quantify the level of technological change that would be required 

to meet certain goals, such as the FAA’s plan to achieve a 50% reduction in aviation-attributable 

health impacts by 2018 compared to 2005 [103]. Future-year aviation air quality and health 

impacts of multiple aviation emissions reduction strategies could be efficiently analyzed through 

a future-year RSM (described below). 

The work performed in this thesis can be furthered by considering the health impacts that arise as 

a result of future-year air quality impacts of aviation. Computing health impacts would 

necessitate calculating population exposure to aviation PM2.5 and ozone concentrations, an 

exercise that would yield further information about the present and future-year spatial impacts of 

aviation. Future-year population forecasts, along with updated CRFs for PM2.5 and ozone would 

be required to adequately characterize health impact incidences in the future years. 

Finally, as mentioned in Section 6.3, the current air quality tool used in APMT policy analyses, 

the RSMv2, needs to be upgraded to account for the scientific advances in modeling methods as 

well as the change in aviation impacts due to future-year background emissions scenarios and 

their uncertainties. Potential developmental methodologies might include:  

• Building two RSMs using the current CMAQ modeling platform, one with the base year 

2005 background emissions and another using a future year background emissions and 

interpolating between the two depending on the analysis year. 

• Relating the change in aviation impacts as a function of the background scenario, for 

instance, through a parameter known as Adjusted Gas Ratio (presented in Pinder et al. 

[104]) which characterizes the sensitivity of nitrate PM to total ammonia and total nitrate 

concentrations. 

Further investigation needs to be conducted to determine which of these methods is the most 

applicable and practical to implement. 
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Appendices 

Appendix A CMAQ Vertical Layer Structure 

 

Layer Sigma Coordinate Pressure(mb) Height(m) 

34 0.000 100 15668.0 

33 0.05 145.6 13664.8 

32 0.10 191.3 12080.6 

31 0.15 237 10759.7 

30 0.20 282.6 9621.2 

29 0.25 328.3 8617.3 

28 0.30 374 7717.4 

27 0.35 419.6 6900.4 

26 0.40 465.3 6151.2 

25 0.45 511.0 5458.5 

24 0.50 556.6 4813.9 

23 0.55 602.3 4210.5 

22 0.60 647.9 3643.1 

21 0.65 693.6 3107.2 

20 0.70 739.3 2599.3 

19 0.74 775.8 2211.1 

18 0.77 803.2 1929.7 

17 0.80 830.6 1656.0 

16 0.82 848.9 1477.6 

15 0.84 867.1 1302.3 

14 0.86 885.4 1130.1 

13 0.88 903.7 960.7 

12 0.90 921.9 794.2 

11 0.91 931.0 711.9 

10 0.92 940.2 630.3 

9 0.93 949.3 549.3 

8 0.94 958.4 469.0 

7 0.95 967.6 389.3 

6 0.96 676.7 310.3 

5 0.97 985.8 231.8 

4 0.98 995.0 154.0 

3 0.985 999.5 115.3 

2 0.990 1004.1 76.7 

1 0.995 1008.7 38.3 

0 1.000 1013.24 0 
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Appendix B CMAQ Model Build Parameters and Computational Architecture 

Model Build Parameters  

Module Option 

 Mechanism   cb05cltx_ae5_aq 

 ModAdepv   module aero_depv2      

 ModAdjc    // yamo option does not need denrate 

 ModAero    module aero5_txhg      

 ModChem    module ebi_cb05cltx_ae5   

 ModCloud   module cloud_acm_ae5_tx   

 ModCpl    module gencoor       

 ModDriver   module ctm_yamo       

 ModHadv    module hyamo        

 ModHdiff   module multiscale      

 ModInit    module init_yamo      

 ModPa     module pa          

 ModPhot    module phot_table      

 ModUtil    module util         

 ModVadv    module vyamo        

 ModVdiff   module acm2_txhg      

 PAOpt     pa_noop 

 Tracer    trac0 

Computational 

Architecture 

Fortran Compiler Portland Group Fortran (pgf90) v10.9 

Fortran Compiler flags -Mfixed -Mextend -02 -module ${MODLOC} -I. 

MPICH mpich2-1.1 

C Compiler Flags -v -g -I${MPICH}/include 

OS RHEL 5.5 x86_64 
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Appendix C CMAQ Configuration Summary 

The table below summarizes the CMAQ inputs and run configuration for the individual CMAQ 

runs that are performed in this study: 

 Simulation 

 1 2 3 4 5 

Aviation 
Emissions 

None 
2006 

(FOA3a) 
None 

2020 (Scaled 
2006 (FOA3a)) 

2030 (Scaled 
2006 (FOA3a)) 

Background 
Emissions 

2005 NEI 2025 NEI 

Initial 
Conditions 

2005 GEOS-Chem IC 2025 GEOS-Chem IC 

Boundary 
Conditions 

2005 GEOS-Chem BC 2025 GEOS-Chem BC 

Photolysis 
lookup tables 

JPROC program using default parameters 

Meteorology 2005 Meteorology 

Sea salt mask Sea salt (OCEAN) data processed by UNC 

Simulation time 
period 

376 Days (Jan 1-Dec 31, plus 11 day spin-up period) 

Grid 
36km x 36km CONUS; Origin (-2664km, 2016km) from grid center (40 Lat, 

-97 Lon), 34 Vertical Layers 
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Appendix D Excluded Military and Piston-engine Aircraft 

TAF Bin AEDT Code 

Military AN12 

Military AN26 

Military CNA552 

Military HS125-1000 

Military MIL-C12 

Military MIL-HUNTER 

Military MIL-JCOM 

Military MIL-JCOM-A 

Military MIL-JCOM-B 

Military MIL-KC135 

Military NORD-C160 

Piston AEROSTAR 

Piston BEECH55 

Piston DC3 

Piston IAI1123 

Piston MOONEY-M20K 

Piston SR20 

Piston SR22 

  



117 
 

Appendix E Excluded Airports in Alaska and Hawaii 

EPACT 
ID 

AIRPORT NAME CITY NAME STATE 

ELW ELLAMAR ELLAMAR ALASKA 

FAK FALSE ISLAND FALSE ISLAND ALASKA 

FLT FLAT FLAT ALASKA 

KCC COFFMAN COVE COFFMAN COVE ALASKA 

MKP MCKINLEY PARK MCKINLEY PARK ALASKA 

MOS MOSES POINT ELIM ALASKA 

PABE BETHEL BETHEL ALASKA 

PABI ALLEN ARMY AIRFIELD DELTA JUNCTION/FT GREELEY ALASKA 

PACD COLD BAY COLD BAY ALASKA 

PACV MERLE K (MUDHOLE) SMITH CORDOVA ALASKA 

PADK ADAK AIRPORT ADAK ISLAND ALASKA 

PADL DILLINGHAM DILLINGHAM ALASKA 

PADQ KODIAK KODIAK ALASKA 

PADU UNALASKA UNALASKA ALASKA 

PAED ELMENDORF AFB ANCHORAGE ALASKA 

PAEI EIELSON AFB FAIRBANKS ALASKA 

PAEN KENAI MUNI KENAI ALASKA 

PAFA FAIRBANKS INTL FAIRBANKS ALASKA 

PAFB LADD AAF FAIRBANKS/FT WAINWRIGHT ALASKA 

PAGS GUSTAVUS GUSTAVUS ALASKA 

PAHN HAINES HAINES ALASKA 

PAHO HOMER HOMER ALASKA 

PAIL ILIAMNA ILIAMNA ALASKA 

PAJN JUNEAU INTL JUNEAU ALASKA 

PAKN KING SALMON KING SALMON ALASKA 

PAKT KETCHIKAN INTL KETCHIKAN ALASKA 

PAKW KLAWOCK KLAWOCK ALASKA 

PAMM METLAKATLA SEAPLANE BASE METLAKATLA ALASKA 

PAMO MOUNTAIN VILLAGE AIRPORT MOUNTAIN VILLAGE ALASKA 

PAMR MERRILL FIELD ANCHORAGE ALASKA 

PANC TED STEVENS ANCHORAGE INTL ANCHORAGE ALASKA 

PAOM NOME NOME ALASKA 

PAPG PETERSBURG JAMES A JOHNSON PETERSBURG ALASKA 

PAPO MOUNTAIN VILLAGE AIRPORT MOUNTAIN VILLAGE ALASKA 

PASC DEADHORSE DEADHORSE ALASKA 

PASI SITKA ROCKY GUTIERREZ SITKA ALASKA 

PASY EARECKSON AIR STATION SHEMYA ALASKA 

PATL TATALINA LRRS TAKOTNA ALASKA 
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EPACT 
ID 

AIRPORT NAME CITY NAME STATE 

PAVD VALDEZ PIONEER FIELD VALDEZ ALASKA 

PAWD SEWARD AIRPORT SEWARD ALASKA 

PAWG WRANGELL WRANGELL ALASKA 

PAYA YAKUTAT YAKUTAT ALASKA 

RDB RED DOG AIRPORT RED DOG ALASKA 

TKE TENAKEE TENAKEE SPRINGS ALASKA 

PHBK BARKING SANDS PMRF KEKAHA,KAUAI HAWAII 

PHKO KONA INTL AT KEAHOLE KAILUA/KONA HAWAII 

PHLI LIHUE LIHUE HAWAII 

PHNG KANEOHE BAY MCAF KANEOHE HAWAII 

PHNL HONOLULU INTL HONOLULU HAWAII 

PHNY LANAI LANAI CITY HAWAII 

PHOG KAHULUI KAHULUI HAWAII 

PHTO HILO INTL HILO HAWAII 
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Appendix F FAA-EPA May 2009 Total Organic Gas (TOG) Speciation Profile 

Real Organic Species  

Mass 

Fraction 

 

Real Organic Species  

Mass 

Fraction 

Ethylene  0.154590  n-Decane  0.003202 

Acetylene  0.039386  1,2,3-Trimethylbenzene  0.001062 

Ethane  0.005215  n-Undecane  0.004442 

Propylene  0.045336  n-Dodecane  0.004616 

Propane  0.000781  n-Tridecane  0.005354 

Isobutene/1-Butene  0.017538  C14-alkane  0.001860 

1,3-Butadiene  0.016870  C15-alkane  0.001771 

cis-2-Butene  0.002105  n-tetradecane  0.004164 

3-Methyl-1-butene  0.001123  C16-alkane  0.001460 

1-Pentene  0.007761  n-pentadecane  0.001726 

2-Methyl-1-butene  0.001396  n-hexadecane  0.000487 

n-Pentane  0.001984  C18-alkane 1.77 x10-5 

trans-2-Pentene  0.003594  n-heptadecane 8.84 x10-5 

cis-2-Pentene  0.002757  phenol  0.007262 

2-Methyl-2-butene  0.001846  naphthalene  0.005412 

4-Methyl-1-pentene  0.000687  2-methyl naphthalene  0.002062 

2-Methylpentane  0.004085  1-methyl naphthalene  0.002466 

2-Methyl-1-pentene  0.000342  dimethylnapthalenes  0.000898 

1-Hexene  0.00736  C4-Benzene + C3-aroald  0.006564 

trans-2-Hexene  0.000297  C5-Benzene+C4-aroald  0.003241 

Benzene  0.016815  Methanol  0.018052 

1-Heptene  0.004385  Formaldehyde (FAD)  0.123081 

n-Heptane  0.000639  Acetaldehyde (AAD)  0.042718 

Toluene  0.006421  Acetone  0.003693 

1-Octene  0.002757  Propionaldehyde  0.007266 

n-Octane  0.000625  Crotonaldehyde  0.010328 

Ethylbenzene  0.001743  Butyraldehyde  0.001185 

m-Xylene/p-Xylene  0.002822  Benzaldehyde  0.004695 

Styrene  0.003094  Isovaleraldehyde  0.000325 

o-Xylene  0.00166  Valeraldehyde  0.002452 

1-Nonene  0.002455  o-Tolualdehyde  0.002298 

n-Nonane  0.000624  m-Tolualdehyde  0.002778 

Isopropylbenzene 3.17 x10-5  p-Tolualdehyde  0.000482 

n-Propylbenzene  0.000533  Methacrolein  0.00429 

m-Ethyltoluene  0.001541  Glyoxal  0.018165 

p-Ethyltoluene  0.000642  Methylglyoxal  0.015033 

1,3,5-Trimethylbenzene  0.000541  acrolein  0.024493 

o-Ethyltoluene  0.000654  C-10 paraffins*  0.14608 

1,2,4-Trimethylbenzene  0.003502  C-10 olefins*  0.05843 

1-Decene  0.001846  decanal*  0.05843 

   dodecenal*  0.02922 
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Appendix G Split Fractions of CB05 Lumped Species 

AEDT Total Hydrocarbon (THC) emissions are mapped into CMAQ CB05 species as shown by 

the split factors below. The split factors specify the number of moles of CB05 lumped species 

that is contained in 1 g of Total Organic Gas (TOG) emissions. The factors are derived from the 

FAA-EPA aviation TOG speciation profile, and the CB05 real organic species to model species 

assignment table listed in Appendix A of [25]. AEDT THC emissions were first converted into 

TOG emissions by multiplying by a factor of 1.16, before being split into the various lumped 

species.  

The split factor is calculated as follows: 

SFt � u v MFwMWw D Aw,tz
:-

l%-
 

where 

i: index of CMAQ lumped species (PAR, OLE …) 

j: index of Real Organic Species, given in the FAA-EPA profile (total of 81 species) 

SFi: Split Factor for lumped species I [mol CMAQ lumped species/g TOG] 

MFj: Mass fraction of Real Organic Species j [g Real Organic Species / g TOG] 

MWj: Molecular weight of Real Organic Species j [g Real Organic Species /mol Real Organic 

Species] 

Aj,i: Assignment (from Yarwood et al.) of Real Organic Species j to CMAQ lumped species I 

[mol CMAQ lumped species/mol Real Organic Species] 

CMAQ CB05 lumped 

Species Split Factor 

 CMAQ CB05 lumped 

Species Split Factor 

PAR 0.026533799998  BENZALD_T 0.000044242194 

OLE 0.002857357262  BENZENE 0.000215265955 

TOL 0.000230510527  BUTADIENE 0.000311878161 

XYL 0.000222004500  CUMENE 0.000000263657 

FORM 0.004705928693  CUMENE_T 0.000000263657 

ALD2 0.000996034898  ETHYLBENZ 0.000016416577 

ETH 0.005510604161  ETHYLBENZ_T 0.000016416577 
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CMAQ CB05 lumped 

Species Split Factor 

 CMAQ CB05 lumped 

Species Split Factor 

ISOP 0.000000000000  ETHYLENE 0.005510604161 

MEOH 0.000563325600  FORMPRIM 0.004099153430 

ETOH 0.000000000000  MTHYLNAP2_C 0.000000000000 

CH4 0.000000000000  MTHYLNAP2_F 0.000014500197 

ETHA 0.000173417727  MXYL 0.000013289691 

IOLE 0.000409306043  NAPHTHALENE 0.000042223517 

ALDX 0.001560273901  OXYL 0.000015634836 

TERP 0.000000000000  PROPIONAL 0.000125102683 

UNR 0.003367383095  PROPIONAL_T 0.000125102683 

NVOL 0.000000000000  PXYL 0.000013289691 

ACROLEIN 0.000436883954  STYRENE 0.000029709829 

ACROLEIN_PRIMARY 0.000436883954  STYRENE_T 0.000029709829 

ALD2PRIM 0.000969710356  TOLU 0.000069690317 

BENZALD 0.000044242194    
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Appendix H Aviation Emissions and Scale Factors on an Airport Basis 

The entire inventory contains roughly 3550 airports in the modeling domain; for the top 60 busiest airports (ranked by total fuel burn 

in 2006), the data presented below includes airport-level emission totals and the TAF scaling factors and NOx stringency reduction 

ratios for each airport. The airports below represent approximately 80% of the baseline 2006 national aviation fuel burn shown in 

Table 10. Note that, while TAF scaling factors are applied to both arrival and departure flight legs, separate NOx stringency reductions 

are applied to the TAF-scaled 2020/2030 inventories depending on flight leg, since the CAEP/8 NOx stringency emissions inventory 

contains data on a flight-leg basis. 

Baseline 2006 LTO (short tons/year) 2020 Scale (Relative to Baseline) 2030 Scale (Relative to Baseline) 

Airport Fuel-Burn CO NOx  HC SO2 POA PEC PSO4 Operations 

TAF-

GA 

TAF-

AC 

TAF-

AT 

NOx 

Str 

Arr 

NOx 

Str 

Dep 

TAF-

GA 

TAF-

AC 

TAF-

AT 

NOx 

Str 

Arr 

NOx 

Str 

Dep 

KATL 394,921 5,733 3,880 759 450 59 19 36 967,118 -12% 53% 7% -3% -4% 8% 99% 33% -5% -7% 

KORD 386,249 5,078 4,256 689 440 54 19 35 930,277 -73% 17% -5% -3% -4% -72% 56% 5% -5% -7% 

KJFK 296,385 4,506 3,473 676 338 55 13 27 366,738 -14% 62% 69% -4% -4% -14% 132% 110% -6% -8% 

KDFW 291,319 3,269 3,169 526 332 40 18 27 690,925 -55% 21% -7% -2% -3% -55% 47% 9% -4% -6% 

KLAX 287,332 3,627 3,601 500 328 39 11 26 599,178 12% 23% -37% -3% -4% 26% 53% -35% -6% -7% 

KEWR 230,225 3,547 2,445 447 262 37 7 21 434,483 -20% 17% 10% -3% -4% -20% 39% 33% -6% -8% 

KIAH 210,861 3,479 2,015 341 240 27 5 19 593,215 -30% 38% 10% -2% -4% -15% 91% 36% -5% -7% 

KLAS 183,672 2,335 2,107 301 209 24 11 17 493,947 -20% 22% 4% -2% -3% 3% 63% 30% -4% -6% 

KMIA 182,012 2,424 2,119 419 207 33 6 17 358,967 -25% 33% -13% -3% -4% -25% 72% 8% -6% -8% 

KPHL 175,177 2,864 1,797 357 200 29 6 16 492,581 -10% 28% 8% -2% -3% -1% 70% 41% -4% -6% 

KDEN 174,028 2,617 1,893 335 198 26 8 16 579,030 -68% 37% 10% -2% -3% -64% 79% 30% -4% -6% 

KPHX 171,059 2,115 1,980 218 195 17 10 16 497,299 -48% 5% 4% -2% -2% -40% 23% 31% -4% -5% 

KDTW 168,410 2,635 1,725 489 192 38 12 15 465,255 -43% -14% 39% -3% -4% -37% 9% 61% -5% -7% 

KLGA 160,673 2,333 1,498 327 183 27 7 15 396,508 -37% 9% -23% -2% -3% -37% 17% -26% -4% -5% 

KMSP 157,414 2,187 1,757 381 179 30 10 14 455,777 -62% 23% 24% -2% -3% -59% 58% 59% -5% -6% 

KMEM 156,906 2,820 1,846 699 179 55 8 14 362,923 -44% 7% -6% -4% -4% -38% 36% 3% -6% -6% 

KSFO 148,178 1,830 1,917 256 169 20 7 14 337,194 -18% 47% -5% -3% -4% -7% 88% 1% -6% -7% 

KBOS 139,243 1,860 1,611 282 159 22 6 13 366,338 -18% 9% -5% -3% -3% -7% 27% -4% -5% -7% 

KMCO 129,999 1,548 1,440 192 148 15 6 12 342,258 -19% 34% -9% -3% -4% -6% 77% 38% -5% -7% 

KCLT 126,631 2,151 1,253 272 144 22 3 12 486,116 -24% 67% -4% -2% -3% -16% 127% 18% -5% -6% 

KIAD 117,731 1,752 1,384 307 134 24 6 11 390,412 -26% 76% -7% -3% -4% -17% 156% 19% -5% -7% 

KSEA 114,417 1,361 1,349 157 130 12 5 11 332,984 -13% 48% -75% -2% -3% 5% 82% -75% -4% -6% 

KSLC 89,187 1,582 876 198 102 16 4 8 353,093 -2% 23% -8% -2% -3% 4% 54% 11% -4% -6% 
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Baseline 2006 LTO (short tons/year) 2020 Scale (Relative to Baseline) 2030 Scale (Relative to Baseline) 

Airport Fuel-Burn CO NOx  HC SO2 POA PEC PSO4 Operations 

TAF-

GA 

TAF-

AC 

TAF-

AT 

NOx 

Str 

Arr 

NOx 

Str 

Dep 

TAF-

GA 

TAF-

AC 

TAF-

AT 

NOx 

Str 

Arr 

NOx 

Str 

Dep 

KBWI 85,685 1,086 972 141 98 11 3 8 271,243 -40% 27% -12% -2% -2% -35% 59% -5% -3% -5% 

KDCA 84,919 1,104 884 132 97 11 4 8 274,785 153% 6% -12% -2% -2% 253% 11% -14% -3% -4% 

KFLL 84,461 1,104 902 175 96 14 4 8 254,913 -14% 37% -15% -2% -3% 4% 79% -10% -5% -6% 

KMDW 76,012 1,062 834 161 87 13 3 7 264,764 -28% 30% -50% -1% -2% -28% 73% -38% -3% -4% 

KOAK 71,513 926 874 142 82 11 3 7 206,870 -13% -13% -8% -2% -3% 9% 11% 6% -4% -5% 

KSAN 70,268 861 784 106 80 9 3 6 215,288 -35% 28% -10% -2% -3% -23% 74% 7% -4% -5% 

KTPA 68,706 909 753 152 78 12 3 6 220,168 -21% 22% -49% -2% -3% -8% 55% -36% -4% -6% 

KIND 68,629 1,108 816 249 78 19 3 6 192,757 -36% 28% -36% -3% -4% -26% 39% -25% -6% -6% 

KCVG 68,074 1,099 656 132 78 11 3 6 339,000 -26% -29% -36% -3% -4% -14% -12% -26% -5% -7% 

KSDF 65,953 957 761 153 75 12 2 6 157,318 -29% 3% -16% -2% -3% -15% 17% 1% -5% -6% 

KSTL 65,492 785 736 129 75 10 3 6 262,371 -45% 2% -40% -2% -3% -37% 20% -31% -4% -5% 

KCLE 55,473 958 557 140 63 11 1 5 242,078 -29% 1% -2% -2% -3% -20% 29% 13% -4% -6% 

KPDX 51,823 655 618 84 59 7 2 5 226,823 -17% 42% -8% -2% -3% 0% 85% 14% -4% -6% 

KMCI 48,444 690 509 116 55 9 2 4 169,321 -59% 7% 28% -2% -3% -58% 34% 68% -4% -5% 

KPIT 47,281 801 472 127 54 10 2 4 220,560 -10% 11% -65% -2% -2% 6% 35% -60% -4% -5% 

KSJC 46,613 581 546 93 53 7 2 4 164,327 -15% -7% -4% -2% -2% -1% 23% 31% -3% -5% 

KRDU 46,410 655 506 130 53 10 2 4 190,530 -18% 31% -18% -2% -3% -5% 75% 4% -4% -5% 

KBNA 45,127 688 466 121 51 9 2 4 178,581 -29% -3% 20% -1% -2% -11% 12% 55% -3% -4% 

KMKE 41,093 691 404 139 47 11 2 4 182,653 -23% 23% 2% -2% -3% -3% 57% 15% -4% -6% 

KSNA 40,303 544 447 96 46 7 2 4 136,652 -15% 26% -56% -2% -2% -4% 59% -43% -3% -5% 

KHOU 39,521 632 378 102 45 8 1 4 171,491 -10% 9% -40% -1% -2% 4% 20% -32% -3% -4% 

KILN 37,467 704 340 243 43 19 3 3 63,253 -9% 21% -7% -4% -6% 3% 52% 8% -7% -9% 

KSMF 36,674 449 434 52 42 4 2 3 123,384 -43% 3% 4% -2% -2% -34% 34% 31% -4% -5% 

KONT 36,231 489 443 77 41 6 2 3 106,369 -16% -28% 5% -2% -3% -3% -22% 18% -5% -6% 

KSAT 36,158 537 378 103 41 8 2 3 143,032 -11% 21% 43% -2% -3% 2% 51% 90% -4% -5% 

KAUS 35,865 527 368 96 41 7 2 3 134,841 -23% 14% -9% -2% -3% -14% 31% 14% -4% -5% 

KDAL 35,782 610 345 108 41 8 1 3 169,364 -41% 68% -35% -2% -2% -28% 94% -24% -3% -5% 

KBDL 33,716 426 390 69 38 5 1 3 115,315 -28% -11% -18% -2% -3% -12% 6% -3% -4% -6% 

KCMH 31,493 470 338 99 36 8 1 3 147,760 -42% 40% -18% -2% -2% -31% 86% -11% -3% -5% 

KPBI 31,035 524 305 132 35 10 2 3 127,742 -27% 14% -23% -3% -3% -15% 36% -2% -5% -7% 

KRSW 27,169 318 291 45 31 4 1 2 78,560 -17% 34% -23% -2% -3% -12% 85% -1% -5% -6% 

KABQ 26,727 350 299 47 30 4 1 2 102,774 -16% 7% -7% -2% -2% 4% 26% 12% -3% -4% 

KJAX 25,560 408 263 79 29 6 1 2 100,400 -21% 19% -34% -2% -3% 0% 47% -19% -5% -6% 

KMSY 25,190 330 267 62 29 5 1 2 93,323 -35% 92% -27% -2% -3% -26% 126% -17% -4% -6% 

KBUR 23,388 325 249 44 27 4 1 2 93,459 -65% 8% -30% -2% -2% -61% 30% -20% -3% -5% 
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Appendix I PM2.5 and Ozone Species 

The following table lists the components that are aggregated to form PM2.5, its constituents and ozone. The ‘I’ and ‘J’ suffixes to the 

species names refer to aerosol Aitken and Accumulation modes of formation. All PM species are reported in concentration units of 

ug/m3, while ozone is reported in concentration units of ppbv.  

Description Variable Equation (In terms of CMAQ chemical species) 

Sulfate PM ASO4T ASO4I + ASO4J 

Nitrate PM ANO3T ANO3I + ANO3J 

Ammonium PM ANH4T ANH4I + ANH4J 

Elemental Carbon PM AECT AECI + AECJ 

Organic PM PM_ORG_TOT AORGAT + AORGBT + AORGCT + 1.167*AORGPAT 

Crustal PM A25J A25J 

PM2.5 Total PM25 ASO4T+ANO3T+ANH4T+AECT+PM_ORG_TOT+A25J 

Ozone O3 O3 

 where the following species are defined as 

Anthropogenic Secondary 
Organic Aerosol (SOA) 

AORGAT  AXYL1J+AXYL2J+AXYL3J 
+ATOL1J+ATOL2J+ATOL3J 
+ABNZ1J+ABNZ2J+ABNZ3J 
+AALKJ+AOLGAJ 

Biogenic SOA AORGBT  AISO1J+AISO2J+AISO3J 
+ATRP1J+ATRP2J+ASQTJ 
+AOLGBJ 

Cloud SOA AORGCT AORGCJ 

Anthropogenic POA AORGPAT AORGPAI+AORGPAJ 
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Appendix J MATS Options and Settings 

The following tables describe the settings and program options used in MATS. Note that there are separate tables for PM2.5 and 

Ozone-Benefits. 

MATS Option Page – Annual PM2.5 

Calculation 

Choice 

MATS Version 2.3.1 

Analysis Type Annual PM Analysis 

Choose Desired Output Standard Analysis  

  – Interpolate monitor data to FRM sites. Temporally-adjust 

  Quarterly Model Data  

  – Output used quarterly average model data file 

Output Choice-Advanced Spatial Field Estimates  

  – Forecast: Interpolate FRM and speciation monitor data to spatial field. Temporally adjust 

  – Forecast: Interpolate gradient-adjusted FRM and speciation monitor data to spatial field. 
Temporally adjust 

  Miscellaneous Outputs  

  – Quarterly average files: Spatial Field 

  – Quarterly average files: Spatial Field - gradient-adjusted 

  – Species fractions spatial field: Spatial Field 

  – Species fractions spatial field: Spatial Field - gradient-adjusted 

  – Quarterly average speciated monitors: File “E” 

Data Input Species Data  

  – Species Monitor Data File: Species-for-fractions-0206-v2.csv 

  PM2.5 Monitor Data  

  – Unofficial Daily Average PM2.5 Data File: PM25-for-fractions-0206-v3.csv 

  – Official Quarterly Average FRM Data file: Annual-official-FRM-99-08-v2.csv 

  Model Data  

  – Quarterly model data input 

Species Fraction Calculation Options IMPROVE-STN Monitor Data  
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MATS Option Page – Annual PM2.5 

Calculation 

Choice 

  – Monitor Data Years: 2004-2006 

  – Delete Specified Data values: EPA-specified deletions from monitor data 

  – Minimum Data Requirements: Minimum number of valid days per quarter = 11 

  – Minimum Data Requirements: Minimum number of valid years required for valid season = 1 

  – Minimum Data Requirements: Minimum number of valid seasons for valid monitor = 1 

  PM2.5 Monitor Data 

  – Monitor Data Years: 2004-2006 

  – Delete Specified Data values: EPA-specified deletions from monitor data 

  – Minimum Data Requirements: Minimum number of valid days per quarter = 11 

  – Minimum Data Requirements: Minimum number of valid years required for valid season = 1 

  – Minimum Data Requirements: Minimum number of valid seasons for valid monitor (point 
calculations) = 4 

  – Minimum Data Requirements: Minimum number of valid seasons for valid monitor (spatial 
fields calculation) = 1 

Species Fractions Calculation Options 
- Advanced 

Interpolation Options 

  – PM2.5: Inverse Distance Squared Weights (90000) 

  – SO4: Inverse Distance Squared Weights (90000) 

  – NO3: Inverse Distance Squared Weights (90000) 

  – EC: Inverse Distance Squared Weights (90000) 

  – Salt: Inverse Distance Squared Weights (90000) 

  – Crustal: Inverse Distance Squared Weights (90000) 

  – DON: Inverse Distance Squared Weights (90000) 

  – OC: Inverse Distance Squared Weights (90000) 

  – NH4: Inverse Distance Squared Weights (90000) 

  Miscellaneous Options 

  – Ammonium: Use DON values 

  – Default Blank Mass: Default Blank Mass = 0.5 

  – Organic Carbon: Organic carbon mass balance floor = 1 
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MATS Option Page – Annual PM2.5 

Calculation 

Choice 

  – Organic Carbon: Organic carbon mass balance ceiling = 0.8 

PM2.5 Calculation Options PM2.5 Monitor Years 

  – Start year=2005, End year=2005 

  – Official Design Values 

  – Valid FRM Monitors: Minimum number of Design Values = 1 

  – Valid FRM Monitors: Required Design Values = [None selected] 

  – NH4 Future calculation: Calculate future year NH4 using base year NH4 and the NH4 RRF 

Model Data Options Temporal adjustment at monitor 

  – Grid for Point Forecast = 3x3  

  – Grid for Spatial Forecast = 1x1 

 

MATS Option Page – Ozone Benefits 

calculations 

Choice 

MATS Version 2.3.1 

Analysis Type Ozone Analysis 

Choose Desired Output Point Estimates 

  – Temporally-adjust ozone levels at monitor 

  Spatial Field 

  – Baseline: Interpolate monitor data to spatial field. 

  – Baseline: Interpolate gradient-adjusted monitor data to spatial field. 

  – Forecast: Interpolate monitor data to spatial field. Temporally adjust ozone levels 

  – Forecast: Interpolate gradient-adjusted monitor data to spatial field. Temporally adjust 

Data Input Monitor Data  

  – Ozone Data: ozone_2000-2007_dailymax_season_avg.csv 

  Model Data  

  – Yearly model data input 
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calculations 

Choice 

  Using Model Data  

  – Temporal adjustment at monitor: 1x1, Maximum 

Filtering and Interpolation Choose Ozone Design Values 

  – Start Year: 2002-2004 

  – End Year: 2004-2006 

  Valid Ozone Monitors 

  – Minimum Number of design values: 1 

  – Required Design Values: None selected 

  Default Interpolation Method 

  – Inverse Distance weights 

RRF and Spatial Gradient RRF Setup 

  – Initial threshold value (ppb):0 

  – Minimum number of days in baseline at or above threshold: 0 

  – Minimum allowable threshold value (ppb): 0 

  – Min number of days at or above minimum allowable threshold: 0 

  – Subrange first day of ozone season used in RRF: 1 

  – Subrange last day of ozone season used in RRF: 153 

  Spatial Gradient Setup 

  – Start Value: 1 

  – End Value: 153 

 


